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Abstract

The J-Park Simulator (JPS) acts as a continuously growing platform for inte-

grating real-time data, knowledge, models, and tools related to process industry.

It aims at simulation and optimization in cross-domain and multi-level scenar-

ios and relies heavily on ontologies and semantic technologies. In this paper,

we demonstrate the interoperability between different applications in JPS, in-

troduce new domain ontologies into the JPS, and integrate live data. For this,

we utilize a knowledge graph to store and link semantically described data and

models and create agents wrapping the applications and updating the data in

the knowledge graph dynamically. We present a comprehensive industrial air

pollution scenario, which has been implemented as part of the JPS, to show how

knowledge graphs and modular domain ontologies support the interoperability
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between agents. We show that the architecture of JPS increases the interoper-

ability and flexibility in cross-domain scenarios and conclude that the potential

of ontologies outweighs additional wrapping efforts.

Keywords: Industry 4.0, ontology, linked data, knowledge graph,

interoperability, agent

1. Introduction

Software tools for modeling, optimization, and simulation are decisive in pro-

cess industry. Interoperability between different tools and models has always

played an important role in designing and simulating larger composed struc-

tures such as chemical plants. Interoperability can be described as the ability5

of systems to understand each other and to use each other’s functionalities [1].

As the complexity and choice of tools increase in the future, interoperability

will become even more critical. It is also considered as one of the key factors of

Industry 4.0 [2]. To achieve interoperability, components and systems that are

involved in the same application scenario “must be capable of automatically in-10

terpreting each other’s roles and ‘understanding’ each other”, and consequently,

semantics and models are important research topics for Industry 4.0 [3].

Interoperability and semantics are especially critical in cross-domain sce-

narios, which we will illustrate with an industrial air pollution scenario. This

scenario is used throughout this paper and can be summarized as follows: The15

emissions of a power plant are estimated and by considering the effects of sur-

rounding buildings and real-time weather conditions, the dispersion profiles for

different pollutants are simulated. This short description already contains con-

cepts from different domains such as “power plant”, “pollutant”, “building”, and

“weather”. We implemented this scenario by utilizing two pieces of commercial20

software – one for estimating the plant’s emissions and another for simulating

the dispersion of the emitted pollutants. Consequently, both pieces of software

have to share data related to emissions and pollutants. In addition, the second

software has to process data related to weather conditions and buildings that
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are in the vicinity of the plant.25

If we are only interested in the industrial air pollution scenario for a spe-

cific plant at a specific location, its implementation would be straightforward.

But this is not true if we want to vary, extend, generalize, and/or combine the

scenario with other scenarios. For example, we might want to extend the sce-

nario to include additional emission sources such as chemical plants or vessels30

in a port, or replace the commercial software estimating emissions with other

simulation tools or with real-time measurements. In addition, the power plant

could be part of an eco-industrial park with chemical plants as its consumers

and/or it could be connected to a smart grid where some of the buildings’ roofs

are equipped with solar panels etc.35

Ambient air pollution is considered a large environmental health risk and

causes millions of deaths every year. The industrial air pollution scenario and

its variations support the assessment of modeled emissions against air quality

standards during the planning phase of industrial plants, for instance, to deter-

mine the stack height or to determine the locations of new decentralized power40

plants in order to comply with legal pollution thresholds for nearby buildings.

They also support safety and emergency planning as well as air pollution fore-

casts during plant operation. While these scenarios are of high importance by

themselves, this paper does not focus on a specific detailed case study but in-

stead uses the industrial air pollution scenario to exemplify and discuss how45

simulation tools and other components referring to different domains may be

coupled in a flexible way.

There are several approaches to tackle the problem of interoperability within

the context of process engineering. Fillinger et al. [4] give an overview about

standards and formats that address this problem. However, these approaches50

are specific to the data exchange between process simulation and CAD tools

and do not consider tools related to other domains. In contrast, ontologies and

related technologies provide a uniform framework to describe data semantically,

to share knowledge, and to cope with heterogeneity in cross-domain applications.

An ontology is an explicit specification of a conceptualization [5]. It defines and55
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describes the concepts of an application domain and their relationships to each

other in an expressive format that allows for logical reasoning and inference.

Ontologies have been designed and used by many application domains. How-

ever, we will only mention a few references that are relevant for the process

industry below. Batres [6] gives a comprehensive overview about ontologies60

that have been used in process systems engineering. OntoCAPE is a large-scale

ontology developed for computer-aided process engineering [7]. Wiesner et al.

[8] use OntoCAPE to integrate information from different software tools and

phases in process engineering.

ISO 15926 is a standard that supports the exchange and integration of infor-65

mation from all phases of the life cycle of chemical plants [9]. It allows the use

of different formats such as XML (Extensible Markup Language). Parts 8 and

12 of the standard refer to the semantic description with OWL (Web Ontology

Language). Moreover, the data model of ISO 15926 is proposed as an upper

ontology [10]. The DEXPI (Data Exchange in the Process Industry) initiative70

[11] supports interoperability with respect to ISO 15926. Fillinger et al. [12]

illustrate a prototype for an XML-based data exchange between P&ID tools

from different vendors by using ISO 15926 and tools from DEXPI.

Bramsiepe et al. [13] analyze methods to reduce lead time in chemical engi-

neering process and plant design. They identified proprietary formats for data75

exchange as one of the key challenges in plant design and speculate that Onto-

CAPE, ISO 15926 and ISO 10303 (STEP, Standard for the Exchange of Product

model data) could increase the interchangeability of data in chemical industry.

Muñoz et al. [14] present a batch control ontology that is structured according

to ANSI/ISA-88, a standard for batch control, and applied it successfully to the80

optimization of a simulated plant scenario.

This shows that ontologies have been widely used for data exchange, control

and simulation within the context of process industry. Besides that, ontologies

have been successfully utilized in cross-domain applications, e.g. in the areas of

Internet of Things [15] and Smart Manufacturing [16], or have been proposed85

to integrate and link heterogeneous industrial data from different systems and
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enterprises [17]. But on the other hand, these cross-domain applications do not

consider process engineering tools.

In this paper, we will use the J-Park Simulator (JPS) to implement the

industrial air pollution scenario. JPS is part of the C4T project (Cambridge90

Centre for Carbon Reduction in Chemical Technology) [18] and has continu-

ously expanded as a platform for integrating real-time data, knowledge, models,

and applications from different domains to fulfill objectives such as simulation

and optimization. The initial goal of JPS was the reduction of CO2 emissions

from the industrial park on Singapore’s Jurong Island. To achieve this, a uni-95

form and holistic approach was applied to different levels of modeling (unit,

process, plant, and industrial network level) and networks (for energy, power,

waste, and materials) in [19] and [20]. At a later stage, ontologies and related

semantic technologies were introduced into JPS successfully: Zhou et al. [21]

focused on the process simulation and optimization of chemical plants mod-100

eled by means of OntoCAPE as a first step towards a knowledge base for an

overall industrial park. Zhou et al. [22] developed a skeletal ontology for multi-

level and cross-domain modeling in eco-industrial parks (EIPs) by adapting and

extending OntoCAPE; they also introduced an ontological knowledge base for

managing information in EIPs in a decentralized manner. However, the authors105

did not address two important questions: How can different software applica-

tions change the knowledge base dynamically and collaborate with each other,

and how can live data be incorporated into the knowledge base?

The purpose of this paper is to, firstly, dynamically update the JPS,

demonstrating interoperability between different applications solving a cross-110

domain problem, secondly, to introduce new domain ontologies into the JPS

and, thirdly, to integrate live data into the knowledge base. We do this by

implementing the industrial air pollution scenario for a power station in Berlin

and in The Hague while keeping in mind that the implementation should easily

be adapted to other emission sources and more complex scenarios.115

The remaining parts of this paper are organized as follows. Section 2 summa-

rizes the main ideas of ontologies and linked data in a incomprehensive manner.
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Sections 3 and 4 present the main architectural principles of JPS along the in-

dustrial air pollution scenario: Section 3 presents the JPS knowledge graph that

is used to store and link data and information in a distributed manner and em-120

phasizes the modular structure of domain ontologies. Section 4 illustrates how

agents can operate on the JPS knowledge graph, collaborate with each other,

and use live data. In JPS, the term ”agent” is used in a very broad context

to refer to applications and services that utilize semantic technologies and are

accessible on the World Wide Web. In order to facilitate better understanding125

of JPS agents, we will first present the current implementation of these agents

for the industrial air pollution scenario. This is followed by discussions of open

questions concerning the current implementation and an outlook on how to ad-

dress these questions in the future. Section 5 outlines the conclusions for this

paper.130

2. Semantic Web Stack

The World Wide Web Consortium (W3C) has published several standards

and formats, the so-called Semantic Web stack [23], that aim at the semantic

description, understanding, and integration of data on the World Wide Web

[24]. Since JPS relies heavily on these standards and related technologies, we135

will give a incomprehensive overview of some of its key concepts.

An ontology defines a vocabulary to describe an application domain in a

semantic way. It distinguishes between classes, instances, and relations: Classes

denote concepts that constitute the application domain, instances represent con-

crete individuals of a given class, and relations define which classes and instances140

can be linked to each other. The domain of a relation is specified by a concrete

class and its range by a concrete class or data type (such as double). An in-

stance can be linked to another instance or data value (such as “45.3”) using

a relation only if the instances and values are consistent with the domain and

range of that relation.145

The left side of Figure 1 illustrates an example: It is greatly simplified and
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Figure 1: A biodiesel plant on Jurong Island represented in different formats: a) graph with

instances (green nodes), relations (orange and red arrows), individual assertions (purple ar-

rows), and classes (purple nodes), b) Aspen Plus process flow model, and c) machine readable

format in RDF/XML.

only presents some aspects of an existing biodiesel plant on Jurong Island; the

complete example was realized in detail as part of JPS in combination with

simulations in Aspen Plus [21]. The upper right side of Figure 1 shows the

corresponding process flow model. The biodiesel plant itself is represented as150

an instance of the class “Plant” and contains equipment instances of various

classes such as “Pump”, “Stirred Tank”, and “Vessel” that are connected to

each other. The relations “contains” and “is connected to” are represented

by orange and red arrows respectively; purple arrows denote the individual

assertion to define instances of a given class. Consequently, the graph in Figure155

1 represents grammatical triples such as “P-301 is a Pump”, “R-303 is a Stirred

Tank”, and “P-301 is connected to R-303”. Each triple consists of a subject, a

predicate, and an object, where the subject and object are presented as nodes

and the predicate as directed edge.

JPS uses the Web Ontology Language (OWL), which is a powerful lan-160

guage for expressing ontologies. It provides particular axioms and assertions

to define classes, instances, and relations. Its functionalities go far beyond the

presented example and allow the definition of sub classes, synonyms, properties
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of relations (such as symmetry, reflexivity, and transitivity) etc. that can be

used for reasoning and inference. Ontologies in OWL can be serialized, stored,165

and exchanged in different formats, e.g., the lower right side of Figure 1 shows

a machine readable snippet in RDF/XML format that describes the biodiesel

plant. For the purpose of illustration, we will use human-readable names for all

entities, e.g. “Plant”, “R-303” and “is connected to”, throughout this paper.

Instead, OWL makes use of URLs (Uniform Resource Locators) to identify and170

resolve entities as web resources in a globally unique way1. Consequently, data

that are distributed over the World Wide Web can be described and linked in

a semantic way to eventually form a “global data graph” [25]. OWL, RDF

(Resource Description Framework), XML (Extensible Markup Language), and

URLs are parts of the Semantic Web stack. The Semantic Web stack also con-175

tains SPARQL (SPARQL Protocol and RDF Query Language), a language to

query and update such semantic data graphs.

3. Knowledge Graph

JPS makes use of SPARQL to query, insert, change, and delete triples in its

data graph. In the following, we will denote this data graph as the JPS knowl-180

edge graph. The JPS knowledge graph may be regarded as part of the “global

data graph” since it links entities that are defined and published “outside” JPS,

and vice versa, publishes entities that may be linked from elsewhere. There

is no standard definition for the term “knowledge graph”, but the number of

instances stored in a knowledge graph is usually much larger than the number185

of classes [26], which is also the case for the JPS knowledge graph.

In accordance with best practices of the Semantic Web, classes and relations

1For example, the instance ”Biodiesel Plant” from Figure 1 is identified in JPS by the URL

http://www.theworldavatar.com/kb/sgp/jurongisland/biodieselplant3/BiodieselPlant3.owl.

Requesting this URL will return an OWL file in RDF/XML format with information about

the plant. Actually, OWL allows the use of IRIs (Internationalized Resource Identifiers)

which are more general than URLs.
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are usually defined separately from the instances2, bundled in modular ontolo-

gies and published on the World Wide Web. Many researchers have designed and

published ontologies for their specific domains following these principles. This190

allows for a high degree of reusability and thus reduces design efforts and helps

to link data from different sources. JPS follows the same principles and aims

to integrate existing modular domain ontologies if suitable – sometimes with

slight adaptations. Nevertheless, some ontologies were created from scratch in

the past because proper ontologies for previously implemented JPS use cases195

had been missing; this is the case, for example, for the ontologies OntoEIP,

OntoPowSys, and OntoKin listed at the beginning of Table 1.

Table 1: Examples of ontology from different domains used in JPS. The industrial air pollution

scenario makes use of the underlined ontologies and of the DBpedia knowledge graph.

Ontology Domain

OntoEIP Eco-industrial park [22]

OntoPowSys Electrical power system [22]

OntoKin Reaction mechanisms [27]

OntoCAPE Computer aided process engineering [7]

OntoCityGML Cities and landscapes [28]

Weather Ontology Weather [29]

DBpedia Cross-domain knowledge extracted from Wikipedia [30]

Concerning the cross-domain scenario of industrial air pollution, we iden-

tified the relevant domains and decided to reuse the ontologies OntoCAPE,

OntoKin, and OntoCityGML, and a weather ontology. While OntoCAPE and200

OntoKin have been used in previously implemented JPS use cases, OntoCi-

tyGML and the weather ontology have become part of the JPS knowledge graph

for the first time. Figure 2 sketches a part of the entire JPS knowledge graph

and shows the modular domain ontologies as blue boxes in combination with

2The separation is similar to the use of T-box and A-box in description logic where the

A-box contains statements that use conceptual models from the T-box.
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some typical classes as purple nodes. In the following paragraphs, we will briefly205

introduce the domain ontologies and the actual instances used for this paper.

OntoCAPE [7] is a large-scale ontology describing different aspects and lev-

els for the domain of Computer Aided Process Engineering. It was the first

ontology that was integrated into JPS to model chemical plants on Jurong Is-

land’s industrial park, such as the biodiesel plant presented in Section 2. For210

the industrial air pollution scenario, two power plants, “Heizkraftwerk Mitte” in

Berlin and “Energiecentrale” in The Hague have been added to the JPS knowl-

edge graph for two reasons: While JPS was originally developed for modeling

the industrial park on Jurong Island, we also want to show in this paper that

the general architecture of JPS is applicable and extensible to other locations,215

domains, and scenarios. The second reason is that building data for Singapore

are simply not available publicly, contrary to Berlin and The Hague. We will

focus on the power plant “Heizkraftwerk Mitte” in the following description.

Figure 2 illustrates some related instances such as the power plant’s chimney

and waste stream in a simplified manner.220

OntoKin [27] consists of approximately 50 classes and 120 relations to repre-

sent reaction mechanisms. The JPS knowledge graph provides many instances

of reaction mechanisms with detailed information.

OntoCityGML is an ontology to describe 3D models of cities and landscapes

and was generated from the XML standard CityGML [31] by researchers from225

University of Geneva [28]. We have migrated publicly available CityGML data

for Berlin and The Hague to OntoCityGML and loaded them into two “triple

stores” that allow for high-performance semantic queries with SPARQL. The

two resulting knowledge bases for Berlin and The Hague can be considered

as part of the entire JPS knowledge graph. Figure 2 sketches the ontological230

representation of a building in Berlin in the lower right corner.

The Weather Ontology was created by researchers from Technical Univer-

sity of Vienna [29] and is used to describe the current weather conditions such

as temperature, wind speed, and wind direction for arbitrary locations in a se-

mantic way. Moreover, the scenario makes use of classes and instances from235

10



DBpedia, such as “City” and “Berlin”. DBpedia is a published RDF knowledge

graph that contains extracted knowledge from Wikipedia [30]. For the sake of

completeness, DBpedia was added to Table 1 and Figure 2.

The JPS knowledge graph may be regarded as a large set of semantic triples

containing information and data for the industrial air pollution scenario and240

further scenarios previously implemented in JPS. These triples are organized in

subsets (e.g. domain ontologies, building knowledge base for Berlin or the de-

scription of “Heizkraftwerk Mitte” in Berlin) and can be stored on different web

nodes. Zhou et al. [22] have demonstrated how this could be used to establish

a decentralized information management system of Jurong Island. In a real-245

world industrial air pollution scenario, the detailed ontological representation

of “Heizkraftwerk Mitte” proprietary technology would be kept private, while

only the waste stream becomes part of an external interface with controlled ac-

cess. In contrast, the knowledge base for buildings in Berlin could be published

as part of a governmental open data strategy and be queried using SPARQL in250

a similar way as DBpedia.

4. Agents and Interoperability

Figure 3 summarizes the main principles of JPS: The lower layer (blue boxes)

denotes the modular and reusable domain ontologies. The middle layer (green)

stores and links instances and data values and uses the ontologies for their se-255

mantic descriptions. Both the lower and the middle layer form the JPS knowl-

edge graph which can be distributed over the World Wide Web, i.e. its sub

graphs can be distributed on different web nodes (represented by green rectan-

gles). The upper layer (red) consists of agents (represented by triangles) that

interact with each other and operate on parts of the knowledge graph, depending260

on their granted access privileges.

This section consists of two parts: The first part presents the current im-

plementation of the industrial air pollution scenario. It focuses on the agents’

operation on the knowledge graph and on the semantic interoperability between
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Figure 2: Simplified part of JPS knowledge graph: Blue boxes denote reusable domain on-

tologies, purple nodes correspond to classes and green nodes to instances. Orange and red

arrows denote different types of relations and purple arrows individual assertions.

agents, i.e. their ability to understand the exchanged data. The second part265

addresses questions arising from the current implementation and discusses how

we could leverage the unleashed potential of semantic technologies to solve some

of these questions in the future.

4.1. Implementation of the Industrial Air Pollution Scenario

JPS agents apply the Semantic Web stack, in particular SPARQL, for se-270

mantic queries. They can read and understand information from the knowledge

graph and modify its data values and structure. They can communicate with

each other and exchange information via the knowledge graph and semantic

input and output parameters. They use HTTP (Hypertext Transfer Protocol)

for calling each other and mainly JSON (JavaScript Object Notation) for ex-275

changing input and output parameters. Consequently, they could also run on

different web nodes.

In the industrial air pollution scenario, the user selects a plant instance, a
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Figure 3: Main principles of JPS illustrated for the industrial air pollution scenario: a)

modular domain ontologies (blue), b) knowledge graph (green and blue) with sub graphs

distributed on the Web, and c) agents (red triangles) operating on the knowledge graph and

interacting with each other.

reaction mechanism instance, and a region as the input parameters and initiates

the simulation. The resulting dispersion profile can be viewed in a browser as280

shown in Figure 4. After initiating the simulation, a coordination agent calls

the other agents with the required input and output parameters in a consecutive

manner; in Figure 3 these agents are numbered from 1 to 5. All parameters are

expressed in a semantic way, e.g. the selected plant is an instance of OntoCAPE

class “Plant” and the selected reaction mechanism is an instance of OntoKin285

class “Reaction Mechanism”; both are identified by their URLs. The selected

region is an instance of OntoCityGML class “EnvelopeType” with a nested

structure that specifies the coordinate reference system and coordinates of a

spatial rectangular area.

The first agent uses Google’s Geocoding API in combination with DBpedia’s290

lookup service to retrieve the closest city to the selected region as an instance

with its URL. The second agent requests a public web service for the real-time
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weather conditions close to the selected region and translates the non-semantic

response into a semantic format using the weather ontology. The third agent

uses the city URL to locate the corresponding building knowledge base, retrieves295

the coordinates of the selected plant from the JPS knowledge graph and queries

for the buildings in the vicinity of the plant.

There are some trade-offs concerning the estimation of emissions from the

power plant at this implementation stage: The industrial air pollution scenario

focuses on demonstrating cross-domain interoperability rather than on detailed300

modeling of the power plant. SRM Engine Suite3 is a tool for simulating exhaust

gas emissions from internal combustion engines with which our research groups

have comprehensive experience. In the industrial air pollution scenario, it is

used as a proof of concept for the overall JPS architecture and will facilitate the

integration of computational chemistry in JPS in the future. The fourth agent305

works as an ontological wrapper for SRM Engine Suite. It receives the URLs

for the selected power plant and reaction mechanism, e.g. in Figure 3 the URLs

for “Heizkraftwerk Mitte” and “Toluene”4.

The reaction mechanism “Toluene” involves 109 species and 543 elementary

reactions and was proposed in [32]. It may be replaced by any other reaction310

mechanism instance from the OntoKin subgraph. The agent uses the URLs

to query for the details of the power plant and the reaction mechanism from

the knowledge graph and to map and store them into the SRM configuration

files. The agent then starts the SRM simulation, annotates the simulation re-

sult semantically, modifies the waste stream of the selected plant in the knowl-315

edge graph, and returns the URL for the modified waste stream (in Figure 3

“WasteStream 005”) .

3see http://cmclinnovations.com/products/srm/
4As mentioned in Section 2, we use human readable entity names in-

stead of complete URLs in this paper. The agents use the correspond-

ing URLs instead, e.g. the fourth agent in Figure 3 receives the URL

http://www.theworldavatar.com/kb/ontokin/Toluene.owl#ReactionMechanism 187077735769001

instead of the string “Toluene”.

14



Finally, the coordination agent calls the fifth agent, the ontological wrapper

for the Atmospheric Dispersion Modelling System5 (ADMS), with weather in-

formation and the URLs for the waste stream and buildings. This agent reads320

the waste stream information from the knowledge graph and queries for detailed

information of the surrounding buildings, e.g. position and height, from the cor-

responding building knowledge base. It translates the building details together

with the waste stream and weather information into the proprietary format of

the ADMS input file and executes the ADMS simulation. ADMS estimates the325

concentration values in the selected region for all pollutants originating from

the waste stream of the selected plant. The resulting output file can be anno-

tated semantically by utilizing the W3C’s standard for tabular data [33] and

processed for visualization as shown in Figure 4.

4.2. Discussion and Outlook330

Agents involved in the industrial air pollution scenario map back and forth

between ontologies and proprietary formats of utilized software products and

web services. The associated additional implementation efforts might not be

appropriate for a unique scenario where all involved software components and

their communication are established and well-defined in advance. While this is335

indeed the case for the current implementation of the industrial air pollution

scenario, the vision of JPS goes further.

First of all, the implementation was carried out in such a way that it is

applicable to any power plant that exhibits the same semantic structure as

its waste stream in the knowledge graph. We have proven this for the power340

plant “Energiecentrale” in combination with migrated CityGML data from The

Hague. The lower picture of Figure 4 shows the simulated dispersion profile

for The Hague. In fact, this implementation could be easily extended to any

emission source with the same waste stream structure. But in unmanaged en-

vironments such as the World Wide Web, different or varied vocabularies are345

5see http://www.cerc.co.uk/environmental-software/ADMS-model.html
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Figure 4: Simulated dispersion profile of CO emissions estimated for “Heizkraftwerk Mitte”

in Berlin at a height of zero meters (upper picture) and of unburned hydrocarbons emissions

estimated for “Energiecentrale” in The Hague at a height of ten meters (lower picture). Both

simulations take into consideration the effects of surrounding buildings and real-time weather

conditions.

used for describing waste streams (or any other entities, e.g. weather, region,

etc.). Consequently, the question of how to ensure interoperability and hence

reusablity of agents in a more general context arises. Here, the full potential of

semantic technologies comes into play. For example, ontology matching systems

[34] can facilitate the semi-automatic alignment of classes from different ontolo-350

gies that denote the same concept. Once classes have been aligned, they can

be declared as synonymous using OWL. This in combination with logical rea-

soning can be used to automatically transform information into a semantically

equivalent form that can be further processed by other agents.

Secondly, we use the term “agent” in JPS in a very broad context as already355
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mentioned. Software agents usually exhibit some degree of intelligence and

autonomy and can collaborate with other agents to achieve common goals. In

contrast, agents involved in the industrial air pollution scenario provide stateless

services which are called by a coordination agent with suitable input parame-

ters. On the other hand, we have started to equip software components with360

semantic capabilities such that their input and output parameters, functional-

ity, and properties could be described using its own ontology. These semantic

descriptions would also be part of the JPS knowledge graph in the future. This

allows an agent to discover and communicate with other agents and combine

their functionalities in an adaptive and automated manner. By doing so, JPS365

will be able to benefit greatly from research on Semantic Web services [35],

service discovery, and service composition [36].

Thirdly, although the JPS knowledge graph is extensible and scalable by

design, most data that are available on the web currently are not described se-

mantically. For the industrial air pollution scenario, we migrated from cityGML370

to OWL representation in advance. Alternatively, there are technologies such

as ontology-based data access [37] that can translate semantic queries expressed

in SPARQL into queries that act on relational databases and annotate the re-

sulting data semantically on the fly. Hence, non-semantic data can also be

integrated into the JPS knowledge graph with some additional mapping effort.375

Once JPS agents understand these data, they can also combine, query, and

reason on these data that are from different types of sources, i.e. JPS is not

restricted to semantically described sources.

Fourthly, this paper mainly illustrates the conceptual principles of the JPS

architecture and the use of semantic technologies. As mentioned, JPS agents use380

HTTP and mainly JSON for communicating with each other. We will now elab-

orate on the technological details further. Researchers participating in the C4T

project work in different domains and explore different aspects of CO2 emission

reduction. JPS integrates their work (simulations, optimization algorithms,

models, knowledge bases, experimental data etc.) by combining it with each385

other and third party simulation software (SRM Engine Suite, ADMS, Aspen
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Plus etc.). This leads to a large variety of technologies being used for implemen-

tation, e.g. diverse programming languages (Java, JavaScript, Python, C++,

etc.), web servers (Apache Tomcat, Node.js, nginx), triple stores (Apache Jena

Fuseki, Eclipse RDF4J), solvers (GAMS, MATLAB etc.), Ethereum, Docker390

etc. While technological heterogeneity usually adds complexity for integration

and maintenance, it is unavoidable when dealing with cross-domain context and

will also facilitate innovation. Since technological heterogeneity does not affect

semantic interoperability between JPS agents, the integration capabilities of

JPS have been proven.395

Fifthly, currently the user has to initiate the simulation for the industrial air

pollution scenario manually. In the future, the simulation of the air pollutant’s

dispersion could be triggered automatically e.g. due to changing weather con-

ditions or periodic real-time measurements of plant emissions. When the power

plant is modeled in more detail, a changing prognosis of power demand could400

also trigger the recalculation of the plant’s waste stream which in turn would

lead to an updated simulation of the pollutants’ dispersion. In that sense, the

knowledge graph becomes dynamic and evolves with time as changes in one

node, such as real-time sensor data from a physical device, are propagated pro-

gressively by agents to the related nodes.405

The above discussion can be used to derive the following categorization for

the JPS agents: Type-0 agents operate on the real-world boundary of JPS and

facilitate the information exchange via input activities (from users or sensors)

or output activities (for reporting and visualizing results or for controlling actu-

ators). Type-1 agents estimate, simulate, optimize, and/or query the knowledge410

graph. Type-2 agents add and/or remove elements of the instance-level of the

knowledge graph, i.e. the middle layer (in green) in Figure 3. For example, a

type-2 agent could add a heat exchanger to an existing chemical plant as a result

of an energy optimization. Type-3 and type-4 agents unleash the full potential

of ontologies by providing higher-level and more generic functionalities. Type-3415

agents facilitate the integration of existing vocabularies and domain knowledge

into JPS and support ontology matching and the transformation of semanti-
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cally equivalent structures. In the second above-mentioned point, in the future,

the knowledge graph would be complemented by an “agent ontology” and in-

stances describing the agents’ functionalities and characteristics. This would420

allow type-4 agents (with the support of type-3 agents) to provide services for

agent discovery and composition and to create new agents that control, simu-

late, and optimize composed structures. Both type-3 and type-4 agents would be

able to raise the current level of semantic interoperability to a higher level that

allows for automated adaptive behavior in cross-domain scenarios of increasing425

complexity as described in the introduction.

As mentioned above, type-1 agents can take multiple forms. A subset of this

agent type plays an important role in JPS. These type-1 agents can be either

based purely on data or on physical or chemical insight, i.e. a mathematical

model motivated by natural laws. Even if such a model is based on physics430

and/or chemistry, in almost all cases the model contains parameters that need

estimating. Hence, as pointed out in [38], a full model is not only defined by its

mathematical form but also by the data and methodology that is used in the

process of parameter estimation. This needs to be taken into account if one is

interested in improving the predictive power, evaluation speed or uncertainty435

analysis of a particular model. The methods that are used to do this form agents

in their own right. For parameter estimation both frequentist or Bayesian meth-

ods have been employed. The construction of surrogate models of the original

mathematical model often forms an important part of the process. In this paper

surrogate model creation, parameter estimation, experimental design, and error440

propagation were carried out using MoDS (Model Development Suite) [39]. The

models of a biodiesel plant [40] and an internal combustion engine [41] serve as

examples for type-1 agents that are based on surrogates which are currently in

use in JPS. In both cases experimental design plays an important role. Both

space filling [42] and adaptive methods have been developed [43]. Constructing445

surrogates from data alone has become more and more popular with the ubiq-

uity of rich data sources. Deep learning methods represent an important and

widely used class of methods. How to choose the best method for a particular
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data set depends on the user requirements. Machine learning algorithms have

been used to make this choice [44]. All of these methods mentioned above have450

been or will be employed in JPS.

5. Conclusions

This paper illustrates the use of ontologies and semantic technologies in pro-

cess industry and focuses on how they can support the interoperability between

agents in cross-domain scenarios. We presented a comprehensive industrial air455

pollution scenario that utilizes concepts from different domains such as process

engineering, reaction mechanisms, weather, and buildings. The implementa-

tion of this scenario involves two pieces of commercial software, for estimating

a power plant’s emissions and for simulating the emitted pollutants’ disper-

sion profile, three web services, and knowledge bases for buildings and reaction460

mechanisms. In this paper, we used the scenario as a case study to analyze

and discuss questions related to interoperability between agents. We draw the

following conclusions:

• Domain ontologies specify the domain concepts and their relations to each

other. They provide the vocabularies that help agents to understand data465

and models. We showed that domain ontologies can easily be reused and

integrated as a modular base for describing entities in cross-domain sce-

narios.

• Knowledge graphs allow storage and linking of data and models from dif-

ferent domains and sources in a distributed manner. We showed that470

agents can easily query the knowledge graph and update simulation re-

sults (such as estimated plant’s emissions) and live data (such as current

weather conditions) dynamically.

• The Semantic Web stack uses URLs to identify and resolve entities. We

showed that agents can exchange information by providing URLs as input475

and output parameters and by using them to query entity-related details

20



from the knowledge graph. This allows the collaboration of agents per-

forming simulation and optimization tasks related to different models and

domains.

On the one hand, the initial effort for realizing agents operating on a knowl-480

edge graph might be higher compared to a straight-forward implementation for

a specific use case. On the other hand, this approach increases the interoper-

ability and flexibility in cross-domain scenarios where tools and applications are

used that have been developed independently of each other. JPS might also be

connected to other systems and platforms following a similar approach. How-485

ever, in complex scenarios and unmanaged environments, JPS agents have to

work with various ontologies describing the same concepts and should also be

able to adapt to changing requirements. The full potential of ontologies and

associated research results on reasoning and inference, service discovery and

composition, ontology matching, etc. can be fully unleashed in such situations.490

We believe that this potential will make up for the additional efforts of wrapping

existing applications and tools, and we will apply some of these results in our

future works to achieve a higher level of interoperability in JPS.
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