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The Carbon Budget of the Mekong River Basin:
A Spatial and Temporal Study of Chemical Weathering

Katy Elizabeth Relph

The chemical weathering of silicate rocks with carbonic acid is thought to play an important

role in the consumption of atmospheric carbon dioxide (CO2), which regulates global climate

over million–year timescales. However, the climatic implications of chemical weathering of

carbonate rocks with sulfuric acid, a process that can release geologically stored carbon to

the atmosphere, are not thoroughly understood. Depending on the reaction environment the

lithologically–sourced carbon released from the sulfuric acid weathering of carbonates can either

degas as CO2 instantaneously to the atmosphere, or can be transferred as bicarbonate (HCO−
3 )

to the oceans to be precipitated as carbonate, releasing CO2 on million–year timescales. It is

important to consider the timescale of CO2 release to assess whether a river basin is a transient,

or long–term source of carbon to the atmosphere. Few studies have highlighted the importance

of this weathering reaction and less have quantified the impact of CO2 release from sulfuric acid

weathering of carbonates in large scale catchments.

Quantifying carbonate weathering with sulfuric acid requires the source of riverine sulfate

(SO2−
4 ) to be determined. This comes predominantly from two sources: sedimentary sulfate and

sulfide. Sulfate released from the weathering of gypsum or anhydrite plays no role in the carbon

cycle. Oxidative weathering of sedimentary sulfides, predominantly pyrite, produces sulfuric acid

which can react with carbonates to release CO2. Here, new coupled sulfur, δ34SSO4 , and oxygen,

δ18OSO4 , isotope data on dissolved riverine sulfate and river water isotopes, δ18OH2O, from one of

the world’s largest rivers, the Mekong in Southeast Asia, are presented. A new two end member

mixing model is used to partition sources of dissolved sulfate. Importantly, sulfate sources cannot

be distinguished using δ34SSO4 alone, and hence δ18OSO4 must also be determined.

The Mekong is the world’s 10th largest river in terms of discharge, yet is disproportionately

understudied compared to many other large rivers where chemical weathering rates have been

investigated. This study sampled 36 tributaries and 10 locations along the main channel to calculate

the carbon budget of the Mekong River. Samples were collected over three field seasons, as well

as a bi-monthly time–series from 2014-2017. HCO−
3 and SO2−

4 concentrations in the Mekong are

up to 2709µmol/L and 720.3µmol/L respectively, and generally decrease downstream from the

headwaters on the Tibetan Plateau. Samples display up to 20.7h difference in ∆18OSO4−H2O, and

δ34SSO4 ranges by ∼13.5h over the basin. The proportion of sulfate derived from the oxidative

weathering of pyrite, fpyr, calculated by the two end member mixing model varies between 0.18

and 0.83 in Mekong tributaries with a mean of 0.60 in the main channel.

Sources of dissolved inorganic carbon (DIC) are partitioned using a forward model which

incorporates the source of acidity in weathering reactions (carbonic or sulfuric) and the use of

individual Ca/Na and Mg/K ratios in silicate end members of each tributary. Charge balance

calculations with partitioned cations suggest the most likely reaction pathway of CO2 release from

sulfuric acid weathering of carbonates is instantaneous degassing. The weathering of carbonates by

carbonic acid accounts for on average 81% of the total DIC flux for all tributaries, whilst carbonic

acid weathering of silicates contributes on average 19% (ranging 7-60%) of the total DIC flux in



tributaries. Using a framework to track partitioned Ca2+ ions, CO2 consumption or release in the

Mekong basin is shown graphically.

On timescales shorter than carbonate precipitation, all Mekong tributaries are a sink

of atmospheric CO2. Annually, the instantaneous release of CO2 from oxidative pyrite–driven

weathering of carbonates is ∼16 times smaller than the drawdown of atmospheric carbon by

carbonic acid weathering of both silicate and carbonate minerals. On million–year timescales,

the headwater regions in China and one karst dominated tributary in the Middle Mekong release

CO2. The carbon budget of the Mekong varies throughout the year: during the monsoonal months

the Mekong consumes atmospheric CO2 but CO2 is released during the dry season. Carbonic

acid weathering of carbonates is carbon–neutral on million–year timescales, whereas the release of

CO2 from sulfuric acid weathering of carbonates is large enough to marginally offset the long–term

sequestration of atmospheric CO2 by carbonic acid weathering of silicates. Time–series samples

and discharge measurements at Chroy Changvar, close to the mouth, are used to determine that

the Mekong River basin is an annual net source of 0.01tC.km−2.yr−1 to the atmosphere. This

differs to previous estimates, which indicate atmospheric CO2 consumption by the Mekong. This

thesis highlights the importance of determining the origin of sulfate in the world’s largest rivers for

the global carbon cycle, particularly in catchments with a high proportion of carbonate lithology.
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Chapter 1

Introduction

1.1 Chemical Weathering as a Climate Regulator

Climate change is one of the biggest issues facing our planet this century. Not only must we

understand how the climate changes over time, but how these changes are regulated. The

Earth’s climate is intrinsically inter–linked to the long–term global carbon cycle, which takes

into consideration the transfer of carbon dioxide (CO2) between rocks and the surficial system,

consisting of the atmosphere, hydrosphere and biosphere (Berner, 1999). Two key processes in

the global carbon cycle are the chemical weathering of silicate rocks and carbonate precipitation

in the oceans. These two processes balance CO2 degassing from the solid Earth and maintain a

habitable environment on our planet. Atmospherically derived carbonic acid reacts with silicate

minerals, liberating cations and anions which are subsequently precipitated as carbonate in oceans.

This process sequesters CO2 from the atmosphere into the rock reservoir over long–term timescales

(>105 years) (Berner et al., 1983; Sundquist, 1991; Urey, 1952; Walker et al., 1981).

The size of the surficial reservoir, specifically the levels of CO2 in the atmosphere which is

an important greenhouse gas, moderates the global climate (Kasting, 1987). However, the surficial

reservoir stores orders of magnitude less carbon than the rock reservoir stores (3 x 1018 mol C and

5 x 1021 mol C, respectively) (Berner & Caldeira, 1997; Sundquist & Visser, 2003). Therefore the
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Figure 1.1: The long term global carbon cycle. Arrows represent carbon transfer between
the rock reservoir and the surficial reservoir (atmosphere and ocean). Carbon is transferred
as carbon dioxide gas (CO2) unless stated as aqueous dissolved inorganic carbon (HCO−

3 ) and
stored in the rock reservoir as carbonate (CaCO3) or organic carbon (OrgC, CH2O). CO2 is
degassed into the atmosphere in a number of ways; volcanic emissions from mid-ocean ridge (MOR)
spreading, continental volcanoes over subduction zones, metamorphic or diagenetic decarbonation
of limestones, and oxidation of organic carbon. Reverse weathering on the seafloor is an
unconstrained source of atmospheric CO2. CO2 is removed from the atmosphere by silicate
weathering and sequestered into the rock reservoir by carbonate precipitation. Organic carbon
burial also removes atmospheric CO2 as does ocean floor basalt weathering to an unknown degree.
Modified after Berner (1999), Gaillardet & Galy (2008), and Kump et al. (2000).

surface reservoir is critically sensitive to small changes in the relatively big fluxes of carbon in and

out of the rock reservoir (8 x 1018 mol C per million years) (Berner & Caldeira, 1997; Sundquist

& Visser, 2003). Degassing of the Earth’s interior provides a source of CO2 to the atmosphere,

via volcanic emissions from ocean-floor spreading and subduction zones, and metamorphic and

diagenetic decarbonation of limestones and organic matter (Berner, 2004; Berner & Caldeira, 1997)

(Figure 1.1). CO2 is removed via precipitation of carbonate in the ocean and burial of organic

matter, with the carbonate precipitation flux around three times larger than the organic carbon

burial flux (Gaillardet & Galy, 2008; Sundquist & Visser, 2003). The balance between inputs and

outputs of atmospheric CO2 from the sources mentioned above is governed by silicate weathering.

The rate of CO2 consumption by silicate weathering is dependent on changes in climate, controlled
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by the level of atmospheric CO2, therefore silicate weathering provides a negative feedback process

on climate change.

Controls on chemical weathering rates have been debated since the 1980’s. Berner et al.

(1983) proposed that ocean spreading rates control the degassing of CO2 and therefore chemical

weathering rates, which adjust rapidly to balance the degassing of CO2. This idea was challenged

by Raymo et al. (1988) who suggested that CO2 removal by tectonism forces climate. Specifically

Raymo et al. (1988) attributed the cooling of global climate at the start of the Cenozoic (Zachos

et al., 2001) to the Himalayan orogeny. The uplift of the Himalayas increases continental relief

which subsequently generates orographically driven runoff and increases erosion. When combined,

these factors increase silicate weathering which reduces atmospheric CO2. Raymo et al. (1988)

interpreted the marine 87Sr/86Sr isotope record through the Cenozoic (Hess et al., 1986) as evidence

that increased erosion was cooling the Earth. Principal sources of Sr to the ocean are from

continental weathering and hydrothermal alteration of ocean basalts (Palmer & Edmond, 1989),

both sources have distinctly different 87Sr/86Sr signatures. Continental silicate rocks have much

higher 87Sr/86Sr than oceanic basalts, so the increase in radiogenic 87Sr/86Sr through the Cenozoic

was ascribed to an increase in continental silicate rock weathering (Raymo, 1991). However, studies

have shown that Himalayan carbonate minerals are extremely radiogenic (up to 87Sr/86Sr=0.86)

(Blum et al., 1998; Galy et al., 1999), thus the increase in 87Sr/86Sr points to the importance of

the Himalayas, but how much of this is due to carbonate and silicate mineral weathering is still

uncertain. Furthermore, an increase in erosion would not change the 87Sr/86Sr isotope record, but

an increase in the weatherability of the Earth’s crust would reduce global temperatures.

The processes controlling the rates of carbon transfer and the influence on the Earth’s climate

are still not yet completely understood (Bluth & Kump, 1994; Coogan & Gillis, 2013; Gaillardet &

Galy, 2008; Willenbring & von Blanckenburg, 2010). There is more to learn on the interactions of

temperature, runoff and erosion on chemical weathering, on reverse weathering, an additional, yet

unquantified, source of CO2 (Mackenzie & Garrels, 1966), and carbonic acid weathering of ocean

floor basalt (Coogan & Gillis, 2013). These all require quantifying and implementing into global

carbon models (Coogan et al., 2019). It is vital to have a comprehensive understanding of these

forcings in order to predict the response of the global carbon cycle to anthropogenic perturbations

caused by land use change and fossil fuel combustion (Karl & Trenberth, 2003; Lenton & Britton,

2006; Zachos et al., 2008).

It is, however, clear that silicate weathering is the principal sink for atmospheric CO2 and

K.E. Relph, Ph.D. Dissertation
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provides a sensitive feedback mechanism stabilising Earth’s climate (Anderson, 2005; Gislason

et al., 2009; Li et al., 2016; Oliva et al., 2003; White & Blum, 1995; White et al., 1999a).

Quantifying modern silicate weathering fluxes is a key step to further understanding controls on

silicate weathering and its role in the global carbon cycle. Chemical weathering can be quantified

by measuring the dissolved load of river water, the chemistry of which is an integration of processes

occurring within the whole basin. Chemical weathering fluxes are a product of the concentration

of the dissolved load and discharge.

In an effort to calculate chemical weathering fluxes, field studies have been conducted with

two different but complimentary approaches. A first approach is using small scale monolithological

catchments to study the controls of weathering, with a hope to constrain the effects of variables

such as temperature, elevation, and runoff (Bluth & Kump, 1994; Dessert et al., 2003; Drever &

Zobrist, 1992; Gislason et al., 1996; Louvat & Allègre, 1997, 1998; Oliva et al., 1999, 2003; Probst

et al., 1992; West et al., 2002; White & Blum, 1995). Detailed work on the progression of weathering

fronts, mineral transfer and coupled processes between weathering and climate in the critical zone

(the bio-geochemically and physically active section of the Earth’s surface that concerns vegetation

down to the lower limit of groundwater) has been possible by the establishment of Critical Zone

Observatories in small catchments (Brantley et al., 2007, 2013; Jin et al., 2010; White et al., 2015).

A second approach is looking at large scale catchments to provide continental-scale insights

on chemical weathering. Chemical weathering and inorganic carbon fluxes of large rivers such as

the Amazon, Congo, Mackenzie, and the Ganges-Brahmaputra have been particularly well studied

(Bickle et al., 2018; Dupré et al., 1996; Edmond et al., 1995, 1996; Gaillardet et al., 1995, 1997, 1999;

Galy & France-Lanord, 1999; Meybeck, 1987; Millot et al., 2002; Moon et al., 2014; Mortatti &

Probst, 2003; Négrel et al., 1993; Picouet et al., 2002; Stallard & Edmond, 1983; Suchet et al., 2003;

Tipper et al., 2006; Viers et al., 2000; West et al., 2005). However, a complete carbon budget, which

consolidates the inorganic and organic carbon fluxes, has only been published on the Mackenzie

River basin (Horan et al., 2019). Weathering regimes can be studied in large river basins due to the

differing effects of heterogeneous lithology and a range in climate and topography. In large rivers,

geochemical signals from both weathering-limited and transport-limited regimes are integrated. In

weathering-limited regimes, present in actively eroding mountainous regions, weathering may be

incomplete due to the fast removal of material from the system. Conversely, in transport-limited

regimes in floodplains weathering is complete and thick soils can build up due to the lack of material

transported (Stallard & Edmond, 1983).
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A difficulty encountered by large scale catchment studies is calculating the absolute

contribution of different lithologies to the dissolved load. Although samples collected at the

mouth of a river integrate signals from processes throughout the basin, a single sample is not

necessarily characteristic of the spatial and temporal heterogeneity in a river basin. It is complex to

identify the signal pertaining to the weathering of silicate minerals, needed to calculate atmospheric

CO2 consumption within a river basin, given the lithological diversity in large catchments. The

dissolution of carbonates, for example, contributes about double the amount of dissolved solids

to the global weathering flux compared to silicate minerals, 640 x 106 t/yr and 300 x 106 t/yr

respectively, whilst evaporites dissolution contributes a further 144 x 106 t/yr of dissolved solids

(Gaillardet et al., 1999). Correctly identifying the flux of solutes from each lithology is vital, as

the fate of solutes from chemical weathering reactions have significantly different consequences for

the carbon cycle. The dissolution of evaporites, such as gypsum and halite, provides solutes to

the weathering zone but the reaction does not form part of the carbon cycle. When carbonates

react with atmospheric or soil-derived carbonic acid the reaction is a carbon neutral process over

million–year timescales, as the carbonate is just re-deposited in the oceans, whilst the same acids

reacting with silicate rocks cause deposition of carbonate in the oceans leading to a net drawdown

of atmospheric CO2 acting to stabilise global climate.

Recent work has highlighted the significance of sulfuric acid weathering of carbonates as a

component of the long–term carbon cycle (Calmels et al., 2007; Emberson et al., 2018; Torres et al.,

2014, 2017; Zolkos et al., 2018). Sulfide oxidation coupled to carbonate dissolution releases CO2

to the atmosphere (Calmels et al., 2007). Torres et al. (2014) suggest that the global flux of CO2

released from carbonate rock via sulfuric acid weathering is the transient source needed to balance

the CO2 drawdown from enhanced silicate weathering during the Cenozoic.

Chemical weathering reactions with carbonic and sulfuric acid occur on different timescales

and in different environments, each with a unique carbon cycle implication. It is necessary to

understand these reactions and the products released into the weathering zone in order to apportion

river geochemistry between chemical reactions, and subsequently infer the carbon budget of a river.

In Chapter 2 the chemical weathering reactions considered by this thesis are described in detail.

This thesis will take the large basin approach to quantify the inorganic carbon budget of

the Mekong river. The Mekong is an Asian mega river, rising on the Tibetan plateau flowing

through the mountainous region of the Eastern Syntaxis of the Himalayas, an area of rapid erosion.

Despite the fact that the Mekong river contributes the world’s tenth largest discharge (Dai &

K.E. Relph, Ph.D. Dissertation
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Trenberth, 2002) and tenth largest sediment load to the worlds oceans (Milliman & Meade, 1983),

it is an understudied basin. The Mekong river basin provides a perfect natural laboratory to

study the impact of sulfuric acid weathering. This climatically and geologically diverse catchment

contains evaporites, granites, basalts, carbonates and metamorphosed units and is amongst the

main contributors of global sulfate fluxes to the worlds oceans. The Mekong sulfate flux is 50%

larger than that delivered by the Ganges, the largest Himalayan draining river (Burke et al., 2018).

In comparison to the largest river in the world (the Amazon), the Mekong contributes 7% of the

discharge and a disproportionate 23% of the Amazon’s sulfate flux (Burke et al., 2018). Here I

present the most comprehensive temporal and spatial sampling dataset conducted on the Mekong

River to date.

1.2 The Mekong River Basin

Five of the 12 largest rivers on Earth drain the Himalayas and the Tibetan Plateau: the Yangtze,

Brahmaputra, Mekong, Ganges and Irrawaddy rivers contribute 8.3% of the world’s fresh-water

discharge to the global oceans despite only covering 4.5% of the total drained land area (Milliman

& Farnsworth, 2011). The collision between northwards moving India and the Eurasian plate during

the Eocene uplifted the Himalayas and the Tibetan Plateau (Brookfield, 1998). Subsequent NE-SW

shortening, then right–lateral shear of India past southern China caused a further 1000-2000km

northward motion of India and the lithospheric deformation observed in the Eastern Himalayan

Syntaxis today (Hallet & Molnar, 2001). The geomorphologic manifestation of the crustal strain

and thickening of the Eastern Syntaxis of the Himalayas, at the southeastern margin of the Tibetan

Plateau, is reflected in the sigmoidal shape and close proximity of three major rivers: the Salween,

Mekong and Yangtze which run only tens of kilometres apart for ∼300km. The Eastern Syntaxis of

the Himalayas is an area of high relief and high elevation (the Tibetan Plateau is over 4500 m.a.s.l.,

Clark et al., 2004; Harris, 2006) where rapid exhumation has been ongoing since ca. 5 million years

ago (Lang et al., 2016). Studies of the physical and chemical weathering of large Himalayan rivers

have been used to investigate the potential link between mountain uplift, exhumation, erosion, and

silicate weathering, and their combined impact on global climate (Raymo et al., 1988; Raymo &

Ruddiman, 1992; Goddéris & François, 1995). Whilst there have been many studies of dissolved

solids in the Ganges-Brahmaputra Rivers draining the southern flank of the Himalayas (e.g. Bickle

et al., 2015; Galy & France-Lanord, 2001; Hren et al., 2007; Karim & Veizer, 2000; Krishnaswami

& Singh, 1998, 2005), there are substantially fewer studies on the three rivers draining the Eastern
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Syntaxis of the Himalayas, most noticeably the Mekong River.

1.2.1 Modern Geomorphology of the Mekong River Basin

The Mekong River, also known as the Lancang Jiang in China, is 4880km long and flows through six

countries, draining a pan–shaped basin area of 795,000km2 (Kummu & Varis, 2007). The drainage

pattern of the Mekong is complex, which has developed in an intrabasinal setting of a continental

collision belt where heterogeneous geology and active tectonics have controlled the course of the

Mekong river and its tributaries, and the landscape of the basin (Clark et al., 2004; Tandon &

Sinha, 2007). The river basin can be split into three sections by distinct changes in geomorphology,

basin width, and channel type that demarcate the transitions between the Upper, Middle and

Lower Mekong. The geology, climate and hydrology of the Mekong River and its tributaries will be

discussed in terms of these three sections for simplification of this large and geologically complex

basin (Figure 1.2).

The Mekong’s sources are the Zaqu River and the Angqu River, both originating on the

northern flank on the Tanggulashan Mountains on the Tibetan Plateau at an altitude of 4970 m.a.s.l.

(Kummu & Varis, 2007; Wu et al., 2008). The Upper Mekong, between the source and southern

Yunnan province, China, is characterised by steep topography and narrow gorges where the main

channel flows in a curvilinear fashion through the Eastern Syntaxis of the Himalayas (Carling,

2009). There is a distinct widening of the basin and elevation drops to ca. 600 m.a.s.l. where the

Mekong exits southern China and the Middle Mekong begins.

As the river exits China, a deep bedrock canyon marks the border between Myanmar and

Laos until it reaches the junction of these two countries with Thailand (20° N), where the Mekong

changes direction sharply and flows towards the east marking the border of Laos to the north and

Thailand to the south. The sharp change in channel alignment is caused by faulting, specifically

the left–lateral strike–slip Mae Chan Fault (Fenton et al., 2003, and Figure 1.2). The Mekong

channel is deeply cut in rock in a narrow valley until the channel takes a further sharp turn at

about 30km upstream from Luang Prabang, aligning along the Nan Suture (Carling, 2009). From

Luang Prabang the river continues in a general southwest direction in steep straight channels, with

high cross-channel rock ribs (tens of metres high) and rapids for ∼250km, before another sharp

turn of the river towards the east to Vientiane (Gupta & Liew, 2007). Incised meanders ∼500-600m

wide then straight channels up to 1400m wide are characteristic of the channel between the final

K.E. Relph, Ph.D. Dissertation
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Figure 1.2: Geological map of the Mekong River basin. The basin is split into Upper,
Middle and Lower Mekong. Main stem sampling sites Luang Prabang and Chroy Changvar are
identified. Geology is modified after Chinese Academy of Geological Sciences (1975).
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sharp turn in the Mekong and Vientiane. The channel becomes shallow (up to 13m deep in the

wet season) and meanders past Vientiane widening out to 2km by Thakhek where the Mekong

flows through alluvium (Gupta & Liew, 2007). The Mekong main channel becomes a bedrock river

again south of Thakhek. Over the next 150km downstream, the channel has high steep alluvial

banks and is up to 5km wide. South of Pakse, the river anastomoses forming the area known

as the ‘4000 islands’ where the whole river width is 15km (Carling, 2009). The anastomosing

channels terminate at the 10.783km wide Khone Prapheng Falls; the widest waterfall in the world

(World Waterfall Database, 2019). The waterfall demarcates the national border between Laos and

Cambodia and the beginning of the Lower Mekong.

The Middle Mekong is characterised by the addition of many large tributaries which drain

different geology and topography on the right and left banks of the main channel. On the left bank of

the Mekong, tributaries drain the steep Annamite mountain range. The Annamite mountains mark

the national border between Vietnam to the east, Laos to the northwest and west and Cambodia

to the southwest. Where Thailand, Myanmar and Laos meet, the landscape remains mountainous.

Much lower relief is found in central and southeast Thailand in the Khorat Plateau, which is on

average 150m.a.s.l. (Carling, 2009). The Khorat Plateau is bound by the Loei–Petchuan Fold Belt

on the west and the Annamite mountains in the east. Tributaries draining the Khorat Plateau flow

on a gentle gradient (Gupta & Liew, 2007), the largest of which are the Mun and the Chi that

meet the Mekong north of Pakse.

In the Lower Mekong, beyond the Khone Prapheng Falls, the channel is still bed-rock

controlled due to the geology until Kratie where the free alluvial channel contains subaqueous

dunes and overbank flooding is common during the wet season (Gupta & Liew, 2007). South of

Phnom Penh, the Tonle Sap joins the Mekong which then starts to divide into the distributaries

of the Mekong delta where the Mekong discharges into the South China Sea. For much of the

monsoon, the Tonle Sap river flows backwards into the Tonle Sap lake which is fed by the Mekong

river. The complex hydrodynamics of the Tonle Sap (Kabeya et al., 2008; Kummu & Sarkkula,

2008) are not discussed further in this thesis.

1.2.2 Geology

The geology of the Mekong basin is poorly documented (Gupta & Liew, 2007). Global Lithological

Models (GLiM) identify carbonates, mixed sedimentary and basic volcanic rocks in the Mekong
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basin (Hartmann & Moosdorf, 2012). Several geological maps exist for areas of the Mekong basin

(e.g. Chinese Academy of Geological Sciences, 1975; Fromaget & Saurin, 1952), generally bound by

national borders, but detailed lithological descriptions and trans-boundary mapped areas are rare.

1.2.2.1 Upper Mekong

The narrow Upper Mekong basin consists of mixed sedimentary and granitic rocks of Palaeozoic and

Mesozoic age with outcrops of Pre-Cambrian metamorphic basement (Gupta & Liew, 2007; Noh

et al., 2009, and Figure 1.2). Specifically, the headwaters of the Mekong drain Palaeozoic–Triassic

sedimentary rocks from the Qiangtang Block and clastic sedimentary rocks from the Mesozoic

arc (Borges et al., 2008; Liu et al., 2011). Whilst evaporites, clastic, and metamorphic rocks

(sandstone, shale, schist, chert and limestone) are present, carbonates dominant the lithology

(Gupta & Liew, 2007; Liu et al., 2011; Noh et al., 2009; Wu et al., 2008). The Mergui Series,

of Carboniferous-Permian age, is made up of argillite, limestone, quartzite and volcanic detritus

and is visible to the southeast of the Upper Mekong (Jiang et al., 2017). The Lancang granite

batholith, dated to the mid-Permian, outcrops at the southern Chinese border with Myanmar and

Laos (Leloup et al., 1995; Noh et al., 2009).

1.2.2.2 Middle Mekong

The Middle Mekong has distinct geology either side of the main channel. The right bank is

dominated by the Khorat Plateau and the left bank is predominantly Mesozoic marine sediments

and karst topography. The Khorat Plateau is divided into two basins which are separated by the

Phu Phan NW–SE trending anticline: the Sakon Nakon basin to the north and Khorat basin to

the south (Tabakh et al., 1998). The Khorat Plateau is a continental basin that underwent three

major marine influx events during the Cretaceous, due to relative sea level rise. Evaporites that

precipitated following sea level regression are within the Maha Sarakham Formation which is mined

for it’s high levels of potassium rich salt (Hansen et al., 2016; Tabakh et al., 1999). The geology of

the Khorat Plateau is described in more detail in Section 5.5.

In northern and central Laos karst topography is well developed on Plateaus within the

Annamite mountain range, and form sheer walls to some northeastern Laos tributaries, such as the

Nam Ou (Kiernan, 2015). The Hinboun and Nam Kading tributaries drain Carboniferous–Lower

Permian Khammoun Limestones and Cretaceous–Jurassic sandstones and conglomerates in central
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Laos (Ponta & Aharon, 2014). Cretaceous intermediate–basic extrusive units trend NE–SW between

Luang Prabang and Vientiane.

1.2.2.3 Lower Mekong

Upstream of the border between Laos and Cambodia, the Mekong flows over Mesozoic basalt

forming the ‘4000 islands’ (Gupta, 2007). The Kong tributary flows over Proterozoic units, and

Neogene basalt units, and some small outcrops of Proterozoic granites (Gupta, 2009). South

of Kratie the river flows over Quaternary alluvium overlaying Jurassic and Triassic red beds,

additionally Pliocene–Pleistocene basalts outcrop between Kratie and Chroy Changvar (Carling,

2009).

1.2.3 Climate and Hydrology

The single peak flood pulse hydrograph of the Mekong main channel is typical of monsoonal rivers

(Adamson et al., 2009; Tipper et al., 2006). The climate is dominated by a wet–season between June

and November and dry–season between December to May. There is a 20-fold increase in discharge

during peak monsoon, discharge varies from ∼2100 m3.sec−1 in the dry season to ∼41,000 m3.sec−1

at peak monsoon in August to September (Mekong River Commission, 2016, and Figure 1.3).

The discharge contribution varies between areas of the Mekong: the Upper Mekong contributes

16%, the Middle Mekong, where the majority of tributaries are found, contributes 56% and three

large tributaries in the Lower Mekong contribute the remaining 28% of the mean annual discharge

(Adamson et al., 2009). A disproportionately large volume of water arrives from tributaries draining

the Annamite mountains in northwest Laos (e.g. Nam Ou, Nam Ngjium, Nam Kading) and in

Cambodia (the Tonle Kong, Tonle San and Tonle Srepok tributaries) (Gupta & Liew, 2007).

The Mekong lies at the intersection of three monsoon systems: the Indian Monsoon (IM),

the East Asian Monsoon (EAM), and the Western North Pacific Monsoon (WNPM) (Darby et al.,

2013; Delgado et al., 2010; Xue et al., 2011). Convective heat over the Bay of Bengal forces the IM

precipitation, the monsoon arrives at the southwest side of the Mekong basin first before travelling

across the basin in a northeast direction (Delgado et al., 2012). Discharge in Middle Mekong is

correlated most with the IM (Xue et al., 2011). The EAM and WNPM air masses are driven by

convective heat source over the South China Sea and the Southeast Asian Archipelagos. The EAM

and WNPM travel northwest reaching the southeast Mekong basin first. At the Eastern Highlands
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Figure 1.3: Monsoonal hydrograph of the Mekong River at Chroy Changvar,
Cambodia. Hydrographs from 1960–2002 are shown with decadal averages to highlight regular
timing, but annual variation, in magnitude of peak monsoon (Mekong River Commission, 2016).
The blue area represents the wet season between June and November. Sample points locate time of
sampling relative to an average monsoon discharge at Chroy Changvar. Samples are from Kratie,
one station upstream of Chroy Changvar on the main channel, collected in 2016 and 2017. Discharge
value is from aDcp measurements during sampling. There are no major tributaries that enter the
main channel between Kratie and Chroy Changvar, therefore discharge comparison is reasonable.

of the Annamite mountains which form the border of Laos and Vietnam, orographic precipitation

condenses (Darby et al., 2013; Delgado et al., 2012), hence the Lower Mekong discharge is correlated

with the EAM (Xue et al., 2011). The monsoons impact the discharge in the Mekong basin in a

south to north direction, increasing discharge in the lower catchments before northern ones. The

hydrographs of Middle and Lower Mekong are dominated by the monsoon where more than 80%

of the total basin discharge originates, for this reason Lu & Siew (2006) argue that the effect

of dam building is limited to the Upper Mekong. In addition to the Middle and Lower Mekong

flow regimes being dominated by the three monsoon systems they are also sporadically affected by

tropical cyclones, particularly in the east of the basin over the Annamite mountains rather than

the Khorat Plateau (Darby et al., 2016). The Upper Mekong is mainly fed by snow melting on the

Tibetan Plateau in Spring and affected by the monsoon to a small degree (Delgado et al., 2010).

Although the Upper Mekong only contributes a small percentage of the mean annual discharge to
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the South China Sea (Kummu & Varis, 2007), it is the dominant source of discharge in the lower

Mekong during the dry season (Cook et al., 2012).

The coldest temperatures in the Mekong are found in Tibet, ranging between -4 to +13°C

over the year on the Tibetan-Yunnan Province border. Further south in Yunnan, temperatures

range between +8 to +26°C . As elevation decreases into the Middle Mekong temperatures rise

to mean highs of +26°C in June. Between China and northern Thailand there is still a 10°C

variation in temperatures throughout the year, with the lowest temperatures generally in January.

Between Luang Prabang and the Delta, temperatures only vary by ∼4°C over the year. The highest

temperatures measured in the river basin, up to +31°C in April, are in the Lower Mekong at Phnom

Penh (Mekong River Commission, 2005).

The combination of elevation, hydrology and temperature affect the climate. According to

the Köppen–Geiger classification (Peel et al., 2007), the Upper Mekong basin close to the source

has a temperate climate with dry winters and warm summers, further south in Yunnan province

the summer months are hotter. Northern Laos receives dry winters but the remainder of the Middle

and Lower Mekong has a tropical monsoon or tropical savannah climate where temperatures never

drop below 10°C.

1.2.4 Research in the Mekong River Basin

The Mekong river basin supports a large population of ca. 73 million people (Eastham et al., 2008),

which places anthropogenic stress in terms of dam building, sand mining, farming, deforestation

and irrigation on nutrient content in the water, discharge, fish migration pathways, fish stocks,

agriculture and sediment supply (Ou & Winemiller, 2016; Stone, 2016; Ziv et al., 2012). It has

been suggested that Laos will become the battery of Southeast Asia as hydropower dams multiply

(Fasman, 2016). Most studies, therefore, have focussed on the impacts of anthropogenic stress on

the Mekong basin.

Many studies use historical data collected by the Mekong River Commission, dating from

before 2005, to investigate changes in hydrograph regime (e.g. Lu & Siew, 2006; Tang et al., 2014;

Wild & Loucks, 2014) and sediment delivery due to damming (e.g. Bravard et al., 2014; Fu et al.,

2008; Gupta et al., 2002; Kondolf et al., 2014; Kummu et al., 2010; Lu & Siew, 2006; Shrestha

et al., 2013; Xue et al., 2011; Zhao et al., 2012, 2015), pCO2 and degassing of CO2 from rivers (e.g.

Alin et al., 2011; Li et al., 2013), soil erosion (e.g. Chaplot et al., 2005), and variability in organic
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matter (e.g. Ellis et al., 2012).

Another area of study is the erosion regime of the Tibetan Plateau and the Eastern Syntaxis

of the Himalayas. Studies have measured detrital 10Be to determine erosion rates of 0.7 mm.yr-1

in the Upper Mekong (Henck et al., 2011). Thermochronometric dating in the steepest section of

the Upper Mekong provide constraints on erosion history of the uppermost ∼6km of the crust and

suggest that erosion rates decrease towards the north, from 28.5° N to 30° N (Yang et al., 2016).

An investigation into weathering using Li isotopes suggested the weathering intensity is lower in

the Upper Mekong compared to other large global rivers, due to the arid cold climate (Liu et al.,

2011).

Geochemical studies aiming to quantify inorganic carbon fluxes and investigate weathering

have either been based on historical time–series (Li et al., 2014a) or based solely on samples collected

from the Upper Mekong (Noh et al., 2009; Zhang et al., 2016). Li et al. (2014a) provide a first

look at the weathering signal of the Mekong using the Mekong River Commission (2016) data

available. However, they do not correct for sulfide input and they use Himalayan silicate mineral

ratios for partitioning weathering sources, which are not applicable to the lithology in the Mekong

catchment. Wu et al. (2008) measured major cations in river bed sediment samples collected

the Upper Mekong, and estimated silicate molar ratios of 0.17 for Ca/Na and 0.5 for Mg/K.

Water chemistry is dominated by Ca2+ and HCO−
3 where 40% of total cations are delivered from

carbonate weathering (Zhang et al., 2016). Using silicate molar ratios from Wu et al. (2008), the

Upper Mekong is determined to be a sink of 0.84–1 tC.km−2.yr−1 carbon on the short term (Wu

et al., 2008; Zhang et al., 2016). Noh et al. (2009) suggest that the Upper Mekong consumes

1.2 tC.km−2.yr−1 on the long–term, and that up to half of the variation in CO2 consumption rates

around the Tibetan plateau are controlled by runoff and relief. If the long–term budget is corrected

for CO2 release from the oxidative pyrite–driven weathering of carbonates (which Noh et al. (2009)

calculate by assuming all SO2−
4 is derived from pyrite), then Upper Mekong CO2 consumption is

reduced to 0.86 tC.km−2.yr−1. However, CO2 consumption estimates by both Wu et al. (2008) and

Noh et al. (2009) are an overestimate of long–term carbon drawdown because they include Na and

K in their calculation, which do not form carbonates and therefore cannot sequester atmospheric

CO2. Finally, where the Mekong River has been included in global summaries of inorganic carbon

riverine flux such as Meybeck (1987) and Gaillardet et al. (1999), data is based on a one spot

sample collected at the mouth of the river.



Introduction 15

1.3 Thesis Overview

This thesis will calculate an inorganic carbon budget for the Mekong river basin. The concept

of chemical weathering, links to climate and the use of dissolved load in river waters to quantify

chemical weathering fluxes are introduced in this Chapter. The complex geology and monsoon

dominated hydrograph of the continental scale Mekong river basin is also described in this Chapter.

The continental scale, globally important solute fluxes and tectonically active setting of this Asian

mega–river emphasise the need to understand the chemical weathering signatures of the Mekong

River basin. Chemical weathering reactions can occur between carbonate and silicate minerals

and carbonic and sulfuric acid. Five idealised dissolution reactions are set out in Chapter 2 and

the impact of their products on atmospheric CO2 and global climate are discussed in terms of

short–term and long–term timescales. Samples to investigate chemical weathering were collected

over three field seasons; 2014, 2016, and 2017 during monsoon seasons. Additionally a time-series

was collected throughout 2014–2017. The spatial and temporal sampling strategy and subsequent

laboratory methodology for processing and analysing samples collected for this work are described

in Chapter 3. A key methodological development in this thesis was sediment digestion of an order

of magnitude less sample mass than XRF techniques, enabling efficient cation and multi-isotope

analysis of 50mg samples. The geochemical characteristics of the dissolved load and bedload in

the Mekong main channel and its tributaries are discussed in Chapter 4. The foundation of ideas

and assumptions made for modelling acidity sources and correctly partitioning solutes to chemical

weathering reactions is grounded in knowledge gathered from the analysis of major cations and

anions, and 87Sr/86Sr and δ18O in river water which is combined with 87Sr/86Sr and εNd isotopes

to further understand geological provenance. In Chapter 5 sources of sulfate are partitioned with

a two end member mixing model using sulfur and oxygen isotopes in dissolved sulfate. Values from

this model are used to calculate the flux of oxidative pyrite weathering in the Mekong. In Chapter 6

a forward model based on Galy & France-Lanord (1999) is developed and used to partition river

solutes between the five generalised reactions described in Chapter 2. This forward model takes

into account sulfuric acid sources, calculated in Chapter 5, addressing the shortcomings of solute

partitioning in previous large river studies. The net inorganic carbon budget for the Mekong river

is also calculated in Chapter 6, and the global implications of this result are discussed. Chapter 7

summarises this thesis and considers the importance of quantifying sulfuric acid weathering as a

source of CO2 to the atmosphere.
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Chapter 2

Chemical Weathering Reactions: Implications

for Carbon Budgets on Short and Long

Timescales

2.1 Introduction

There are many dissolution reactions which supply the products of weathering to the aqueous

phase. The reactions depend on the weathering agent or source of acidity (predominantly carbonic

or sulfuric acid) as well as the mineral reactants - carbonates, silicates, evaporates, and variable

mineral components within these groups. Multiple chemical weathering reactions deliver dissolved

inorganic carbon (DIC) to river water. Bicarbonate, HCO−
3 , is the dominant form of DIC measured

in river waters because it is stable at pH between 6 – 8.2. Carbonate species, CO2−
3 , are only present

in significant quantities at pH greater than 8.5 (Drever, 1997). The source of DIC and relative

amount of DIC released from weathering reactions have different implications for the carbon cycle.

Some reactions are a source of atmospheric CO2 and some are a sink.

When considering the impact of the carbon budget on climate it is necessary to clarify
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the different timescales over which reactions occur. The shortest timescales at which chemical

weathering is likely to be important to climate include reactions occurring on the order of <105

years. Such instantaneous reactions include dissolution reactions which release solutes into the

weathering environment. Long-term reactions occur on the order of >105 years. On this timescale

carbonate precipitation occurs in the oceans, permanently sequestering some CO2 whilst the

remainder is released back into the atmosphere. For the purposes of this study, short and long

term processes are distinguished by the presence or lack of carbonate precipitation in the oceans

(Berner & Berner, 2012). In order to understand the potential impact on the climate, the reactions

below are discussed under these two timescales.

Five idealised reactions are considered to describe the products of chemical weathering during

dissolution. These reactions can be considered to occur on an instantaneous or short timescale,

and therefore describe the processes occurring in the catchment or critical zone during mineral

dissolution. They should correspond to the predicted water chemistry that is observed within a

river. The products of interest are DIC species (mainly HCO−
3 ), SO2−

4 , Ca2+, Mg2+, K+ and Na+

because the relative abundances of major anions and cations and their isotopic compositions can

partition DIC to it’s mineral and acidity source. The DIC released by each of these reactions

will be calculated before the impact on atmospheric CO2 is assessed. Over long timescales the

products of dissolution undergo subsequent reactions (principally the formation of CaCO3 in marine

environments) with differing implications for the carbon cycle and the climate compared to the

instantaneous timescale. The reactions and the fate of the dissolution products discussed below

are illustrated in Figure 2.1.

2.2 Short Term Carbonic and Sulfuric Acid Weathering of Carbonates and

Silicates

CO2 gas present in either the atmosphere or in the soil (respired by plant roots) is readily dissolved

in rain water or pore water respectively, forming carbonic acid (H2CO3) (Drever, 1997). A

representative reaction of silicate minerals reacting with carbonic acid to form clays (Figure 2.1A)

is described by the following equation:

2CO2 + 3H2O + CaAl2Si2O8 ⇒ 2HCO−
3 + Ca2+aq +Al2Si2O5(OH)4 (2.1)
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Figure 2.1: Timescales and environments of chemical weathering reactions. Inorganic
carbon is globally cycled through the chemical weathering of rocks and subsequent precipitation
reactions. Letters indicate a reaction occurring and arrows represent the transfer of carbon in the
form of carbon dioxide (CO2) or dissolved inorganic carbon, DIC (HCO−

3 ). Chemical reactions
occur in an open system where the reaction site is open to the atmosphere, for example on a hill
slope or floodplain, or in confined environments where the reaction site is not directly connected
to the atmosphere, for example below the water table. Carbonic acid (H2CO3) weathering of
silicates (A) and carbonate rocks (B) draws down CO2 from the atmosphere. Sulfuric acid (H2SO4)
weathering of carbonates in an open environment releases carbon that degases instantaneously as
CO2 to the atmosphere (C). In a confined environment, the carbon released from sulfuric acid
reacting with carbonate minerals is transferred as HCO−

3 from the reaction site to rivers and then
on to the oceans (D). Sulfuric acid weathering of silicate minerals does not release carbon in any
form (E). The HCO−

3 that is transported to the ocean precipitates as CaCO3 and releases CO2

back to the atmosphere (F). The source of HCO−
3 precipitated in carbonate has different climatic

implications, discussed in the text. Ca2+ and SO2−
4 ions delivered from (C), (D), and (E) to the

oceans can precipitate as gypsum under suitable conditions (G). Reactions are categorised into two
timescales. Reactions that occur in the critical zone during mineral dissolution are instantaneous
(short term) and reactions occurring on the long term happen over more than 105 years. The net
carbon budget for a river catchment at any one time is calculated for reactions that are integrated
over all timescales. Figure after Gaillardet & Galy (2008).
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where atmospheric CO2 dissolves in H2O forming H2CO3 that weathers the Ca-silicate mineral

anorthite (CaAl2Si2O8), an end member plagioclase feldspar used here to represent all Ca- and

Mg-silicates (Brantley, 2003). Bicarbonate (HCO−
3 ) and Ca2+ ions are released into solution and

Al2Si2O5(OH)4 is a kaolinite-clay by-product. This reaction draws down two moles of CO2 from

the atmosphere for each mole of Ca2+ released into solution (Berner et al., 1983). Two moles of

HCO−
3 are released when H2CO3 dissolves silicate minerals, where the C is entirely atmospheric

derived.

The reaction of carbonic acid with carbonates (Figure 2.1B) can be described by:

H2O + CO2 + CaCO3 ⇒ 2HCO−
3 + Ca2+ (2.2)

For each mole of CO2 drawn down from the atmosphere and transferred to the HCO−
3 ion, one

mole of Ca2+ is released into solution by carbonate dissolution (Berner et al., 1983). Carbonate

(CaCO3) releases a further mole of C, and hence two moles of HCO−
3 are present in river water.

Silicate and carbonate minerals can also react with sulfuric acid (H2SO4), generated by

the oxidative weathering of pyrite or anthropogenic emissions. The reaction of sulfuric acid with

carbonate minerals releases carbon either as gaseous CO2, or dissolved HCO−
3 , depending on the

environment in which the reaction occurs. In an open system where the reaction site is connected

to the atmosphere (Figure 2.1C), the reaction of sulfuric acid with carbonates can be described by:

H2SO4 + CaCO3 ⇒ CO2(g) + Ca2+ + SO2−
4 +H2O (2.3)

where the CO2 released by this reaction can degas instantaneously to the atmosphere. In this

case, one mole of CO2 is instantaneously degassed to the atmosphere with one mole each of sulfate

(SO2−
4 ) and Ca2+ released to the weathering zone (Equation 2.3) (Torres et al., 2014).

In a reaction between sulfuric acid and carbonate minerals in a confined environment where

the reaction site is not directly connected to the atmosphere (Equation 2.4), the carbon released

from carbonates cannot degas as CO2 to the atmosphere (Figure 2.1D) (Berner et al., 1983; Spence

& Telmer, 2005; Calmels et al., 2007; Torres et al., 2014).

H2SO4 + 2CaCO3 ⇒ 2HCO−
3 + 2Ca2+ + SO2−

4 (2.4)

Carbon released from CaCO3 instead dissolves in water to form H2CO3, and a second mineral could
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be weathered by the generated H2CO3. For example H2CO3 could react with carbonate minerals

present, equivalent to Equation 2.2, or silicate minerals, where the reaction would be equivalent to

Equation 2.1. Equation 2.4 is effectively the sum of Equation 2.3, the sulfuric acid weathering of

carbonates in an open environment, and Equation 2.2, the carbonic acid weathering of carbonates.

The reaction of H2SO4 with carbonates in Equation 2.4 does not release any CO2 on a short term

timescale because the carbon is transferred to HCO−
3 . On this timescale, in a confined environment,

the products of the reaction are two moles each of HCO−
3 and Ca2+ and one mole of SO2−

4 which

are delivered to the oceans.

Although carbonates may have faster dissolution kinetics compared to silicates (White et al.,

1999b), it is possible for sulfuric acid to react with silicate minerals in the system (Berner et al.,

1983; Spence & Telmer, 2005), for example magmatic sulfides may oxidise and weather nearby

silicates. Sulfuric acid weathers a representative silicate mineral anorthite to kaolinite-clay by:

H2SO4 + CaAl2Si2O8 +H2O ⇒ Ca2+ + SO2−
4 +Al2Si2O5(OH)4 (2.5)

While this reaction does not participate in the carbon cycle, because neither the acid source nor the

lithology contain carbon, it does produce SO2−
4 and Ca2+. These ions are important to consider

with cations and anions, to calculate DIC (Section 6.3.1).

River chemistry will be composed of the products of some combination of Equations 2.1,

2.2, 2.3 (or 2.4 depending on environment), and 2.5 that occur on short term timescales. It

is convenient to express the reactants and products mathematically as a matrix, similar to the

modal decomposition method for partitioning river chemistry (Garrels & Mackenzie, 1967; Price

et al., 2008). The following matrix (Equation 2.6) displays the solutes measured in the river as

the matrix product of the molar products of Equations 2.1 to 2.5 and the amount of each of the

reactions occurring. The columns of the first matrix are the five reactions (Equations 2.1 - 2.5)

where the reactions are given an abbreviated name, for example SilH2CO3 is an abbreviation of

the reaction between silicate minerals (Sil) and carbonic acid (H2CO3). The superscripts O and

C, used for the reactions between carbonates and sulfuric acid, represent open and closed reaction

environments, respectively. The rows are the solutes (Ca2+, SO2−
4 , and HCO−

3 ) produced by each

of the five reactions. The values within the first matrix are the stoichiometric coefficients of the

solutes produced by each reaction described by Equations 2.1 to 2.5. The variables in the second

matrix are the relative amount, n, of each of the Reactions 2.1 (nSilH2CO3), 2.2 (nCarbH2CO3),

2.3 (nCarbH2SO
O
4 ), 2.4 (nCarbH2SO

C
4 ) and 2.5 (nSilH2SO4) occurring. The product of these
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two matrices is the idealised river chemistry that would be predicted depending on the relative

contributions from Reactions 2.1 to 2.5. This means that it is possible to predict the ions produced

by each reaction. With the knowledge of which ions are sourced from each reaction, i.e. the second

matrix which represents the amount of each reaction occurring, the carbon implications can be

quantified.


SilH2CO3 CarbH2CO3 CarbH2SO

O
4 CarbH2SO

C
4 SilH2SO4

Ca2+ 1 1 1 2 1

HCO−
3 2 2 0 2 0

SO2−
4 0 0 1 1 1

 ·



nSilH2CO3

nCarbH2CO3

nCarbH2SO
O
4

nCarbH2SO
C
4

nSilH2SO4


=


µmol/l

CaRiv

HCO−
3Riv

SO2−
4Riv



(2.6)

2.2.1 Short Term Dissolved Inorganic Carbon

To understand the short–term implications of terrestrial weathering on the climate, it is necessary

to apportion the total dissolved inorganic carbon, ΣDIC, between the weathering reactions from

which it is sourced. There are two reasons why the ΣDIC in river water cannot be partitioned

using measured HCO−
3 directly. Firstly, not all reactions deliver HCO−

3 to the weathering zone;

the sulfuric acid weathering of carbonates in an open environment (Equation 2.3) degases CO2.

Similarly, silicate mineral weathering involving sulfuric acid does not deliver DIC to the river

(Equation 2.5). Secondly, reactions deliver HCO−
3 and cations in different proportions. Cations,

however, are delivered from all weathering reactions and can be partitioned to rock and acidity

sources using the stoichiometries determined in Equations 2.1-2.5. In Equations 2.7-2.11 cations

are used to partition the amount of DIC delivered from individual weathering reactions before the

implication of this DIC on the carbon cycle is assessed in Section 2.2.2. Cations, X, are labelled

with their lithological source (carbonate, carb or silicate, sil) and acid reactant (carbonic, carbonic or

sulfuric, sulfuric), i.e. Xacid
lithology. The partitioning of elements is discussed in detail in Section 6.3.

This section and the next, Section 2.2.2, build a framework by which to understand the implications

of the carbon cycle in the Mekong river. These equations will be used in Chapter 6 to calculate

the inorganic carbon budget of the Mekong river on the long and short term.
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DIC from Carbonic Acid Weathering of Silicate Minerals

The dissolution of silicate minerals neutralises carbonic acid (Equation 2.1) and releases two moles

of HCO−
3 , both of which are from H2CO3 which is ultimately derived from the atmosphere. For

each mole of HCO−
3 released one mole each of Ca2+, Mg2+, Na+ and K+ are also released into

solution from silicate minerals. When the cation charge is considered the charge equivalent ratio

of HCO−
3 :cation is 2 for Ca2+ and Mg2+ and 1 for K+ and Na+, therefore the DIC produced by

carbonic acid weathering of silicates on the short term (carbonicsil DIC) is calculated using cations by

the following equation:

carbonic
sil DIC = 2 ∗ (Cacarbonicsil +Mgcarbonicsil ) +Nacarbonicsil +Kcarbonic

sil (2.7)

DIC from Carbonic Acid Weathering of Carbonate Minerals

The molar amount of HCO−
3 released from the reaction of carbonic acid with carbonates (carboniccarb DIC)

is twice as much as Ca2+ or Mg2+ released into solution (negligible Na+ or K+ are delivered by

this reaction). Half of the molar amount of carbon in carbonic
carb DIC is from H2CO3, derived from

atmospheric CO2, the remaining half is from the carbonate mineral. DIC delivered from the

carbonic weathering of carbonate minerals (Equation 2.2) is therefore calculated in Equation 2.8.

carbonic
carb DIC = 2 ∗ (Cacarboniccarb +Mgcarboniccarb ) (2.8)

DIC from Sulfuric Acid Weathering of Carbonate and Silicate Minerals

When carbonates are weathered by sulfuric acid in an open system the carbon released may fully

degas as CO2 (Equation 2.3), and hence there is no DIC present in the river (Equation 2.9).

sulfuric O
carb DIC = 0 (2.9)

Conversely, in confined environments, the CO2 released by sulfuric acid weathering of carbonates

cannot degas and instead dissolves in water, producing two moles of HCO−
3 (Equation 2.4). Both

moles of carbon are derived from carbonate minerals which also release an equal amount of Ca2+

into solution, thus HCO−
3 :Ca2+ is 1. sulfuric C

carb DIC is written in equivalent units, whereby two

moles of HCO−
3 is equal to one mole each of Ca2+ and Mg2+ and the coefficients cancel resulting
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in:

sulfuric C
carb DIC = Casulfuriccarb +Mgsulfuriccarb (2.10)

When silicate minerals are weathered by sulfuric acid there is no source of carbon (Equation 2.5)

and hence no DIC is released (Equation 2.11).

sulfuric
sil DIC = 0 (2.11)

Short Term Total DIC

The total dissolved inorganic carbon (ΣDIC) delivered to the weathering zone and subsequently

transported to the river on the short term can be calculated by summing the DIC delivered by each

reaction (Equations 2.7, 2.8, 2.10). If the stoichiometries used in Equations 2.7-2.11 are correct,

the total calculated DIC equals the measured HCO−
3 in the river. However, the way in which

ΣDIC is calculated will vary depending on whether the reaction environment is assumed to be

open (ΣDICO) or confined (ΣDICC). The following equation describes total DIC delivered from

reactions occurring in an open environment:

ΣDICO = carbonic
sil DIC + carbonic

carb DIC (2.12)

Total DIC delivered from reactions occuring in a confined environment is calculated as the following:

ΣDICC = carbonic
sil DIC + carbonic

carb DIC + sulfuric C
carb DIC (2.13)

To validate the method used to calculate DIC delivered from each reaction, ΣDIC can be checked

against measured HCO−
3 . River water is electrostatically neutral (Drever, 1997), therefore the

measured HCO−
3 anion must balance the DIC calculated using charge equivalent cations. The

relative accuracy of calculated DIC via Equation 2.12 or 2.13 compared to measured HCO−
3 could

indicate the most probable reaction environment for sulfuric acid weathering of carbonates: open

or confined (discussed in Chapter 6). The dominant reaction pathway of sulfuric acid weathering

of carbonates will impact the timescale of CO2 release on the atmosphere.
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2.2.2 Short Term CO2 Consumption

Measured DIC in the river can be lithospheric or atmospheric in origin which has different

consequences for the carbon cycle. Therefore the total CO2 consumed (ΣCO2Short) is not equal to

total dissolved inorganic carbon, ΣDIC, in the river. Only carbon species that are sourced from the

atmosphere (as H2CO3) or returned to the atmosphere (as CO2) are considered for calculating the

effect of chemical weathering on atmospheric CO2 consumption, ΣCO2Short. The matrix solution

2.6 describing the river chemistry on the short term becomes modified to Equation 2.14 and 2.15,

which describes the molar amount of CO2 consumed or released by each reaction occurring in an

open or confined environment, respectively.

The two matrix solutions in Equations 2.14- 2.15 display the net atmospheric CO2 in an

open and closed environment, respectively, as the matrix product of the molar amount of CO2

consumed or released by Equations 2.1 to 2.5 and the amount of each of the reactions occurring.

The columns of the first matrix are the reactions that occur in an open environment, where carbon

can be degassed as CO2 through sulfuric acid weathering of carbonates (Equation 2.14) or a confined

environment where carbon is released from carbonate minerals and transferred as HCO−
3 to the

oceans (Equation 2.15). The values within the first matrix are the stoichiometric coefficients of

CO2 consumed (positive integers) or released (negative integers) or where there is no net difference

in atmospheric CO2 (zero value). The variables in the second matrix are the relative amount of

each of the reactions 2.1 to 2.5 occurring. The product of these two matrices is the net atmospheric

CO2 budget that would be predicted for a river catchment depending on the relative contributions

from reactions 2.1 to 2.5 in an open (Equation 2.14) or closed (Equation 2.15) environment.

(OPEN SilH2CO3 CarbH2CO3 CarbH2SO
O
4 SilH2SO4

CO2 2 1 −1 0
)
·


nSilH2CO3

nCarbH2CO3

nCarbH2SO
O
4

nSilH2SO4

 =


Short Term

Net

Atmospheric

CO2


(2.14)
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(CLOSED SilH2CO3 CarbH2CO3 CarbH2SO
C
4 SilH2SO4

CO2 2 1 0 0
)
·


nSilH2CO3

nCarbH2CO3

nCarbH2SO
C
4

nSilH2SO4

 =


Short Term

Net

Atmospheric

CO2


(2.15)

In the same way that measured HCO−
3 cannot be used to partitioned DIC between weathering

reactions, neither can it be used to calculate the short term CO2 budget of a river catchment. The

CO2 budget is calculated using the stoichiometries of carbon and Ca2+ in Equations 2.1 to 2.5 and

summarised in matrix solution 2.6. As DIC has also been calculated using cation stoichiometries,

the relationship between DIC and CO2 budget is discussed in terms of CO2:Ca2+ stoichiometry.

Reactions involving H2CO3 draw down atmospheric carbon on the short term. DIC associated with

all silicate mineral dissolution (Ca2+, Mg2+, Na+ and K+) by carbonic acid is entirely atmospheric

in origin thus carbonic
sil DIC is equivalent to CO2. The dissolution of Ca2+ and Mg2+ silicates are

charge balanced by two moles of HCO−
3 , ie. CO2:Cacarbonicsil or Mgcarbonicsil is 2 (the same value

displayed in matrix 2.14 and matrix 2.15). Each mole of Na+ or K+ released from silicate minerals

is charge balanced by one mole of atmospheric derived HCO−
3 , therefore CO2:Nacarbonicsil or Kcarbonic

sil

is 1. Carbonic acid weathering of carbonates produces two moles of HCO−
3 where one mole is

atmospheric derived carbon and one mole is from the mineral thus CO2 consumption on the short

term is half of carbonic
carb DIC. The release of Ca2+ or Mg2+ from carbonates is charge balanced by

both moles of HCO−
3 , but only one mole of carbon is removed from the atmosphere therefore

CO2:Cacarboniccarb or CO2:Mgcarboniccarb is 1. All carbon participating in the reaction of sulfuric acid with

carbonates is lithologically derived but the timescale of geologically stored carbon being released as

CO2 differs depending on environment. In an open environment (Equation 2.3) one mole of carbon

per mole of H2SO4, or mole of Ca2+, is degassed back into the atmosphere as CO2 instantaneously

so CO2:Casulfuriccarb or Mgsulfuriccarb is -1 (the same value in matrix 2.14). In a confined environment

(Equation 2.4) the carbon remains in solution as H2CO3 which is able to weather a further silicate

or carbonate mineral, producing a total of two moles of DIC per mole of H2SO4, or mole of Ca2+.

This DIC is transported to the ocean and thus no carbon is consumed or released on the short term

(hence the value in matrix 2.15 is 0). Carbon is however released on the timescale of carbonate

precipitation and is dealt with in Section 2.3. In the case of sulfuric acid weathering of silicates

because the reaction does not involve carbon, the value in matrices 2.14 and 2.15 is 0. Thus the
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total CO2 consumption over short timescales, ΣCO2Short, can be calculated using partitioned river

solutes for open (Equation 2.16) and confined (Equation 2.17) environments.

ΣCOO
2 Short =2 ∗ (Cacarbonicsil +Mgcarbonicsil ) +Nacarbonicsil +Kcarbonic

sil

+ Cacarboniccarb +Mgcarboniccarb − Casulfuriccarb −Mgsulfuriccarb

(2.16)

ΣCOC
2 Short =2 ∗ (Cacarbonicsil +Mgcarbonicsil ) +Nacarbonicsil +Kcarbonic

sil

+ Cacarboniccarb +Mgcarboniccarb

(2.17)

2.3 Long Term Carbonic and Sulfuric Acid Weathering of Carbonates and Silicates

Chemical weathering on the continents delivers solutes to the oceans. In the ocean solutes Ca2+

and HCO−
3 can precipitate as carbonate (CaCO3) releasing CO2 to the atmosphere on the order

of 105-106 years (Berner et al., 1983, and Figure 2.1F). The effect of chemical weathering to

atmospheric CO2 on long term timescales can be calculated assuming that the products of short

reactions (Equations 2.3-2.5) are all delivered to the oceans. The following Reactions 2.21 to 2.22

describe the fate of weathering products on the long term.

Carbonic acid weathering of silicate minerals delivers two moles of C to the oceans per mole

of Ca2+. However all C is atmospheric derived, so when CaCO3 precipitation occurs, one mole

of CO2 is degassed per mole of Ca2+ and one mole of C per mole of Ca2+ is sequestered into

geological storage (Equation 2.18). This reaction completes the climate stabilising cycle of silicate

weathering drawdown, sequestering atmospheric CO2 into the rock record, described by Urey (1952)

(Equation 2.19). Although the weathering of Na and K silicate minerals draws down CO2 they

do not form abundant carbonate minerals in the ocean so cannot lock up carbon (Berner, 1992).

Instead, Na+ and K+ may participate in reverse weathering reactions and cation exchange reactions

in estuarine and ocean crust environments, which releases CO2 and offsets the CO2 drawdown from

continental silicate weathering (Berner et al., 1983; Mackenzie & Garrels, 1966; Mackenzie & Kump,

1995; Michalopoulos & Aller, 1995).

H2O + 2CO2 + CaAl2Si2O8 ⇒ CaCO3 + CO2 +H2O +Al2Si2O5(OH)4 (2.18)

K.E. Relph, Ph.D. Dissertation



Chemical Weathering Reactions: Implications for Carbon Budgets on Short and Long Timescales 28

CO2 + CaSiO3 ⇒ CaCO3 + SiO2 (2.19)

The solutes delivered to the oceans by carbonic acid weathering of carbonates (Equation 2.2)

precipitate one mole of carbonate per mole of Ca2+ and degas one mole of CO2 to the atmosphere on

the long term (Equation 2.20). Therefore carbonic acid weathering of carbonates is carbon neutral

on long term timescales, releasing 1 mole of CO2 back to the atmosphere per mole of Ca2+ that

was originally released into solution, and sequestering one mole of C back into carbonate minerals.

H2CO3 + CaCO3 ⇒ CaCO3 + CO2 +H2O (2.20)

Sulfuric acid weathering of carbonates in an open environment (Equation 2.3) delivers no

DIC to the oceans because the carbon released from carbonate minerals instantaneously degasses

as CO2 and the carbon implications are therefore only considered on the short term. The reaction

does deliver SO2−
4 and Ca2+ which are important to consider on the long term because carbon is

tracked using the Ca2+ ion.

H2SO4 + CaCO3 ⇒ Ca2+ + SO2−
4 +H2O (+ CO2) (2.21)

The two moles of DIC from the reaction of sulfuric acid and carbonate minerals in a confined

environment are transported to the oceans (Equation 2.4) and precipitate as carbonate, releasing

one mole of lithologically sourced carbon back to the atmosphere (Equation 2.22, Calmels et al.,

2007). This reaction becomes a CO2 source on long timescales.

H2SO4 + 2CaCO3 ⇒ CaCO3 + CO2 + Ca2+ + SO2−
4 (2.22)

Sulfuric acid weathering of silicates plays no direct part in the carbon cycle but releases

SO2−
4 and Ca2+ to the weathering zone and to the ocean. However, we track carbon by the Ca2+

ion, so this equation is as important to take into account as Equation 2.21.

H2SO4 + CaAl2Si2O8 +H2O ⇒ Ca2+ + SO2−
4 +Al2Si2O5(OH)4 (2.23)

There are multiple fates of the SO2−
4 and Ca2+ products of sulfuric acid weathering of silicates
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and carbonates (Equations 2.21, 2.22 and 2.23). Other than carbonate precipitation, Ca2+ could

combine with SO2−
4 to precipitate gypsum or anyhydrite (Equation 2.24) if the conditions were

suitable (Figure 2.1G) . A confined basin and arid environment is required to promote evaporation

and precipitation of evaporites (Berner, 2004).

Ca2+ + SO2−
4 ⇒ CaSO4 (2.24)

SO2−
4 is also removed from seawater via oxidation of organic carbon in marine sediments by bacterial

sulfate reduction, reducing SO2−
4 to H2S (Equation 2.25, Berner, 1985; Calmels et al., 2007). Sulfide

could then be oxidised back to sulfate or react with iron oxides to form pyrite, FeS2 (Berner, 2004).

The oxidised product of organic carbon is HCO−
3 which could go on to react with Ca2+ in the

oceans and precipitate carbonate eventually sequestering one mole of carbon into geological storage

(Bradbury & Turchyn, 2018).

SO2−
4 + 2CH2O ⇒ H2S + 2HCO−

3 (2.25)

The residence time of SO2−
4 in seawater is several orders of magnitude greater than that of DIC

(>107 years vs 105 years, Broecker, 2003; Claypool et al., 1980), and hence HCO−
3 is removed from

the oceans at a faster rate than SO2−
4 . The consequence of this is a decoupling of instantaneous

CO2 release by sulfuric acid weathering of carbonates in an open environment and the long term

CO2 sequestration from SO2−
4 reduction in the oceans (Calmels et al., 2007; Berner & Berner,

2012; Torres et al., 2014). A detailed consideration of the role of SO2−
4 and Ca2+ in ocean cycles is

beyond the scope of this study, which focusses on catchment processes.

2.3.1 Long Term CO2 Consumption

Total CO2 consumption on long timescales, is the amount of CO2 consumed by silicate weathering

coupled to carbonate precipitation, offset by CO2 released by sulfuric acid weathering of carbonates.

The matrix solutions 2.14 and 2.15 describing the net atmospheric CO2 budget on the short term

become modified to matrices 2.26 and 2.27 respectively, which describe the net atmospheric CO2

budget of the river catchment on the long term. Matrices 2.26 and 2.27 are set up in the same

way as matrices 2.14 and 2.15; the matrix solutions are a product of the molar amount of CO2

consumed or released by long term Equations 2.18 to 2.23 and the amount of each of the reactions

occurring.
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Carbonic acid weathering of silicates is a net sink of CO2 sequestering one mole of CO2

per mole of Ca2+ released from a silicate mineral, hence coefficients in matrices 2.26 and 2.27 are

1. Carbonic acid weathering of carbonates is C neutral on the long term after returning C to it’s

original source, therefore coefficients in matrices 2.26 and 2.27 are 0. Sulfuric acid reacting with

carbonate minerals in an open environment releases CO2 instantaneously with no DIC transported

to the ocean. This reaction is carbon neutral on long term timescales hence the coefficient in matrix

2.26 is also 0. However, in a confined environment, sulfuric acid weathering of carbonates delivers

DIC to the oceans, which releases one mole of CO2 when DIC is precipitated as carbonate, hence

the coefficient in matrix 2.27 is -1. There is no DIC delivered to the weathering zone or to the

ocean by sulfuric acid reacting with silicate minerals hence the coefficient in matrices 2.26 and 2.27

is 0.

(OPEN SilH2CO3 CarbH2CO3 CarbH2SO
O
4 SilH2SO4

CO2 1 0 0 0
)
·



µmol/l

nSilH2CO3

nCarbH2CO3

nCarbH2SO
O
4

nSilH2SO4

 =


Long Term

Net

Atmospheric

CO2


(2.26)

(CLOSED SilH2CO3 CarbH2CO3 CarbH2SO
C
4 SilH2SO4

CO2 1 0 −1 0
)
·



µmol/l

nSilH2CO3

nCarbH2CO3

nCarbH2SO
C
4

nSilH2SO4

 =


Long Term

Net

Atmospheric

CO2


(2.27)

The total CO2 consumed and released on timescales longer than 105 years (ΣCO2Long) can

be calculated using Equation 2.28.

ΣCO2 long = Cacarbsil +Mgcarbsil − Ca
sulfC
carb −MgsulfCcarb (2.28)

The net CO2 budget on the long term (ΣCO2Long) is effectively the moles of CO2 sequestered

into carbonate minerals after removal from the atmosphere by carbonic acid weathering of silicate
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minerals, offset by the long–term CO2 release when carbonate derived from lithological carbon

is precipitated in the oceans. Although all silicate mineral dissolution (Ca2+, Mg2+, Na+ and

K+) draws down atmospheric CO2, only Ca2+ and Mg2+ participate in sequestering the CO2 into

carbonates. Two mole of CO2 for each mole of Ca2+ and Mg2+ are removed from the atmosphere

but only one mole of CO2 is sequestered, hence the stoichiometric ratio of CO2:Cacarbonicsil or

Mgcarbonicsil is 1. For each mole of Ca2+ or Mg2+ released during the sulfuric acid weathering of

carbonates in a confined environment, one mole of CO2 is also released, so the stoichiometric ratio

of CO2:Casulfuric C
carb or Mgsulfuric C

carb is -1.

The net C budget of a river catchment at any one time is when reactions are integrated

over all timescales (ΣCO2Integrated). The integrated carbon budget is the CO2 sequestered into

carbonate minerals after removal from the atmosphere by carbonic acid weathering of silicate

minerals (Equation 2.18), offset by the CO2 released by sulfuric acid weathering of carbonates

instantaneously as CO2 (Equation 2.3) and on the long term after DIC has been transported to the

oceans and is released as CO2 when lithological carbon is precipitated as carbonate (Equation 2.22).

The overall integrated CO2 budget for a river catchment, independent of timescale of CO2 release,

ΣCO2Integrated, can be calculated by Equation 2.29.

ΣCO2 integrated = Cacarbsil +Mgcarbsil − Ca
sulfO
carb −MgsulfOcarb − Ca

sulfC
carb −MgsulfCcarb (2.29)

2.4 Conclusions

The impact of chemical weathering reactions on level of atmospheric CO2 and therefore climate,

differs depending on timescale. Short–term chemical weathering reactions where carbonic acid

is the reagent draw down atmospheric CO2, but in the long–term only part of this atmospheric

CO2 is sequestered into the rock record. Reactions that release lithologically sourced carbon to

the atmosphere involve sulfuric acid as the acidity source. The impact of CO2 release could be

measured on short–term timescales, if the reaction of sulfuric acid with carbonates occurred in

an open environment where CO2 was able to instantaneously degas. A short–term (<105 years)

imbalance could occur if the flux of CO2 release is larger than the CO2 drawdown from carbonic acid

weathering of silicate and carbonate minerals. Or the impact of CO2 release could be measured on

the long–term, if carbonate dissolution by sulfuric acid in a confined reaction site releases carbon as

HCO−
3 . HCO−

3 is transported to the oceans and precipitated as carbonate, subsequently releasing

the lithologically sourced carbon to the atmosphere on timescales longer than 105 years. When
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considering the carbon budget of a river basin at any point in time, i.e. an integrated timescale,

only the CO2 consumption from long term carbonic acid weathering of silicates and the release of

CO2 from sulfuric acid weathering of carbonates is accounted for.

This chapter has outlined the different products released by five idealised equations between

carbonate and silicate minerals and carbonic and sulfuric acid, and the long–term fate of the

reaction products have been discussed in terms of carbon implications. The framework described

in this Chapter to calculate dissolved inorganic carbon will be used to quantify the inorganic carbon

budget for the Mekong River on different timescales in Chapter 6.



Chapter 3

Methodology

3.1 Field Sampling Procedure

The suite of samples collected from the Mekong River and it’s tributaries by this study is the most

comprehensive in both type of sample and spatial coverage of the basin. A total of 394 water, rain,

suspended sediment, and bank samples with a further 115 time-series water samples have been

collected between 2014-2017.

Samples of the Mekong River and it’s tributaries were collected by two methods. For the

main channel and larger tributaries, when a boat could be acquired, samples were collected from

the river where there was the largest variation in water velocity in the water column. A rig

was mounted to the boat from which a depth sampler was lowered into the river and closed at

chosen depths allowing 8L samples of water and suspended sediment to be collected over a depth

profile (Figure 3.1). Dissolved elements are assumed to be equilibrated throughout the water

column, chemistry should not change with depth, hence water samples were collected from the

surface sample in a depth profile. For smaller tributaries samples were collected by lowering a

3-times-washed bucket from a bridge into the fastest flow of the river (Figure 3.1). Temperature

and pH were measured using a Hannah instrument (HI-991300) probe either directly in the river

water or in a bucket if sampling from a bridge. The instrument was calibrated every few days using
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buffer solutions of known pH (pH 4.01 and 7.01). Bank sediment samples were collected to represent

bed load which was not possible to collect. Bank sediment was collected into plastic zip-lock bags

from below the water line where possible and away from human or animal disturbance, using a

scoop washed in the river water downstream of the sample being taken.

Figure 3.1: Sample collection by boat and bridge. Clockwise: Rig used to mount 8L depth
sampler to collect depth profiles. When boats were not available, or for sampling smaller tributaries,
a bucket was suspended over a bridge, samples were collected from the fastest flowing part of the
stream. The sediment laden waters of a Cambodian tributary with the 2016 field team. Samples
were transported back to our field laboratory and filtered through 142mm 0.2µm PES filters, using
2.5L pressurised units, within 12hours of collection.
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River waters were filtered within 6 hours of collection through 142mm 0.2µm PES filters.

2.5 litres of filtered water was discarded before collection of samples. Bottles for collecting water

samples were rinsed three times with the filtered sample before filling the bottle to a meniscus

with the sample. Water samples for the analysis of cations were collected in acid washed HDPE

bottles and acidified to pH < 2 using distilled HNO3. A separate aliquot was collected for anions

and measurements of δ18OH2O and δD using 18.2MΩ H2O washed amber HDPE bottles. Amber

bottles are used to prevent light affecting unacidified water and sediment samples, discouraging

bacterial growth. Total alkalinity was measured by Gran titration with 0.05M HCl (Drever, 1997).

Repeat titrations in the field were reproducible to 3.4% (2σ). Due to low SO2−
4 concentrations

measured in the 2014 field season, a pre-concentration step was conducted in the field in 2016 and

2017. Two litres of filtered river water were loaded onto columns filled with 5mL Dowex 1X8-200,

100-200 mesh, anion exchange resin (Hindshaw et al., 2016). The SO2−
4 was stored on the resin

and kept in a fridge until the time of sample preparation (sulfate pre-concentration methodology

is described in more detail in Chapter 5). Bank and suspended sediment samples were dried upon

return to University of Cambridge in an oven at ∼40°C. Water samples were stored in a cold room

(∼5°C) until needed. Other samples collected from the Mekong were dissolved organic carbon

(DOC), dissolved inorganic carbon (DIC), 14C and CO2 degassing measurements (Table 3.1) which

were not analysed for this thesis.

3.1.1 Spatial Sampling Strategy

Water samples were collected in consecutive peak monsoon periods 2014, 2016 and 2017. A total of

50 sites were sampled in the Mekong river basin, spanning ∼ 70% of it’s length from source to sea.

The Mekong main channel was sampled at 10 locations and all accessible tributaries were sampled

(n=36), close to their confluence with the Mekong (Figure 3.2). 70% of the Mekong’s discharge

is delivered during the monsoon months so sampling during peak monsoon captures the largest

weathering signal.

3.1.2 Temporal Sampling Strategy

Samples were collected bi-monthly at Chroy Changvar by the Mekong River Commission (MRC)

from 2014-2017 (with a small hiatus in early 2015). The sample site is upstream of the city of

Phnom Penh, upstream of the confluence with the Tonle Sap (Figure 3.3). Clean bottles, filters
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2014 2016 2017

108.5°E

108.5°E

108.5°E

11°N

22°N

33°N
Cambodia Tributaries
China Tributaries
Left Bank Laos Tributaries
Mekong Main Channel
Myanmar Tributaries
Right Bank Thai Tributaries
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Pakse
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Chiang SaenChiang Saen

Luang Prabang

Figure 3.2: Sampling locations on the main stem and tributaries of the Mekong River.
Samples in this thesis were collected over three field seasons, 2014, 2016, and 2017. In 2014
tributaries and the main stem only in Cambodia were sampled, in 2016 tributaries in both Laos
on the the left bank of the Mekong and Cambodia were sampled, and in 2017 the main stem
(pink triangles) was sampled from China downstream to Cambodia with tributaries draining the
Upper Mekong in China (orange squares), the right bank in Thailand (yellow inverted triangles),
Myanmar (light green circles) (accessed at the border of Cambodia and Myanmar), and Cambodian
tributaries (blue green circles) were sampled. Labels indicate the main stem sample sites in the
MRC dataset and used in Chapter 4.3.2.3.
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and syringes were sent to the MRC to facilitate sample collection, then samples were sent back to

University of Cambridge for analysis.

Daily samples were collected over three weeks in July 2014 at the same location as the

time-series collected by the MRC to observe high resolution variation in water chemistry and to

check the sampling quality of the MRC.

Chroy Changvar

200 km

Kratie

Stung Treng

200 km

9°N

10°N

11°N

12°N

108.5°E

Cambodia Tributaries
Mekong Main Channel

Phnom Penh

Tonle Sap Lake

Figure 3.3: Time-series sample site: Chroy Changvar, Cambodia. The map is orientated
over the mouth of the Mekong river basin. Time-series samples collected for the study are from
Chroy Changvar, upstream of Phnom Penh. At Phnom Penh, the Tonle Sap joins the main Mekong,
the samples collected at Chroy Changvar are far enough upstream not to be affected by any back
flow from the confluence. Other main stem sites sampled for this study, visible in this map, are
Kratie and Stung Treng.

3.1.3 Measurement of Discharge

At main stem sites samples were typically attained by lowering the 8L depth sampler into the

water from a boat. At these locations discharge measurements could be made with acoustic Doppler

current profiling (aDcp) surveys. A RDI Teledyne RioGrande 600kHz instrument loaned from Prof.

Dan Parsons at University of Hull, was mounted to the boat. Then the boat traversed the river

perpendicular to the river bank, creating a cross-section of the river channel. Post-processing of

cross-sections were made using the Velocity Mapping Toolbox (Parsons et al., 2013). The location
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of the depth profile within the channel was determined by the results of the aDcp survey. The

location in the channel with the largest velocity gradient was chosen to collect samples with a

representative distribution in suspended sediment grain size.

Table 3.1: Sample collection

Sample Storage Storage Preparation Volume

Collected

Additions

To Sample

Anion High density

poly-ethylene (HDPE)

bottles, PP lids

Cleaned in 10% HNO3 for

24hrs, cleaned in 18.2MQ

for 24hrs

60mL

Cation 60mL Distilled

15M HNO3Archive 500mL/1L

Sulfate 20ml Solid Phase

Extraction tube with

5mL DOWEX 1X8-200

Anion Exchange Resin

Resin washed in 60mL 3M

HCl, 60mL 18.2MQ H2O

2L loaded

onto column

DIC
Amber glass bottle

Washed in 18.2MQ for

24hrs then 2hrs at 550◦C
30mL

H3PO4

DOC

14C FlexFoil Plus bag 1L

Suspended

sediment

Amber glass bottle 125mL

Bank

sediment

Plastic zip-lock bag

3.1.4 Other Data

The MRC has a collection of historical data from 1985 to 2000 that is open access

(http://portal.mrcmekong.org/search/search). This dataset contains monthly measurements of

discharge (m3.sec−1) and chemical analyses (cation and anion in meq/L units) for multiple main

stem and some tributary stations in the Mekong river basin. The data was filtered for quality

control first, by changing meq/L units to µmol/L, secondly, by calculating the charge balance (CB)

of the river water (Equation 3.1). Data was discarded if the charge of total cations did not balance

with the charge of total anions within 6%. The MRC data was used for applying discharge to flux

calculations where aDcp measurements were not available and for analysing downstream trends in

the main stem (Chapter 4).

CB =
(2 ∗ Ca2+ + 2 ∗Mg2+ +Na+ +K+)− (2 ∗ SO2−

4 + Cl− +HCO−
3 )

(2 ∗ Ca2+ + 2 ∗Mg2+ +Na+ +K+) + (2 ∗ SO2−
4 + Cl− +HCO−

3 )
∗ 100% (3.1)
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Discharge data at Chroy Changvar, the same location as the time-series sample site, measured by

the MRC is available from 1960-2002 (C Hackney 2016, personal communication, 11 February).

Discharge data for Cambodian and some Laos tributaries are sourced from Someth et al. (2013)

and Nippon Koei (2001), respectively.

3.2 Sediment Sample Preparation for Chemical Analyses

Acids used in sample dissolution and column chemistry were distilled in Quartz or Teflon stills to

ensure minimal blank contamination. Preparation of sediments for chemical analysis was performed

using the fused-bead method. All post-sample collection chemical analyses were made in a clean

laboratory suite in the Department of Earth Sciences, University of Cambridge.

3.2.1 Sequential Extractions from Bank Sediment

Carbonate and silicate source rock compositions were targeted using a four–step modified standard

sequential extraction procedure (Tessier et al., 1979), on bedload samples collected from 30

tributaries of the Mekong. Samples were collected from below the water line of sand banks where

possible, otherwise from fresh deposits on river terraces. Samples ranging from course sand to fine

clays were oven dried at 40◦C or freeze dried, then 400mg of sample was added to a pre-cleaned

50mL centrifuge tube. The following reagents were sequentially added to and removed from the

sample (detailed in Table 3.2) in class 1000 clean laboratories at room temperature using teflon

distilled acids. First, a weak 1M ammonium chloride (NH4Cl) leaches cations in the exchangeable

pool, cations that are weakly bound to the surface or interlayers of clays. Then an acid-reductive

leach is used to target weakly bound amorphous Fe-oxyhydroxides, Mn-oxyhydroxides and low-Mg

carbonates. This leach is a mix of: 5mM Hydroxylamine-Hydrochloride (HH), to reduce the

Mn-oxyhydroxides, 1.5% acetic acid which attacks Fe-oxyhydroxides and forms a ferric acetate

salt and Na-EDTA complexing agent to prevent reprecipitation of trace metal cations, which

is buffered with NaOH to keep pH stable as in Blaser et al. (2016). This leach should have

minimal silicate contamination and be a pure carbonate end member. Next a 1.7M acetic acid

leach targets low Mg-carbonates and remaining crystalline Fe-oxyhydroxides. Finally 1M HCl

leaches high Mg-carbonates. The acetic and HCl acid reagents may leach into the detrital fraction

but immobile elements such as Al and Fe will give an indication of any leaching of the silicate

fraction into this phase. The remaining residue should reflect the silicate rock source. Leachates
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and dissolved residue sediment were analysed for major cations and Sr concentrations on an Agilent

ICP-OES. 87Sr/86Sr was measured on dissolved residue sediment in fused micro-beads as outlined

below and on a selection of high Ca-Sr leachates using a MC-ICP-MS. εNd was measured on the

residue sediment on a MC-ICP-MS.

Table 3.2: Leaching procedure

Step Sample Ultra-

sonicator

Reaction

period

Centrifuge Remove

supernatent

1M

NH4Cl

Add 16mL NH4Cl to

sample, cap and shake

vigorously

20 minutes 0hr 15

minutes

at

5000rpm

Pipette off NH4Cl

into new centrifuge

tube

5mM

HH

Add 10mL HH to

residue sample, cap and

shake vigorously

0 minutes 1hr on the

shaker table

15

minutes

at

5000rpm

Pipette off HH into

new centrifuge tube

Water

wash

Add 30mL water

to residue, shake

vigorously

0 minutes 0hr 15

minutes

at

5000rpm

Pipette off water

and discard, repeat

addition through to

removal of water 3

times

1.7M

AcOH

Add 16mL AcOH to

residue sample, cap

and shake vigorously,

removing any gas as

required

20 minutes 3hr on the

shaker table

15

minutes

at

5000rpm

Pipette off AcOH into

new centrifuge tube

1M HCl Add 16mL HCl to

residue sample, cap

and shake vigorously,

removing any gas as

required

0 minutes >8hrs

(overnight)

on the shaker

table

15

minutes

at

5000rpm

Pipette off HCl into

new centrifuge tube

Residue Residue sample dried in oven at 80◦C for 24hours then weighed.

Residue

dissolution

Dry residue is heated at 950◦C for 8hours to ignite organics. Ignited powder is dissolved

in a lithium tetraborate, lithium metaborate flux forming a glass micro-bead. This glass

bead is dissolved in 50mL 2.5% HNO3.

3.2.2 Fused Micro-Bead Digestion

To measure the composition of sediments, the sample must first be dissolved. Moreover, for cation

and multiple isotope analyses to be performed on sediment samples it is beneficial to use one



Methodology 41

digestion method that is suitable for all analyses, not least because the small size of some samples

allows only one digestion of the sediment. Sediment can be digested by placing the sample and

hydrofluoric acid, HF, into a teflon beaker and adding heat and pressure. This method releases

silicon tetrafluoride, SiF4, as a volatile gas, consequently Si concentrations cannot be measured in

the sample. A common way to dissolve sediment is by alkaline fused bead digestion and analysis

by X-Ray Fluorescence (XRF) spectrometry (Gazulla et al., 2008). However, analysis by XRF

requires 0.5g of sediment which precludes analysis of extremely small samples. Therefore a fused

bead method was developed to digest sediment samples which requires only 50mg of sample, an

order of magnitude smaller than XRF analysis, and which is suitable to then perform multiple

analyses.

Sediment is dried in an oven at 100°C for 2 hours then the sample is weighed into ceramic

crucibles. Lidded crucibles are placed into a furnace at 950°C for 420 minutes to oxidise, de-water

and decarbonate the sample. 50mg of ignited sample, 200mg super pure lithium metaborate flux

(LiBO2) and 50mg super pure lithium tetraborate flux (Li2B4O2) was weighed into a platinum

crucible and heated atop a Meeker burner (1200◦C) until homogenised. The molten mixture was

poured into a mould to cool then 100mg of the glass bead was weighed into a 50mL centrifuge tube.

The centrifuge tube was pre-cleaned by soaking for 24hours in 10% HNO3 followed by 24 hours in

18.2MQ water then left in a clean drying cabinet until dry. To dissolve the glass bead, 50mL 2.5%

HNO3 and a teflon coated magnetic stirrer was added to the centrifuge tube before placing the

centrifuge tube on a magnetic hotplate for 12 hours. Constant agitation of the dissolving glass bead

is needed, in the form of the teflon coated magnetic stirrers, to prevent settling and re-precipitation

of silicates on the surface of the glass bead. Platinum crucibles are used as they are non-reactive with

the constituents. To decrease weighing errors, the smallest constituent weighed is 50mg however

the total bead is too concentrated to analyse if all 300mg are dissolved in 50mLs. Therefore only

a third of the glass bead is dissolved, which also keeps acid volume to a minimum. Moreover,

because the HNO3 acid concentration is only 2.5%, no further dilution is needed before running

the dissolved sample on the Agilent for cation concentrations.

3.2.3 Verification of Fused Micro-Bead Digestion Method

The digestion of sediment by glass bead fusion is used for analysis 87Sr/86Sr and εNd isotopes in bulk

bank samples, bulk suspended sediment samples and sediment residue from leaching. A series of

checks were made to ensure there was no loss or isotope fractionation of elements through sediment
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digestion in a fused bead or subsequent dissolution in 2.5% HNO3. USGS Sediment standards were

digested in three ways; first by placing sediment in a teflon beaker with HF on a hotplate, second

making a bead using the HF digest (to ensure no homogeneity due to standard sediment aliquots),

third by making a bead using the standard method. Then the samples were dried down, refluxed

in concentrated HNO3, dried down again and taken up in a reagent suitable for column chemistry.

An aliquot of the dissolved standards were separated for 87Sr/86Sr chemistry and measured. An

aliquot of the dissolved standards were also separated for 143Nd/144Nd. Sr can be collected during

the Nd separation procedure and this Nd column cut is also analysed for 87Sr/86Sr to compare

to 87Sr/86Sr analysed directly from the digestion methods. The results in Table 3.3 show that

this developed fused micro-bead method to dissolve sediment does not fractionate 87Sr/86Sr or εNd

isotopes. Moreover, the 50mLs of digested sample generated by this digestion method could also

be used for the analysis of Ca and Mg isotopes.

3.3 Cation Analysis

Major cation (and Sr, and S) concentrations were measured by Inductively Coupled Plasma Optical

Emission Spectroscopy (ICP-OES) on an Agilent 5100. Optimal set up of radial and axial detectors

for particular wavelengths of an element was determined by external standard measurements before

analysing samples.

3.3.1 Water Sample Cation Analysis

Samples were measured against synthetic multi-elemental calibration lines made from

mono-elemental standards. The calibration line was made to match the matrix of river waters

typical to Southeast Asian rivers. External standards and acid blanks were run between every

10 samples to check for drift. No samples were corrected for drift. Measured external standards

SPS-SW2, SLRS-5 and SLRS-6 were accurate to within ±5% of certified values (within ±7.3% for

Fe) and precise to within ±5% 2σ for Al, K, Mg, Mn, Na, S, Si, Sr and within ±5.8% 2σ for Ca

and Fe, n=137. Elements Al, Fe and Mn were measured in river water samples as a check on for

particle contamination during the field collection process.
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3.3.2 Sediment Sample Cation Analysis

Sediment digested via the fused bead method and subsequently dissolved in 2.5% HNO3 is run

directly on the Agilent ICP-OES. Although 50mg of sediment is digested, only ca. one third is

dissolved in 50mLs 2.5% HNO3 so the concentration of elements in the solution is dilute enough

to run directly on the instrument without saturating the detectors. A calibration line was made

to match the lithium-borate matrix of the dissolved sediment samples using external sediment

standards dissolved in the same method. In order to span the correct magnitude for each element,

15mg each of USGS standard Hawaiian Basalt BHVO-2 and Mica Schist SDC-1 were added to

50mg Lithium borate flux then made into a fused bead. One third of the bead was dissolved in

2.5% HNO3 and then diluted to the correct concentrations with a dissolved fused bead containing

only lithium-borate flux. Using a ’blank’ lithium-borate bead instead of water or acid to dilute the

calibration line ensures the ratio of sediment to sample in the matrix remained the same throughout

the calibration line. Certified reference sediment standards USGS Granite G-2, Hawaiian Basalt

BHVO-2, Columbia River Basalt BCR-2, Mica Schist SDC-1, and Cody Shale SCo-1 were measured

between 10 samples on the Agilent. Repeated analyses of external standards were accurate to within

±5% for Al, Ca, Mg, Si, Sr, Ti, within ±7% for Ba, K, V, Zn and within ±9% for Fe, Mn, Na of

certified values, n=173.

Each sequential extraction was measured against a unique calibration line suitable for the

matrix of the respective leachate. Leachate calibration lines were made from mono-elemental

standards, then the approximate matrix (NH4Cl, HH, AcOH, HCl) was added. External standards

were run between sets of 5 samples to ensure measurement accuracy, SPS-SW2 water and Columbia

River Basalt BCR-2 were chosen because no standards with the same matrix as the leachates are

available. The 50% calibration standard was also run as a bracketing standard between sets of 5

samples to check instrument drift.

3.4 Anion Analysis

Anions Cl− and SO2−
4 were measured on a Thermo Scientific Dionex ICS-5000+ High Performance

Ion Chromatographer (HPIC) using a 4 x 250mm Ionpac AS18 column with 24-31mM potassium

hydroxide eluent. An in-house calibration line was made using mono-anion standards based on

concentrations measured in other Asian rivers, to reduce matrix effects. Repeated analyses of
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external standard LGC6025 River water (from Menethorpe Beck, Yorkshire, UK) were accurate to

within ±3.7% of certified values for Cl− and SO2−
4 , n=85.

3.5 Elemental Separation and Isotope Analysis

Analysis of sulfur and oxygen isotopes in dissolved sulfate, δ34SSO4 and δ18OSO4 respectively, are

discussed in Chapter 5.

3.5.1 Strontium Separation and 87Sr/86Sr Isotope Analysis

Strontium was separated and measured in two ways. For samples collected before 2016, Sr was

separated using Dowex 50Wx8 cation exchange resin with 200-400 mesh particle size then 87Sr/86Sr

ratios were measured on a VG Sector 54 solid source mass-spectrometer using triple-collector

dynamic algorithm (Bickle et al., 2003). In samples collected after 2016, 500ng strontium was

separated using Biorad Micro Bio-Spin columns with Eichrom SrSpec resin then 87Sr/86Sr ratios

were measured on a Thermo Neptune MC-ICP-MS (Hindshaw et al., 2018) with each measurement

comprising 30 cycles with 8 second integration. The Neptune method was setup to correct for

rubidium interferences on 87Sr by monitoring 85Rb, and 84Kr and 86Kr interferences were corrected

by measuring 83Kr. Repeated measurements of NBS 987 gave a 87Sr/86Sr value of 0.710285 ±36ppm

(2σ, n=63) and the seawater value was 0.709200 ± 33ppm (2σ, n=17), which is within error of the

accepted value of 0.709179.

3.5.2 Neodymium Separation and εNd Isotope Analysis

Neodymium is a rare earth element, with five stable and two radiogenic isotopes, that is concentrated

in silicate minerals. Variations in the ratio of radiogenic 143Nd to stable 144Nd are used to

provenance lithologies of different ages (e.g. Singh & France-Lanord, 2002). Neodymium isotope

ratios (143Nd/144Nd) are used in conjunction with strontium isotope ratios (87Sr/86Sr) because

processes by which both isotope ratios are set, during formation of volcanic rocks through partial

melting of the mantle, are independent yet complimentary (Faure & Mensing, 2005). During partial

melting, Rb and Nd are concentrated in the melt phase whilst Sm and Sr remain in the residual

solids, setting the Sm/Nd and Rb/Sr ratios in rocks and minerals (Peucker-Ehrenbrink et al., 2010).

143Nd/144Nd and 87Sr/86Sr ratios vary due to the subsequent radioactive decay of 87Rb to 87Sr and
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147Sm to 143Nd (Blum & Erel, 2003; Allègre, 2008). Hence, 87Sr/86Sr and 143Nd/144Nd isotope

ratios in a rock or mineral vary as a function of age and lithology (Goldstein & Jacobsen, 1987;

Asahara et al., 2012).

To analyse 143Nd/144Nd, rare earth elements (REE) were isolated using Eichron TRUspecTM

resin (100-150µm mesh) in 100µL Teflon columns. Nd was then extracted using Eichron LNspecTM

resin (50-100µm mesh) in volumetrically calibrated Teflon columns (following Piotrowski et al.,

2009). 143Nd/144Nd isotopic composition was measured on a Neptune multi-collector plasma mass

spectrometer (MC-ICPMS) with an Elemental Scientific Inc. APEX IR desolvating nebuliser

introduction system. Samarium interferences were monitored by measuring mass 149. No

interferences were detected and oxide production was monitored during the run. Bracketing

standard JNDi-1 was measured every three samples to correct for offset and drift. Repeated

measurements of JNDI-1 gave a value of -10.08 ±0.29 1σ (n=56) compared to the standard value

of -10.202 (Tanaka et al., 2000). External standards USGS Cody Scale SCo-1 was measured

at -10.29 ±0.12 1σ within 0.12 εNd of published values (Jochum et al., 2005). The error

quoted on samples is the larger value from external error or internal error (internal being the

instrument standard deviation of multiple measurements). 143Nd/144Nd ratios are expressed as

εNd, i.e. deviation x10,000, relative to present-day chondritic uniform reservoir (CHUR) value

(143Nd/144Nd=0.512636) of Jacobsen & Wasserburg (1980).

εNd(0) =

[
(143Nd/144Nd)measured

(143Nd/144Nd)0CHUR

− 1

]
∗ 104 (3.2)

3.5.3 δ18OH2O and δD Measurement

δ18OH2O and δD of the river water were measured simultaneously by cavity ring down mass

spectrometry using a Picarro L1102-i interfaced with a A0211 high-precision vaporizer. Samples

were calibrated against JRW, SPIT and BOTTY standards. δ18OH2O and δD results are expressed

relative to Vienna Standard Mean Ocean Water (VSMOW) in parts per thousand (h). Repeat

measurements of the standards had a precision of δ18OH2O = 0.1h, δD = 0.6h, 2σ (n=28).



Chapter 4

Chemistry and Isotopic Composition of the

Dissolved Load and Bedload of the Mekong

River and it’s Tributaries

4.1 Introduction

Chemical weathering and physical erosion of rocks are key geochemical processes that affect the

carbon cycle. Specifically, the weathering of silicate minerals draws down CO2 from the atmosphere

converting it to bicarbonate, eventually leading to carbonate precipitation in the oceans. Pioneering

work by Walker et al. (1981) and Berner et al. (1983) has shown it is the role of silicate weathering

that acts to regulate long-term climate.

Large rivers export the majority of weathering products from land to oceans, hence river

water chemistry provides critical information on the chemical weathering fluxes and their controlling

processes. Furthermore, a better understanding of the natural geochemical signature of river waters,

and the terrestrial processes causing those signatures, is crucial to provide a baseline from which

deviations caused by anthropogenic activities can be assessed.
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Quantifying the flux of solutes from the world’s largest rivers to the ocean is important

for understanding bio-geochemical cycling, but the signal at the mouth of large rivers does not

provide a representative account of the potentially variable processes occurring throughout large

river catchments. The Mekong river in South East Asia is particularly well suited to investigating

spatial and temporal geochemical processes because the river’s headwaters drain an area of high

erosion on the Eastern Syntaxis of the Himalayas and the nature of the basin is large in size with

complex geology and a range in climate and topography. This chapter will discuss the chemistry of

the dissolved load and bank sediment in the Mekong river. A forward model is applied to elements

in the dissolved load to partition them to their lithological sources and infer the key weathering

reactions occurring. Finally a silicate and carbonate weathering budget for the Mekong river basin

is estimated.

4.2 Division of Mekong River Basin

It is convenient to split the Mekong river basin into sections in order to clearly describe the spatial

location of chemical data (Figure 4.1). Obvious geological units (Figure 1.2), topographic features

(Figure 4.6A) and main stem sampling locations have been used to divide the basin. The first

section is the Upper Mekong: the basin area between the source of the Mekong and southern China.

Samples collected in China are collected at the highest altitude, the altitude drops significantly

between Yunnan and Luang Prabang (Figure 4.6A). The Middle Mekong extends from southern

China to Pakse and is split into three sections. First, tributaries draining Myanmar and northern

Thailand are grouped, joining the Mekong where northeast Myanmar borders northern Thailand

and southwest China. Secondly, tributaries draining the left bank of the Mekong in Laos are

grouped. These tributaries drain the Annamite mountain range which has higher topography and

receives more rainfall than the final group of tributaries in the Middle Mekong. Tributaries grouped

into the third section of the Middle Mekong drain the Khorat Plateau, a distinct geological feature

of the right bank of the Mekong in Thailand (Figure 1.2). The Middle and Lower Mekong are

separated by the Khone Phapheng Falls and the border between Laos, Thailand, and Cambodia.

Large flood plains and a noticeably wider river channel dominate in Cambodia with three tributaries

draining the southern Annamite mountains in northwestern Cambodia contributing 28% of the

Mekong river basin discharge (Adamson et al., 2009). Time-series samples were collected at Chroy

Changvar (Phnom Penh), Cambodia, close to the mouth of the Mekong before the channel divides

into distributaries.
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Tonle Sap & Delta
Cambodia Tributaries
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Mekong Main Channel
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Right Bank Thai Tributaries
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Figure 4.1: Division of Mekong river basin. Main stem sample sites (pink triangles) collected
in 2014, 2016 and 2017 field seasons are Yunnan (YN), Luang Prabang (LP), Vientiane (VT),
Pakse (PK), Stung Treng (ST), Kratie (KR) and Phnom Penh (Chroy Changvar) (PP), other
main stem sites Chiang Saen (CS), Nakhon Phanom (NP), and Khong Chiam (KC) are MRC
historical time series sample sites. Tributaries have been split into five main sections with locations
of sampling denoted by a shape; China (orange squares), Myanmar and Northern Thailand (yellow
green circles), Laos (purple diamonds), Thailand (yellow inverted triangle), Cambodia (blue green
circles) (see text for how tributaries are sectioned). No data is presented from the Tonle Sap lake
or distributaries in the Delta region (grey).
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4.3 Results

4.3.1 River Sediment Chemistry

Sediment collected from the river bank or the river bed is an integration of the weathered products

of each lithological unit within a river basin. Five main chemical components contribute to the

chemistry of bulk bank sediment: silicate minerals, carbonate minerals (calcite and dolomite),

iron-oxyhydroxides, and an exchangeable fraction. There is also a major fraction of organic carbon,

which is not the focus of the present study. Characterising the silicate and carbonate fractions,

and therefore the lithology in the basin, is particularly important when quantifying how much each

lithological type contributes to the weathering flux.

To investigate the chemistry of the individual components bank sediment was sequentially

leached, aiming to remove a targeted component of the bulk sediment with each step. Bank

sediments are leached instead of suspended sediment from the river water column because chemical

gradients are observed in sediments collected at different depths, and for the very simple logistical

reason that suspended sediment samples are small and there is more bank material to work with.

The chemical gradients in suspended sediments are caused by hydrodynamic sorting of minerals,

from fine grained Al-rich clay at the river channel surface to increasingly coarse Si-rich quartz

mineral enrichment at the river bed (Bouchez et al., 2011a,b; Lupker et al., 2011). It is assumed that

bank sediment is a representative homogenisation of the rocks in the river basin being weathered,

however is it possible that incongruent weathering leads to mineral bias in the bulk sediment.

Clays present in sediment have negatively charged surfaces and so adsorb cations by

electrostatic forces (Drever, 1997). Adsorbed cations can easily exchange with the surrounding

environment (Lupker et al., 2016). The first leaching step uses ammonium chloride (NH4Cl) to

target adsorbed cations, known as the exchangeable fraction. Next, hydroxylamine-hydrochloride

(HH) solution is added to extract oxyhydroxides from the sediment. Acetic acid (AcOH) is then

added to leach low Mg-carbonates (calcite) from the sediment and finally hydrochloric acid (HCl) is

added to target high Mg-carbonates (dolomite). The detrital silicate component remains after these

four components are removed. The methodology of sequential leaching, after Tessier et al. (1979), is

detailed further in Chapter 3.2.1. Bank sediment from every accessible catchment has been leached.

Major cation concentration data was analysed for each leachate and remaining detrital sediment

and 87Sr/86Sr and εNd has been analysed on the detrital fraction for all tributaries following alkaline

fusion by ICP-OES (Table 4.1). Data for all elemental separation and isotopic analysis is described
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in Chapter 3. The leachates for four tributaries have also been analysed for 87Sr/86Sr. The four

tributaries are from the Upper, Middle, and Lower Mekong, spanning the length of the sampling

sites.

Ensuring that the leaching reagents target the correct source of cations is crucial to

characterising each component of the bulk sediment. To check the validity of the leaching process,

the presence of immobile elements such as Al and Fe in the AcOH or HCl leachate is measured. Their

presence would indicate contamination from the silicate fraction, or Fe oxides, or amorphous silica

and aluminium phases. Concentrations and percentage contribution of each component to total

bulk sediment is presented for several elements (Figure 4.2). The mass balance of the leachates

and residue have been verified against the bulk bank sediment. There is 0% - 17% difference

(mean=0.25%) between the sum of the leachates and residue and the bulk bank sample, confirming

the process from sediment leaching through to analysis is recovering the complete chemistry of the

bank sample. The residue is most concentrated in Al and Fe whereas the leachates contain less than

2.9% Al and less than 11.7% Fe, confirming that the leaching reagents are not being contaminated

by the silicate fraction. There is one order of magnitude difference in the concentrations of elements

of presented samples. The contribution to total Ca and Sr from components varies for each sample,

highlighting the heterogeneity of lithologies in the basin.

Ca/Si values decrease from the first fraction leached by NH4Cl to the detrital residue, whilst

87Sr/86Sr isotope values become generally more radiogenic. Ca/Si values are similar for the residue

and HCl leach, but the 87Sr/86Sr values vary significantly. Ca/Si values of the HH leachate is

around double the value of the AcOH leachates. 87Sr/86Sr values in the HH leachate range between

0.708976–0.714444 (for 13 bank samples). 87Sr/86Sr values in the silicate residue range between

Figure 4.2 (previous page): Characterisation of bank sediment components
by sequential leaching. Elemental ratio Ca/Si and 87Sr/86Sr isotope characterisation
of bank sediment sequential leaches compared to water from the same location. Bank
sediment is sequentially leached in the following order: ammonium chloride (NH4Cl),
hydroxylamine-hydrochloride (HH), acetic acid (AcOH), hydrochloric acid (HCl) to leave detrital
sediment. Major cation and Sr concentrations (ppm) and 87Sr/86Sr isotopes of leachates, residue
and bulk sediment are listed in the adjacent tables, with percentage contribution of the leachates
and residue to the total concentration in the bulk sediment. The sum of all leachates and residue,∑

(L,R), is reported. The difference, as a percentage, between the measured bulk bank sample
and sum of all leachates and residue, B −

∑
(L,R)% is also reported. Bank samples leached for

Bijiang, Nam Lik, Tonle Srepok and Tonle Kong are: MEK17-116, MEK17-147, MEK16-124, and
MEK16-114, respectively with corresponding waters: MEK17-115, MEK17-146, MEK16-125, and
MEK16-119, respectively.



Chemistry and Isotopic Composition of the Dissolved Load and Bedload of the Mekong River and it’s
Tributaries 53

0.707753–0.745808 (for 33 bank samples).

The distinct chemistry of lithologies that comprise the bulk bank sediment is illustrated

by the spread of the leached components. The detrital sediment is most radiogenic and has the

lowest Ca/Si ratio, characteristic of silicate minerals. The HH and AcOH leaches have similarly

low 87Sr/86Sr values for all samples, with the exception of the Tonle Srepok. These leaches likely

target the low-Mg carbonate fraction. 87Sr/86Sr in the Tonle Kong water does not lie between the

other leachate values, it is 1335ppm less radiogenic than the value for the HH leachate. There

maybe several reasons for this; firstly, the AcOH leachate may be contaminated by the silicate

fraction, increasing the 87Sr/86Sr isotope value; or the water chemistry could be affected by the

exchange pool, for which 87Sr/86Sr isotopes have not yet been analysed. 87Sr/86Sr analysed on

the exchangeable fraction for the Nam Lik is less radiogenic than the carbonate fraction. In the

Nam Lik the water chemistry is closer to the chemistry of the exchangeable fraction than the

silicate fraction. The water chemistry of the Tonle Srepok is more heavily influenced by the silicate

fraction than the other samples; the water is more radiogenic than the low- and high-Mg carbonate

fractions, but is similar to the 87Sr/86Sr value for the HH leachate.

4.3.1.1 Detrital Sediment Composition

The silicate minerals in bank sediment are characterised by analysis of the detrital residue remaining

after bank sediments are leached. Major element concentrations, and 87Sr/86Sr and εNd isotope

data of the leached bank sediments are given in Table 4.1. There is large variation in elemental

ratios of the silicate fraction from river bank sediment of Mekong tributaries (Figure 4.3). The

mean Ca/Na ratio for silicates in the Mekong is 0.21, which is lower than the value for average

crustal continental rocks (0.6, Rudnick & Gao (2003)). There is an asymmetrical distribution

towards high Ca/Na ratios in Mekong tributaries, similar to the distribution of Ca/Na ratios from

rivers that cover a significant climate difference in North America and Europe (White & Blum,

1995). Gaillardet et al. (1999) suggest this is indicative of weathering-limited regimes, where Ca

has already been weathered and transported away. However, Mekong Ca/Na values fall mostly in

the same range of values for wet tropical rivers which are transport-limited (Gaillardet et al., 1999).

Ca/Na ratios on bank samples collected in the Upper Mekong in previous studies are 0.17 (Wu

et al., 2008); higher than values analysed in the upper Mekong for this study (0.12 at Baoshan)

but within the range of Ca/Na ratios of all samples. Mg/Na values range from 0.35-6.16, with a

similar distribution in values to Ca/Na. There is a much smaller range in Mg/K values (0.18-1.03)
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than for Mg/Na and Ca/Na. Mg/K values are symmetrically distributed about a mean of 0.53.

Mg/K ratios on bank samples collected in the Upper Mekong in previous studies are 0.5 (Wu et al.,

2008); lower than values analysed in the upper Mekong for this study (0.67 at Baoshan) but also

within the range of Mg/K ratios of all samples.
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Figure 4.3: Range of Ca/Na, Mg/Na and Mg/K ratios measured in silicate fraction
of river bank sediments. River bank sediment collected from each accessible tributary in the
Mekong basin was leached until the silicate fraction remained. The various ratios analysed in these
sediments are displayed as histograms, with mean value highlighted by the dashed line. Mean
values and 1σ errors are 0.21 ± 0.14, 1.33 ± 1.17, and 0.53 ± 0.18 for Ca/Na, Mg/Na, and Mg/K,
respectively.

Radiogenic isotope systems rubidium-strontium (Rb-Sr) and samarium-neodymium (Sm-Nd)

are useful tracers of sediment provenance when analysed in the silicate fraction of bulk sediment.

Elements, particularly Sm-Nd, do not become depleted from the source lithology by chemical

weathering, transport, or diagenesis processes (Faure, 1977). Therefore, Sm/Nd ratio records

crustal formation (i.e. initial source) rather than the weathering history of the sediment (Gaillardet

et al., 2003, and explained further in Section 3.5.2). Thus, 87Sr/86Sr and 143Nd/144Nd isotopes have

been used as tracers for the provenance of river sediment (e.g. Cameron & Hattori, 1997; Goldstein

& Jacobsen, 1987, 1988; Négrel et al., 2000; Padoan et al., 2011; Weldeab et al., 2002). εNd values

of the silicate fraction of Mekong tributary bank sediment span a large range from -15.02 to -0.34
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Figure 4.4: εNd (A) and 87Sr/86Sr (B) isotope values in the silicate fraction of river
bank sediment and 87Sr/86Sr (C) values of dissolved load. The dissolved 87Sr/86Sr data
will be discussed in Section 4.3.2. 1σ errors are smaller than symbols. No isotope data is presented
for the main stem silicate fraction. Tributaries are divided into groups as detailed in section 4.2,
and the main stem samples are joined by a pink line.

(Figure 4.4a). There is no distinct grouping of samples collected from similar geographic sections of

the Mekong, demonstrating the complex and mixed geology in the whole Mekong basin. 87Sr/86Sr

values in the same silicate fractions of Mekong tributaries vary from 0.707753 to 0.745808 (Table

4.1). The low 87Sr/86Sr and εNd values indicate a presence of basalt which has a signature of

87Sr/86Sr 0.702 to 0.707 and εNd 3–12 (Allègre, 2008; Lacan et al., 2012). There is a general

increase in 87Sr/86Sr ratios downstream with some high anomolies (Figure 4.4b). The highest, or

most radiogenic 87Sr/86Sr values are found in one Laotian tributary, the Nam Mang (0.745808),

which drains Late Palaeozoic granites and also in the Myanmar tributaries (0.717000–0.743043)

which drain the Lancang Batholith (Noh et al., 2009, and Figure 1.2). The two lowest 87Sr/86Sr

ratios measured in Mekong tributaries are in Cambodia; the Tonle Srepok (0.713103) which drains

mostly Pliocene to Quaternary basalts and Triassic-Jurassic Marine units, and northern Laos, the

Nam Xong (0.707753) drains Cretaceous Intermediate-Basic extrusive units (Figure 1.2).
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87Sr/86Sr and 143Nd/144Nd isotopes correlate in detrital fractions of tributary sediments

(Figure 4.5). The range in 87Sr/86Sr and εNd values suggest multiple silicate lithologies and the

large range in εNd values indicate a range of ages in the silicate minerals (e.g. Cameron & Hattori,

1997). The geology of the Mekong river basin is complex (Figure 1.2) and each tributary drains

multiple lithologies. Data from mono-lithological catchments would cluster into distinct groups,

however the Mekong tributary data is on a mixing line suggesting a mixture between many different

rock types. This is especially important for Sr because it means that identifying one single Sr isotope

end-member for silicate rocks is impossible at the scale of the basin.
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Figure 4.5: 87Sr/86Sr and εNd in Mekong tributary detrital sediment. There is a large
spread in isotopic values highlighting the range in silicate lithologies of varying ages in the Mekong
river basin. Errors are smaller than symbols.

4.3.2 Chemistry of the Mekong River Dissolved Load

The data for major elements, Sr and radiogenic strontium isotopes in the river waters are given in

Table 4.2 for the main stem and Table 4.3 for the tributaries.

River water pH decreases downstream (8.77 to 7.03) from mildly alkaline in the Upper

K.E. Relph, Ph.D. Dissertation
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Figure 4.6: Basic characteristics in the Mekong river and it’s tributaries downstream.
A: Altitude drops rapidly between the source and 2500m downstream. B: Downstream pH becomes
circumneutral from slightly alkaline in the Upper Mekong. C: Temperature increases downstream
due to the climate changing from cold in the Upper Mekong to monsoonal in the Lower Mekong
(Peel et al., 2007). D: Total Dissolved Solids (TDS) decreases downstream due to continual dilution
from increasing discharge downstream. E: Discharge data is from aDcp measurements, Mekong
River Commission (2016), Someth et al. (2013) and Nippon Koei (2001), and is not available for
all samples. Tributaries are divided into groups between Yunnan (YN), Luang Prabang (LP),
Vientiane (V), Pakse (PK), Stung Treng (ST), Kratie (KR) and Phnom Penh (PP), as detailed in
Section 4.2 and the main stem samples are joined by a pink line.
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Figure 4.7 (Caption over page)
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Mekong to circum-neutral in the Lower Mekong. There are some tributaries that are mildly acidic,

down to pH 6.29, from the Middle Mekong draining the Thai right bank and also Cambodian

tributaries in the Lower Mekong. Water temperatures vary from 17.4 °C to 32.2 °C and correlate

with altitude of the basin. Altitude decreases from river source to mouth concurrently with the

climate changing along the vast length of the Mekong, from cold in the source region through

temperate with warm summers to hot summers in southern China to tropical savannah in the

middle Mekong to tropical monsoon in the Middle to Lower Mekong (Peel et al., 2007), these

climatic changes are reflected in the river water temperature which increases downstream.

Total dissolved solids (TDS) range from 68mg/L to 203mg/L in the main stem, decreasing

downstream due to dilution from increasing discharge. TDS in the Upper Mekong at Baoshan

(203mg/L) is similar to previously published values by (Noh et al., 2009). The Mekong TDS

decreases by half to 110mg/L between the river exiting China to Luang Prabang, 1243km

downstream. Tributary TDS vary from 20mg/L to 157mg/L. The tributaries with the highest

TDS mostly drain the left bank, entering the Mekong main channel between Luang Prabang and

Pakse. The tributaries with the most dilute TDS drain the left bank in Laos and Cambodia and

enter the main stem between Vientiane and Phnom Penh.

Major element concentrations are spatially heterogeneous. The downstream chemical profile

of the Mekong river and it’s tributaries varies for each element (Figure 4.7 and Figure 4.8).

Concentrations of major cations Ca2+, Mg2+, Na+, K+ vary by 2 orders of magnitude. Ca2+ and

Mg2+ follow the same trend; the highest concentrations are sampled in the Upper Mekong then

concentrations decrease downstream. Ca2+ concentrations in the Upper Mekong are 1223µmol/L

which decrease to 182µmol/L at the mouth of the Mekong. Similarly Mg2+ decreases from 570 to

72µmol/L downstream. However the tributary characteristics vary between Ca2+ and Mg2+, more

left bank tributaries have a higher Ca2+ concentration than the main stem whereas most tributaries

are more dilute in Mg2+ than the main stem. Tributaries in Cambodia that enter the Mekong close

to the mouth both show lower concentrations in Ca2+ and Mg2+ compared to the main stem at

Figure 4.7 (previous page): Downstream cation concentrations in the Mekong river
and it’s tributaries. Concentrations of major cations Ca2+ (A), Mg2+ (B), K+ (C), Na+ (D) and
Si(OH)4 (E) and Sr (F) in the Mekong main stem evolve downstream due to input from spatially
heterogenous tributaries and a dilution effect. These values are rain corrected. Tributaries are
divided into groups between Yunnan (YN), Luang Prabang (LP), Vientiane (V), Pakse (PK),
Stung Treng (ST), Kratie (KR) and Phnom Penh (PP), as detailed in section 4.2 and the main
stem samples are joined by a pink line.
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Figure 4.8: Downstream anion concentrations in the Mekong river and it’s tributaries.
Concentrations of anions Cl− (A), SO2−

4 (B) and HCO−
3 (C) in the Mekong main stem evolve

downstream due to input from spatially heterogenous tributaries and a dilution effect. HCO−
3

is calculated via Gran Titration in the field for most samples and all values are rain corrected.
Tributaries are divided into groups between Yunnan (YN), Luang Prabang (LP), Vientiane (V),
Pakse (PK), Stung Treng (ST), Kratie (KR) and Phnom Penh (PP), as detailed in section 4.2 and
the main stem samples are joined by a pink line.

Stung Treng. In the main stem, Ca2+ and Mg2+ concentrations decrease by half between Yunnan

and Luang Prabang, then there is a slower decline in concentration throughout the Middle and

Lower Mekong with a mean value of 342µmol/L and 126µmol/L for Ca2+ and Mg2+, respectively.

K+ and Na+ show much smaller decrease in concentration downstream however there is a large

variation in concentrations of the tributaries. K+ has a significantly lower concentration than

all other major elements with a range of 12-37µmol/L in the main stem and 3-75µmol/L in the

tributaries. Tributaries draining the right bank of the Middle Mekong, on the Khorat Plateau along

with tributaries in Yunnan, eastern Myanmar and Cambodia have the highest K+ concentrations.

The tributaries sampled on the right bank of the Mekong in Thailand also have very high Na+

concentrations, the highest in the Mekong basin. Na+ concentrations range 100-487µmol/L in the

main stem and the tributaries vary between 9-771µmol/L. The tributaries in the Middle Mekong

K.E. Relph, Ph.D. Dissertation
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draining the right bank have a distinct character with high K+ and Na+ values and low Ca2+,

Mg2+ and Si(OH)4 concentrations.

Dissolved 87Sr/86Sr values have a smaller range than the 87Sr/86Sr values in the solid silicate

fraction (Figure 4.4c). There is very little variation in the main stem river water, which becomes

slightly more radiogenic downstream, 87Sr/86Sr increases from 0.709654 to 0.711248. More variation

is found in the tributary 87Sr/86Sr values which range from 0.707909 to 0.715325 and the tributaries

that are more radiogenic than the main stem are found in the Upper Mekong, Middle Mekong

between Vientiane and Pakse on the left bank and in the Cambodia tributaries in the Lower

Mekong.

4.3.2.1 Rain Correction

The atmosphere provides a source of solutes to river water (Drever, 1997) which could be significant

in the monsoon dominated Mekong basin in particular, because some of the river waters are

dilute. Therefore the solute contribution from rainfall must be calculated and river water chemical

composition corrected, before quantifying chemical fluxes derived from rock weathering. Five rain

samples were collected in the Mekong Basin from the Upper Mekong in China, the Middle Mekong

in Laos and Thailand and two samples from the Lower Mekong in Cambodia (Table 4.4). Due

to the high Ca and Si concentrations in MEK17-144, the purity of this rain sample is questioned.

The sampling location for this sample was close to a road and so dust may be causing the higher

concentrations. For this reason, this sample is not used in the rain correction. Two samples were

collected at Stung Treng at the beginning and end of a rain episode. There is between 15% to 30%

difference in concentrations so the samples are averaged before being applied in the rain correction.

River water chemistry is corrected for rain inputs using chloride concentrations, Cl− and

cation, X, to Cl− ratios in rainwater samples, following Galy & France-Lanord (1999). All major

cations are corrected using the following two equations where X∗ is the corrected concentration,

Xriver is the measured element in the river, Clriver is the measured Cl− in the river and Xrain is

the concentration of any element in the rain.

Cl− in the river is assumed to be a conservative tracer of rain, however the presence of

evaporites in the Mekong basin increases river water Cl− concentration. Cl− in the rain is therefore

used to calculate a corrected Cl−, Cl∗river Equation 4.2. Five rain samples were collected in the

Mekong Basin where Clrain concentration ranges from 4.2µmol/L to 36µmol/L. In cases where
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Figure 4.9: Evaluation of four different rain corrections on river water data. River water
data was corrected for rain input with 4 different values for each element. The difference between
the raw elemental concentration in the river and the rain corrected concentration is presented as
a percentage correction in a histogram. Dashed lines are mean percent correction for each of the
four corrections.
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tributaries are dilute and Cl− concentrations in the river are less than in the rain, Cl∗river in

Equation 4.2 which is set to 0µmol/L, assumes that all the Cl− in the river is derived from rain.

Cl∗river is set to 0µmol/L for 26 samples which are mostly left bank Middle Mekong tributaries with

Clriver concentrations between 4.4 - 20.4µmol/L.

X∗ = Xriver − (Clriver − Cl∗river)
(
X

Cl

)
rain

(4.1)

Cl∗river = Clriver − Clrain (4.2)
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Figure 4.10: Magnitude of rain correction with varying river water concentration. For
each element, the difference between the raw concentration in the river and the rain corrected
concentration is presented as a percentage correction and plotted against the raw river water
concentration. The colours are for each method of correction; one rain value applied across the whole
basin (red), seawater value applied as a correction (green), variable rain samples applied to spatially
close sub-basins (blue) and the effect of evapotranspiration (E-T), or river water concentrated by 2
times, applied to the variable rain sample correction (purple). The double curves that are seen best
in Na and K for the spatially variable correction (with and without evapotranspiration taken into
account) are caused by the different rain ratios applied to samples within basin. The magnitude of
correction varies depending on the rain sample used. The magnitude of the rain water correction
increases as river water concentration decreases.

Four different rain water corrections were evaluated to assess the sensitivity of a rain

correction. First a ‘cyclic salt’ correction was applied using the Cl− in rainwater and the cation/Cl−

ratio of the seawater. Secondly an average Cl− and X
Cl ratio of the four rainwater samples was
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applied to the whole basin. Finally river water corrections were made using variable Cl− and

X
Cl ratios depending on the river water sample’s proximity to the geographic location of the four

rain samples. The potential effect of evapotranspiration on the river was taken into account by

removing twice the concentration of the element from the river (this is done by doubling Clrain in

Equation 4.2.

The magnitude of correction for each method is compared for an individual element in

Figure 4.9. Mg, Si(OH)4 and Sr receive less than a 10% rain correction and Ca and S are largely

corrected by up to 20% irrespective of method. Cl are Na receive larger corrections, up to 100%

where the samples with the largest corrections are the most dilute samples, less than 30% are

samples with high Cl and Na concentrations. The correction for K varies the most of all elements

between methods. Overall, samples are least corrected by the cyclic salt correction, which has

been used commonly in the literature because of a lack of rain data (for example in a previous

Mekong study by Li et al., 2014a) The basin average and variable rainwater corrections are similar

in magnitude and the largest correction is when two-times evapotranspiration is accounted for. The

correction increases with decreasing concentration in the river water (Figure 4.10).

The cyclic salt correction is difficult to apply due to a combination of the prevailing wind and

proximity to the Gulf of Thailand to the south and southwest and the South China sea to the east.

Evapotranspiration is also difficult to quantify so the basin variable rainwater correction was chosen

as most representative and applied to river water data. The spatial effects of the variable rainwater

correction can be seen in the maps of each element displaying 2017 sample data (Figure 4.11). The

left bank tributaries of the Mekong river receive a higher rainwater correction, particularly for Cl,

K, Na. These tributaries receive the largest rainfall during the summer monsoon. The concentrated

river waters in the headwaters of the Mekong receive insignificant rainwater corrections.
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Figure 4.11: Spatial variability in magnitude of rain correction. Concentrations of each
element are corrected for rain input using the composition of one of the four rain samples (orange
circle) collected closest to the sub-basin. Larger basins with no chemical data are shown in grey
and small basins with no data are white.
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4.3.2.2 Spatial Variations in Water Chemistry

Ternary diagrams are a useful tool to present dissolved major elements because river characteristics

group (Edmond et al., 1996) and highlight differences between tributaries of major rivers

(Figure 4.12). The tributary cation data display an array between Ca2+ and Na++K+ apices

(Figure 4.12a). The left bank tributaries cluster around the Ca2+ apex indicating carbonate

weathering is the major contributor (42-85%) to cation concentrations. The tributaries on the

right bank of the Mekong have a higher Na++K+ contribution to the cation budget than the

majority of tributaries, these rivers (the Luang (MEK17-252), Mun (MEK17-254/257), Se Bok

(MEK17-253), Songkhram (MEK17-245), Kam (MEK17-248) and Pak Suai (MEK17-242)) drain

the Khorat Plateau in Thailand. Cambodian tributaries in the Lower Mekong have on average ∼6%

more Mg2+ and ∼22% more Na++K+ than the Middle Mekong left bank tributaries, indicating a

larger contribution from the weathering of silicate minerals.
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Figure 4.12: Ternary cation (A) and anion (B) diagrams for Mekong river waters.
Concentrations are corrected for rain input.

From Luang Prabang downstream to Stung Treng, the tributaries draining the left bank have

Cl− concentrations less than 15µmol/L which is likely all from atmospheric input (Figure 4.8 and

Table 4.4). Tributaries in the Upper Mekong and especially tributaries sampled on the right bank of

the Middle Mekong have significantly greater concentrations of Cl−, up to 815µmol/L (Figure 4.8).
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The highest concentrations of HCO−
3 and SO2−

4 are found in the Upper Mekong. The main stem

sample collected near Baoshan in Yunnan Province is up to ∼6 times more concentrated than

tributaries in that area, suggesting that the higher HCO−
3 and SO2−

4 concentrations are sourced

further upstream. Two tributaries in the Middle Mekong, the Nam Lik (left bank tributary,

MEK17-146) and the Loei (right bank tributary, MEK17-240) have a greater concentration of

SO2−
4 and HCO−

3 than the main stem, ∼205µmol/L.
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Figure 4.13: Na+ and Cl− concentrations in Mekong river water highlighting presence
of evaporites. Samples taken on the right bank of the Mekong on the Khorat Plateau in Thailand
(yellow inverted triangles) have Na+:Cl− ratios close to 1 (black line), indicating halite (NaCl)
dissolution. The downstream main stem samples (pink triangles) lie close to the line due to the
influence of the tributaries draining these evaporites upstream.

Most tributaries are dominated by HCO−
3 anions (76.7% to 99.8%). Four tributaries are

significantly different with Cl− dominating 50% to 69% of the total anions (30% to 48% HCO−
3 ).

These tributaries, the Luang (MEK17-252), Mun (MEK17-254/257), Se Bok (MEK17-253) and the

Songkhram (MEK17-245) drain the Khorat Plateau in Thailand on the right bank of the Mekong.

The Chi tributary, which is the second largest sub-basin by area on the Khorat plateau (49402km2,

only ∼4% smaller than the Mun sub-basin), lies between the majority and the extreme tributaries

with 58.6% HCO−
3 and 39.5% Cl−. The mixing line drawn between the Cl− and HCO−

3 end members

indicate evaporite weathering in these basins. Specifically, one type of evaporite that these right

bank tributaries weather is halite. Samples that have high Cl− also have high concentrations of Na+

and fall close to a Na+ to Cl− ratio of 1:1, found in halites (Figure 4.13). Moreover there is increased
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Na+ and K+ in these tributaries, (Figure 4.7c,d and 4.12a). The increased Na+ is likely due to

halite or borax deposits (sodium borate evaporate minerals) and K+ is likely due to the dissolution

of potash deposits (potassium rich evaporites) found in the Khorat plateau (Hite & Japakasetr,

1979; Zhang et al., 2013). The main stem samples cluster around HCO−
3 apex (Figure 4.12b), with

an average of 83% HCO−
3 contributing to the total anions. The Upper Mekong samples in Yunnan

province, China, are distinct from the Middle and Lower Mekong main stem samples due to their

higher SO2−
4 concentrations, ∼22% SO2−

4 .

4.3.2.3 Seasonal Variations in Water Chemistry

In the samples collected close to the Mouth of the Mekong river, at Chroy Changvar from 2014

to 2017, there are systematic trends in cation and anion concentrations (Figure 4.14). Elemental

concentrations fluctuate by up to an order of magnitude in cations and up to 2 orders of magnitude

in anions. Concentrations are diluted during the monsoon period, with Ca, Na and Mg decreasing

by a factor of between 3.3-3.7 and Si(OH)4 and K showing a smaller reduction of 1.7-1.9. SO2−
4 is

reduced by a factor of 22 in the monsoon, Cl by a factor of 7 and HCO−
3 by a factor of 2.8. The

trends seen in concentration are mirror the single peak monsoonal hydrograph (Figure 1.3).
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Figure 4.14: Temporal river water cation (A) and anion (B) concentrations at Chroy
Changvar, Mekong mouth. A distinct effect of the single peak monsoonal hydrograph is seen in
the annual elemental concentrations in the main stem. HCO−

3 is the most concentrated anion, an
order of magnitude greater than SO2−

4 , shown by the logarithmic scale on the y-axis (b). Samples
were collected by both the MRC and myself. Values are rain corrected.
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There are also systematic trends in 87Sr/86Sr and δ18O isotopes in the river water. 87Sr/86Sr

ratios vary from 0.710412 to 0.710833 over the year and become more radiogenic during the summer

monsoon period. This is the opposite to trends seen in temporal 87Sr/86Sr isotope records collected

in other Himalayan draining rivers such as the Marsyandi by Tipper et al. (2006), the Brahmaputra

by Rai & Singh (2007) and the Alaknanda and Ganga rivers by Tripathy et al. (2010). In these

rivers, 87Sr/86Sr ratios are low in the summer months of the monsoon due to the significant increase

in proportion of carbonate minerals to the dissolved load (Tipper et al., 2006), which typically

have a low 87Sr/86Sr signature. The annual trend in the Mekong does however match data from

the Salween River in Myanmar (Chapman et al., 2015), but the cause of high 87Sr/86Sr during

the monsoon in the Salween is different to the cause of high 87Sr/86Sr in the Mekong. It was

suggested that the Salween drains Himalayan carbonates which have extremely high 87Sr/86Sr

ratios, up to 0.750 in massive dolomites and limestones of the Lesser Himalayas, due to Sr exchange

between silicates and carbonates during metamorphism (Bickle et al., 2001). Increased inputs from

these lithologies during the monsoon causes the high 87Sr/86Sr ratios, rather than an increase in

silicate weathering (Chapman et al., 2015). The Mekong does not drain these radiogenic carbonate
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Figure 4.15: Temporal 87Sr/86Sr (A) and δ18O (B) river water signal at Chroy
Changvar, Mekong mouth. Discharge (continuous blue line) is an average of Mekong
River Commission (2016) Historical discharge data collected between 1960-2002. 87Sr/86Sr samples
(purple points) and δ18O samples (blue points) are measured on samples collected by both the
MRC and myself from 2014 - 2017. Errors on samples are 2σ. Loess regression smoothing fit is the
coloured band through samples. δ18O and 87Sr/86Sr values are uncorrected for rain input.
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lithologies, based on leachate data (Figure 4.2), therefore a different source or process must be the

cause of increasing 87Sr/86Sr isotope ratios during the monsoon. Strontium isotopes peak slightly

before maximum discharge but this may be an artefact of the discharge data, which is an average

of data from 1960-2002 where peak discharge varies between days 202 and 291 over the year. The

changes in Sr could therefore be caused by spatially variable inputs from across the catchment,

rather than a process control of carbonate to silicate weathering (e.g. Tipper et al., 2006).

Oxygen isotopes vary by ∼4h over the year becoming heavier during the warmer monsoon

summer months. Warmer mean seasonal air temperatures during the summer months increases the

amount of moisture air can hold, specifically the heavier 18O isotope (Kendall & Doctor, 2003).

Precipitation therefore contains relatively more 18O in the summer than in the winter where the

moisture content of air decreases, precipitation forms faster and rains out with relatively more

16O. The seasonal trend in δ18O isotopes is mirrored by δD. The peak in heavier oxygen isotopes

in river water arrives earlier than peak discharge, for which there may be a few reasons. First

there is ∼45 day error in the exact day of peak discharge due to the averaging of historical data.

Secondly, the cause of heavier δ18O isotopes during the summer and the offset in peaks of δ18OH2O

and 87Sr/86Sr could be due to the impact of the monsoon arriving from the south (Section 1.2.3),

first affecting the runoff and local area where the samples are collected, at Chroy Changvar, then

the mixing of weathering signals from the tributaries which causes the increase in 87Sr/86Sr. It is

clearly necessary, from the signals recorded at the mouth of the basin, to understand the chemistry

of individual tributaries and their contribution to the solute flux.

Major cations, anions and Sr are normalised to Ca, at Chroy Changvar, close to the mouth of

the Mekong, to illustrate any annual trends that are not caused by monsoonal dilution (Figure 4.16).

The signals at the mouth of the river encompass all processes occurring throughout the basin. There

are some similarities in trends of K/Ca, Si(OH)4/Ca and HCO−
3 /Ca. These ratios peak at the same

time as high discharge during the summer monsoon. Mg/Ca, Sr/Ca and SO2−
4 /Ca have an inverse

trend to discharge with low ratios during the monsoon. There is a general increase in Na/Ca

and Cl/Ca ratios during the middle of the year, around the pre-monsoon, but there is less annual

variation compared to all other ratios. The trends indicate that there are other processes happening

throughout the Mekong, varying on an annual time frame, other than purely monsoonal dilution.

To investigate where in the basin the processes creating the trends may be occurring,

Ca-normalized ratios are illustrated with MRC historical data, collected at various downstream

main stem sites, (Figure 4.18, no Sr concentrations are available for this dataset). The sites span
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Figure 4.16: Time-series data from Mekong main stem close to the mouth at Chroy
Changvar, presented as elemental ratios. Samples were collected by both the MRC and
myself and data is rain corrected. Smoothed fit through samples is a Loess regression (coloured
bands).

the Middle Mekong from the most northerly site, Chiang Saen, just south of the Chinese border

downstream to Pakse, just north of the Khone Phapheng Falls where Laos meets Cambodia, further

south is the Chroy Changvar site, location of data in Figure 4.16. There are two noticeable jumps

in trends downstream, the first between Chiang Saen and Luang Prabang, and the second between

Pakse and Chroy Changvar. At Chiang Saen there is a clear seasonal pattern in all ratios but at

Luang Prabang the magnitude between the peaks and troughs of the seasonal trends is reduced for

each ratio. Between Luang Prabang and Nakhon Phanom, the magnitude in seasonal difference

is the same but the overall values of each of the ratios increase. Most trends remain reasonably

similar between Nakhon Phanom and Pakse apart from HCO−
3 /Ca where the data is scattered and

the seasonal fluctuation is muted. Between Pakse and Chroy Changvar the seasonal trends change,

likely due to the influx of the three large tributaries in northern Cambodia. The peak in K/Ca is

later, from day ∼180 to day ∼280 and becomes more pronounced. There is a smaller variability in

annual Mg/Ca and Si/Ca values, the range is broadly similar in Na/Ca, SO2−
4 /Ca and HCO−

3 /Ca.
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Figure 4.17 (continues on next page)

K.E. Relph, Ph.D. Dissertation



Chemistry and Isotopic Composition of the Dissolved Load and Bedload of the Mekong River and it’s
Tributaries 78

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●● ● ● ● ●

●

●

● ● ● ●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

● ●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

● ●

●●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

● ●
●

● ●

●

●

●

● ●

●

●

●

● ● ● ●

● ●

●

●

●

●

● ●

●

●

●

●●

● ●

● ●

●

●

● ●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●
●

●

● ●

● ●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ● ● ●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

● ●
● ●

●

●

●

●

●

●
● ●

●

● ●

●
●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●●

●
●

●

● ●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●●

● ●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
● ●

●

● ●

●

●
●

● ●

●

●

●

● ● ●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●
●

●

●
●

●

●

● ●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ● ●

● ●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●
●

●
● ● ●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ● ●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

60 120 180 240 300 60 120 180 240 300 60 120 180 240 300

2.0

2.4

2.8

2.0

2.5

3.0

2.0

2.5

3.0

2.0

2.5

3.0

2.0

2.5

3.0

2.0

2.4

2.8

3.2

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.2

0.4

0.6

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.4

0.8

1.2

1.6

0.3

0.6

0.9

0.0

0.2

0.4

0.6

Julian Day

Cl Ca SO4/Ca HCO3/Ca

C
hiang S

aen
Luang P

rabang
V

ientiane
N

akhon P
hanom

K
hong C

hiam
P

akse

Figure 4.18 (continued)
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4.4 Discussion

4.4.1 Lithological Controls on Water Chemistry

Five main sources contribute to river water composition, they are: cyclic salts, weathering of

silicates, carbonates and evaporites and anthropogenic inputs (Galy & France-Lanord, 1999). A

general overview of lithological contributions is given then sources contributing to the dissolved

load are discussed and quantified.

The distribution of samples between the ternary apices in Figure 4.19 suggest that most of

the tributaries lie in a mixing array between two main lithologies; carbonates (Ca2++Mg2+ apex)

and silicates (Si(OH)4 apex). There is a distinct group of tributaries on the right bank with a

greater input from evaporite minerals (Na++K+ apex). Using elemental ratios, which remove the

effect of discharge, Mekong samples can be compared to the world data set published by Gaillardet

et al. (1999, and Figure 4.20a). Silicate end members are characterised by similarly low Ca/Na

and Mg/Na ratios whilst carbonate end members have high Ca/Na and Mg/Na ratios. Most of the

Mekong samples lie on a mixing line between these two end members. Cambodian tributaries that

weather basalts, granites and Palaeozoic sediments lie close to the silicate end member whilst left

bank Laos tributaries characterised by marine sediments plot close to the carbonate end member.

The right bank tributaries draining the Khorat Plateau trend down towards the evaporite end

member. The main stem samples cluster in the middle of the tributary data and have higher

Mg/Na and Ca/Na ratios than a sample previously collected at the Mekong mouth by Gaillardet

et al. (1999).

4.4.2 Evaporite Correction

Evaporites are present in the Mekong river basin indicated by the high concentrations of Cl and

Na (Figure 4.7 and 4.8). Cl in the river is sourced only from rain inputs and evaporites (Equation

6.4). Halite, NaCl, is the third most common evaporite mineral, after gypsum and anhydrite, by

Figure 4.18 (previous page): MRC Historical time-series concentration data from
locations along the Mekong main stem, presented as elemental ratios. Data from
1985-2003 is compiled for each main stem site, data is rain corrected using this studies rain data
and spatially variable rain correction method. Sample sites increase in distance downstream, from
Chiang Saen (m), Luang Prabang (m), Vientiane (m), Nakhon Phanom (m), Khong Chiam (m) to
Pakse (m). Smoothed fit through samples is a Loess regression (coloured bands).

K.E. Relph, Ph.D. Dissertation
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Figure 4.19: Ternary diagram with lithological apices. Main stem and tributary samples are
plotted showing contributions from three end members: silicate end member (Si(OH)4), carbonate
end member (Ca2+ + Mg2+) and biotite rich end member (Na+ + K+).

volumetrically important deposits (Babel & Schreiber, 2014). Na and Cl are in a 1:1 ratio so Cl

concentration in the river, once corrected for rain input (Equation 4.2), is equal to the concentration

of Na cations delivered by halite dissolution (Equation 4.4). Elements corrected for rain input are

identified with an asterisk, e.g. Cl∗riv (Section 4.3.2.1).

Clriv = Clrain + Clevp (4.3)

Na∗evp = Cl∗riv (4.4)

Salt input to river water is calculated using Equation 4.4 for the Mekong basin (Figure 4.21).

In the Mekong basin, some evaporites can be found in China but they are mostly concentrated in

the Khorat Plateau, Thailand, on the right bank of the middle Mekong which is a distinct contrast

to the left bank in Laos which has no evaporites. Dominated by a large evaporite basin, tributaries

draining the Khorat Plateau have Cl∗riv or Na∗evp, concentrations up to 780µmol/L. It is useful to

quantify evaporite input and to understand the lithological source of the river water ions, but more
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Figure 4.20: Mixing diagrams using Na-normalized molar ratios (uncorrected and
evaporite corrected) in the dissolved load. River water concentrations are corrected for rain
input, before normalising to Na, A, or normalising to Na corrected for halite, B. The silicate end
member reservoir composition is Mekong residue data where Ca/Na = 0.21 ±0.14 and Mg/Na =
1.33 ±1.17 (blue box). Carbonates (red box) and evaporites (green box) end member compositions
are based on values used in Gaillardet et al. (1999) where Ca/Na ratios are between 30-90 and
0.14-0.3, respectively and Mg/Na ratios are between 6-15 and 0.016-0.04, respectively.
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Figure 4.21: Spatial distribution of halite in the Mekong Basin. Dark grey tributaries
have no evaporites, where Cl∗evp, and Na∗evp are 0. The highest Cl∗evp, and Na∗evp are in the Khorat
Plateau, Thailand. No samples have been collected from the white areas.

importantly, evaporite concentrations are used for correcting other elements such as Na which are

used to calculate silicate weathering fluxes.

All river water Na+ remaining after correction for rain and halite is derived from weathering

of silicate minerals, Equation 4.5, because negligible Na+ is derived from carbonates (Berner, 2004).

The importance of correcting for evaporites is illustrated in Figure 4.22 which shows the distribution

of Na+ concentrations in Mekong samples after correction for rain inputs then after correction for

salt inputs. When there is a large contribution from evaporites and little to no Na-silicate in the

catchment, salt can be over corrected resulting in negative Nasil. Rain corrected data becomes

negative for two samples when corrected for evaporites (Figure 4.22). This is clearly an artefact,

therefore Nasil is set to zero (Equation 6.12). The two tributaries, located on the Khorat Plateau,

had a salt correction within 6% of total Na∗.
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Nasil = Na∗ −Na∗evp (4.5)

if Naevp > Na∗ then Nasil = 0 (4.6)

Using the value for silicate derived Na, Na∗sil, data in Figure 4.20a is replotted after correction

for evaporite signal in Figure 4.20b. Samples are generally shifted to higher Mg/Na∗sil and Ca/Na∗sil

values. These evaporite corrected values (Figure 4.20b) give a greater insight into the lithologies

contributing to the river water chemistry. Cambodian tributaries and tributaries draining Myanmar

have more or less remained stationary in the plot space suggesting a lack of evaporites in those

tributaries. Three main stem samples have moved closer to the carbonate end member as has the

Bijiang tributary, all in China indicating a presence of some evaporites in the Upper Mekong.
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Figure 4.22: Histogram of Na concentration in Mekong tributaries, corrected for rain
and salt inputs. Histogram is overlaid by density graph for data that has been corrected for
cyclical salt (blue) and evaporite inputs (green).

Gypsum (CaSO4·H2O) and anhydrite (CaSO4) are the most common rock forming evaporite

minerals (Babel & Schreiber, 2014) and may be present in the Mekong basin. Particularly in some

of Middle Mekong tributaries which have higher Ca2+ and SO2−
4 concentrations than the main stem

(Figure 4.7 and Figure 4.8). Calculating the quantity of sulfate evaporites is not as straight forward

K.E. Relph, Ph.D. Dissertation
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as halite, however, because both Ca2+ and SO2−
4 have multiple sources. Gypsum and oxidative

weathering of pyrite both contribute sulfate ions to river water (Equation 4.7), but there is no

simple stoichiometric ratio to calculate the sulfate derived from gypsum or anhydrite evaporites.

Carbonates, silicates, evaporites and rain all contribute Ca to river water (Equation 4.8). If the

amount of sulfate derived from evaporites is known then the amount of Ca derived from evaporites

can be calculated due to the 1:1 ratio of Ca2+:SO2−
4 in gypsum and anhydrite (Equation 4.9). Only

using isotopic analysis can sulfate derived from evaporites be distinguished from pyrite-sulfate and

used to calculate evaporite inputs to Ca2+ and SO2−
4 in river water. Isotopic analysis and modelling

of sulfate sources is addressed in Chapter 5.

SO∗
4 riv = SO4 gyp + SO4 pyr (4.7)

Ca∗riv = Cagyp + Casil + Cacarb (4.8)

Cagyp = SO4 gyp (4.9)

4.4.3 Anthropogenic Inputs

Natural river water signals can be polluted by anthropogenic sources such as sewage, agricultural

fertilisers, factory effluents or city emissions. To avoid capturing anthropogenic signals, samples

were collected upstream of any dwelling or city. Then, samples were analysed for pollution indicators

such as high levels of Cl− and NO−
3 , (Meybeck, 1998). Nitrate concentrations in the Mekong vary

from 0 to 144 µmol/L which is five times less than the critical limit for drinking-water specified by

the World Health Organisation (∼800µmol/L, WHO, 2017). Cl− levels are much greater but these

are explained by the presence of evaporites, rather than anthropogenic pollution (see Section 4.4.2).

Moreover, point source pollution is not seen in downstream trends of Cl− or NO−
3 ; concentration

does not spike after the main stem passes a large city. Although the impact of dams on the sediment

load of the Mekong has been recorded (Kondolf et al., 2014; Kummu et al., 2010; Xue et al., 2011),

the impact of the large population living in the Mekong basin and industrialisation of the countries

that the river flows through is not observed in the major element and Sr isotope compositions of

river water.
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4.4.4 Silicate and Carbonate Inputs to the Dissolved Load

4.4.4.1 Quantifying Silicate Derived Cations in the Dissolved Load Using 87Sr/86Sr

To infer how much carbon dioxide the Mekong river basin may be sequestering through silicate

weathering, it is useful to partition silicate from carbonate inputs. One way to quantify the fraction

of silicate:carbonate derived cations in the dissolved load is by using a mass balance approach with

87Sr/86Sr isotopes. 87Sr/86Sr ratios are measured in the water, in the AcOH leachate removed

from the bank sample and in the detrital residue of the bank sample. The leached bank sediment

components lie on a mixing array in elemental and 87Sr/86Sr isotope ratio space and the water

sample lies in the middle, confirming that the water chemistry is a mix of the weathered lithological

components that comprise the bulk bank sediment (Figure 4.2). High Ca/Na and Ca/Mg ratios in

the AcOH leachate is characteristic of a carbonate end member, whilst lower Ca/Na and Mg/Na

ratios are characteristic of silicate minerals. Therefore 87Sr/86Sr values in the water, carbonate,

and silicate end members are used to calculate f , or the fraction of Sr from carbonates and silicates

where the fraction of silicate Sr and fraction of carbonate Sr sums to 1.

(
87Sr
86Sr

)
water

= f

(
87Sr
86Sr

)
sil

+ (1− f)

(
87Sr
86Sr

)
carb

(4.10)

The fraction of silicate to carbonate in the Mekong dissolved load was calculated for four

samples with sufficient isotope data (Figure 4.2). Fraction of silicate derived Sr for the Bijiang,

Nam Lik, Tonle Srepok and Tonle Kong are; -0.03, -0.08, 0.28, -0.06. When the 87Sr/86Sr in the

water is not between the residue and AcOH leach, fraction of silicate is negative. One reason for

this could be the lack of rain correction on the water sample because of insufficient sample sizes

to analyse 87Sr/86Sr in rain. Carbonate dust dissolved in the rain could be lowering the 87Sr/86Sr

ratio of the water sample. Another reasonable suggestion is that the AcOH leach targeting the

carbonate end member is too strong for this particular sample and the reagent has leached into

high-Mg carbonates or the silicate fraction, tapping into a higher 87Sr/86Sr signal.

4.4.4.2 Partitioning Silicate Derived Elements Using a Forward Modelling Approach

The weathering of silicate minerals delivers four major cations to the dissolved load; Ca2+, Mg2+,

Na+, K+. Ca and Mg in the river are also delivered by weathering of carbonate rocks. In order
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to partition Ca and Mg between silicate and carbonate sources, molar ratios Ca/Na and Mg/K in

silicate minerals are used with a forward model, after Galy & France-Lanord (1999), to calculate

silicate derived Ca and Mg (Ca∗sil and Mg∗sil, respectively) (Equation 4.11, 4.12). In the forward

model equations below, Na in the river is corrected for rain and evaporite inputs (Na∗sil) and all

remaining K in the river after correction for rain inputs is assumed to be derived from silicate rocks

(K∗).

Ca∗sil = Na∗sil ∗
(
Ca

Na

)
sil

(4.11)

Mg∗sil = K∗ ∗
(
Mg

K

)
sil

(4.12)

Previous studies have applied one ratio value to the whole river basin (e.g. Galy &

France-Lanord, 1999; Mortatti & Probst, 2003; Moon et al., 2007; Li et al., 2014a), or even globally

(Gaillardet et al., 1999) when calculating silicate derived cations using a forward model, however

stoichiometry in silicate minerals is highly variable (Deer et al., 1992). Not only do molar ratios

in silicate minerals vary between river catchments (Table 4.5), they vary within river catchments,

as is the case in the Mekong river. Bank samples were collected at the mouth of all accessible

tributaries in the Mekong river basin and were sequentially leached to target the detrital silicate

fraction of the sediment (detailed in Section 4.3.1 and in the methodology, Chapter 3). The large

spread in εNd and 87Sr/86Sr in the silicate fraction illustrates the variation in silicate mineral

chemistry in the Mekong (Figure 4.5). There is some grouping of silicate compositions, where the

Myanmar tributaries have lower εNd values and higher 87Sr/86Sr values and the China and right

bank tributaries mostly have higher εNd and lower 87Sr/86Sr. There is a large spread in the left

bank Laos and Cambodian tributaries. Clearly, using one average value of Ca/Na and Mg/K for

the whole of the Mekong basin is not suitable given the large range in silicate characteristics. Using

the individual basin silicate ratios provides a more representative estimation of Ca∗sil and Mg∗sil.

The range of Ca/Na and Mg/K values used to calculate Ca∗sil and Mg∗sil are displayed in

Figure 4.3 and in Table 4.1. Weathering of silicate rocks contributes between 1% to 35% of the total

Ca cations in the main stem dissolved load, where the largest contribution from silicate minerals

is at Vientiane after the input from the karst tributaries in Northern Laos. There is a greater

variability in Ca∗sil values in the tributaries; 0% to 88%, mean of 7%. There is less variability in

the proportion of Mg contributed by silicate rocks; 2% - 29% in the tributaries and 3% - 14% in

the main stem of total Mg cations are derived from silicates.
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Table 4.5: Silicate mineral molar cation ratios. References; 1 Gaillardet et al. (1999),
2 Chetelat et al. (2008), 3 Quade et al. (2003), 4 Moon et al. (2014), 5 Galy & France-Lanord
(1999), 6 Wu et al. (2008), 7 Bickle et al. (2015), 8 Noh et al. (2009).

River Mg/Na Mg/K Ca/Na Sr/Na Reference

World minimum 0.12 0.20 0.0030 1

World maximum 0.36 0.50 0.0070 1

Changjiang 0.20 0.35 0.0030 2

Seti-Arun River, Himalaya 0.24 0.41 3

Red 0.16 0.44 4

Ganges Brahmaputra minimum 0.25 0.15 5

Ganges Brahmaputra maximum 0.75 0.25 5

Lancang Jiang 0.50 0.17 6

Nu Jiang 0.42 0.29 6

Huang He 0.67 0.26 6

Marsyandi minimum 0.46 0.39 0.01 0.0004 7

Marsyandi maximum 0.72 0.54 0.33 0.0020 7

Alaknanda minimum 0.38 0.29 0.02 0.0010 7

Alaknanda maximum 2.60 2.70 0.55 0.0030 7

Upper Mekong 0.50 0.17 8

Mekong minimum 0.35 0.18 0.04 0.0023

Mekong maximum 6.16 1.03 0.66 0.0166

Mekong mean 1.33 0.53 0.21 0.0044

Mekong 1σ 1.17 0.18 0.14 0.0028

4.4.4.3 Quantifying Total Silicate Derived Cations in the Dissolved Load Using Xsil

Xsil is a ratio of the total cations in the dissolved load derived from silicates to all cations derived

from the weathering of silicate and carbonate lithologies (Equation 4.13) . Xsil uses the partitioned

cations, corrected for rain and evaporite input and is calculated in equivalent charge. The factors are

the stoichiometric coefficients of the weathering reactions described in Chapter 2, more specifically,

they are the ratio of cations released to alkalinity produced by weathering of carbonate and silicate

lithologies.

Xsil =
2 ∗ Ca∗sil + 2 ∗Mg∗sil +K∗ +Na∗sil
2 ∗ Ca∗ + 2 ∗Mg∗ +K∗ +Na∗sil

(4.13)

Previous studies choose between Mg/Na or Mg/K ratios of silicate end members to use in

Equations 4.11 and 4.12. Mg∗sil calculated with each of the ratios was used in the calculation for
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Xsil, resulting in only a minor difference. Average Xsil for tributaries and main stem sites in the

Mekong basin is 0.15 or 0.17, using Mg/K or Mg/Na silicate ratios, respectively. There is a ∼4%

difference between Xsil calculated using Mg/K silicate ratios and Xsil calculated using Mg/Na

silicate ratios. Xsil values calculated using Mg/Na are higher than Xsil values calculated using

Mg/K possibly due to the difficulty in correcting for all evaporites. If Na concentrations in the

river water are used to calculate Mg∗sil then a correction is first made for rain contribution then

evaporite derived Na in the river water. Less corrections are needed to calculate K∗
sil, where K

in the river is only corrected for rain contribution (though K can be a difficult element to work

with as it is impacted by the biosphere). Hence, Mg∗sil calculations use the Mg/K ratio of silicate

residues in this work.

Information on the silicate fraction of samples taken at Vientiane and Stung Treng is not

available, therefore the Ca/Na and Mg/K ratios used in Mg∗sil and Ca∗sil calculations are from

the bulk sediment. Additionally there is no specific bank sample data for the Kam, Shunbi and

Nam Xan tributaries due to inaccessibility of the bank at time of sampling. The Ca/Na and Mg/K

ratios used in Mg∗sil and Ca∗sil calculations for these tributaries are derived by an average of the bulk

bank sediment of the surrounding tributaries. An average of bank sediment element concentrations

were taken from the Bangsai and Songkhram tributaries and applied to the Kam, for the Shunbi

tributary sediment samples from the Bijiang and Heihui tributaries were averaged and the Nam

Ngiep and Nam Kading bank sediments were averaged for the Nam Xan.

The spatial variability of Xsil values downstream are illustrated in Figure 4.23. Xsil values

increase downstream with maximum values in the main stem at Vientiane. The tributaries with

the highest Xsil values (0.3-0.6) are recorded in the tributaries closest to the mouth in Cambodia;

Tonle Kong, Tonle Srepok and Tonle San. Tributaries sampled in northeast Myanmar have Xsil

values between 0.28-0.35, they drain Cretaceous to Late Paleozoic grantites and Pre-Cambrian

metamorphic units. The remaining ∼70% of cations are sourced from the Permian to Carboniferous

marine units. Between Luang Prabang and Vientiane, contribution from silicates to the dissolved

load increases by 20%. The Nam Xong (MEK16-039, Laos left bank) and Hueang (MEK17-236,

Thai right bank) drain Cretaceous Intermediate to basic extrusive lithologies, likely containing with

Ca-rich plagioclases, increasing Xsil. The average Xsil for this study is in good agreement with

published Xsil values at the Mekong mouth have been calculated as 0.36 by Gaillardet et al. (1999)

and in the Upper Mekong main channel as 0.12 by Wu et al. (2008) and between 0.12 and 0.29 by

Zhang et al. (2016).
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Figure 4.23: Fraction of silicate mineral weathering derived cations, Xsil, in Mekong
river water. Xsil increases downstream from the Upper Mekong to Vientiane in the Middle
Mekong, then Xsil decreases towards the mouth. Tributaries are divided into groups between
Yunnan (YN), Luang Prabang (LP), Vientiane (V), Pakse (PK), Stung Treng (ST), Kratie (KR)
and Phnom Penh (same location as Chroy Changvar) (PP), as detailed in section 4.2 and the main
stem samples are joined by a pink line.

Xsil is reproducible over a number of years at main stem locations; between 2016 and

2017 sampling seasons there is a 4.7%, 0.5% and 16% difference in Xsil values at Luang Prabang,

Vientiane and Pakse, respectively. Between 2014, 2016 and 2017 sampling seasons there is a 3.3%

and 12% difference in Xsil values at Stung Treng and Kratie, respectively. At Kratie, the Mekong

Mouth, Xsil has limited variation (∼16%) through the year, but there is a seasonal trend illustrated

in Figure 4.24. The lowest values of Xsil (0.03) are calculated in the Pre-Monsoon dry season which

rise to the highest values (0.19) during the Monsoon. The 16% temporal variation at Kratie is also

a good indication on the error for Xsil values throughout the basin.

There is a positive correlation (r2=0.6) between the fraction of silicate calculated with Xsil

or with 87Sr/86Sr. Although these values should broadly agree with each other, they are not directly

comparable. Firstly, elemental concentrations in the water are corrected for rain inputs. Samples

collected for rain were not large enough to analyse strontium isotopes so 87Sr/86Sr in water is not

rain corrected. Secondly, 87Sr/86Sr in the water is a mixture of carbonate and silicate inputs, but

both end members exhibit significant variation and potential incongruent dissolution.
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Figure 4.24: Temporal Xsil signal at Kratie, Mekong Mouth. Red points are Xsil

values calculated for samples collected in 2014 and 2016 and from samples collected by the MRC
(2015-2017) but analysed for this study at University of Cambridge. Discharge (continuous blue
line) is an average of Mekong River Commission (2016) Historical discharge data collected between
1960-2002.

4.4.4.4 Mixing Trends in the Mekong River

Changes in the main stem may reflect both changes in the relative proportions of the major inputs

and changes in weathering mechanisms. At Chroy Changvar, close to the mouth of the Mekong

temperatures rise and there is a 20-fold increase in the discharge during the monsoon season,

compared to the dry season (Mekong River Commission, 2016, and Figure 1.3). These variables

are conducive to the preferential weathering of minerals with fast dissolution kinetics, namely

carbonates and evaporites because the system becomes weathering-limited. Dissolution kinetics

of carbonate minerals are much faster than dissolution kinetics of silicates (Plummer et al., 1978;

Brantley, 2003). It is expected that the ratio of silicate to carbonate derived cations would decrease

in the monsoon period, illustrated, for example in the Marsyandi tributaries (Tipper et al., 2006).

This is not the case in the Mekong, where maximum Xsil is recorded during the monsoon period,

therefore other processes must be occurring to create this signal. Moreover, the temporal variation

in Xsil, combined with Xsil values of tributaries, can be used to explain the trend seen in temporal

87Sr/86Sr isotopes (Figure 4.15a). Temporal variation in 87Sr/86Sr and Xsil is likely caused by
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relative variations in inputs from different locations within the basin, from tributaries that drain

different lithologies.

4.4.5 Weathering Implications of Mekong River Water Geochemistry

4.4.5.1 Mekong River Carbon Flux

The dissolved inorganic carbon (DIC) flux of the Mekong river can be calculated with the partitioned

cations using the method set out in Chapter 2. The total DIC flux represents the dissolution of

carbonate and silicate rocks with all acidity sources on the short–term and can be calculated with

the following equation. Where all elements have been corrected for rain inputs (denoted by the

asterisk) and Na is corrected for halite, Na∗sil.

DICtotal flux = (2Ca∗ + 2Mg∗ +Na∗sil +K∗) ∗Discharge (4.14)

Ca derived from the weathering of carbonate minerals is calculated by removing the Ca

derived from silicate mineral weathering, Ca∗sil, from rain corrected total Ca in the river. The

same method is applied for Mg delivered from the weathering of carbonate minerals. Equation 4.17

estimates the total short–term carbonate weathering budget.

Ca∗carb = Ca∗ − Ca∗sil (4.15)

Mg∗carb = Mg∗ −Mg∗sil (4.16)

DICcarb flux = (2Ca∗carb + 2Mg∗carb) ∗Discharge (4.17)

The cations delivered from silicate weathering provide a total short–term silicate weathering

budget (Equation 4.18), where Ca∗sil and Mg∗sil have been calculated using element ratios in the

silicate fraction of bank sediments (Section 4.4.4.2).

DICsil flux = (2Ca∗sil + 2Mg∗sil +Na∗sil +K∗) ∗Discharge (4.18)

DIC calculated over the year at Chroy Changvar varies, peaking in the monsoon, where

79% of the total carbon flux is delivered to the South China sea (Figure 4.25). The signal is so

large during the monsoon that processes occurring during the dry season likely have little to no
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effect on the elemental budget delivered to the oceans. The temporal signal at the mouth is a

homogenisation of signals throughout the basin. DIC flux was calculated for tributaries within

the basin during monsoon season. The contribution of carbon from the Upper, Middle and Lower

Mekong tributaries, to the total flux is spatially variable. 16% of the total carbon flux during the

2017 monsoon season was delivered from China (sampled at Yunnan, roughly two–thirds down

the Upper Mekong). 62% of the total carbon flux is from the Middle Mekong (contributed from

Yunnan to Stung Treng) and the remaining 22% of the total carbon flux is from the Lower Mekong

during the monsoon.
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Figure 4.25: Specific annual carbon flux at Chroy Changvar, Mekong Mouth. Samples
have been collected by the MRC and this study and all analysed at University of
Cambridge. The total carbon budget over the year (blue) has been calculated with partitioned
cations, corrected for rain input and halite salts using equations discussed in the text. The total
carbon budget can be split into the carbon flux contributed from carbonate lithologies (green),
which is significantly larger than the carbon flux associated with the weathering of silicate minerals
(orange).
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4.4.5.2 Acidity Sources

The hydrolysis of carbonate minerals provides a substantial proportion, over 70%, of the cations

in the Mekong river dissolved load. It is important to note that this chapter has so far only

considered the weathering of carbonates, and silicates, with acidity produced from the dissociation

of atmospheric carbon dioxide dissolved in water. Although there is a large transfer of carbon

through carbonic acid weathering of carbonates, the process is carbon neutral in the long term,

with no net transfer of carbon in or out of the atmosphere. However sulfuric acid, if present in

the basin can also weather minerals. The sulfuric acid weathering of carbonates is a net source of

CO2 both on instantaneous timescales and on timescales of carbonate precipitation in the ocean.

SO2−
4 is present in the Mekong in concentrations up to 720µmol/L. If this sulfate is derived from

the oxidation of sulfide minerals, rather than gypsum, the potential chemical weathering reactions

between sulfuric acid and carbonates could significantly affect the carbon budget of the Mekong

river (Chapter 5).

4.5 Conclusions

The Mekong river water chemistry is mostly dominated by Ca and HCO−
3 with the exception of a

distinct group of tributaries draining the Khorat plateau that have water chemistry dominated

by Na, K and Cl. Leaching bank sediment extracted individual lithological components and

characterised the carbonate and silicate end members. Using 87Sr/86Sr in carbonate and silicate

end members and in water, a silicate: carbonate budget was calculated. This method was compared

against the values for Xsil which was calculated using Ca/Na and Mg/K ratios in the silicate fraction

of bank samples. Although values calculated by these methods are comparative, values for Xsil

are used because targeting the correct carbonate fraction using a leachate method is notoriously

difficult. Analysis of the silicate residues, using 87Sr/86Sr and εNd, highlighted the heterogeneous

nature of silicate lithology in the Mekong basin. Hence, element ratios in silicate fractions of

individual tributaries were used with the corresponding water sample for the most representative

Xsil values. Xsil values suggest that over 70% of the cations in the dissolved load are derived from

carbonate rocks. However, this may be an overestimation because Ca derived from the weathering

of gypsum evaporites has not yet been accounted for. The Ca flux from the weathering of gypsum

could be significant considering the high concentration of Cl in the Middle Mekong. It is important

to note that this chapter has only considered carbonate and silicate weathering with carbonic
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acid which has vastly different consequences for the carbon cycle than chemical weathering with

other acids. Specifically, if the high proportion of carbonate minerals that comprise the Mekong

river basin are weathered by sulfuric acid then the Mekong river basin could be releasing CO2.

It is critical, therefore, to determine first, the source of the sulfate in the Mekong river. This is

addressed in Chapter 5. Secondly using information on sulfuric acid weathering from Chapter 5,

elements in the dissolved load can be more appropriately partitioned to the lithology and particular

weathering reaction from which they were sourced. Then, in Chapter 6, the carbon budget for the

Mekong river basic is calculated.



Chapter 5

Quantifying Sulfuric Acid Weathering

5.1 Introduction

The chemical weathering of carbonate rocks with sulfuric acid, derived from the oxidation of

sedimentary sulfides, predominantly oxidation of pyrite, (Berner, 1984; Francois & Walker, 1992;

Berner & Berner, 2012) releases geologically stored carbon into the atmosphere as carbon dioxide

gas, CO2 (Equation 5.1) (Torres et al., 2014) or into the hydrosphere as dissolved inorganic carbon,

HCO−
3 (Equation 5.2) (Spence & Telmer, 2005; Calmels et al., 2007):

H2SO4 + CaCO3 ⇒ CO2(g) +H2O + Ca2+ + SO2−
4 (5.1)

H2SO4 + 2CaCO3 ⇒ 2Ca2+ + SO2−
4 + 2HCO−

3 (5.2)

Recent work has revealed that in several of the world’s largest river basins, pyrite oxidation

driven weathering of carbonates may release more CO2 than is consumed via silicate and carbonate

weathering with carbonic acid (Calmels et al., 2007; Torres et al., 2014; Liu et al., 2017). Dissolved

sulfate (SO2−
4 ) present in river water could be an indication of pyrite oxidation and the assessment

of Burke et al. (2018) on global sulfate fluxes ranks the Mekong river the 11th largest contributor.
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Furthermore, the spatially detailed geochemical investigation of the Mekong presented in the

previous Chapter measured SO2−
4 concentrations of up to 702µmol/L in catchments where greater

than 80% of dissolved cations are derived from the weathering of carbonate rocks. Determination

and quantification of the acidity agent responsible for mineral dissolution (carbonic or sulfuric)

is hence imperative for a rigorous assessment of the local Mekong and global climate feedback

resulting from chemical weathering.

In addition, the modern production of atmospheric sulfuric acid through the burning of

fossil fuels is particularly relevant in the Mekong river, which flows through industrially developing

countries. The effects of anthropogenic exacerbation of natural reactions like those shown in

Equations 5.1 and 5.2 can been seen in other Asian rivers (e.g. Smith et al., 2001; Xu & Liu,

2007; Li et al., 2008; Yoon et al., 2008; Li & Ji, 2016). Constraining sulfuric acid weathering is

therefore timely in the context of global environmental change.

This chapter presents a new model, using improved methods, to partition the source and

quantity of dissolved sulfate in rivers in a local and global context, thereby determining sulfate flux

from oxidative weathering of pyrite. The isotopes of oxygen and sulfur in dissolved sulfate are used

to discriminate the source of sulfate within individual catchments (tributaries and mainstream)

and a two component mixing model is used to quantify the amount of sulfuric acid within each

catchment. Uncertainties on these calculations are assessed using a Monte-Carlo approach.

5.2 Origin of Sulfate in River Water

Dissolved SO2−
4 in rivers is derived from multiple sources, not all of which are directly linked

to the carbon cycle (Calmels et al., 2007). The most significant sources to riverine SO2−
4 are

the dissolution of sedimentary sulfates such as gypsum (CaSO4·H2O) and anhydrite (CaSO4),

oxidation of sedimentary sulfides such as pyrite (FeS2) and to a lesser extent the weathering of

magmatic sulfides (Berner & Berner, 2012). Additional inputs are from volcanic emissions, rain

and anthropogenic pollution from fertilisers, industrial waste water and coal burning (Robinson &

Bottrell, 1997; Canfield, 2004; Brenot et al., 2007). Identifying the individual sources of sulfate is

crucial due to their different implications on climate; the rapid oxidation of pyrite produces sulfuric

acid which then reacts with carbonate minerals releasing sulfate and geologically stored carbon.

On the other hand, sulfate that is the product of gypsum dissolution has no implication on the

carbon cycle.
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There are multiple ways to track the origin of the dissolved SO2−
4 ion, including the ratio of

SO2−
4 to bicarbonate (HCO−

3 ) coupled to stable carbon isotopes (δ13CDIC) (Galy & France-Lanord,

1999; Li et al., 2008). The difficulty in using carbon isotopes to track the oxidative weathering

of pyrite coupled to carbonate dissolution is that the δ13CDIC tracks carbon, rather than the

SO2−
4 ion, and there is a range in δ13C of carbon sources (Telmer & Veizer, 1999). Whilst the

δ13C of carbonate rocks is close to 0h (Keith & Weber, 1964), multiple sources of CO2 which

are subsequently dissolved in water, result in a range of δ13C values in carbonic acid (H2CO3).

Atmospheric CO2 dissolved in meteoric water has a slightly positive average δ13C of +1.4h (due

to fractionation during the dissolution of atmospheric CO2 into H2O to form H2CO3 of δ13C=-9

to -7h (Faure & Mensing, 2005). Additionally, tree roots or decomposing organic matter, with a

range in carbon isotope signatures, respire CO2 which is then dissolved in groundwater resulting

in carbonic acid with δ13C ranging from 0h to -22h (if both C3 and C4 plants are considered)

(Telmer & Veizer, 1999; Faure & Mensing, 2005). The δ13C signature of HCO−
3 in river waters is a

mix of the aforementioned sources but further modifications to δ13C could occur through secondary

carbonate precipitation or degassing of dissolved inorganic carbon (DIC) from the river (Telmer

& Veizer, 1999; Yang et al., 1996). Moreover the impact of sulfuric acid weathering of carbonates

could be over-estimated if δ13C in DIC is compared to ratios of SO2−
4 to [SO2−

4 + HCO−
3 ] because

SO2−
4 cannot be easily corrected for gypsum contributions with element ratios, or for the SO2−

4

contribution from sulfuric acid weathering of silicate rocks which does not affect the carbon cycle

and therefore has no δ13C signature.

The acid mine drainage community pioneered a novel technique in the 1980’s, combining

the use of isotopic compositions of sulfur and oxygen atoms in sulfate (δ34SSO4 and δ18OSO4 ,

respectively) (Taylor et al., 1984a,b; van Everdingen & Krouse, 1985). They used δ34SSO4 and

δ18OSO4 to track the oxidation pathway of sulfide ores and mine tailing piles to inform and monitor

abatement procedures aimed at reducing the formation of environmentally damaging acid waters.

δ34SSO4 and δ18OSO4 have been shown to be controlled predominantly by lithological source so

have been used to track groundwater flow paths (Krouse & Mayer, 2000). Therefore this powerful

technique could be applied to tracking sources of SO2−
4 in river water (Karim & Veizer, 2000;

Pawellek et al., 2002; Calmels et al., 2007; Torres et al., 2016).
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5.2.1 Tracing Sulfate Sources with Sulfur Isotopes in Dissolved Sulfate

There are four stable isotopes of sulfur, of which 32S is the most abundant, followed by 34S.

Stable isotopic compositions of sulfur are reported as ratios of 34S/32S measured in a sample,

relative to the same ratio measured in a standard, expressed as per mil (h) in delta notation

(Equation 5.3) (Canfield, 2001). The standard used for sulfur isotopes is the Vienna Canyon

Diablo Troilite (Coplen & Krouse, 1998). δ34S isotopes are excellent tracers of processes due to

the natural abundance of S valence states resulting in variable isotope compositions (Strauss, 1997;

Krouse & Mayer, 2000). Moreover, the sulfur isotope signature in dissolved SO2−
4 (δ34SSO4) is a

close reflection of the sulfur isotopic signature of the source material (Calmels et al., 2007). The

development of small sample sulfur isotope measurements by MC-ICP-MS heralds the promise that

δ34S might be used to track the origin of the sulfate ion in even small sample sizes (Paris et al.,

2013; Burke et al., 2018).

δ34S =


(

34S
32S

)
sample(

34S
32S

)
standard

− 1

 ∗ 1000h (5.3)

There is a large range of around 40h in δ34SSO4 in the largest rivers in the world (e.g. Yang

et al., 1996; Karim & Veizer, 2000; Li et al., 2006; Brenot et al., 2007; Calmels et al., 2007; Yoon

et al., 2008; Rock & Mayer, 2009; Yuan & Mayer, 2012; Turchyn et al., 2013; Li et al., 2014b, 2015;

Hindshaw et al., 2016; Torres et al., 2016; Burke et al., 2018; Zolkos et al., 2018; Killingsworth

et al., 2018), suggesting that the sources must also have a large range in signatures (Figure 5.1).

The range of sulfur isotope signatures in igneous sulfides, including granites and basic sills both

centre over the primordial δ34S value of 0h (Shima et al., 1963). Modern seawater has a unique

δ34S value of 20.99h (Rees et al., 1978; Kampschulte & Strauss, 2004) whilst the sulfur isotope

signature of ancient oceans varied as shown by the 25h range in marine evaporites (Claypool et al.,

1980; Chakrapani & Veizer, 2006). Sedimentary sulfides have the largest δ34S range, more varied

than global rivers, ranging from -50h to +10h (Krouse et al., 1991). However, there is significant

overlap between end members which frustrates the use of δ34S exclusively in partitioning SO2−
4

derived from different sources.

Moreover, there are additional processes modifying δ34S other than source, including kinetic

fractionation and microbial involvement. Taylor et al. (1984b) suggested that fractionation between

solid sulfide and sulfate, εSO4−FeS2 , is up to -1.7h with Thiobaccillus mediation however if the

sulfide is aqueous and oxidation is bacterially mediated then there is a large fractionation where
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εSO4−FeS2 = -6 to -18h, but this fractionation is still within error of the large range in pyrite

sulfur isotope signatures. Experiments have shown a small enrichment of 32S in SO2−
4 relative to

the oxidised sulfide when pyrite oxidation occurs anaerobically (εSO4−FeS2= -0.7h (Balci et al.,

2007), -0.9h (Mazumdar et al., 2008), -0.8h (Heidel & Tichomirowa, 2011)). This is due to the

incomplete oxidation of intermediaries created such as elemental S and polysulfides, between FeS2

and SO2−
4 (Balci et al., 2007) (Figure 5.2). There is no fractionation during the oxidation of pyrite

to aqueous sulfate when molecular oxygen is present and no significant sulfur isotope fractionation

||||||| ||| | |||| || || ||| || ||| ||| |||||| ||| |||| ||| |||| |||||| || ||||| | |||||| || | | || || | || ||| | | || | ||||| ||| || || || ||| |||| || | ||||| || || | ||| |||||| || ||| | | ||| || ||||||||| | ||| | ||| ||||||||||||||||||||| |||| |||||||||||| || || ||| |||||| |||| | ||| ||| || || || || || |||| || ||| || |||||||||||||||||||||| |||| || |||||||||| || ||||||||| | ||||||||||| || |||| |||| |||||||||| ||| ||| ||||||| | | ||||| || |||||||| ||||| || ||||||||||||||||||||| || | ||||||||||||||||||| || ||| ||| ||||| |||||||||||| |||||||| |||| ||||||||| ||| || ||| ||| ||||||||||||||||| |||||| | |||||| || | || || || ||| || |||| ||| || |||| | ||| ||||| ||| ||||| || || || | || ||| |||| ||||| || || | ||| ||||| ||||| |||||| |||||||||||||||||| |||||||||||||| |||||||||||||| |||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| ||| |||| ||||||||||||||| ||| |||||| Global Rivers
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Figure 5.1: Range of δ34S in dissolved sulfate of global rivers and δ34S signature of
sulfur sources. Global rivers span a large range of δ34SSO4 (Yang et al., 1996; Karim & Veizer,
2000; Li et al., 2006; Brenot et al., 2007; Calmels et al., 2007; Yoon et al., 2008; Rock & Mayer, 2009;
Yuan & Mayer, 2012; Turchyn et al., 2013; Li et al., 2014b, 2015; Hindshaw et al., 2016; Torres et al.,
2016; Burke et al., 2018; Zolkos et al., 2018; Killingsworth et al., 2018) however there is overlap
between the many sources of sulfur. Igneous sulfides have δ34S values in a narrow range from
-10h to +10h (Chakrapani & Veizer, 2006), specifically basic sills range from -3.05h to 5.30h
centered over 0h, or the primordial δ34S value highlighted by the dotted grey line (Shima et al.,
1963). Sedimentary sulfides have a large range of δ34S values from -50h to +10h (Goldhaber,
2003; Kendall & Doctor, 2003; Strauss, 1997; Krouse et al., 1991) which is an indication that the
rock is not of primary origin or has been involved with biological cycles (Thode, 1991). Modern
seawater has a distinct δ34S value of 20.99h (Rees et al., 1978; Kampschulte & Strauss, 2004) and
marine evaporites range from +10 to +35h depending on age of evaporite (Claypool et al., 1980;
Chakrapani & Veizer, 2006). Anthropogenic sulfate in rainwater has a small range of -2.5h to 8h
(Krouse & Mayer, 2000).
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during the dissolution of gypsum (Kendall & Doctor, 2003).

Sulfur isotopes give an indication of source and process, however the overlap of end members

and biological fractionation factors make δ34S an imperfect tool for accurate source tracing.

Importantly, it is difficult to distinguish with confidence between the heaviest sedimentary sulfide

δ34S and the lightest evaporite signatures, which has consequences for calculating pyrite weathering

budgets (Burke et al., 2018). To provide further constraints on the source of sulfate to rivers, oxygen

isotopes in the SO2−
4 ion, δ18OSO4 are a complimentary combination to δ34SSO4 measurements.

Whilst the δ34SSO4 in rivers should be controlled by the local δ34S of the end-member lithology

and any isotopic fractionations (Claypool et al., 1980; Thode, 1991), δ18OSO4 should be controlled

by the isotopic composition of the oxygen that is incorporated into the SO2−
4 ion at the time that

the S-O bond is formed (Singer & Stumm, 1970; Claypool et al., 1980). Once formed, the dissolved

SO2−
4 can be transported far from it’s source location and still retains it’s original δ18OSO4 signature

due to the strong S-O bond and very slow exchange between sulfate and water (Lloyd, 1968).

Oxygen isotopes in sulfate therefore track the mechanism of sulfate formation (e.g. precipitation,

or anaerobic or aerobic oxidation) and thereby provide an additional constraint on the origin of

sulfate (Robinson & Bottrell, 1997; Karim & Veizer, 2000; Pawellek et al., 2002; Calmels et al.,

2007; Turchyn et al., 2013).

5.2.2 Tracing Sulfate Sources with Oxygen Isotopes in Dissolved Sulfate, δ18OSO4

In the case of sedimentary sulfates, such as gypsum (CaSO4·H2O) or anhydrite (CaSO4) evaporite

minerals, the S-O bond is fixed at the time of precipitation, therefore δ18OSO4 will reflect the δ18O

of the water at the time of formation (in addition to any isotopic fractionation from the water)

(Claypool et al., 1980; Strauss, 1997). During weathering and dissolution of gypsum where sulfate

is released into rivers, the S-O bond is not broken and the isotopic composition of the sulfate

molecule still reflects that of the gypsum source (Equation 5.4)

CaSO4(s) +H2O → Ca2+(aq) + SO2−
4 (aq) +H2O (5.4)

However, the oxidation of sulfide to sulfate is more complex, with multiple reaction pathways

that produce SO2−
4 as a final product, and multiple sources of oxygen that can be incorporated

into any of the four S-O bonds. The oxygen incorporated into sulfate can come from two distinct

sources: H2O which has a distinct light local signature (typically meteoric δ18OH2O is between
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-15h to 0h for mid-latitudes (Lee et al., 2007)) or atmospheric O2, either gaseous or dissolved,

which has a heavy δ18O signature of 23h (Kroopnick & Craig, 1972). The local water involved

in oxidation reactions is predominantly rainwater, but could potentially include a mix of snowmelt

(water sources derived from precipitation are collectively referred to as meteoric water, Coplen

et al., 2000), hot springs and older groundwater.

During the oxidation of sulfide to sulfate (S6+) a total of seven or eight electrons are

transferred per atom of S, depending on the mineral being a mono- (S−) or di- (S2−) sulfide

(Taylor et al., 1984b; Moses et al., 1987; Heidel & Tichomirowa, 2011). Electrons are transferred

step-wise, two at a time, through multiple reaction pathways forming many intermediate reaction

species (Figure 5.2). The proportion of oxygen incorporated from available sources is influenced by

the intermediate reactions and their products (Moses & Herman, 1991).

The source of oxygen available to participate in sulfide oxidation is determined by the

environment in which the reaction takes place. Sulfide oxidation can occur in an anaerobic

environment where sulfide is oxidised by the reduction of ferric iron or in an aerobic environment

where molecular oxygen is available to be the oxidant. Anaerobic, or closed environments are

typically aqueous (Bottrell & Tranter, 2002) where the reaction site is not open to the atmosphere

(Figure 2.1, D). Aerobic environments, for example a rock fracture or rock surface exposed by

land-sliding (Emberson et al., 2018), are accessible to the atmosphere (Figure 2.1, C). Each reaction

pathway results in variable amounts of O2 incorporation from meteoric H2O and atmospheric O2.

5.2.2.1 Anaerobic Sulfide Oxidation

In anoxic environments pyrite, FeS2, is rapidly oxidised via the reduction of ferric iron (Fe3+)

(Balci et al., 2007). Reaction 5.5 describes this overall reaction (Moses et al., 1987; Calmels

et al., 2007; Torres et al., 2016) however this is a simplification of the progressive oxidation of

intermediate sulfoxy species (Mazumdar et al., 2008). In order to understand how and where

oxygen is incorporated into SO2−
4 the sulfide oxidation mechanism will now be described in more

detail.

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO2−
4 + 16H+ (5.5)

The oxidation process has three initial steps for the transfer of electrons between sulfide

and the oxidant (Luther, 1987; Moses & Herman, 1991), Fe3+ in this anaerobic scenario. The first

step is the removal of a water ligand from an aqua-iron complex, hexaaquairon(III) or Fe(H2O)3+6 ,
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Figure 5.2a . This is a fast mechanism and produces a Lewis acid, Fe(H2O)3+5 , or a chemical species

capable of accepting electrons (Luther, 1987). Next, the aqua-iron complex binds to the surface of

FeS2 where one S acts as a Lewis base, able to donate electrons (Luther, 1987). Finally electrons

can transfer from S in FeS2 to Fe3+ in the aqua-iron complex, Figure 5.2b (Luther, 1987; Rimstidt

& Vaughan, 2003). For each pair of electrons that reduce two Fe3+ ions to Fe2+, a O2− ion is

added to the terminal S of FeS2 from H2O, Figure 5.2c (Luther, 1987). The species produced,

FeS2O is unstable so steps 1 to 3 are repeated three times with continuous transfer of electrons

from pyrite-S to additional Fe(H2O)3+5 complexes until FeS2O3 is formed, which decomposes to

Fe2+ and thiosulfate, S2O
2−
3 (Luther, 1987). The overall reaction between sulfide and the first

intermediate S species is described in Reaction 5.6 (Moses et al., 1987; Luther, 1987).

 Fe

H2O
H2O

OH2

OH2
H2O

H2O



3+

Fe(H2O)3+6

 Fe

H2O
H2O

OH2

H2O
H2O



3+

Fe(H2O)3+5

+ H2O

(a) Step 1: Removing water ligand from aqua-iron complex, producing a Lewis acid, Fe(H2O)3+5

Fe3+

S−

S−

Fe H2O
H2O

OH2

H2O
H2O

Fe2+

S

S

Fe H2O
H2O

OH2

H2O
H2O

e−

(b) Step 2: Aqua-iron complex Fe(H2O)3+6 binds to pyrite. Terminal pyrite-S donates 1 electron to
Fe(H2O)3+6

Fe2+

S

S

Fe H2O
H2O

OH2

H2O
H2O

+ 2H2O + Fe(H2O)6
3+ O

S

S

Fe

+ 2Fe(H2O)6
2+ + 2H+

(c) Step 3: Pyrite further reacts with another aqua-iron complex, donating 1 more electron and adding one
oxygen atom to the terminal pyrite-S to create FeS2O

Figure 5.2: Reaction pathway of oxidation of pyrite to thiosulfate. Figure adapted from
Moses et al. (1987, Figure 9) and Luther (1987).
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FeS2 + 6Fe(H2O)3+6 + 3H2O → Fe2+ + S2O
2−
3 + 6Fe(H2O)2+6 + 6H+ (5.6)

In an environment with excess Fe3+, thiosulfate is oxidised to SO2−
4 via Reaction 5.7 (Luther,

1987). Reaction 5.6 and 5.7 sum to Reaction 5.5. In this scenario all oxygen in the final SO2−
4

molecule is derived from meteoric water which will have a distinctive local isotopic composition.

S2O
2−
3 + 8Fe3+ + 5H2O → 8Fe2+ + 2SO2−

4 + 10H+ (5.7)

Whilst Fe3+ is the direct oxidant of pyrite, in natural waters Fe2+ is adsorbed to pyrite

surfaces which blocks the reaction site (Moses & Herman, 1991; Mazumdar et al., 2008). In this

case, to initiate the oxidation of sulfide, adsorbed aqua-iron complexes, Fe(H2O)2+6 , are oxidised via

reduction of dissolved molecular O2 to Fe(H2O)3+6 (Moses & Herman, 1991; Heidel & Tichomirowa,

2011). The oxygen acts as an oxidizer and is not incorporated into the S-O bond. At low pH (pH

<3) the oxidation of Fe2+ (Reaction 5.8) becomes rate limiting because abiotic oxidation of Fe2+

to Fe3+ is slow (Singer & Stumm, 1970). Microorganisms however, for example the acidophilic

chemolithotroph Thiobacillus ferrooxidans, are able to accelerate Reaction 5.8 by up to a factor of

106 (Singer & Stumm, 1970).

Fe2+ +O2(aq) → Fe3+ (5.8)

It is clear from the mechanism described in Figure 5.2 that all oxygen in SO2−
4 derived via the

oxidation of sulfide through Fe3+ reduction, is incorporated from oxygen in meteoric water (H2O)

and therefore the oxygen in the sulfate molecule (δ18OSO4) has the same isotopic composition as

the oxygen in meteoric water (δ18OH2O). To prove this, various experiments (eg. Taylor et al.,

1984b; van Everdingen & Krouse, 1985; Balci et al., 2007) have measured δ18OH2O and δ18OSO4 in

sulfate derived from anaerobically oxidised sulfide. They found a strong positive correlation between

δ18OH2O and δ18OSO4 but with a small offset, indicating a small kinetic isotope fractionation during

water-oxygen incorporation into SO2−
4 . The fractionation factor for oxygen between sulfate and

water, εSO4−H2O, was quantified as 2.9h (Balci et al., 2007) and 4.1h (Taylor et al., 1984b) in

anaerobic environments, which is significant but far smaller than that of the total range of meteoric

water, ∼50h (IAEA, 2019).

K.E. Relph, Ph.D. Dissertation



Quantifying Sulfuric Acid Weathering 104

5.2.2.2 Aerobic Sulfide Oxidation

The oxidation of sulfide to sulfate can also involve atmospheric O2 as an oxidant (Reaction 5.9).

FeS2 +
7

2
O2 +H2O → Fe2+ + 2SO2−

4 + 2H+ (5.9)

Early studies suggest that 87.5% atmospheric derived oxygen and 12.5% meteoric water derived

oxygen is incorporated into SO2−
4 via the stoichiometry in Reaction 5.9 (Taylor et al., 1984a).

However, developments lead by scientists researching acid mine drainage have shown that in fact less

than 15% of the oxygen incorporated into SO2−
4 in aerobic environments is derived from atmospheric

O2 (Balci et al., 2007). The fraction of oxygen incorporated into sulfate both from water and

atmospheric sources has since been calculated from sulfide oxidation experiments conducted in

aerobic conditions with water and oxygen reactants with known δ18OH2O and δ18Oatm isotopic

signatures. Mazumdar et al. (2008) calculate that 83 to 99.8% of sulfate oxygen is derived from

water, in good agreement with the value calculated by Balci et al. (2007). The oxygen isotope

signature of sulfate which formed in these aerobic experiments indicate that H2O is the main

contributor to sulfate-oxygen with only a minor contribution from molecular O2 (Balci et al.,

2007; Mazumdar et al., 2008), indicating that Reaction 5.9 is a simplification of multiple reactions

occurring on the pyrite surface.

The oxygen-isotope fractionation factor between sulfate and water, εSO4−H2O, is similar

for sulfide oxidation in aerobic (2.3h (Heidel & Tichomirowa, 2011), 2.6h (Mazumdar et al.,

2008), 2.8h (Balci et al., 2007)) and anaerobic (2.9h (Balci et al., 2007)) environments, indicating

that the mechanism of oxygen incorporation into the sulfate molecule is the same, irrespective

of environment. Moreover, it is unlikely that dissolved oxygen will directly oxidise FeS2 because

paramagnetic O2 cannot form a strong bond with the terminal S of diamagmetic FeS2 in the same

way that Fe3+ in aquairon(III) Fe(H2O)3+5 can (Luther, 1987; Balci et al., 2007). Therefore, in

the same way as described for anaerobic oxidation of sulfide, Figure 5.2, it is Fe3+ that acts as

the direct oxidant of FeS2 in aerobic environments with the same step-wise transfer of electrons

between S and Fe3+. The step-wise oxidation pathway creates intermediate sulfur species and it is

the oxidation of these species to sulfate, where dissolved molecular O2 is incorporated.

The oxidation reaction pathway of sulfide to sulfate is complex. The schematic Figure

5.3 indicates the cyclical nature of the oxidation pathways of sulfide to sulfate through a series

of sulfur intermediate species. The key sulfur compounds and key reactants are shown in
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Figure 5.3: Schematic diagram of the complex reaction pathways of oxidation of sulfide
to sulfate through intermediate sulfur species. Redrawn and adapted from Schippers et al.
(1996, Figure 5). The key reactants and products are shown, and meteoric water (blue) and
atmospheric oxygen (orange) sources are highlighted (note however, the reactions are not balanced).
A: Initial sulfide oxidation to thiosulfate (Equation 5.6) (Moses et al., 1987; Luther, 1987). B: Fast
oxidation of thiosulfate to tetrathionate (Schippers et al., 1996, Equation 5). C: Oxidation of
thiosulfate to sulfate with excess Fe3+ (Equation 5.7) (Luther, 1987, Equation 6). D: Hydrolysis of
tetrathionate produces disulfane-monosulfonic acid (DMA), sulfate and acidity (Schippers et al.,
1996, Equation 6). E: DMA decomposes to elemental sulfur and sulfite (Schippers et al., 1996,
Equation 10). F: Sulfite is chemically oxidised to sulfate incorporating atmospheric oxygen into
the sulfate (Balci et al., 2007, Equation 13). G: Elemental sulfur incorporates oxygen from both
sources during its oxidation to sulfate (Schippers et al., 1996, Equation 3). H: DMA can be oxidised
to further intermediate sulfur species such as trithionate. DMA is oxidised by molecular oxygen so
50% of the oxygen in trithionate will be atmospheric in origin (Schippers et al., 1996, Equation 9).
I: Trithionate is hydolized to sulfate, containing atmospheric oxygen and meteoric water derived
oxygen, and thiosulfate which can start the cycle again (Schippers et al., 1996). J: Fe2+ produced
by the reduction of Fe3+in sulfur species oxidation is reoxidised to Fe3+ using molecular O2. This
Fe3+ can then participate in further oxidation reactions. This reaction which can happen at any
point in the cycle with Fe2+ is the rate limiting step to sulfide oxidation (Singer & Stumm, 1970).
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Figure 5.3, starting with the first intermediate sulfur species formed in Reaction 5.6, thiosulfate

S2O
2−
3 (Figure 5.3A). During sulfide oxidation experiments thiosulfate is rarely measured because

it is quickly oxidised to tetrathionate, S4O
2−
6 (Figure 5.3B) or to sulfate as in Reaction 5.7

(Figure 5.3C) (Rimstidt & Vaughan, 2003; Schippers et al., 1996). Hydrolysis of tetrathionate

produces disulfane-monosulfonic acid, sulfate and acidity in the form of H+ ions (Schippers et al.,

1996) (Figure 5.3D). The sulfate product of this reaction contains oxygen solely from meteoric H2O

(Figure 5.3D). Disulfane-monosulfonic acid is highly reactive and degrades to elemental sulfur, S0

or sulfite, SO2−
3 (Figure 5.3E). These sulfur species use molecular O2 as the oxidant when they

oxidise to SO2−
4 (Heidel & Tichomirowa, 2011) (Figure 5.3G,F). Disulfane-monosulfonic acid can

react with molecular O2 directly to form trithionate, S3O
2−
6 (Figure 5.3H). The trithionate molecule

may contain up to 50% oxygen from O2. Trithionate can then be hydrolysed to SO2−
4 (Figure 5.3I)

which can contain a fraction of molecular O2. Fe2+ adsorbed to the pyrite surface or produced

by the oxidation of pyrite can also be oxidised back to Fe3+ at any point during the cycle, which

also provides an oxidant for pyrite oxidation (however, only represented once on the cycle in Figure

5.3). Importantly, the isotopes of oxygen from meteoric and atmospheric sources have very different

compositions, therefore the source of oxygen in the reactions can be determined using a simple mass

balance approach, discussed in Section 5.2.4.

5.2.3 Microbial Impact on Sulfide Oxidation

Many of the reaction pathways are biologically driven. An experiment by Balci et al. (2007)

demonstrated that reactions in the presence of bacteria proceed at a faster rate than abiotic

experiments, particularly in aerobic environments where bacteria increases sulfate production rates

by up to two orders of magnitude. Whilst it is not possible to determine if the reaction was

microbially mediated using δ18OSO4 (Toran & Harris, 1989), it is reasonable to assume that bacteria

is present within the critical zone throughout the entirety of the Mekong Basin. It is important to

stress, however, that multiple experiments have shown oxidation of pyrite via Fe3+ reduction is up

to three orders of magnitude faster than aerobic oxidation (Moses & Herman, 1991; Balci et al.,

2007; Mazumdar et al., 2008; Heidel & Tichomirowa, 2011) due to the ability for Fe3+to directly

react with the pyrite surface.

An additional process that sulfur and oxygen isotopes in SO2−
4 could record, is bacterial

sulfate reduction (BSR) (Turchyn et al., 2013). In anaerobic environments, bacteria respire utilising

SO2−
4 , generating hydrogen sulfide (H2S) and oxidising organic matter in the process (Aharon &
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Fu, 2000; Mandernack et al., 2003) (Equation 5.10). There are substantial fractionation factors

associated with BSR (Kaplan & Rittenberg, 1964; Detmers et al., 2001). The light sulfur isotope,

32S, is preferentially incorporated into H2S, fractionating the remaining SO2−
4 by up to 70h (Aharon

& Fu, 2000; Turchyn et al., 2013). There is a much smaller fractionation involved in the oxygen of

the remaining SO2−
4 however this may still be up to -9.8h (Mandernack et al., 2003).

SO2−
4 + 2CH2O → H2S + 2HCO−

3 (5.10)

Downstream trends in the Marsyandi river display progressively increasing δ34SSO4 and

δ18OSO4 . This trend cannot be explain with mixing between gypsum and oxidative pyrite weathering

sources and therefore Turchyn et al. (2013) cite BSR in groundwaters, which are continually added

to the Marsyandi, as the cause of the trend. It may be possible to track BSR where there is a high

sampling frequency in a small catchment. However it is more difficult when samples have been

collected at the mouth of tributaries and the sample is representative of all sources and processes

within the sub-catchment. Unless there is good knowledge of the end members within the catchment

and BSR is the only possible explanation for samples that do not fit within the end members, such

as in the Marsyandi (Turchyn et al., 2013), it is unlikely that BSR could be established from a spot

sample. For example, there are at least four possible explanations for sulfate measured with positive

δ34SSO4 and δ18OSO4 . Firstly, the SO2−
4 could be sourced from gypsum weathering, secondly, the

sulfate could have been sourced from a Permian gypsum with light δ18OSO4 and δ34SSO4 (Claypool

et al., 1980), but the measured isotopic signature is heavy due to subsequent BSR thus reflecting

an evaporite of Silurian age. Thirdly the source of SO2−
4 could have been oxidation of pyrite with

a negative δ34SSO4 and δ18OSO4 and subsequent BSR has left the remaining SO2−
4 with an isotope

signature similar to SO2−
4 sourced from gypsum. The consequence of the latter explanation is that

oxidative pyrite weathering is underestimated. Additionally, the H2S generated by BSR could be

reoxidised forming sulfate with δ34SSO4 similar to the sulfide but a negative δ18OSO4 reflective of

the local water incorporated into the SO2−
4 molecule. It is clear that BSR dramatically effects

SO2−
4 isotopic composition, but establishing if it is a process and moreover quantifying the extent

to which it is occurring is difficult.
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5.2.4 Quantifying Sulfide Oxidation Oxygen Source

Using a simple mass balance equation the range of possible values of oxygen isotopes in dissolved

sulfate derived by oxidation of sulfide, δ18OSO4pyr, can be calculated using the following Equation:

δ18OSO4 pyr = fO2atm

(
δ18Oatm + εO2

)
+ fH2O

(
δ18OH2O + εW

)
(5.11)

fO2atm + fH2O = 1 (5.12)

Where δ18Oatm is the oxygen isotope value of atmospheric oxygen, 23h (Kroopnick & Craig,

1972) and δ18OH2O is the oxygen isotope value of local water. The oxygen isotope signature of local

water varies spatially, with greater than 40h range in global δ18OH2O values (Bowen & Revenaugh,

2003). Local water is mostly meteoric which is derived from precipitation, therefore the four main

factors controlling isotope values in precipitation are reflected in the local water signature of oxygen,

δ18OH2O, and hydrogen, δD, isotopes. Increases in altitude, latitude and greater amounts of rainfall

decrease δ18O and δD values, as does increasing distance from the coast which decreases isotope

values inland, this is known as the continental effect (Kendall & Doctor, 2003). These geographical

and environmental factors define δ18OH2O values unique to each river system.

εSO4−O2 and εSO4−H2O are the fractionation factors between oxygen and sulfate and water

and sulfate, respectively. Sulfide oxidation experiments have quantified εSO4−O2 between -8.4h to

-11.4h (Taylor et al., 1984b; Balci et al., 2007; Heidel & Tichomirowa, 2011). An average value

of -10.1h is used for εSO4−O2 . The value for εSO4−H2O is 2.9h. fO2atm is the fraction of oxygen

in sulfate derived from atmospheric O2 and fH2O is the fraction of oxygen in sulfate derived from

meteoric water. fO2atm and fH2O sum to 1. Using these parameters, a unique range of possible

δ18OSO4pyr end member values can be calculated for each sample. The lower bound for δ18OSO4pyr

is where all oxygen in sulfate is derived from meteoric water, or fH2O=1. The upper bound for the

δ18OSO4pyr value is where 17% of oxygen in sulfate is atmospheric due to aerobic sulfide oxidation,

fO2atm=0.17. This maximum contribution from molecular oxygen has been constrained through

sulfide oxidation experiments in controlled environments. Balci et al. (2007) calculates 85-92% of

oxygen in SO2−
4 is derived from H2O which is in good agreement with Mazumdar et al. (2008) who

calculate molcular O2 contributes 83-99.8% to sulfate-oxygen implying fO2 is small and so taking

a value of fO2atm=0.17 for the maximum amount of O2 incorporation is a conservative amount.
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5.2.5 Global Trends in Sulfate Source

The array defined by the global compilation of δ34SSO4 and δ18OSO4 in world rivers (Figure 5.4)

highlights the range of sulfate sources. Rivers draining Arctic catchments, in Canada and Svalbard

all have mostly negative δ18OSO4 and δ34SSO4 signature because they drain sedimentary sulfide

lithologies (Calmels et al., 2007) and the higher altitude and latitude of these catchments is reflected

in the light local water which is incorporated into δ18OSO4 . The few samples that have positive

δ34SSO4 may drain magmatic sulfides. The range in δ34S signature of sedimentary sulfides can be

seen, the data with negative δ18OSO4 spans ∼35h but samples with positive δ18OSO4 have positive

δ34SSO4 in the range of 0h to ∼15h which are characteristic of sedimentary sulfate sources. The

overall array of world data suggests a mixing trend between sedimentary sulfates and sedimentary

sulfides but individual catchments show tighter trends dominated by a particular lithology or they

may have been influenced by secondary reduction, for example bacterial sulfate reduction (Turchyn

et al., 2013).

Another useful tool used to establish if rivers are draining sedimentary sulfides, is to compare

the oxygen in the sulfate and oxygen in the water (Figure 5.5). If rivers are draining sedimentary

sulfides there will be a strong positive relationship between oxygen in the water and oxygen in

the dissolved sulfate. The reaction pathway of oxidative sulfide weathering, whether aerobic or

anaerobic will determine the source of oxygen incorporated into SO2−
4 and therefore the exact

relationship between δ18OH2O and δ18OSO4 (contours on Figure 5.5 display the possibilities of this

relationship depending on atmospheric O2 incorporation), although it is likely that there is less

than 17% oxygen incorporated from atmospheric O2 (discussed in Section 5.2.2.1). Samples from

Svalbard sit between the lowest contours of atmospheric O2 incorporation indicate of oxidative

weathering of pyrite. There is a larger spread in other samples because the sulfide end member

signature is overprinted by mixing with sedimentary sulfates.

The difficulty in directly comparing the sulfate source of world rivers is the large variation

in global δ18OH2O which dominates 83 to 100% of the δ18OSO4 signal. In order to directly compare

dissolved sulfate from rivers with different meteoric water signatures, the difference between δ18OSO4

and δ18OH2O can be used (∆18OSO4−H2O), taking into account a 2.9h εSO4−H2O fractionation

factor (Figure 5.6). In a similar way to Figure 5.5 which compares the relationship between oxygen

of local meteoric water and oxygen in the sulfate, ∆18OSO4−H2O corrects δ18OSO4 for the local

meteoric water signature. The closer this variable is to zero, it suggests that more of the dissolved

sulfate is delivered by the anaerobic oxidative weathering of sulfide where all of the oxygen in
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Figure 5.4: Sulfur and oxygen isotopes in dissolved sulfate of world rivers. The data
presented is a literature compilation from the Yalong River and it’s tributaries draining the eastern
Tibetan Plateau, China (Li et al., 2014b), which feeds into the Yangtze River (Li et al., 2015),
also Min Jiang, a headwater tributary of the Yangtze River (Yoon et al., 2008), Svalbaard, the
glaciated Dryadbreen catchment and the unglaciated Fardalen catchment (Hindshaw et al., 2016),
Peel River (Zolkos et al., 2018), Pecos River in New Mexico, USA (Yuan & Mayer, 2012), Moselle
River in France (Brenot et al., 2007), Oldman River Basin in Alberta (Canada) (Rock & Mayer,
2009), Marsyandi (Turchyn et al., 2013), rivers draining the Sichuan basin (Li et al., 2006), the
Indus River (Karim & Veizer, 2000) and the Mackenzie River in Canada (Calmels et al., 2007).
The colours categorize samples into Arctic and Canadian rivers (blues), Asian rivers (oranges) and
other rivers from N.America and Europe (greens).

the sulfate is derived from meteoric water. The further away ∆18OSO4−H2O is from zero there is

influence from gypsum or incorporation of atmospheric oxygen into the sulfate.
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Figure 5.5: Oxygen isotopes in water and dissolved sulfate. Contours are drawn for sulfide
derived SO2−

4 where the fraction (red values between 0 and 1) is the amount of atmospheric O2

(fO2atm) incorporated into SO2−
4 during oxidative weathering of pyrite. If all oxygen in SO2−

4 is
derived from meteoric H2O, fO2atm=0, then δ18OSO4 is the same as δ18OH2O taking into account
fractionation. Increasing incorporation of atmospheric O2 into SO2−

4 decreases the gradient of the
relationship between δ18OSO4 and δ18OH2O. Interpretation of this diagram is complicated because
sulfide oxidation signals are obscured by mixing of other sources such as sedimentary sulfates.
Rivers draining sedimentary sulfide dominated lithologies have a strong positive correlation between
oxygen in meteoric water, δ18OH2O and oxygen in dissolve sulfate δ18OSO4 . Within the global river
water data, given that sedimentary sulfate signals have not been corrected for, the Mackenzie
River basin (Calmels et al., 2007) and the Indus river (Karim & Veizer, 2000) still show a positive
correlation between δ18OSO4 and δ18OH2O as both are dominated by shales containing pyrite.
(Sources are given in caption for Figure 5.4.)

5.3 Methodology

5.3.1 Sample Collection in the Field

Samples for sulfur and oxygen isotope analysis on dissolved sulfate were collected from 18 tributaries

and 6 main stem sites in 2016 and 2017 field seasons. River waters were collected from the surface

of the water column from the centre of the main channel, using either a boat (main river), or a

bucket suspended from a bridge (tributary) and filtered within 6 hours of collection through 142mm

0.2µm PES filters. 2.5 litres of filtered water were discarded before collection of samples. Because
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Figure 5.6: Comparison of world river data with local meteoric water signature
removed. ∆18OSO4−H2O is δ18OSO4 corrected for local meteoric water signatures (δ18OH2O) and
takes into account the 2.9h fractionation factor between SO2−

4 and H2O. Removing δ18OH2O

from δ18OSO4 makes world data more comparable because the differences in local meteoric water
signature are so large. This relationship is useful to compare rivers that may be draining
sedimentary sulfides; SO2−

4 that is sourced from the anaerobic oxidative weathering of pyrite
(Anaerobic OWP), will lie on a line of ∆18OSO4−H2O=0. The samples are corrected for local
meteoric water signatures (δ18OH2O) but not for other sources of oxygen in SO2−

4 such as
atmospheric O2 or sedimentary sulfate. The influence of these other sources are seen in samples
with heavier oxygen isotopes (Gypsum influence).

of low SO2−
4 concentrations, a pre-concentration step was conducted in the field. Two litres of

filtered river water were loaded onto columns filled with 5mL Dowex 1X8-200, 100-200 mesh, anion

exchange resin (Hindshaw et al., 2016). The resin was pre-conditioned with 60 mL of 3M distilled

HCl, then 60 mL of 18.2MΩ H2O. The SO2−
4 was stored on the resin and kept in a fridge until the

time of sample preparation.



Quantifying Sulfuric Acid Weathering 113

11°N

22°N

33°N

108.5°E

Tonle Sap & Delta
Cambodia Tributaries
China Tributaries
Left Bank Laos Tributaries
Mekong Main Channel
Myanmar Tributaries
Right Bank Thai Tributaries

200 km

KR

ST

PK

VT

LP

YN

Figure 5.7: Samples collected for sulfur and oxygen isotope analysis in dissolved
sulfate. Main stem sample sites (pink triangles) are Yunnan (YN), Luang Prabang (LP), Vientiane
(VT), Pakse (PK), Stung Treng (ST) and Kratie (KR). Tributaries have been split into five
main sections with locations of sampling denoted by a shape; China (orange squares), Myanmar
and Northern Thailand (yellow green circles), Laos (purple diamonds), Thailand (yellow inverted
triangle), Cambodia (blue green circles). Darker coloured areas within the sections outline the
sampled catchment. Samples were collected in 2016 and 2017 field seasons for δ18OSO4 and δ34SSO4 .
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5.3.2 Sample Preparation in the Laboratory

Preparation took place in a class 1000 clean laboratory. Sulfate was eluted off the column with

20mLs 0.8M distilled HCl and mixed with BaCl2 to precipitate barite (BaSO4). Barite was cleaned

with 6M HCl to remove precipitated BaCO3 then rinsed three times with 18.2 MΩ H2O. To improve

purity, the barite was dissolved in 10mLs 0.05M diethylenetriaminepentaacetic acid (DTPA) then

the pH of the solution was lowered to 3-4, allowing a slower reprecipitation of a purer barite

which was then cleaned three times with 18.2 MΩ water (Bao, 2006). The pure barite was dried

at 70◦C for 12hours. Two full replicates of the method were made using OSIL IAPSO Atlantic

Seawater resulting in values within error of standard seawater values (δ34S=20.94h ±0.09 1σ,

δ18OSO4=8.3h ±0.2 1σ) confirming there is no fractionation on the column.

The inevitable disturbance of the resin bed during transportation from the field to

laboratories prevents elution of pure SO2−
4 off the columns. The single anion adsorption fronts

are no longer separated within the column resin bed. Although calibration of a column in the

lab (simulated to have been loaded in the field and transported back to the lab) provided a guide

for anion elution profiles, SO2−
4 and NO−

3 were not able to be fully separated. The presence of

NO−
3 in barite inclusions can significantly alter measured values of δ18OSO4 . Oxygen in NO−

3 , if

atmospheric in origin, can have δ18ONO3 values of up to 100h (Le Gendre et al., 2017). Inclusions

within the barite are determined by the speed of precipitation when BaCl2 is added to the eluant.

Dissolving the first precipitation of barite in DTPA then slowly lowering the pH of the solution

allows a controlled re-precipitation of pure barite (Bao, 2006).

A test was conducted to understand how precipitated barite can be affected by other

oxyanions present in the original eluant and whether DTPA was a suitable solution for removing

these contaminants. Pure enriched water (δ18OH2O=162h) was mixed in various ratios with

Atlantic Seawater given in Table 5.1. BaCl2 was mixed with the samples to precipitate BaSO4

which was then cleaned with 6M HCL then three times with 18.2 MΩ H2O. The barite was dried

overnight at 70◦C then an aliquot was taken for δ18OSO4 and δ34SSO4 analysis (Table 5.1, test

1). The remaining barite was dissolved in 0.05M DTPA and left overnight for full dissolution.

Barite was reprecipitated slowly by adding concentrated distilled HCl to the solution, preventing

the occurrence of inclusions in the barite. After removal of excess DTPA, the barite is cleaned

three times with 18.2 MΩ H2O, left to dry overnight and again sampled for analysis (Table 5.1, test

2). The barite was dissolved for a second time in DTPA and the same process repeated (Table 5.1,

test 3). After each addition of DTPA, sample δ18OSO4 values converge on seawater values (Figure
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5.8). In the most extreme mixed sample, with twice as much enriched water as seawater, DTPA

removed the inclusions of enriched water in the precipitated barite, reducing the measured values

from δ18OSO4=13.87h ±0.85 1σ in test 1, to δ18OSO4=8.97h ±0.53 1σ in test 2.

Table 5.1: Experiments devised to quantify improvement of barite purity

Ratio Seawater : Enriched water Test 1 Test 2 Test 3

1:0
6M HCL then

18.2 MΩ H2O

x3 cleaning

DTPA treated
DTPA treated

x2

1:0.067

1:0.4

1:2
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Figure 5.8: Effect of DTPA on enriched water inclusions in precipitated barite from
seawater. Three tests detailed in Table 5.1 aim to improve the purity of barite precipitated from
a range of solutions with variable ratios of seawater to enriched water. The effect of the enriched
water in barite inclusions can be clearly seen when DTPA is not applied to barite, test 1 - red line.
All samples converge on the seawater value, black line, after addition of DTPA for the first time,
blue and green lines.

5.3.3 Sample Analysis

Major cation and anion analysis methodology is discussed in Chapter 3 and the results can be

found in Table 4.2 and Table 4.3. Analysis of δ18OSO4 and δ34SSO4 were made by elemental
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analyser isotope ratio mass spectrometry (EA-IRMS) in the Godwin Laboratory, University of

Cambridge. For δ18OSO4 analysis, 180µg barite samples and reference materials are placed in

sealed silver capsules and loaded into an auto-sampler. Whilst being continuously purged with

helium to prevent contamination with water, oxygen or nitrogen, they are dropped into a Thermo

Finnigan High Temperature Elemental Conversion Analyser (TC/EA) consisting of a graphite

crucible held at 1450◦C. The gaseous products of pyrolysis (H2, N2, CO) are separated by a packed

gas chromatographic molecular sieve column at 90◦C and passed into a Thermo Delta V mass

spectrometer via a ConFlo 3 for isotopic analysis. The δ18OSO4 isotope measurements are calibrated

to V-SMOW. Samples were run in quadruple and data presented is an average of these replicates.

400µg samples for δ34SSO4 analysis were placed with 1200µg vanadium pentoxide in sealed tin

capsules in an auto-sampler, combusted in excess oxygen in a Flash EA coupled to continuous flow

and analysed by a Thermo Delta V Mass spectrometer. Both samples for sulfur and oxygen isotopes

were normalised to NBS 127 (δ34SSO4= 21.1h, δ18OSO4= 8.6h). Drift in mass spectrometer

measurements over the run was accounted for by correcting samples to NBS 127. The overall

analytical precision is better than 0.3h 1σ for δ18OSO4 (n=22) and 0.09h 1σ for δ34SSO4(n=39).

External standards IAEA SO-5 and IAEA SO-6 were precise to within 0.13h for δ18OSO4 (1σ,

n=12) and 0.19h for δ34SSO4 (1σ, n=6) (these standards were not processed through columns).

Two full procedural replicates of seawater reproduced ran through columns and precipitated as

barite gave 1σext =0.20 for δ18OSO4 and 1σext = 0.09 for δ34SSO4 . Error values on samples are

0.2h and 0.09h, or individual sample standard deviation, which ever is larger, for δ18OSO4 and

δ34SSO4 , respectively.

5.4 Results

5.4.1 Sulfate Concentrations

SO2−
4 concentrations in the Mekong range between 702µmol/L to 4µmol/L with an average

concentration of 194µmol/L (main stem monsoon samples average of 2016 and 2017, n=17) (Figure

5.9A). This is similar to previous data for the Mekong River (Manaka et al., 2015; Burke et al.,

2018) but lower than the global average of sulfate concentration (332µmol/L, Burke et al., 2018).

Sulfate concentrations in the tributaries and main stem are most concentrated in the Upper Mekong.

Concentrations decrease downstream with most tributaries diluting the main stem (Figure 5.9A).

Although discharge increases downstream (Figure 5.9B) there is a variable contribution to total
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sulfate flux from each section of the river basin (Figure 5.9C). The Upper Mekong between the

source and southern China contributes most of the sulfate flux (∼69%). 18% of the total sulfate

flux is contributed from the Middle Mekong between Baoshan and Stung Treng and the Lower

Mekong contributes the last ∼13% from the three large tributaries in Cambodia (contribution

values are calculated from 2017 sulfate concentration and ADCP data). Samples from China, both

in the main stem and the Bijiang tributary have high sulfate and high chlorine concentrations.

Chlorine concentrations in the main stem increase between Vientiane to Pakse, from ∼77µmol/L

to ∼138µmol/L due to the influx of concentrated Mun, Chi and Songkhram tributaries draining

northeastern Thailand. These tributaries do not have the highest sulfate concentrations but their

large discharge provides an overall high sulfate flux contribution to the Mekong river (Figure 5.9C).
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5.4.2 Isotopes

There is a large range in δ18OH2O (-18.02h to -5.75h), increasing downstream which is expected

with the range in latitude and altitude of the basin (Figure 5.9D). Most of this range occurs in the

upper reaches of the basin, as this is where the Mekong leaves the 3-gorges region, with the δ18OH2O

of the main river tending to that of the tributaries by ∼2600km downstream, indicating that the

water is sourced locally. Most of the tributaries have higher δ18OH2O than the mainstem, even in the

lower reaches. The trend in δD is the same as δ18OH2O which is a good indication that evaporation

is not dominant (Figure 5.9E). The total range in δ18OSO4 downstream is 2.64h, with the lowest

values in the headwaters and the highest values close to the mouth (Figure 5.9F). The tributaries

display a much larger range of ∼ 13h for δ18OSO4 (-0.35h to +11.94h), with values both higher

and lower than the main river. The larger variation in tributaries and the small decoupling of trend

between δ18OH2O and δ18OSO4 suggests there is another source contributing sulfate that does not

contain local meteoric water. The difference between oxygen in sulfate and water, ∆18OSO4−H2O,

is positive, between 8h and 20h and generally decreases downstream (Figure 5.9G), providing

support for the hypothesis of a second source of sulfate with non-meteoric oxygen.

Figure 5.9 (previous page): Mekong River downstream trends in discharge,
concentration and isotopes. The length of the Mekong River is broken up into 7 sections
at Baoshan (BS), Luang Prabang (LP), Vientiane (V), Pakse (P), Stung Treng (ST), Kratie (KR),
using sampling sites on the main stem. Symbols separate the tributaries spatially, the Upper
Mekong tributaries from the Source to Vientiane are in China (orange square) and Myanmar
tributaries (light green circle), Middle Mekong tributaries between Vientiane and Pakse are Laotian
rivers draining the left bank of the Mekong River (blue diamonds) and Laotian and Thai rivers
draining the right bank of the Mekong River (yellow inverted triangles). The middle Mekong is split
between left and right bank due to the distinct lithology on either side of the main river channel. The
Lower Mekong from Pakse to the Mouth are in Cambodia (green circles). A: Sulfate concentrations
decrease downstream in the main stem with most of the sulfate sourced in the Upper Mekong and
subsequently diluted downstream. B: Discharge increases downstream with tributaries from the
Middle Mekong left bank in Laos and Cambodian tributaries in the Lower Mekong contributing
the most flux. Right bank Thai tributaries and tributaries in China contribute comparatively
little. Discharge data is a combination of ADCP data collected in 2016 and 2017, MRC historical
data set, Cambodian tributaries are from Someth et al. (2013) and some Laos tributaries from
Nippon Koei (2001). C: Sulfate flux reflects a similar pattern as discharge. D: Oxygen isotopes
in meteoric water increase downstream due to the decreasing altitude. E: Deuterium isotopes
in meteoric water follow the same pattern as δ18OH2O suggesting no appreciable evaporation. F:
Oxygen isotopes in dissolved sulfate are lighter upstream with a large spread in tributary signatures.
G: Difference in oxygen isotopes in dissolved sulfate and meteoric water to remove effect of local
water signature in the sulfate. This does not include εSO4−H2O fractionation factor. H: Sulfur
isotopes in dissolved sulfate show little variation in the main stem but a large scatter of signatures
in tributaries throughout the Mekong River basin.
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Downstream δ34SSO4 shows a small variation of 2.64h (Figure 5.9H). The tributaries however

show a ∼13h range, similar to δ18OSO4 (-3.46h to +10.04h) scattering to values above and

below the main river. The lowest δ34SSO4 are from tributaries that drain northeast Myanmar

and catchments in northern Laos whilst the heaviest sulfate is from catchments in northeastern

Thailand. There is a large variation in Mekong samples, which are compared with global river data

(Figure 5.4) in Figure 5.10. The tributaries that plot in the upper right hand quadrant of the graph,

with positive oxygen and sulfur isotope signatures, coincide with some of the largest SO2−
4 fluxes

of the Mekong tributaries, for example the Mun and Chi that both drain northeast Thailand, Nam

Lik and Nam Ngjum both draining the left bank of the Middle Mekong in Laos and Tonle Kong,

one of the three big rivers draining the southern Annamite mountains in northeastern Cambodia

(Figure 5.7). Signals in the main stem have minimal variation between years, suggesting that

mixing trends or processes are the same year on year and that the true signal has been captured.

Samples collected in Luang Prabang, Pakse and Kratie in 2016 and 2017 reproduce to within 0.61h

1σ and 0.77h 1σ for δ34SSO4 and δ18OSO4 , respectively.
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Figure 5.10: Sulfur and oxygen isotopes in Mekong river dissolved sulfate. Mekong data
uses colours and symbols corresponding to basin sections in Figure 5.7. Error bars are smaller than
symbols for Mekong data. Grey open symbols are global data, symbols correspond to the key in
Figure 5.4.
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5.5 Sedimentary Sulfate Sources in the Mekong Basin

The tributaries draining the right bank of the Middle Mekong in Thailand have high chlorine and

sulfate fluxes and positive δ18OSO4 and δ34SSO4 isotopic signatures. These tributaries are among

the rivers with the highest discharge within the Mekong River basin, therefore it is important to

determine where the sulfate is sourced as the magnitude of flux could have a large impact on the

carbon budget of the river basin.

The Khorat Plateau located in northeast Thailand to central Laos, is an epi-continental

basin. The plateau is separated by the Phu Phan anticline into two depositional basins, the Khorat

Basin in the south and the Sakhon Nakhon Basin in the north (Tabakh et al., 1998; Carling, 2009;

Hansen et al., 2016). The lithology in the plateau consists of the Mesozoic Khorat Group made up

of continental fluvial and lacustrine facies, including red beds, then sitting unconformably on top

is the Maha Sarakham Formation, an extensive evaporite succession of Late Cretaceous to early

Tertiary age. Fluvial facies in the Tertiary then alluvial facies in the Quaternary were subsequently

deposited (Tabakh et al., 1998, 1999).

The Maha Sarakham Formation is composed of three salt units, which consist of halite

and anhydrite, separated by non-marine red-coloured siliclastics and is on average ∼250m thick,

increasing to a maximum of 1km in the centre of the basin (Tabakh et al., 1998). Isotopic analysis

of anhydrite beds and anhydrite nodules within halite beds gave sulfur isotope values, δ34SSO4 ,

of +14.8 to +17.7h with a significantly lower δ34S of +6.4 to +10.9h found in the thick clastic

units (Tabakh et al., 1999). Although there has been some debate on both the formation and age

of the evaporites within the Khorat Plateau (e.g. Utha-Aroon, 1993; Hansen et al., 2016; Kuroda

et al., 2017), the δ34S of the Maha Sarakham fits with the contemporaneous δ34S signature of global

seawater which ranged from +14 to +18h from the Early to Late Cretaceous (Claypool et al., 1980;

Kampschulte & Strauss, 2004), suggesting that the evaporites precipitated from a marine derived

aqueous sulfate. The Khorat Plateau is a continental basin that underwent three major marine

influx events during the Cretaceous, due to relative sea level rise. The basin flooded from an inlet

in the southwest, subsequent isolation due to sea level regression allowed for evaporite precipitation

then deposition of terrogenous layers (Tabakh et al., 1999, 2003; Hansen et al., 2016). The lower

member of the formation contains one of the world’s largest salt deposits, from which potash, or

potassium rich salt such as sylvite (KCl) is mined from the 50m thick unit (Hite & Japakasetr,

1979; Hansen et al., 2016).
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A basal anhydrite unit can be found between the top of the Khok Kruat Formation, the

youngest unit within the Khorat Group, and the base of the Maha Sarakham formation throughout

the Khorat Plateau. Tabakh et al. (1998) suggested that the basal anhydrite was formed by

undersaturated water from an aquifer in the Khok Kruat Formation percolating upwards through

Maha Sarakham beds. Salt leached from the Maha Sarakham beds then accumulated as a dissolution

residue in an anhydrite unit with uniform thickness (∼1m) throughout the basin. The similarity of

sulfur isotope signatures of the basal anhydrite unit (δ34S = +15 to +16h (Tabakh et al., 1998))

and the Maha Sarakham formation supports this formation model.

The oxygen isotopic signature of the anhydrite beds in the three salt units in the Maha

Sarakham formation has been measured by Pisutha-Arnond et al. (1986) at δ18OSO4 is +11 to

+14.2h, which corresponds to Claypool et al.’s (1980) Cretaceous marine oxygen isotope value of

δ18OSO4= +13.5 to +15h. The equilibrium of sulfate with surrounding water at low temperatures

is slow enough to assume the measured signature has not been altered since deposition (Lloyd,

1968).

The evaporite outcrops are mostly contained within the Khorat Plateau and so the end

member is well characterised for both δ34SSO4 and δ18OSO4 by literature values. There are two small

outcrops by the northern Laos-southern Chinese border, which can be seen on the geological map

Figure 1.2. There is no age or isotopic information in the literature specifically about these outcrops,

however the geological map suggests they are the same age of the Maka Sarakham evaporites and

therefore are assumed to have the same isotopic signature.

5.6 Mixing Model

With the exception of several tributaries with high atmospheric contributions, the SO2−
4 in the

Mekong River basin is likely derived from the weathering of a mixture of sedimentary sulfates and

sulfides which have different carbon cycle implications. To partition riverine SO2−
4 between its

constituent sources, a two component mixing model is developed expressing the isotopic signatures

of dissolved sulfate, in terms of the fractions of gypsum and pyrite end members. The results of

this modelling will be used to quantify sulfuric acid that is available to participate in chemical

weathering.

The isotopic values measured in the dissolved SO2−
4 samples (Figure 5.10) can be described

by the following two equations. The oxygen, δ18OSO4 , and sulfur δ34SSO4 , isotopes of dissolved
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sulfate are a mix of the oxygen and sulfur isotopic signature from end members gypsum and pyrite,

mixed in the proportions fgyp and fpyr, respectively.

δ18OSO4 = fgyp.δ
18OSO4gyp + fpyr.δ

18OSO4pyr (5.13)

δ34SSO4 = fgyp.δ
34SSO4gyp + fpyr.δ

34SSO4pyr (5.14)

Of the eight variables in Equations 5.13 and 5.14, δ18OSO4 and δ34SSO4 are measured in the

dissolved SO2−
4 sample, fpyr and fgyp are values to be calculated, δ18OSO4gyp can be constrained

with literature values and δ18OSO4pyr can be estimated by using the calculation in Equation 5.11.

Previous studies have measured δ34SSO4gyp (Section 5.5) but there is no literature on δ34S signature

of sulfides within the Mekong river basin, δ34SSO4pyr. As discussed in Section 5.2.1, δ34SSO4pyr

is difficult to constrain due to it’s large natural variability, therefore this variable is unknown and

is to be calculated by rearranging Equation 5.14. The mean values and 1σ variability in the end

members and sample used in the model are shown in Figure 5.11.

The oxygen isotope signature of dissolved sulfate, δ18OSO4 , described in Equation 5.13, can

be expanded to Equation 5.15 to include more controls on δ18OSO4 from pyrite. Equation 5.15

describes the variables controlling sample δ18OSO4 ; the contribution of each lithology end member,

for which the fraction of pyrite and fraction of gypsum must sum to 1 (Equation 5.16) and

the proportion of molecular O2 incorporated into pyrite oxidation derived SO2−
4 , δ18OSO4pyr,

(Equation 5.11).

δ18OSO4 = fgyp.δ
18OSO4gyp + (1− fgyp)

(
fO2atm

(
δ18Oatm + εO2

)
+ fO2Fe3+

(
δ18OH2O + εW

))
(5.15)

fpyr = 1− fgyp (5.16)

With greater confidence in oxygen isotopic constraints on end members and samples and all

variables quantified in Equations 5.13 and 5.15, the mixing model initially uses oxygen isotopes in

the sample and both end members to calculate fpyr and fgyp. To calculate fgyp, Equation 5.15 is

rearranged to Equation 5.17. Equation 5.17 assumes that fraction of oxygen incorporated into the

SO2−
4 molecule during oxidation of sulfide, from either meteoric H2O or molecular O2, must sum

to 1 (Equation 5.18).
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Figure 5.11: End member inputs for mixing model. Mean and 1σ of gypsum end members
and sample used in the model parameters for an individual sample, MEK17-240. Values are
displayed in table 5.2. Mean and 1σ values remain the same for gypsum for both δ34SSO4 and
δ18OSO4 for every sample. δ34SSO4 and δ18OSO4 are unique for each sample, 1σ is analytical error.
δ18OSO4pyr is calculated for each sample using unique δ18OH2O and Equation 5.11 between a range
of fO2atm values (0 to 0.17). δ34SSO4pyr of the sulfate delivered by oxidation of the pyrite end
member is calculated by the mixing model, but δ34SSO4pyr is expected to lie in the common range
of sedimentary sulfides, -20h to +5h (Strauss, 1997; Goldhaber, 2003).

fgyp =
δ18OSO4 − fO2atm

(
δ18Oatm + εO2

)
− (1− fO2atm)

(
δ18OH2O + εW

)
δ18OSO4gyp − fO2atm (δ18Oatm + εO2)− (1− fO2atm) (δ18OH2O + εW )

(5.17)

fO2Fe3+ = 1− fO2atm (5.18)

For each individual sample, δ18OSO4pyr is unique and is calculated using Equation 5.11. It

is not possible to determine the exact reaction pathway of sulfide oxidation, thus there is a range

of δ18OSO4 values in which SO2−
4 delivered from the sulfide end member may lie. This range is

caused by the fraction of molecular O2, fO2atm, incorporated into SO2−
4 which could vary from 0%

to 17% depending on oxidation reaction pathway (Balci et al., 2007; Mazumdar et al., 2008). To
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Figure 5.12: Monte-Carlo generated values for end member mixing. Domain of possible
inputs for sample MEK17-240, defined by Monte Carlo method within parameters given in Table 5.2
and displayed in Figure 5.11. The Monte-Carlo method generates values with a normal probability
distribution over the range given for the gypsum end member and sample and a random distribution
for the pyrite end member, shown by the marginal density plots.

take into account the largest possible range of δ18O values of the SO2−
4 delivered by sulfide end

member, fO2atm is varied between between 0 and 0.17 for each sample, illustrated for one sample,

MEK17-240 in Figure 5.11. The small range in oxygen isotopes of the gypsum end member,

δ18OSO4gyp, is the same for each sample. A Monte-Carlo approach is used to generate 1000 values,

within the ranges given for the gypsum and pyrite end members and within analytical uncertainty

of the sample. The Monte-Carlo approach simulates values with a Gaussian distribution for the

sample and gypsum end member, so most values centre around the mean. There is no indication

of exactly how much atmospheric O2 is incorporated into δ18OSO4pyr therefore the Monte-Carlo

simulates values with a random (uniform) distribution between the uncertainties given for the pyrite

end member. The values generated by the Monte-Carlo approach are illustrated on Figure 5.12 for
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one sample, MEK17-240. The range of sulfide end members are between fO2atm= 0 and 0.17. fgyp

is calculated by mixing values in each of the end members through the sample using Equation 5.17.

The mixing lines for each sample are shown in Figure 5.13.

fgyp is calculated using oxygen isotopes in both end members and the sample, and is

constrained using sulfur isotopes of the gypsum end member and the sample. First, sulfur isotope

composition of the product sulfate from pyrite oxidation, δ34SSO4pyr, must be calculated. δ34SSO4pyr

can be calculated using Equation 5.19, which is Equation 5.14 (describing the sulfur isotopic

composition of the water sample) rearranged. The Monte-Carlo approach generates n=1000 values

for δ34SSO4pyr (Figure 5.13). Some of these δ34SSO4pyr values are extreme and are outside common

sulfur isotope values of sedimentary sulfides (Figure 5.1). Only δ34SSO4pyr values within the range

-40h to +5h (determined using literature data, Figure 5.1), are used to calculate a mean fgyp from

the Monte Carlo iterations. A mean fgyp and its 1σ error is calculated from the suitable Monte-Carlo

generated values (values of n in Table 5.4 represent the discard iterations of δ34SSO4pyr outside the

determined range from 1000 Monte-Carlo iterations).

δ34SSO4pyr =
δ34SSO4 − fgyp.δ34SSO4gyp

(1− fgyp)
(5.19)

The parameters used for the variables described in Equations 5.13-5.19 are listed in Table

5.2. Measured δ18OH2O and δ18OSO4 are specific to each sample. Fractionation factors εSO4−H2O

(εW ) and εSO4−O2 (εO2), calculated in sulfide oxidation experiments (Balci et al., 2007), remain

the same for each sample, as does the atmospheric O2 value, δ18Oatm.

Table 5.2: Model parameters

Variable Parameter

δ18OH2O Oxygen isotope of meteoric H2O in individual water sample

δ18OSO4 Oxygen isotope in dissolved SO2−
4 in individual water sample

δ34SSO4 Sulfur isotope in dissolved SO2−
4 in individual water sample

δ18OSO4gyp Oxygen isotope of gypsum end member, 14.5h 1σ=2h

δ34SSO4gyp Sulfur isotope of gypsum end member, 15.09h 1σ=2.1h

δ18OSO4pyr Oxygen isotope of sulfide end member, calculated using Equation 5.11

δ34SSO4pyr Sulfur isotope of sulfide end member, determined by model

Continued on the next page
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Table 5.2: Model parameters (cont.).

Variable Parameter

δ18Oatm Atmospheric O2, 23h

εW εSO4−H2O: Fractionation factor between H2O and SO2−
4 , 2.9h

εO2 εSO4−O2 : Fractionation factor between molecular O2 and SO2−
4 , -10.1h

fpyr Fraction of SO2−
4 delivered from pyrite, fpyr + fgyp = 1

fgyp Fraction of SO2−
4 delivered from gypsum, fpyr + fgyp = 1

fO2atm Fraction of O2 incorporated into dissolved SO2−
4 by molecular O2,

fO2atm is varied between 0% and 17%, fO2atm + fH2O = 1

fH2O Fraction of O2 incorporated into dissolved SO2−
4 by meteroric H2O,

1 - fO2atm = fH2O

5.7 Model Results and Discussion

5.7.1 Fraction of Pyrite Derived Sulfate in the Mekong River Basin

The two end member mixing model partitions the source of SO2−
4 for each sample in the Mekong

river between sulfate delivered by the dissolution of sedimentary sulfates, fgyp, and sulfate sourced

from the oxidative weathering of pyrite, fpyr. fpyr varies between 0.19 and 0.79 in the Mekong

basin. The main stem has a mean fpyr value of 0.57 with the highest values at Luang Prabang

and lowest at Pakse. Using fgyp and fpyr values, the sulfate flux associated with dissolution of

gypsum or oxidative weathering of pyrite can be calculated. By quantifying the flux of sulfate

from each source, the carbon implications of sulfide oxidation can be inferred. The sulfur isotope

value of dissolved sulfate delivered to the South China Sea at the mouth of the Mekong is +3.61h

±0.32, this is lower than estimates of mean global riverine δ34SSO4contribution (7h, Kurtz et al.

(2003) and 4.8h, Burke et al. (2018)). Burke et al. (2018) calculate that 42% of global riverine

sulfate is derived from oxidative pyrite weathering, this is lower than the 57% pyrite derived sulfate

calculated for the Mekong by this study.

Tributaries in northern Thailand, Hueang and Loei have low fpyr values (0.39 and 0.27,

respectively), most of the SO2−
4 is delivered through the dissolution of sedimentary sulfates such

as gypsum or anhydrite. These tributaries drain Triassic-Jurassic marine units. The Nam Lik

K.E. Relph, Ph.D. Dissertation



Quantifying Sulfuric Acid Weathering 128

T
a
b

le
5
.3

:
S

u
lfa

te
c
o
n

c
e
n
tra

tio
n

a
n

d
su

lfu
r

a
n

d
o
x
y
g
e
n

iso
to

p
e

d
a
ta

in
M

e
k
o
n

g
riv

e
r

d
isso

lv
e
d

lo
a
d

.
M

easu
red

d
ata

w
ith

a
n

a
ly

tica
l

errors
a
n

d
g
y
p

su
m

en
d

m
em

b
er

va
lu

e
from

literatu
re

d
ata

(see
tex

t)
are

in
p

u
t

valu
es

to
th

e
m

ix
in

g
m

o
d

el.

S
a
m
p
le
ID

S
a
m
p
le

D
a
te

R
iv
e
r

L
o
c
a
tio

n
S
O

2−4

S
O

2−4

2
σ

δ
1
8
O

H
2
O

δ
1
8
O

H
2
O

2
σ

δ
3
4
S
S
O

4

δ
3
4
S
S
O

4

1
σ

δ
1
8
O

S
O

4

δ
1
8
O

S
O

4

1
σ

δ
3
4
S
S
O

4

g
y
p

δ
3
4
S
S
O

4

g
y
p

1
σ

δ
1
8
O

S
O

4

g
y
p

δ
1
8
O

S
O

4

g
y
p

1
σ

µ
m
o
l/
L

h

M
E
K
1
7
-1

0
7

9
/
1
2
/
1
7

M
e
k
o
n
g

B
a
o
sh

a
n

Y
o
n
g
b
a
o
,
C
h
in

a
7
0
0
.9

3
5
.0

-1
6
.3
6

0
.0
6

1
.5
0

0
.1
2

-0
.2
7

0
.7
7

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

3
3

9
/
1
3
/
1
6

M
e
k
o
n
g

P
a
k

O
u
,
L
u
a
n
g

P
ra

b
a
n
g
,
L
a
o
s

1
1
2
.7

5
.6

-9
.6
1

0
.0
7

3
.9
4

0
.0
9

1
.6
5

0
.2
9

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

3
5

9
/
1
7
/
1
7

M
e
k
o
n
g

P
a
k

O
u
,
L
u
a
n
g

P
ra

b
a
n
g
,
L
a
o
s

1
3
1
.7

6
.6

-1
0
.3
3

0
.1
2

3
.0
9

0
.3
0

1
.8
3

0
.2
0

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

0
7

9
/
1
1
/
1
6

M
e
k
o
n
g

V
ie
n
tia

n
e
,
L
a
o
s

9
8
.6

4
.9

-9
.1
6

0
.0
6

3
.0
5

0
.0
9

4
.7
4

0
.6
3

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

9
6

9
/
1
8
/
1
6

M
e
k
o
n
g

P
a
k
se

,
L
a
o
s

5
5
.9

2
.8

-8
.5
2

0
.0
6

3
.5
6

0
.1
9

5
.2
6

0
.4
2

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

8
9

9
/
2
2
/
1
7

M
e
k
o
n
g

P
a
k
se

,
L
a
o
s

5
1
.5

2
.6

-9
.9
4

0
.0
9

3
.7
6

0
.3
2

3
.2
8

0
.7
8

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-1

0
6

9
/
1
9
/
1
6

M
e
k
o
n
g

S
tu

n
g

T
re

n
g
,
C
a
m
b
o
d
ia

4
7
.6

2
.4

-8
.5
3

0
.1
0

3
.7
3

0
.1
8

3
.4
0

0
.4
4

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-1

3
7

9
/
2
2
/
1
6

M
e
k
o
n
g

K
ra

tie
,
C
a
m
b
o
d
ia

2
6
.5

1
.3

-8
.6
5

0
.0
7

3
.3
5

0
.3
2

4
.0
9

1
.1
4

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

1
3

9
/
2
5
/
1
7

M
e
k
o
n
g

K
ra

tie
,
C
a
m
b
o
d
ia

4
5
.8

2
.3

-9
.6
1

0
.0
9

3
.8
7

0
.3
2

3
.0
0

1
.1
2

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

7
7

9
/
1
7
/
1
6

B
a
n
g

H
ia
n
g

P
h
o
sa

y
,
L
a
o
s

1
3
.7

0
.7

-9
.2
0

0
.0
8

5
.5
1

0
.3
2

3
.7
7

0
.4
3

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

5
6

1
0
/
6
/
1
7

C
h
i

U
b
o
n

R
a
tc
h
a
th

a
n
i,

T
h
a
ila

n
d

2
0
.8

1
.0

-7
.7
4

0
.0
6

5
.5
9

0
.0
9

2
.4
0

0
.2
0

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

2
3

9
/
1
5
/
1
7

H
e
ih
u
i

D
a
li,

C
h
in

a
1
1
0
.2

5
.5

-1
2
.9
0

0
.0
9

6
.2
8

0
.1
6

3
.7
9

0
.2
0

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

3
6

1
0
/
4
/
1
7

H
u
e
a
n
g

N
a
m

K
h
a
e
m
,
T
h
a
ila

n
d

3
1
.1

1
.6

-1
0
.2
0

0
.1
3

0
.4
9

0
.3
2

7
.1
5

1
.4
8

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

4
0

1
0
/
4
/
1
7

L
o
e
i

L
o
e
i,

T
h
a
ila

n
d

2
0
3
.8

1
0
.2

-8
.9
9

0
.1
4

7
.8
5

0
.2
2

9
.6
2

0
.2
9

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

3
0

1
0
/
2
/
1
7

M
a
e
K
o
k

C
h
ia
n
g

S
a
e
n
,
T
h
a
ila

n
d

2
4
.7

1
.2

-8
.5
8

0
.1
0

-3
.4
6

0
.0
4

4
.8
3

0
.2
0

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

5
7

1
0
/
6
/
1
7

M
u
n

U
/
S

S
i
S
a

K
e
t,

T
h
a
ila

n
d

1
6
.6

0
.8

-7
.4
0

0
.0
8

1
0
.0
4

0
.2
6

3
.3
6

0
.6
3

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

5
3

9
/
1
5
/
1
6

N
a
m

H
in
b
o
u
n

B
a
n

N
o
n
g
b
o
u
a
,
L
a
o
s

1
4
.3

0
.7

-8
.4
3

0
.0
4

0
.1
2

0
.1
5

0
.8
6

0
.4
3

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

5
1

9
/
1
5
/
1
6

N
a
m

K
a

D
in

g
P
a
k

K
a
d
in

g
,
L
a
o
s

1
5
.6

0
.8

-8
.3
1

0
.1
3

-2
.4
7

0
.1
0

0
.0
1

0
.5
7

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

1
2

9
/
1
2
/
1
6

N
a
m

K
h
a
n

X
ia
n
g

N
g
e
u
n
,
L
a
o
s

2
2
.9

1
.1

-9
.2
8

0
.0
6

-2
.9
1

0
.1
0

2
.9
9

0
.2
6

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

4
6

9
/
1
8
/
1
7

N
a
m

L
ik

K
a
si,

L
a
o
s

2
0
7
.5

1
0
.4

-8
.7
6

0
.1
2

9
.0
6

0
.1
8

1
1
.9
2

0
.2
5

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

4
7

9
/
1
5
/
1
6

N
a
m

N
g
ia
p

B
e
u
n
g

K
a
n
,
L
a
o
s

7
.3

0
.4

-8
.9
3

0
.0
5

2
.7
1

0
.1
0

4
.0
6

0
.4
2

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

5
8

9
/
2
0
/
1
7

N
a
m

N
g
ju

m
P
a
k

N
g
u
m
,
L
a
o
s

2
3
.6

1
.2

-8
.3
4

0
.1
0

7
.2
6

0
.1
0

7
.2
2

0
.9
2

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-1

2
7

9
/
1
7
/
1
7

N
a
m

O
u

P
h
a
th

u
n
g
,
L
a
o
s

2
3
.1

1
.2

-8
.8
5

0
.1
1

-0
.2
2

0
.0
9

6
.5
2

0
.4
0

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
7
-2

4
5

1
0
/
5
/
1
7

S
o
n
g
k
h
ra

m
S
i
S
o
n
g
k
h
ra

m
,
T
h
a
ila

n
d

9
.2

0
.5

-9
.1
0

0
.1
0

9
.8
5

0
.1
0

2
.1
9

0
.3
5

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-1

1
9

9
/
2
0
/
1
6

T
o
n
le

K
o
n
g

S
tu

n
g

T
re

n
g
,
C
a
m
b
o
d
ia

5
.2

0
.3

-8
.3
0

0
.0
9

6
.7
1

0
.1
0

4
.7
4

0
.3
8

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-1

1
2

9
/
2
0
/
1
6

T
o
n
le

S
re

p
o
k

D
/
S

S
tu

n
g

T
re

n
g
,
C
a
m
b
o
d
ia

5
.5

0
.3

-8
.6
9

0
.0
7

2
.0
5

0
.1
0

6
.5
3

0
.3
1

1
5
.0
9

2
.1

1
4
.5

2

M
E
K
1
6
-0

8
7

9
/
1
8
/
1
6

X
e
D
o
n

P
a
k
se

,
L
a
o
s

3
.6

0
.2

-8
.9
7

0
.0
4

7
.0
0

0
.1
0

5
.3
9

0
.4
8

1
5
.0
9

2
.1

1
4
.5

2



Quantifying Sulfuric Acid Weathering 129

T
a
b

le
5
.4

:
f p

y
r

a
n

d
e
n

d
m

e
m

b
e
r

v
a
lu

e
s

fr
o
m

m
ix

in
g

m
o
d

e
l

o
u

tp
u

t.
A

ll
va

ri
ab

le
s

h
av

e
av

er
a
ge

s
fr

o
m

n
=

1
00

0
it

er
a
ti

on
s

a
n

d
1
σ

er
ro

r.
O

n
ly

it
er

a
ti

o
n

s
w

h
er

e
th

e
δ3

4
S
S
O

4
p
y
r

en
d

m
em

b
er

va
lu

e
is

b
et

w
ee

n
-4

0
h

an
d

+
10

h
a
re

u
se

d
in

th
e

av
er

ag
e.

T
h

e
n
u

m
b

er
of

it
er

at
io

n
s

d
is

co
u

n
te

d
ar

e
p

u
b

li
sh

ed
in

th
e

la
st

co
lu

m
n

.

S
a
m
p
le
ID

S
a
m
p
le

D
a
te

R
iv
e
r

f
O

2
a
t
m

f
O

2
a
t
m

1
σ

f
p
y
r

f
p
y
r

1
σ

δ
1
8
O

S
O

4

g
y
p

δ
1
8
O

S
O

4

g
y
p

1
σ

δ
1
8
O

S
O

4

p
y
r

δ
1
8
O

S
O

4

p
y
r
1
σ

δ
3
4
S
S
O

4

g
y
p

δ
3
4
S
S
O

4

g
y
p

1
σ

δ
3
4
S
S
O

4

p
y
r

δ
3
4
S
S
O

4

p
y
r
1
σ

d
is
c
a
rd

e
d

h
n

M
E
K
1
7
-1

0
7

9
/
1
2
/
1
7

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.5
7

0
.0
5

1
4
.5
6

2
.0
4

-1
1
.2
9

1
.2
8

1
5
.0
6

2
.0
6

-8
.8
0

2
.7
3

0

M
E
K
1
6
-0

3
3

9
/
1
3
/
1
6

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.6
5

0
.0
5

1
4
.4
4

2
.0
8

-5
.0
6

0
.9
7

1
5
.0
7

2
.1
0

-2
.0
8

1
.8
4

0

M
E
K
1
7
-1

3
5

9
/
1
7
/
1
7

M
e
k
o
n
g

0
.0
9

0
.0
5

0
.6
3

0
.0
5

1
4
.5
8

2
.0
3

-5
.6
7

1
.0
0

1
5
.1
7

2
.0
1

-4
.2
1

2
.1
4

0

M
E
K
1
6
-0

0
7

9
/
1
1
/
1
6

M
e
k
o
n
g

0
.0
9

0
.0
5

0
.5
1

0
.0
7

1
4
.4
4

1
.9
7

-4
.6
1

0
.9
3

1
5
.1
2

2
.0
7

-9
.2
1

4
.1
5

0

M
E
K
1
6
-0

9
6

9
/
1
8
/
1
6

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.4
9

0
.0
7

1
4
.4
3

2
.0
2

-4
.0
6

0
.9
1

1
4
.9
8

2
.1
9

-8
.7
5

4
.3
4

0

M
E
K
1
7
-1

8
9

9
/
2
2
/
1
7

M
e
k
o
n
g

0
.0
9

0
.0
5

0
.5
6

0
.0
7

1
4
.5
1

2
.0
5

-5
.3
5

1
.0
1

1
5
.0
8

2
.1
2

-5
.3
3

3
.3
5

0

M
E
K
1
6
-1

0
6

9
/
1
9
/
1
6

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.6
0

0
.0
6

1
4
.5
3

2
.0
1

-4
.0
7

0
.9
1

1
5
.0
4

2
.1
8

-4
.1
4

2
.6
6

0

M
E
K
1
6
-1

3
7

9
/
2
2
/
1
6

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.5
6

0
.0
9

1
4
.5
5

2
.0
3

-4
.1
8

0
.9
2

1
5
.0
3

2
.1
7

-6
.5
5

4
.4
0

2

M
E
K
1
7
-2

1
3

9
/
2
5
/
1
7

M
e
k
o
n
g

0
.0
8

0
.0
5

0
.5
8

0
.0
8

1
4
.4
7

2
.0
1

-5
.0
5

0
.9
6

1
5
.0
7

2
.0
8

-4
.5
9

3
.4
1

0

M
E
K
1
6
-0

7
7

9
/
1
7
/
1
6

B
a
n
g

H
ia
n
g

0
.0
8

0
.0
5

0
.5
6

0
.0
6

1
4
.5
9

1
.9
9

-4
.6
9

0
.9
4

1
5
.0
0

2
.1
0

-2
.3
1

2
.8
1

0

M
E
K
1
7
-2

5
6

1
0
/
6
/
1
7

C
h
i

0
.0
9

0
.0
5

0
.6
8

0
.0
5

1
4
.4
9

2
.0
5

-3
.3
0

0
.8
9

1
5
.0
0

2
.1
8

1
.0
0

1
.6
0

0

M
E
K
1
7
-1

2
3

9
/
1
5
/
1
7

H
e
ih
u
i

0
.0
9

0
.0
5

0
.4
7

0
.0
5

1
4
.4
2

1
.9
0

-8
.0
4

1
.1
0

1
4
.9
9

2
.1
9

-3
.7
7

3
.4
1

0

M
E
K
1
7
-2

3
6

1
0
/
4
/
1
7

H
u
e
a
n
g

0
.0
8

0
.0
5

0
.3
9

0
.0
7

1
4
.9
7

1
.8
3

-5
.6
2

1
.0
2

1
5
.0
2

2
.0
8

-2
2
.9
9

7
.4
7

1
8
6

M
E
K
1
7
-2

4
0

1
0
/
4
/
1
7

L
o
e
i

0
.0
9

0
.0
5

0
.2
7

0
.0
6

1
4
.9
2

1
.6
7

-4
.4
4

0
.9
5

1
5
.0
3

2
.0
8

-1
3
.0
4

9
.0
6

1
1
1

M
E
K
1
7
-2

3
0

1
0
/
2
/
1
7

M
a
e
K
o
k

0
.0
9

0
.0
5

0
.5
2

0
.0
6

1
4
.6
0

1
.9
8

-4
.0
9

0
.9
3

1
5
.0
7

2
.1
5

-2
1
.1
9

4
.9
4

8

M
E
K
1
7
-2

5
7

1
0
/
6
/
1
7

M
u
n

U
/
S

0
.0
9

0
.0
5

0
.6
3

0
.0
7

1
4
.4
5

2
.1
2

-3
.0
1

0
.8
9

1
5
.1
9

2
.0
4

6
.9
3

1
.6
7

1
5

M
E
K
1
6
-0

5
3

9
/
1
5
/
1
6

N
a
m

H
in
b
o
u
n

0
.0
8

0
.0
5

0
.7
4

0
.0
5

1
4
.4
6

2
.0
4

-3
.9
7

0
.9
1

1
5
.0
5

2
.0
1

-5
.3
1

1
.7
5

0

M
E
K
1
6
-0

5
1

9
/
1
5
/
1
6

N
a
m

K
a

D
in

g
0
.0
8

0
.0
5

0
.7
9

0
.0
6

1
4
.4
5

2
.0
2

-3
.8
6

0
.9
1

1
5
.1
3

2
.0
8

-7
.2
9

1
.7
7

0

M
E
K
1
6
-0

1
2

9
/
1
2
/
1
6

N
a
m

K
h
a
n

0
.0
8

0
.0
5

0
.5
9

0
.0
5

1
4
.4
8

2
.0
5

-4
.7
5

0
.9
4

1
5
.1
4

2
.1
4

-1
5
.5
3

3
.3
7

0

M
E
K
1
7
-1

4
6

9
/
1
8
/
1
7

N
a
m

L
ik

0
.0
9

0
.0
5

0
.1
9

0
.0
6

1
5
.7
3

1
.4
0

-4
.2
4

0
.9
1

1
4
.6
8

1
.9
9

-1
6
.9
4

1
0
.6
2

3
8
5

M
E
K
1
6
-0

4
7

9
/
1
5
/
1
6

N
a
m

N
g
ia
p

0
.0
8

0
.0
5

0
.5
4

0
.0
6

1
4
.4
3

2
.0
3

-4
.4
7

0
.9
3

1
5
.1
3

2
.0
8

-8
.0
6

3
.4
7

0

M
E
K
1
7
-1

5
8

9
/
2
0
/
1
7

N
a
m

N
g
ju

m
0
.0
8

0
.0
5

0
.3
9

0
.0
8

1
4
.5
0

1
.9
5

-3
.9
5

0
.9
1

1
5
.1
5

2
.1
2

-6
.2
6

6
.5
2

5

M
E
K
1
7
-1

2
7

9
/
1
7
/
1
7

N
a
m

O
u

0
.0
8

0
.0
5

0
.4
3

0
.0
6

1
4
.6
5

1
.8
5

-4
.3
6

0
.9
2

1
5
.0
2

2
.0
4

-2
1
.6
0

6
.2
2

2
8

M
E
K
1
7
-2

4
5

1
0
/
5
/
1
7

S
o
n
g
k
h
ra

m
0
.0
8

0
.0
5

0
.6
4

0
.0
5

1
4
.5
6

2
.0
0

-4
.5
9

0
.9
1

1
5
.0
1

2
.0
5

6
.9
7

1
.3
6

3

M
E
K
1
6
-1

1
9

9
/
2
0
/
1
6

T
o
n
le

K
o
n
g

0
.0
9

0
.0
5

0
.5
3

0
.0
6

1
4
.5
2

1
.9
8

-3
.7
6

0
.9
2

1
5
.1
0

2
.0
7

-1
.0
0

3
.1
3

0

M
E
K
1
6
-1

1
2

9
/
2
0
/
1
6

T
o
n
le

S
re

p
o
k

D
/
S

0
.0
9

0
.0
5

0
.4
2

0
.0
6

1
4
.5
3

1
.8
9

-4
.1
9

0
.9
0

1
5
.0
7

2
.0
2

-1
6
.5
8

6
.1
9

1
1

M
E
K
1
6
-0

8
7

9
/
1
8
/
1
6

X
e
D
o
n

0
.0
9

0
.0
5

0
.4
8

0
.0
7

1
4
.4
6

1
.9
8

-4
.4
2

0
.9
2

1
5
.2
2

2
.1
2

-2
.4
2

3
.7
0

0

K.E. Relph, Ph.D. Dissertation



Quantifying Sulfuric Acid Weathering 130

MEK17 − 158 MEK17 − 127 MEK16 − 112

MEK16 − 96 MEK16 − 7 MEK16 − 47

MEK17 − 146 MEK17 − 240 MEK17 − 213

MEK17 − 236 MEK16 − 12 MEK17 − 230

−40 −30 −20 −10 0 10 20 −40 −30 −20 −10 0 10 20 −40 −30 −20 −10 0 10 20

−12

−8

−4

0

4

8

12

16

20

−12

−8

−4

0

4

8

12

16

20

−12

−8

−4

0

4

8

12

16

20

−12

−8

−4

0

4

8

12

16

20

δ34SSO4

δ18
O

SO
4

Cambodia Tributaries
Left Bank Laos Tributaries
Mekong Main Channel
Myanmar Tributaries
Right Bank Thai Tributaries

Figure 5.13 (continues on next page)
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MEK17 − 256 MEK17 − 257 MEK17 − 245
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Figure 5.13 (continued): Mixing lines between values generated by Monte Carlo
method. The gypsum end member values (+) are generated by Monte Carlo for the given mean
and standard deviation. The pyrite end member (x) is calculated with Monte-Carlo generated
values of δ18OH2O and δ18OSO4 then δ34SSO4 . The model uses n=1000, but the figures show n=100
for the Monte-Carlo results. The larger filled in symbols are the averages of the Monte Carlo
generated values for the end members and sample. The symbols and colours match those in Figure
5.9, separating the samples into location; China Tributaries (orange), Myanmar Tributaries (green),
Left Bank Laos Tributaries (lilac), Right Bank Thai Tributaries (yellow), Cambodia Tributaries
(blue-green) and Mekong Main Stem (pink).

in northern Laos has the highest proportion of SO2−
4 derived from the dissolution of sedimentary

sulfates (86%) and is the tributary with the largest sulfate flux.

Sulfate is delivered in almost equal quantities from oxidative weathering of sulfide and

dissolution of sedimentary sulfates in nine tributaries. The Heihui tributary in China, is

predominantly Jurassic marine units but there is a large area of Pre-Cambrian metamorphic rock

from the Central Axis of the Himalayas (Figure 1.2). These metamorphic rocks are undifferentiated

on the geological map, however pyrite is a common precipitate from circulating hydrothermal fluids

in metamorphic rocks and pyrite is also common in some sedimentary rocks which survives as such

in metamorphic rocks, a reasonable indication of why fpyr is 0.47. The Nam Ou river drains

northeastern Laos and is one of the largest tributaries in the Mekong basin by size and although

it has a low concentration of SO2−
4 , 23.1µmol/L, it is the second largest in terms of sulfate flux

because of the high discharge. The Nam Ou has a fpyr value of 0.43, so about half of sulfate

delivered from this catchment plays no role in the carbon cycle. The Nam Ou drains Devonian

to Permian limestones and some Cretaceous to Jurassic gypsum and halite units (Kiernan, 2015)

and has a landscape dominated by impressive karst. The Tonle Srepok drains Triassic to Jurassic

marine units and Pliocene to Quaternary basalts in northeastern Cambodia and has a fpyr value
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of 0.42. The Tonle Kong mostly drains Quaternary basalts which is reflected in the end member

value of δ34SSO4pyr = -1.00h and δ18OSO4pyr = -3.76h, calculated by the model. The Tonle Kong

has a sulfate concentration of only 5.2µmol/L and fpyr value of 0.53, but it is the tributary with

the largest discharge in the Mekong therefore the second largest sulfate flux.

The tributaries with the highest fpyr are found in the Upper Mekong close to the source

and in the Middle Mekong on both banks of the main channel. The fpyr value in the Mekong main

channel at Baoshan, China is 0.57, indicating that there are more pyrite sources closer to the source

of the Mekong, upstream of our most northerly sample. The surface lithology of the right bank of

the Middle Mekong in Thailand is dominated by evaporite units. However the fpyr values suggest

that only 37% of the sulfate delivered by the Mun river, 32% of the sulfate delivered by the Chi river

and 36% of the sulfate delivered by the Songkhram river is sourced from sedimentary sulfates. The

vast majority of sulfate on the Khorat Plateau appears to come from pyrite. Sedimentary sulfates

deliver high SO2−
4 concentrations but sulfate concentrations in the Mun, Chi and Songkram are less

than 21µmol/L, in contrast Cl− concentrations are between 400-804µmol/L indicating the dominant

evaporite is halite. The Maha Sarakham evaporite formation is underlain by the Mesozoic Khorat

Group which comprises sandstone, siltstone and shale units. These terrigenous Khorat Group

units contain abundant disseminated pyrite and some galena and sphalerite (Tabakh et al., 1998)

which must contribute sulfate with important implications for the carbon budget of the Mekong

river basin. The Nam Hinboun and Nam Kading have the highest fpyr values, 0.74 and 0.79,

respectively. They mainly drain Triassic to Jurassic and Carboniferous to Permian limestone units

(Ponta & Aharon, 2014) where pyrite is common, they also drain Palaeozoic igneous units of the

Annamite mountain range in the north (Ponta & Aharon, 2014). Although fpyr is high, the sulfate

flux contributed by these tributaries is less than 10% of the sulfate flux contributed by the Nam

Lik.

5.7.2 Model End Members

In general the model works well to provide an estimate of mixing proportions between two end

members. Samples are a mix of two end members that have a δ34SSO4 and δ18OSO4 of a reasonable

value, dictated by literature values where few iterations of the Monte-Carlo mixing approach have

been discarded. Some samples have less than 5% of the iterations removed before averaging fpyr

values because the slightly larger analytical errors in δ18OSO4 of the sample, allows for mixing

between extremes of end members which is unlikely. There are three samples that have between
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Figure 5.14: Model results of fpyr downstream in Mekong main stem and tributaries.
The main stem has an average fpyr of 0.57± 0.06h 1σ with the highest values at Luang Prabang
and lowest at Pakse. Symbols are explained in Figure 5.7.

11-38% of the Monte-Carlo iterations removed. The sample for Nam Lik (MEK17-146, Figure 5.13)

lies very close to the gypsum end member, thus the model results in a fpyr value of 0.19, but also a

larger error in the pyrite end member, hence the model remove 385 iterations before averaging the

model results. Similarly, the Loei tributary (MEK17-240, Figure 5.13) plots close to the gypsum

end member (fpyr=0.27) so 111 iteration of extreme mixing scenarios were removed before averaging

final fpyr. In the Hueang tributary 186 iterations were removed before fpyr values were averaged

(MEK17-236, Figure 5.13) because the sample has a larger analytical error of δ18OSO4 allowing for

a larger mixing range passing through the sample and thus a large error in the pyrite end member.

As a check on the model, the δ34SSO4 values calculated for the sulfide end member can

be compared to common lithological end member values, shown in Figure 5.1. δ34SSO4 values

for sulfate delivered by sulfide end members in the Mekong are between -22.99h and +6.97h,

well within the range of sedimentary and igneous sulfides, therefore constraining the possible end

members in the Mekong River basin. Because of the constraints on the inputs to the model, there

are no samples that lie out with the common range.
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Figure 5.15: fpyr (A) and pyrite derived SO2−
4 flux (B) in Mekong tributaries. Tributaries

where fpyr values >0.5 are yellow, <0.5 are blue (where there is more SO2−
4 derived from gypsum

dissolution) and values close to 0.5 are white (A). Flux of sulfate derived from the oxidative
weathering of pyrite (B) is calculated with fpyr values calculated by the mixing model, measured
SO2−

4 concentrations from this study and discharge from ADCP data, MRC historical data set and
other literature sources cited in Figure 5.9 caption. No δ34SSO4 or δ18OSO4 data is grey. Tributaries
plotted on A but not B are due lack of discharge data for these catchments.
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5.7.3 Model Limitations

The biggest limitation of this model is not being able to give a precise value to δ18OSO4pyr. The

exact fraction of atmospheric O2 incorporated into sulfate cannot be constrained further than a

range of 0% to 17%. Moreover no data for the sulfur isotopes of the sulfide end member has been

input to this model, rather the δ34Spyr has been calculated by the model. A future improvement

would be to analyse rock samples for δ34S. By determining δ34Spyr with measurements, it may

be possible to reduce the range of δ18OSO4pyr. It must also be noted, that at main stem sample

sites, calculations of δ18OSO4pyr use the local water δ18OH2O in the main stem although δ18OSO4

is derived from tributaries with water of different compositions, therefore fpyr values calculated in

tributaries are more reliable.

Additionally, this model only takes into account sulfate mixing between two end members, it

does not take into account secondary processes such as BSR which can alter the isotopic composition

of remaining SO2−
4 significantly (Kaplan & Rittenberg, 1964; Detmers et al., 2001; Turchyn et al.,

2013). Large fractionations between sulfate and sulfide would alter remaining sulfate composition.

Sulfate that is reduced to sulfide via BSR may also be re-oxidised to sulfate and this sulfate would

have a different isotopic composition to the initial sulfate.

5.8 Conclusion

The Mekong river has one of the worlds largest sulfate fluxes and 57% of the sulfate flux that is

delivered to the South China Sea is derived from the oxidative weathering of pyrite. This Chapter

has presented a model to partition measured sulfate concentrations in river waters between two

main lithological end members; sedimentary sulfates and sedimentary sulfides. A gypsum end

member is constrained from literature data and δ18OSO4 of a sedimentary sulfide end member is

calculated using individual sample δ18OH2O values. δ34SSO4 of the sedimentary sulfide end member

is subsequently determined by a new mixing model and confirmed acceptable by comparison

against common literature values. The calculated values for fgyp are used in the next Chapter to

correct Ca2+ and SO2−
4 concentrations for evaporite input and fpyr values are used in weathering

calculations to determine the impact of pyrite derived sulfate on the carbon budget of the Mekong

river basin (Chapter 6).



Chapter 6

Carbon Budget of the Mekong River Basin

6.1 Introduction

Large rivers play a vital role in transporting carbon from the continents to the oceans. Silicate

weathering reactions on the continents consume atmospheric CO2 and the subsequent precipitation

of carbonate minerals in the oceans sequesters atmospheric CO2 into the rock record, completing

the negative feedback process that helps to regulate climate (Berner et al., 1983; Walker et al.,

1981). Dissolved solids in river waters are used as a proxy for rock weathering and many studies

have measured river waters in order to calculate the silicate weathering flux of global river basins

(e.g. Gaillardet et al., 1999). Studies quantifying chemical weathering rates have typically neglected

the reaction of sulfuric acid with carbonates which can contribute to the solutes present in river

water (Gaillardet et al., 1999; Moon et al., 2014; Mortatti & Probst, 2003; Singh et al., 2005).

Only recently has it been shown that the sulfuric acid weathering of carbonates could have serious

significant global climatic consequences (Torres et al., 2014, 2017).

Sulfuric acid weathering of carbonate minerals releases CO2 to the atmosphere, but the

timescale on which CO2 is released depends on the environment where the reaction occurs. To

reiterate, the weathering of carbonate minerals by sulfuric acid releases CO2 instantaneously when
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the reaction site is connected to the atmosphere (Equation 6.1).

H2SO4 + CaCO3 ⇒ CO2(g) +H2O + Ca2+ + SO2−
4 (6.1)

Whereas, when the reaction site is confined and therefore not directly connected to the atmosphere,

the released CO2 is transferred as HCO−
3 to river water and eventually to the oceans (Equation

6.2). Over 105-106 year timescales the carbon released from carbonate minerals is degassed to

the atmosphere as CO2 when carbonate precipitates in the oceans. The release of CO2 from

carbonate minerals on any timescale could offset the CO2 drawdown from silicate weathering and

have significant climate implications.

H2SO4 + 2CaCO3 ⇒ 2Ca2+ + SO2−
4 + 2HCO−

3 (6.2)

Determining the flux of oxidative weathering of pyrite has been difficult due to multiple

sources of SO2−
4 in river waters. As measuring techniques and precision have improved, δ18OSO4

and δ34SSO4 in SO2−
4 can be measured in increasingly small SO2−

4 sample sizes (Paris et al., 2013).

As such, SO2−
4 in river water can be successfully partitioned to it’s sources to calculate the oxidative

weathering of pyrite flux (Calmels et al., 2007). In order to fully quantify a carbon budget, the

amount of oxidative pyrite weathering of carbonates and thus the release of atmospheric CO2 must

too be calculated on instantaneous and 105-year timescales to access the offset from the atmospheric

CO2 removal by carbonic acid weathering of silicates.

Calculating the carbon budget cannot be achieved simply by measuring dissolved inorganic

carbon (DIC), predominantly found as HCO−
3 species, in the river; not all chemical reactions supply

DIC to the river, some carbon released from reactions is degassed, as in Equation 6.1. A modelling

framework partitioning cations to their chemical weathering sources is set out in Chapter 4. Using

this framework over 70% of the cations in the Mekong river are derived from chemical weathering

of carbonate rocks. However, whether carbonic or sulfuric acid dissolves carbonate rocks has very

different implications for global carbon budgets. Chapter 5 used δ18OSO4 and δ34SSO4 in a two

end member mixing model, to partition SO2−
4 between gypsum and sedimentary pyrite sources. An

average of 57% of sulfate in the Mekong is derived from pyrite and varies between 19% and 79% in

the tributaries. The combination of a high proportion of carbonate rocks and 57% sulfate derived

from oxidative weathering of pyrite could indicate carbon release in the Mekong River basin.

This Chapter justifies the forward modelling framework set out in Chapter 4 and develops
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the forward modelling framework (after Galy & France-Lanord, 1999) to partition solutes between

mineral and acidity sources using the fraction of pyrite derived sulfate (calculated in Chapter 5).

Torres et al. (2016) propose that chemical weathering reactions in confined and open environments

release different products, which is included here and discussed in Section 6.2. It is useful to be able

to summarise the results of the cation partitioning by plotting data on a summary figure comparing

the relative contributions from carbonate and silicate lithologies and acidity sources (H2CO3 or

H2SO4). It is particularly useful when discharge data is lacking and the forward model partitioned

cations can not be calculated as fluxes. This second framework used to present partitioned cation

data builds on work by Torres et al. (2016).

Finally, the net dissolved inorganic carbon budget for the Mekong River is calculated with

the available discharge data. The climate implications with regards to CO2 release or consumption

will be discussed on the timescales of chemical dissolution within the catchment (instantaneous)

and carbonate precipitation in the oceans (>105 years) (Section 6.5.3). The spatial and temporal

controls of the CO2 budget within the river basin will also be discussed.

6.2 Modelling Approaches to Elemental Partitioning

It is evident, from the matrices describing CO2 consequences for each idealised weathering reaction

in Chapter 2, that it is essential to partition the fraction of silicate and carbonate weathering and the

fraction of H2CO3 and H2SO4 involved in weathering reactions due to the different implications on

the carbon cycle. This section describes how dissolved constituents of river water are apportioned

to their various sources - rain, evaporite, carbonates, silicates, sulfides, and anthropogenic - in

order to quantify the impact of different weathering reactions on the carbon budget. Three main

modelling approaches have previously been used to partition ions and isotopes. The advantages and

drawbacks of each modelling approach is discussed below, and the appropriate model is selected

for use on the collected Mekong basin data.

A direct method is to apportion the elements measured in the dissolved load to a suite

of mineral phases with set element stoichiometries. The quantity of minerals being weathered is

calculated using a matrix. In this modal decomposition method, used by Garrels & Mackenzie

(1967) and later Bickle et al. (2015), the number of minerals specified is limited to the number of

dissolved constituents measured, and therefore this may lead to an under-constrained problem in

geologically complex basins. This method has not been widely utilised because of the simplified
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mineral compositions required in the model. Here, this issue of simplified mineral compositions

is addressed by using Ca/Na and Mg/K ratios in silicate residues analysed for each individual

catchment.

An inverse model has been used to partition solutes for many rivers including the Congo

(Négrel et al., 1993), on world rivers (Gaillardet et al., 1999), the Mackenzie River system (Millot

et al., 2003), the Red River (Moon et al., 2007), and the Yangtze (Chetelat et al., 2008). The model

is based on a mass budget equation describing the mixing of different end members in varying

proportions for species such as Cl−, Ca2+, Mg2+, HCO−
3 , and Sr isotopes. The model takes a

priori parameters and iterates over the given range (the range is based on natural variability and

knowledge of the reservoir) to calculate a posteriori values for end members and mixing proportions

that best fit the measured data in a least squares sense. In the mixing calculations, concentrations

of end members are normalised to Na to reduce effects of evaporation or dilution. Na is chosen

for its lack of involvement in nutrient cycling (Millot et al., 2003) and the sources of Na are more

constrained than other elements.

Inverse models can be useful when end members are unknown, however, problems arise

from this. There are multiple solutions for end members that mix in the same proportion to give

the measured value (Sohn, 2013). It is also assumed that minerals dissolve congruently to give

measured end member values. Moreover, only one solution for each end member is calculated and

is applied to the whole river, or in the case of Gaillardet et al. (1999) to all world rivers, which

clearly oversimplifies the lithological characteristics of a river basin (Figure 6.1A).

The forward model developed by Galy & France-Lanord (1999) and applied by numerous

other studies (e.g. Moon et al., 2007; Li et al., 2014a) is also based upon mass budget equations for

multiple elements, but elemental ratios of carbonate to silicate reservoirs are provided rather than

calculated. The end member ratios are based on chemical analyses of whole-rock compositions,

individual plagioclase grains (Galy & France-Lanord, 1999), or monolithological bedload analyses.

As with the inverse model, it is assumed that minerals weather congruently to provide these

end member ratios. The forward model is advantageous as it can incorporate individual end

member ratios for each sample which allows spatial heterogeneity to be accounted for (Figure

6.1B). The forward model employed by Galy & France-Lanord (1999) corrects for rain inputs

then the remaining solutes are accounted for by evaporites, sulfides, carbonates, and silicates.

In Galy & France-Lanord (1999), or others that have used their model (e.g. Li et al., 2014a),

SO2−
4 in river water is attributed to sulfide oxidation, although no correction is made for other
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Figure 6.1: Example of the three methods previously used to model the partitioning of
dissolved elements. A: The inverse model assigns one value to each of Ca/Na and Mg/K ratios in
silicate end members over the whole catchment as is illustrated by continuous crossed–texture over
all catchments in the Mekong (e.g. Gaillardet et al., 1999). B: Analysed samples are used in the
forward model to assign unique values to each catchment, illustrated by the exclusive pattern in each
catchment in the Mekong. This is the method followed here, modified after Galy & France-Lanord
(1999). C: Prescribed lithology compositions are used through the catchment, but in varying
proportions (Torres et al., 2016). This forms an adapted forwards model, as illustrated by the five
lithologies applies in varying amounts to each catchment.
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cations, for example Ca2+, delivered by sulfuric acid reacting with other minerals. Furthermore,

evaporite corrections are only made for halite, not gypsum, which also provides Ca2+ and SO2−
4

ions. Torres et al. (2016) partition solutes based largely on a forward model, but elemental ratios

are fixed for multiple lithologies which are then mixed in different proportions to provide the river

water composition (Figure 6.1C). Solutes are partitioned between sources of H2CO3 and H2SO4

weathering using SO2−
4 :total cation ratios and δ34S isotopes (Torres et al., 2016). Here, the forward

model is modified to account for the complex and heterogeneous geology of the Mekong River basin.

This is done by employing acidity partitioning using δ18OSO4 and δ34SSO4 isotopes (Chapter 5)

and incorporating silicate end member ratios for each sample (Chapter 4).

6.3 A Revised Forward Model for Partitioning Elemental Contributions

In Chapter 4, river solute corrections for rain water and halite inputs were discussed, and cations

were partitioned between silicate and carbonate weathering using Ca/Na and Mg/K ratios in bank

residue ratios. For completeness the corrections and silicate mineral weathering partitioning method

are repeated now as the forward model is developed and information from Chapter 5 is included to

correct cations for gypsum evaporites and further partition cations between acidity source as well

as lithology.

In order to calculate the amount of each weathering reaction occurring, the forward model

is used to partition dissolved solutes between end members. Measured solutes in the river are a

mixture of atmospheric and mineral weathering inputs, and can be expressed as a mass budget

equation for each element, X (in molar concentrations):

[X]riv = [X]atmos + [X]evp + [X]pyr + [X]Total
sil + [X]Total

carb (6.3)

Elements are shown with their source and acidity participating in the reaction, building upon the

forward model established by Galy & France-Lanord (1999). XTotal indicates the weathering

contribution from all acidity sources (though H2CO3 and H2SO4 are the main reagents involved in

weathering reactions). The contribution to riverine solutes from cyclic or atmospheric deposition

(atmos), evaporites (evp), sulfides (pyr), silicates (sil) and carbonates (carb) to the river (riv) are

partitioned for elements K+, Na+, Ca2+, Mg2+, Cl−, and the SO2−
4 ion using a forward model

decomposition (Equations 6.4-6.9).
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Rain Correction

Firstly, corrections are made for atmospheric inputs using the X/Cl ratio in rain. Due to the large

size of the Mekong basin and the varying distance of sample sites to the coast, five rain samples

were collected over the basin and applied to water samples within their geographic vicinity (further

details on rain correction can be found in Section 4.3.2.1). Elements corrected for atmospheric

inputs are indicated with an asterisk, X∗.

Cl∗riv = Clevp (6.4)

SO∗
4 riv = SO4 evp + SO4 pyr (6.5)

K∗
riv = Kcarb

sil +Ksulf
sil (6.6)

Na∗riv = Naevp +Nacarbsil +Nasulfsil (6.7)

Ca∗riv = Caevp + Cacarbsil + Casulfsil + Cacarbcarb + Casulfcarb (6.8)

Mg∗riv = Mgcarbsil +Mgsulfsil +Mgcarbcarb +Mgsulfcarb (6.9)

Evaporite Correction

Secondly, salt input is calculated. In the Mekong basin evaporites can be found in China, however,

the majority of evaporites are concentrated in the Khorat Plateau, Thailand, on the right (west)

bank of the Middle Mekong. This is in distinct contrast to the left bank in Laos which lacks

evaporites (Figure 4.21). Dominated by a large evaporite basin, tributaries draining the Khorat

Plateau have Na∗riv concentrations up to 754µmol/L. Halite is a common salt that releases one mole

of Na+ for each mole of Cl− when dissolved. Cl− is sourced from atmospheric deposition or salts

(Equation 6.4), so all rain corrected Cl− (Cl∗) can be used to correct Na∗riv for salt in the same

ratio (Equation 6.10) (Galy & France-Lanord, 1999). Any remaining Na+ after correction for rain

and salt is derived from weathering of silicates with all acidity sources (Equation 6.11). Negligible

Na+ is derived from carbonates (Berner, 2004). If halite input is overcorrected NaTotal
sil becomes

negative. This is where there is a large contribution from evaporites but little to no Na-silicate in

the catchment. In the scenario presented here, NaTotal
sil is set to zero (Equation 6.12) (discussed in

Chapter 4.4.2).
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Naevp = Cl∗riv (6.10)

NaTotal
sil = Na∗riv −Naevp (6.11)

if Naevp > Na∗riv then Na
Total
sil = 0 (6.12)

Evaporites such as anhydrite (CaSO4) or gypsum (CaSO4·H2O) provide Ca2+ and SO2−
4 in the

same molar ratio (Equation 6.13). SO2−
4 in the river is supplied by a mixture of weathering of

sedimentary sulfates and sulfides (Equation 6.5), and δ34SSO4 and δ18OSO4 are used to calculate

the proportion of SO2−
4 derived from each source (discussed in detail in Chapter 5). The proportion

of SO2−
4 derived from gypsum, fgyp, is used to calculate [SO2−

4 ]gyp (Equation 6.14) which can then be

used to correct Ca∗riv for gypsum contributions. This builds upon models by Galy & France-Lanord

(1999) and Li et al. (2014a) in which the [SO2−
4 ]gyp contributions are assumed to be equal to the

minimum concentration of SO2−
4 in the Mekong catchment.

Cagyp = SO4 gyp (6.13)

[SO2−
4 ]gyp = [SO2−

4 ]∗riv ∗ fgyp (6.14)

Partitioning Solutes Between Silicate and Carbonate Sources

Weathering of silicates and carbonates supplies Ca2+ and Mg2+ to a river. The contribution of

Ca2+ and Mg2+ from each lithological input is partitioned using elemental ratios in silicates. Most

previous work has used one ratio for the entire basin whether elements have been partitioned using

the forward or inverse model (e.g. Galy & France-Lanord, 1999; Gaillardet et al., 1999; Millot

et al., 2003; Chetelat et al., 2008; Li et al., 2014a). In this study, bank samples collected from every

tributary in the Mekong have been leached to analyse the silicate fraction and calculate unique

Ca/Na and Mg/K ratios. The residue data presented in Chapter 4.3.1 highlights the range in

geologically diverse basins such as the Mekong, this is an important improvement in the forward

model.

Ca2+ contributed by both sulfuric and carbonic acid weathering of silicates (CaTotal
sil ) is

calculated by Equation 6.15. Na∗riv is used with the Ca/Na ratio in the silicate residue to

calculate CaTotal
sil . The Ca2+ supplied by total carbonate weathering (by both H2CO3 and H2SO4)

(Equation 6.16) is the remaining Ca2+ after evaporite correction (Equation 6.13 - 6.14) and removal
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of silicates.

CaTotal
sil = Na∗riv ∗

(
Ca

Na

)
sil residue

(6.15)

CaTotal
carb = Ca∗riv − Cagyp − CaTotal

sil (6.16)

Similarly, Mg-silicates are partitioned by Equation 6.17 using K∗
riv and Mg/K ratios in the silicate

residue to calculate MgTotal
sil . Mg/K ratios are used instead of Mg/Na due to the smaller range

and a normal distribution in values (Figure 4.3), additionally less corrections are made on K than

Na, making K more reliable. Remaining Mg2+ after atmospheric correction is from weathering of

carbonates (by all acidity sources) (Equation 6.18).

MgTotal
sil = K∗

riv ∗
(
Mg

K

)
sil residue

(6.17)

MgTotal
carb = Mg∗riv −MgTotal

sil (6.18)

6.3.1 Developing the Forward Model with Acidity Source Partitioning

Partitioning Sulfuric Acid Between Silicate and Carbonate Minerals

Sulfuric acid (H2SO4) and carbonic acid (H2CO3) can weather carbonates and silicates with

different carbon implications (Equations detailed in Chapter 2). Due to the current lack of

experimental data, it is not possible to exactly determine in what proportion H2SO4 and H2CO3

weather silicates and carbonates, but a first order assumption is that both H2CO3 and H2SO4

weather carbonate and silicate minerals in the same proportion (Equation 6.19). For example the

ratio of Cacarbcarb to Cacarbsil is the same as the ratio of Casulfcarb to Casulfsil (where n is the amount of the

reaction).
nCarbH2CO3

nSilH2CO3
=
nCarbH2CO3 + nCarbH2SO

O
4

nSilH2CO3 + nSilH2SO4
=
nCarbH2SO

O
4

nSilH2SO4
(6.19)

The proportion of SO2−
4 derived from oxidative weathering of pyrite, fpyr, is used to

calculate [SO2−
4 ]pyr (Equation 6.20). [SO2−

4 ]pyr will be charge balanced by Ca2+ and Mg2+ from

carbonates and K+, Na+, Ca2+, Mg2+ from silicates. Therefore the amount of H2SO4 that is
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available to weather carbonates is the fraction of total carbonate ions over total ions derived from

carbonates and silicates (Equation 6.21). Similarly for the H2SO4 available to weather total silicates

(Equation 6.22).

[SO2−
4 ]pyr = [SO2−

4 ]∗riv ∗ fpyr (6.20)

[SO2−
4 ]Total carb = [SO2−

4 ]pyr ∗
CaTotal

carb +MgTotal
carb

CaTotal
sil + CaTotal

carb +MgTotal
sil +MgTotal

carb +NaTotal
sil +KTotal

sil

(6.21)

[SO2−
4 ]Total sil = [SO2−

4 ]pyr ∗
CaTotal

sil +MgTotal
sil +Nasil +Ksil

CaTotal
sil + CaTotal

carb +MgTotal
sil +MgTotal

carb +NaTotal
sil +KTotal

sil

(6.22)

The total amount of carbonate minerals weathered by sulfuric acid can be partitioned

between Ca-carbonate and Mg-carbonate. The product of Equation 6.21 is the amount of H2SO4

available to weather total carbonates. [SO2−
4 ]Total carb multiplied by the fraction of Ca or Mg

derived from carbonate minerals, as a fraction of total Ca- and Mg-carbonate minerals, calculates

the Ca or Mg derived from sulfuric acid weathering of carbonate minerals (Equations 6.23-6.24).

Similarly for silicate minerals; the total amount of H2SO4 available to weather silicate minerals

(Equation 6.22) is apportioned according to the proportion of each silicate mineral, Ca, Mg, K,

and Na, as a ratio of total silicate minerals (Equations 6.25-6.28).

CasulfOcarb = [SO2−
4 ]Total carb ∗

CaTotal
carb

CaTotal
carb +MgTotal

carb

(6.23)

MgsulfOcarb = [SO2−
4 ]Total carb ∗

MgTotal
carb

CaTotal
carb +MgTotal

carb

(6.24)

Casulfsil = [SO2−
4 ]Total sil ∗

CaTotal
sil

CaTotal
sil +MgTotal

sil +NaTotal
sil +KTotal

sil

(6.25)

Mgsulfsil = [SO2−
4 ]Total sil ∗

MgTotal
sil

CaTotal
sil +MgTotal

sil +NaTotal
sil +KTotal

sil

(6.26)

Nasulfsil = [SO2−
4 ]Total sil ∗

NaTotal
sil

CaTotal
sil +MgTotal

sil +NaTotal
sil +KTotal

sil

(6.27)

Ksulf
sil = [SO2−

4 ]Total sil ∗
KTotal

sil

CaTotal
sil +MgTotal

sil +NaTotal
sil +KTotal

sil

(6.28)

The partitioning of sulfuric acid between carbonate minerals (Equations 6.23-6.24) has so far only
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been calculated for the sulfuric acid weathering of carbonates in an open environment (Equation 2.3,

Figure 2.1C), where one mole of SO2−
4 is released for one mole of Ca2+. The second reaction

pathway of sulfuric acid weathering of carbonates needs to be taken into account due the release

of two moles of Ca2+ or Mg2+ for each mole of SO2−
4 in a confined environment (Equation 2.4,

Figure 2.1D). Hence the coefficient 2 is applied to the total amount of sulfuric acid available

to weather carbonate minerals ([SO2−
4 ]Total carb) when being partitioned between Ca and Mg

carbonate minerals (Equations 6.29-6.30).

CasulfCcarb = 2[SO2−
4 ]Total carb ∗

CaTotal
carb

CaTotal
carb +MgTotal

carb

(6.29)

MgsulfCcarb = 2[SO2−
4 ]Total carb ∗

MgTotal
carb

CaTotal
carb +MgTotal

carb

(6.30)

Calculating Carbonic Acid Mineral Weathering

Carbonates and silicates that are weathered by carbonic acid are calculated by removing the sulfuric

acid weathered end member from total carbonate or total silicates, for all open (O) and confined

(C) weathering environments (Equations 6.31-6.38).

CacarbOcarb = CaTotal
carb − Ca

sulfO
carb (6.31)

CacarbCcarb = CaTotal
carb − Ca

sulfC
carb (6.32)

MgcarbOcarb = MgTotal
carb −MgsulfOcarb (6.33)

MgcarbCcarb = MgTotal
carb −MgsulfCcarb (6.34)

Cacarbsil = CaTotal
sil − Casulfsil (6.35)

Mgcarbsil = MgTotal
sil −Mgsulfsil (6.36)

Nacarbsil = NaTotal
sil −Nasulfsil (6.37)

Kcarb
sil = KTotal

sil −Ksulf
sil (6.38)

Solute Partitioning Verification

In order to verify that the assumptions used in the partitioning are reasonable, the results can

be compared to the charge balance of the river. HCO−
3 delivered from weathering reactions is

K.E. Relph, Ph.D. Dissertation
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calculated using partitioned cations and compared against measured HCO−
3 , in equivalent units

(Equations 6.39-6.40). Similarly the SO2−
4 delivered from sulfuric acid weathering of silicate and

carbonate minerals and dissolution of gypsum is calculated using partitioned cations and can be

compared against measured total SO2−
4 , in equivalent units (Equations 6.41-6.42).

[HCO−
3 ]meas = 2CacarbOcarb + 2MgcarbOcarb + 2Cacarbsil + 2Mgcarbsil +Kcarb

sil +Nacarbsil (6.39)

[HCO−
3 ]meas = 2CacarbCcarb + 2MgcarbCcarb + 2Cacarbsil + 2Mgcarbsil +Kcarb

sil +Nacarbsil + 4CasulfCcarb + 4MgsulfCcarb

(6.40)

2[SO2−
4 ]meas = 2Cagyp + 2CasulfOcarb + 2MgsulfOcarb + 2Casulfsil + 2Mgsulfsil +Ksulf

sil +Nasulfsil (6.41)

2[SO2−
4 ]meas = 2Cagyp + 4CasulfCcarb + 4MgsulfCcarb + 2Casulfsil + 2Mgsulfsil +Ksulf

sil +Nasulfsil (6.42)

Once each element has been partitioned into its end member sources, DIC contributions from

weathering reactions and CO2 consumption within the basin can be calculated (Table 6.1-6.3).
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6.4 Impact of Weathering Reactions on CO2 Budget

The relative proportions of chemical weathering reactions occurring at any one time is controlled

by the availability of lithology and acidity. Moreover, the relative ratio of CO2 consuming reactions

(carbonic acid weathering of silicates, Equation 2.1) to CO2 releasing reactions (sulfuric acid

weathering of carbonates, Equation 2.3-2.4) impacts the overall instantaneous and million–year

carbon budget of the river catchment. It is useful to visualise how much the proportion of lithology

and proportion of acidity can vary whilst still maintaining a CO2–consuming, CO2–releasing or

CO2–neutral weathering environment.

6.4.1 An Oceanographic Perspective on Atmospheric CO2 Budgets

CO2 consumption and release in the Andes–Amazon system has been studied in detail, and the

parameter scenarios over which both processes occur can be presented diagrammatically showing the

conditions under which CO2 is released and consumed over short and long timescales (Torres et al.,

2016, and Figure 6.2). The impact of weathering on partial pressure of CO2 in the atmosphere

(pCO2) is considered from an oceanographic perspective by investigating how river solutes may

alter the ratio between alkalinity and dissolved inorganic carbon (DIC) in the oceans (Torres et al.,

2016). Alkalinity is the stoichiometric sum of bases in solution, i.e. the buffering capacity or ability

of the solution to resist changes in pH, of which HCO−
3 is the major form in natural waters (Stumm

& Morgan, 1996, as cited by Drever, 1997). The ratio of modern seawater alkalinity:DIC is 1:1; if

alkalinity and DIC produced by continental weathering is delivered to the oceans in ratios other

than 1:1, pCO2 may be perturbed.

The various reactions between silicates and carbonates with H2CO3 and H2SO4 deliver

alkalinity and DIC to the ocean in different ratios. Two reactions, Equations 6.43-6.44, describe

carbonate and silicate mineral dissolution. The acid consumed by lithology in Equations 6.43-6.44 is

generated by oxidation of pyrite or disassociation of carbonic acid, Equation 6.45 and Equation 6.46,

respectively.

2H+ + CaCO3 ←→ Ca2+ +H2CO3 (6.43)

4H+ + Ca2SiO4 ←→ H4SiO4 + 2Ca2+ (6.44)

Either acid consuming reaction (Equations 6.43-6.44) can combine with either acid generating
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Figure 6.2: Carbon budget of a river catchment as a proportion of acidity and lithology.
The fraction of acid sourced from sulfide weathering (z) is plotted against the fraction of cations
sourced from carbonate mineral-weathering (R). Parameter space is sectioned by alkalinity:DIC
ratio. An alkalinity:DIC ratio greater than 2 describes the conditions under which CO2 is consumed
on timescales longer than carbonate precipitation (>105–years, white). An alkalinity:DIC ratio less
than 2 indicates that CO2 will be released on long time scales (light grey), whereas a ratio less than
1 indicates that CO2 is released on short timescales (<105–years, dark grey). The Andes–Amazon
data presented here is from Torres et al. (2016, Figure 7).

half-reaction (Equations 6.45-6.46) to give the four full reactions for mineral weathering, i.e. sulfuric

acid weathering of carbonate minerals (Equation 6.47) and sulfuric acid weathering of silicate

minerals (Equation 6.48). The combination of half reactions are described in full in Torres et al.

(2016, Supplementary Data).

4FeS2 + 15O2 + 14H2O ←→ 8SO2−
4 + 16H+ + Fe(OH)3 (6.45)

H2CO3 ←→ 2H+ + CO2−
3 (6.46)

0.5FeS2 +
15

8
O2 +

7

2
H2O + CaCO3 ←→ Ca2+ +H2CO3 + SO2−

4 + 0.5Fe(OH)3 (6.47)

FeS2 +
15

4
O2 +

7

2
H2O + CaSiO4 ←→ 2Ca2+ +H4SiO4 + 2SO2−

4 + Fe(OH)3 (6.48)

The ratio of alkalinity to DIC produced by these four reactions is then calculated. If H+

ions are found on the left hand side (LHS) of the equation, it is assumed that this acidity is

neutralised or buffered by alkalinity production, therefore H+ on the LHS is used as a measure

of alkalinity production (Torres et al., 2016). DIC is written as H2CO3 species and if found on

K.E. Relph, Ph.D. Dissertation
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the right hand side (RHS) reflects DIC production. DIC and alkalinity ratios are calculated using

three variables: the proportion of weathering driven by sulfuric acid (z); the cation contribution

by carbonate weathering (x); and the cation contribution by silicate weathering (y). The fraction

of cations derived from carbonate lithology to total cations from all lithology, R, is given by the

following relationship:

R =
Cationcarb

Cationcarb + Cationsil
=

x

x+ y
(6.49)

To discriminate between areas of short term CO2 consumption and release on Figure 6.2,

alkalinity:DIC is assumed to equal 1, where CO2 consumption is neutral. The proportion of cations

delivered by sulfuric acid driven weathering, zshort, is related to the amount of carbonate weathering,

R, by:

zshort = 1− (0.5R) (6.50)

To determine CO2 release on long timescales alkalinity:DIC is assumed to equal 2. CO2 released

on the long term by sulfuric acid–driven weathering, zlong, is determined by the CO2 drawdown

due to carbonic acid weathering of silicates (1-R):

zlong = 1−R (6.51)

If the ratio of alkalinity:DIC delivered to the oceans deviates from 1:1 then atmospheric

CO2 is consumed or released (Figure 6.2). Carbonate precipitation on million–year timescales

removes alkalinity and DIC from the oceans in a 2:1 ratio. Carbonate precipitation therefore

decreases oceanic DIC but increases pCO2. Hence, to decrease pCO2 on million-year times,

an alkalinity:DIC ratio greater than 2 must be delivered to the oceans. H2CO3 weathering of

carbonates (Equation 6.43) has an alkalinity:DIC ratio of 2:1 and therefore it is carbon neutral.

H2SO4 weathering of carbonates (Equation 6.47) has an alkalinity:DIC ratio of 0:1 causing a

short–term CO2 release. Such samples with a ratio of less than 1 occupy the top area in Figure 6.2.

H2CO3 weathering of silicates (Equation 6.44) has an alkalinity:DIC ratio of 4:0, therefore consuming

CO2 on the long term and occupying the bottom most area in Figure 6.2. H2SO4 weathering of

silicates (Equation 6.48) plays no part in the carbon cycle and hence has an alkalinity:DIC ratio of

0:0.

Interpreting the CO2 implications of the data plotted in Figure 6.2 is non–trivial; the
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conditions under which CO2 is released on long term and short term timescales, overlap. Long–term

CO2 release occurs above the line of Equation 6.51. Short–term CO2 release occurs above the line

of Equation 6.50, however, this occupies the same parameter space as that of long–term CO2 release

(Figure 6.2). If data falls in the top area of Figure 6.2, it is unclear if the sample is releasing CO2

on the short– or the long–term. Despite the ambiguity in timeframe of CO2 release, the framework

still provides a valuable overview of the carbon budget of a river catchment, particularly when

no discharge data is available. However, a simplified framework could be used to summarise the

carbon budget, without considering the alkalinity:DIC ratio of oceans, and that uses river solutes

partitioned between acidity and lithology source.

6.4.2 A Catchment Perspective on Atmospheric CO2 Budgets

A different approach to calculating the implications of combinations of weathering reactions on

atmospheric CO2 is to use ions delivered to the weathering zone. In the following explanation,

it is shown that a graphical representation of CO2 consumption or release can be achieved by

tracking cations such as Ca2+. The graphical areas for CO2 consumption or release plot in the

same location as Figure 6.2 (Torres et al., 2016), but the realisation of these areas is achieved by a

different calculation demonstrated in the following two sections.

6.4.2.1 Describing Acidity and Lithology Sources with River Solutes

The relationship between lithology type and acidity source can be described by the variables Fcarb

and Fsulf , where Fcarb is the fraction of carbonate to silicate rocks contributing to the dissolved

load, defined as:

Fcarb =
nCarbH2CO3 + nCarbH2SO4

nCarbH2CO3 + nCarbH2SO4 + nSilH2CO3 + nSilH2SO4
(6.52)

and Fsulf is the fraction of sulfuric acid to carbonic acid in the system, defined as:

Fsulf =
nCarbH2SO4 + nSilH2SO4

nCarbH2CO3 + nCarbH2SO4 + nSilH2CO3 + nSilH2SO4
(6.53)
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To abbreviate, let

n1 = nSilH2CO3 (6.54)

n2 = nCarbH2CO3 (6.55)

n3 = nCarbH2SO
O
4 (6.56)

n4 = nCarbH2SO
C
4 (6.57)

n5 = nSilH2SO4 (6.58)

where n1 to n5 are the relative amounts of mineral weathering reactions occurring; n1 represents

the amount of carbonic acid weathering of silicate minerals (Equation 2.1, Figure 2.1A), n2 is the

carbonic acid weathering of carbonate minerals (Equation 2.2, Figure 2.1B), n3 is the sulfuric acid

weathering of carbonate minerals in an open environment where released carbon is allowed to degas

as CO2 (Equation 2.3, Figure 2.1C), n4 is the sulfuric acid weathering of carbonate minerals in

a confined environment where released carbon is transferred as DIC to the oceans (Equation 2.4,

Figure 2.1D), and n5 is the sulfuric acid weathering of silicate minerals which is not involved

in the carbon cycle but does deliver solutes to the weathering zone (Equation 2.5, Figure 2.1E).

Equations 6.52 and 6.53 describing the cations delivered from the weathering of carbonates and

from weathering by sulfuric acid in an open system respectively, are rewritten in 6.59 and 6.60:

Fcarb =
n2 + n3

n1 + n2 + n3 + n5
(6.59)

Fsulf =
n3 + n5

n1 + n2 + n3 + n5
(6.60)

The amount of each reaction, n1 to n5, can be tracked by the charge equivalent amount of Ca2+. For

example, the reactions occurring in an open environment, where CO2 can degas from the sulfuric

acid weathering of carbonates (n3), can be written in equivalent units as such:

Fcarb =
Ca2+n2 + Ca2+n3

Ca2+n1 + Ca2+n2 + Ca2+n3 + Ca2+n5
(6.61)

Fsulf =
Ca2+n3 + Ca2+n5

Ca2+n1 + Ca2+n2 + Ca2+n3 + Ca2+n5
(6.62)

This is equivalent to stating that n1 to n5 is the molar amount of Ca2+ released by each reaction.

If the reaction of sulfuric acid and carbonate minerals is considered where CO2 cannot degas (n4),
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there is one more mole of Ca2+ released. The sum of Ca2+ delivered from reactions of carbonic

or sulfuric acid with carbonates in an open environment (n2 and n3) will remain the same as the

sum of Ca2+ delivered from reactions of carbonic or sulfuric acid with carbonates in a confined

environment (n2 and n4) because the total amount of carbonate available to weather does not

change, only the reaction pathway. In a confined environment where carbon released is transferred

as DIC to the oceans (n4), Fcarb and Fsulf are defined in the following way:

Fcarb =
2Ca2+n2 + Ca2+n4

2Ca2+n1 + Ca2+n2 + Ca2+n4 + Ca2+n5
(6.63)

Fsulf =
2Ca2+n4 + Ca2+n5

2Ca2+n1 + Ca2+n2 + Ca2+n4 + Ca2+n5
(6.64)

Fcarb and Fsulf can also be described in charge equivalent terms for anions SO2−
4 and HCO−

3

produced by reactions with H2SO4 and H2CO3. Where the charge equivalent constants cancel to

give Fcarb and Fsulf in an open environment as:

Fcarb =
HCO−

3 n2 + SO2−
4 n3

HCO−
3 n1 +HCO−

3 n2 + SO2−
4 n3 + SO2−

4 n5

(6.65)

Fsulf =
SO2−

4 n3 + SO2−
4 n5

HCO−
3 n1 +HCO−

3 n2 + SO2−
4 n3 + SO2−

4 n5

(6.66)

In a confined environment, the two moles of Ca2+ released by the sulfuric acid weathering of

carbonates (n4) are charge balanced by one mole of SO2−
4 and two moles of HCO−

3 . Charge

equivalent coefficients cancel to give Fcarb and Fsulf as:

Fcarb =
SO2−

4 n4 +HCO−
3 n4 +HCO−

3 n2

HCO−
3 n1 +HCO−

3 n2 + SO2−
4 n4 +HCO−

3 n4 + SO2−
4 n5

(6.67)

Fsulf =
SO2−

4 n4 +HCO−
3 n4 + SO2−

4 n5

HCO−
3 n1 +HCO−

3 n2 + SO2−
4 n4 +HCO−

3 n4 + SO2−
4 n5

(6.68)

A worked example comparing anion and cation calculations for Fsulf and Fcarb can be seen in the

box below.
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Describing Fcarb and Fsulf with cations or anions can be shown to be equivalent by the

following example matrix (6.69).



SilH2CO3 CarbH2CO3 CarbH2SO4(g) CarbH2SO4(aq) SilH2SO4

Ca2+ 1 1 1 2 1

HCO−
3 2 2 0 2 0

SO2−
4 0 0 1 1 1

 ·



µmol/l

10 nSilH2CO3

5 nCarbH2CO3

1 nCarbH2SO4(g)

0 nCarbH2SO4(aq)

2 nSilH2SO4



=



SilH2CO3 CarbH2CO3 CarbH2SO4(g) CarbH2SO4(aq) SilH2SO4

Ca2+ 10 5 1 0 2

HCO−
3 20 10 0 0 0

SO2−
4 0 0 1 0 2


(6.69)

Fcarb is calculated with Ca2+ in the following equation:

Fcarb =
2 ∗ 5Ca2+n2 + 2 ∗ 1Ca2+n3

2 ∗ 10Ca2+n1 + 2 ∗ 5Ca2+n2 + 2 ∗ 1Ca2+n3 + 2 ∗ 2Ca2+n5
=

12

36
(6.70)

Fcarb can also be calculated with anions, yielding the same value in the following equation:

Fcarb =
1 ∗ 10HCO−

3 n2 + 2 ∗ 1SO2−
4 n3

1 ∗ 20HCO−
3 n1 + 1 ∗ 10HCO−

3 n2 + 2 ∗ 1SO2−
4 n3 + 2 ∗ 2SO2−

4 n5

=
12

36
(6.71)

Fsulf is calculated with Ca2+ in the following equation:

Fsulf =
2 ∗ 1Ca2+n3 + 2 ∗ 2Ca2+n5

2 ∗ 10Ca2+n1 + 2 ∗ 5Ca2+n2 + 2 ∗ 1Ca2+n3 + 2 ∗ 2Ca2+n5
=

6

36
(6.72)

Fsulf can also be calculated with anions yielding the same value in the following equation:

Fsulf =
2 ∗ 1SO2−

4 n3 + 2 ∗ 2SO2−
4 n5

1 ∗ 20HCO−
3 n1 + 1 ∗ 10HCO−

3 n2 + 2 ∗ 1SO2−
4 n3 + 2 ∗ 2SO2−

4 n5

=
6

36
(6.73)

The same can be done when using n4 (sulfuric acid weathering of carbonates releasing DIC

and two moles of Ca2+) instead of n3 (sulfuric acid weathering of carbonates degassing CO2).

Fcarb and Fsulf can be treated as variables between 0 and 1. Therefore, Ca2+, HCO−
3 , SO2−

4

and CO2 consumption can be calculated over the entire parameter space of Fcarb and Fsulf . To
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do this, n1, n2, n3, n4 and n5, need to be solved as a function of Fcarb and Fsulf . This requires

an additional assumption because there are 3 unknowns and 2 equations (6.59 and 6.60), making

the problem under-constrained. It is assumed that the relative weathering of carbonate to silicate

minerals occurs in equal proportions, irrespective of the acidity source. The relative weathering

was expressed in Equation 6.19 (Section 6.3.1), and can be re–expressed as:

n2

n1
=
n2 + n3

n1 + n5
=
n3

n5
(6.74)

Thus Equations 6.59, 6.60 and 6.74 are rearranged as a function of Fsulf and Fcarb relative to n3,

to compute the contribution of each reaction n1, n2, and n5.

n1 = n2 · 1− Fcarb

Fcarb
(6.75)

n2 = n3 ·
1− Fsulf

Fsulf
(6.76)

n5 = n3 · 1− Fcarb

Fcarb
(6.77)

These equations are self consistent in that back calculations of Fcarb and Fsulf from n1, n2, n3 and

n5 recover the correct values of Fcarb and Fsulf .

The sulfuric acid weathering of carbonates, n3, is held constant in order to mathematically

solve the equations. n3 itself is chosen to physically represent a constant amount of sulfuric acid

weathering of carbonates occurring across parameter space. The amount of reactions n1 (carbonic

acid weathering of silicates), n2 (carbonic acid weathering of carbonate), and n5 (sulfuric acid

weathering of silicates) occurring across parameter space are shown in Figure 6.3A-C. The amount

of carbonic acid weathering of carbonates, n2, increases vertically downwards as H2CO3 (1-Fsulf )

increases. This is because there is a constant amount of carbonate weathering across the parameter

space but varying acidity between n2 and n3 involving sulfuric acid (Figure 6.3A). The carbonic

acid weathering of silicates, n1, varies in both directions of parameter space due to the different

acidity and lithology in n1 (carbonic acid and silicates) to n3 (sulfuric acid and carbonates). The

maximum amount of n1 occurs at the highest proportion of silicate rocks (1-Fcarb) and carbonic

acid (1-Fsulf ), i.e. where Fcarb and Fsulf are close to zero (Figure 6.3B). The amount of n5 (sulfuric

acid weathering of silicates) will increase vertically with increasing fraction of silicate to carbonate

weathering, i.e. decreasing Fcarb, because the acidity is the same for n5 as n3 that is being held

constant (Figure 6.3C).

K.E. Relph, Ph.D. Dissertation
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Figure 6.3: Amount of weathering reactions occurring relative to proportion of
lithology and acidity source, and the CO2 implications of the weathering reactions
Panels A, B, and C show the amount of carbonic acid weathering of carbonates, n2, carbonic acid
weathering of silicates, n1, and sulfuric acid weathering of silicates, n5, respectively, relative to a
constant amount of sulfuric acid weathering of carbonates, n3, occurring over the parameter space.
Fcarb is the ratio of the total Ca2+ delivered from carbonate lithology to the total Ca2+ delivered by
carbonate and silicate rocks. The proportion of silicate rocks is equivalent to 1-Fcarb. Fsulf is the
ratio of the total Ca2+ delivered from sulfuric acid driven weathering to the total Ca2+ delivered
by sulfuric and carbonic acid weathering (the proportion of carbonic acid driven weathering is
equivalent to 1-Fsulf ). The amount of weathering reaction occurring relative to n3 is shown by
the colour ramp; more of the reaction relative to n3 occurring is yellow, less reaction occurring
relative n3 is purple. The blue contours indicate a certain amount of that reaction occurring which
is constant along the contour. Panels D, E, and F show the carbon implications of combinations of
weathering reactions. On timescales shorter than carbonate precipitation in the oceans (<105 years)
atmospheric CO2 is drawn down by carbonic acid weathering of silicates (n1) and carbonates (n2).
In open environments any sulfuric acid weathering of carbonates occurring (n3) releases CO2 and
offsets the drawdown from carbonic acid weathering (Equation 6.78). The grey area in Panel D is
parameter space where the combination of lithology and acidity releases more CO2 than is consumed
on the short term. CO2 is consumed in the coloured area, with more consumption in yellow and less
consumption in purple. Panel E is the relative CO2 consumption for the combination of weathering
reactions occurring in a confined environment. This panel considers the reactions of carbonic acid
weathering of silicates (n1) and carbonates (n2), so no reactions release CO2 (Equation 6.79). Panel
F considers the long term carbon budget, where the CO2 drawn-down by silicate weathering (n1)
is offset by the release of CO2 by sulfuric acid weathering of carbonates instantaneous degassing
or by DIC delivered to the oceans and subsequently precipitated as carbonate, releasing CO2 on
million-year timescales (n3 or n4, and Equation 6.80). The CO2 consumption is constant along the
blue contour lines.
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6.4.2.2 Impact of Acidity and Lithology Sources on CO2 Budget

Where Torres et al. (2016) have derived the atmospheric CO2 consequences of weathering reactions

based on perturbations to the alkalinity:DIC ratio in the oceans. Here, CO2 consumption or

release is calculated by the stoichiometric balance of CO2 being removed from the atmosphere

by weathering of rocks with H2CO3 and CO2 released back to the atmosphere via sulfuric acid

weathering of carbonates. This CO2 release may occur either instantaneously via sulfuric acid

weathering of carbonates in an open environment, or on the long term after carbonate is precipitated

in the oceans. The calculation of CO2 consumption is straight forward after the amount of reactions

n1-n5 have be computed across Fcarb, Fsulf parameter space.

In open environments, the reactions occurring on the short–term are the carbonic acid

weathering of silicates (n1) and carbonates (n2) and the sulfuric acid weathering of carbonates

(n3). The sulfuric acid weathering of silicates (n5) also occurs but does not involve the C cycle.

For each amount of carbonic acid weathering of silicates (n1) occurring, two moles of CO2 are

removed from the atmosphere. For each amount of carbonate weathered by carbonic acid (n2), an

equal molar amount of CO2 is removed from the atmosphere. For each given amount of sulfuric

acid reacting with carbonates (n3) occurring, the same amount of CO2 is released. The total CO2

consumption on the short term in an open environment, ΣCOO
2 short, is therefore described by the

following equation:

ΣCOO
2 short = 2n1 + n2− n3 (6.78)

CO2 release is represented as the grey area on Figure 6.3D, where more CO2 is released by the

sulfuric acid weathering of carbonates (n3) than the atmospheric CO2 removal by carbonic acid

weathering of silicates (n1) and carbonates (n2).

When weathering occurs in a confined environment, the reactions are the same as in an open

environment (n1, n2, n5), however the carbon delivered by sulfuric acid weathering of carbonates

cannot degas as CO2 and therefore is not taken into the CO2 budget on the short term. No

CO2 is released in a confined environment, illustrated by Figure 6.3E where all parameter space

is consuming CO2. The total CO2 consumption on the short term in a closed environment,

ΣCOC
2 short, is therefore described by the following equation:

ΣCOC
2 short = 2n1 + n2 (6.79)

When the solutes of weathering are delivered to the oceans and can precipitate as carbonate, there

K.E. Relph, Ph.D. Dissertation
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is a net drawdown of one mole of CO2 per amount of silicates weathered by carbonic acid (n1).

Carbonic acid weathering of carbonates (n2) is net CO2 neutral so is not considered on the long

term. All DIC delivered to the oceans from sulfuric acid weathering of carbonates from reactions in

a confined environment (n4) is now released to the atmosphere. If the release of CO2 is greater than

the CO2 sequestration by carbonic acid weathering of silicates (n1) and subsequent precipitation of

carbonates then there is a net CO2 release on >105–year timescales (grey area Figure 6.3F). This

gives the following equation for total CO2 consumption on the long term, ΣCO2 long :

ΣCO2 long = n1− n4 (6.80)

The lines dividing parameter space into areas of CO2 consumption or release in

Figures 6.3D–E represent scenarios of CO2 neutral budget, i.e. where Equations 6.78 and 6.80

describing the CO2 consumption or release on short and long timescales respectively, are equal to

zero. Below these lines CO2 is consumed and above the lines CO2 is released. These lines are

mathematically identical to the lines defined on Figure 6.2 (Torres et al., 2016, Figure 7). This is

demonstrated for the short term. The reactions describing amount of carbonic acid weathering of

silicates (Equation 6.75) and carbonates (Equation 6.76) are rearranged to give:

n1 =

(
n3
Fsulf

− n3
)(

1

Fcarb
− 1

)
(6.81)

n2 =
n3
Fsulf

− n3 (6.82)

which can be substituted into Equation 6.78, which describes the short term CO2 budget, and set

equal to zero:

0 = 2n1 + n2− n3 (6.83)

0 = 2

(
n3
Fsulf

− n3
)(

1

Fcarb
− 1

)
+

(
n3
Fsulf

− n3
)
− n3 (6.84)

Equation 6.84 can be rearranged to give the same equation as that derived by Torres et al.

(2016). The equation describes the amount of cations delivered by sulfuric acid–driven weathering

is proportional to the amount of carbonate weathering (Equation 6.50) :

Fsulf = 1− 0.5Fcarb (6.85)
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CO2 is released on the short term when the proportion of sulfuric acid weathering

instantaneously degassing CO2, n3, is greater than the combined CO2 consumption from carbonic

acid weathering of silicates, n1, and carbonates, n2, (Equation 6.78). This can be seen at high

Fcarb and Fsulf (Figure 6.3D). In confined environments, CO2 is only consumed on the short term

(Equation 6.79 and Figure 6.3E).

The lines dividing areas of long term CO2 consumption or release on Figure 6.3F are shown

to be the same as Figure 6.2 (Torres et al., 2016, Figure 7) by rearranging Equation 6.75 to Equation

6.86 and inputting it into the long term CO2 budget equation (Equation 6.80) set to zero. Further

rearranging gives the same as Equation 6.51:

n1 =
n3 (1− Fcarb)

Fsulf
(6.86)

0 =
n3 (1− Fcarb)

Fsulf
− n3 (6.87)

1 =
1− Fcarb

Fsulf
(6.88)

Fsulf = 1− Fcarb (6.89)

Whilst the areas on the graphs shown in Figure 6.3D–F look the same as Figure 6.2 (Torres

et al., 2016, Figure 7), it is possible, with this improved approach, to track different ions such as

Ca2+, Mg2+, Na+, K+, SO2−
4 , and HCO−

3 over parameter space. Contouring of the space quantifies

the reactions. With the graphs separated, reaction pathways of H2SO4 weathering of carbonates can

be distinguished between open and confined, and short or long term CO2 release can be explicitly

seen.

6.4.2.3 Sulfuric Acid Weathering of Silicates: Implications for Atmospheric CO2?

The equations calculating CO2 consumption across parameter space (Equations 6.78–6.80) do not

include the sulfuric acid weathering of silicates (n5) because neither reactants contains carbon.

However this reaction consumes acidity and delivers SO2−
4 and Ca2+ to the river and ocean. To

demonstrate the necessity of including n5 in calculations of Fcarb and Fsulf to create Figure 6.3,

K.E. Relph, Ph.D. Dissertation
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Fcarb and Fsulf have been redefined without n5 in the following equations:

Fcarb =
n2 + n3

n1 + n2 + n3
(6.90)

Fsulf =
n3

n1 + n2 + n3
(6.91)

The equations describing the amount of carbonic acid weathering of silicates (n1) and carbonates

(n2) occurring (Equations 6.75–6.76) have also been redefined in terms of Fcarb and Fsulf without

n5. n3 is held constant so that there are two equations involving two unknowns:

n1 = n3 · 1− Fcarb

Fsulf
(6.92)

n2 = n3 ·
(
Fcarb

Fsulf
− 1

)
(6.93)

Without the reaction of sulfuric acid with silicate minerals occurring (n5), carbonic acid

weathering of carbonates (n2) can only occur in half of the parameter space as indicated by the

grey area in (Figure 6.4A). The only way to access the grey area in Fcarb–Fsulf parameter space is

to supply negative amounts of Ca2+ via the weathering of carbonate with carbonic acid (n2). This

is equivalent to stating that the reaction n2 is occurring in reverse; that it is to say rather than

dissolving carbonates, it is precipitating carbonate as described by the following reaction:

2HCO−
3 + Ca2+ ⇒ CaCO3 + CO2 +H2O (6.94)

This could occur in an open environment; if alkalinity reaches carbonate saturation point, the

degassing of CO2 raises the pH which can cause carbonate precipitation. This could occur as

pedogenic carbonates on the continents or could be conceptualised as the precipitation of marine

carbonates on longer time-scales.

The line dividing carbonate dissolution from carbonate precipitation (which occupies the

grey area) in Figure 6.4A is Fcarb = Fsulf , and where n2=0. This is shown in Equations 6.95–6.101:

n3 + n2

n1 + n2 + n3
=

n3

n1 + n2 + n3
(6.95)

=⇒ n3

n1 + n3
=

n3

n1 + n3
(6.96)

∴ Fcarb = Fsulf (6.97)
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or n2 = n3

(
Fcarb

Fsulf
− 1

)
(6.98)

n2 = n3

(
Fcarb

Fcarb
− 1

)
(6.99)

n2 = n3 (1− 1) (6.100)

∴ n2 = 0 (6.101)
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Figure 6.4: Amount of weathering reactions occurring relative to proportion of
lithology and acidity source, and the CO2 implications of the weathering reactions
without considering sulfuric acid weathering of silicates. Calculations for Panels A–E
are the same as in Figure 6.3. Panels A and B show the amount of carbonic acid weathering of
carbonates (n2) and carbonic acid weathering of silicates (n1) respectively, relative to a constant
amount of sulfuric acid weathering of carbonates (n3) occurring over parameter space. The amount
of weathering reaction occurring relative to n3 is shown by the colour ramp: more of the reaction
relative to n3 occurring is yellow, less reaction occurring relative n3 is purple. The blue contours
indicate a certain amount of that reaction occurring which is constant along the contour. Panels C,
D and E show the carbon implications of combinations of weathering reactions calculated with the
same equations described in caption of Figure 6.3. The increased parameter space where CO2 is
released is due to conditions allowing carbonate precipitation releasing more CO2. CO2 is consumed
in the coloured area, with more consumption in yellow and less consumption in purple. The CO2

consumption is constant along blue contour lines.
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The grey area above the line where Fcarb equals Fsulf , is where carbonate precipitation is greater

than carbonate dissolution (Figure 6.4A). Where Fcarb is high and Fsulf is low, carbonate dissolution

with H2CO3 (n2) is favourable, and values of carbonic acid weathering of carbonates decrease with

increasing Fsulf and decreasing Fcarb. Carbonate precipitation is not considered further.

If the sulfuric acid weathering of silicates is not considered, then there is more area within the

parameter space of Fsulf and Fcarb to precipitate carbonates and therefore release CO2 (Figure 6.4).

Figures 6.4C–E are calculated in the same way as Figures 6.3D–F, where the difference in the area

of CO2 release is due to the lack of n5 in Figure 6.4. When the environment is confined and sulfuric

acid weathers carbonates (n4), no CO2 should be released in the short term as all reactions draw

down CO2. However there is an area of CO2 release on Figure 6.4D due to carbonate precipitation

(negative n2). The area of CO2 release in both Figure 6.3F and Figure 6.4E is due to carbonate

precipitation in the oceans on the long–term timescale. However, the absolute values of CO2

released could be inflated by not considering sulfuric acid weathering of silicates (n5, Figure 6.4D)

and correcting for contributions to SO2−
4 and Ca2+.

6.5 Weathering in the Mekong Basin

6.5.1 Reaction Pathway of Sulfuric Acid Weathering of Carbonates

Cations measured in the Mekong have been partitioned following Section 6.3 and DIC contributions

from all combinations of lithology and acidity reactions have then been calculated. The measured

HCO−
3 , an approximation of total DIC (ΣDIC) in the river is compared to the calculated ΣDIC,

Figure 6.5A. In the same way, measured SO2−
4 is compared to SO2−

4 calculated from cations delivered

from sulfuric acid and gypsum weathering, Figure 6.5B. The two reaction pathways of sulfuric acid

weathering of carbonates deliver different products to the weathering zone, yielding different water

chemistries. For example, in an open environment when CO2 can instantaneously degas (n3), one

mole each of SO2−
4 and Ca2+ is also released (Equation 2.3). In a confined environment if sulfuric

acid reacts with carbonates, carbon is released as two moles of HCO−
3 , and one mole of SO2−

4 is

also released. These anions are charge balanced by the release of two moles of Ca2+ (Equation 2.4).

HCO−
3 and SO2−

4 measured in river water are compared against the calculated HCO−
3 and

SO2−
4 using Equations 6.39–6.41 to determine the reaction pathway of sulfuric acid weathering of

carbonates. River water must be charge balanced (Drever, 1997), therefore HCO−
3 in the water
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must be equal to, in equivalent units, the summation of cations delivered by each weathering

reaction that also delivers HCO−
3 . Similarly, measured SO2−

4 must also be equal to the total of all

cations delivered by weathering reactions with sulphuric acid and gypsum dissolution. Cations are

partitioned differently for each reaction pathway of sulfuric acid weathering of carbonates, therefore

the closest relationship between measured values and cations partitioned for a particular reaction

pathway indicate which reaction pathway must be occurring.
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Figure 6.5: Reaction pathway of sulfuric acid weathering of carbonates. Measured
HCO−

3 and SO2−
4 are compared against calculated HCO−

3 and SO2−
4 (in equivalent units, µeq/L),

panel A and B respectively. Black line is 1:1. Cations are partitioned between chemical weathering
reactions involving H2SO4, H2CO3, carbonates and silicates (Equations 2.1–2.5) and are partitioned
differently depending on the reaction pathway for sulfuric acid weathering of carbonates (n3 or n4).
The sum of charge equivalent partitioned cations delivered by weathering reactions that also deliver
HCO−

3 should charge balance measured HCO−
3 . Summed cations partitioned for reaction pathway

n3 (red) are closer to measured HCO−
3 than cations partitioned for reaction pathway n4 (orange).

Similarly summed cations partitioned for reaction pathway n3 (green) are closer to measured SO2−
4

than cations partitioned for reaction pathway n4 (blue). Hence, sulfuric weathering of carbonates
in the Mekong river most likely occurs in open environments where CO2 can freely degas.

Calculated HCO−
3 is within 10% (average) of measured HCO−

3 , and calculated SO2−
4 is

within 6% of measured SO2−
4 for reaction pathway n3. The relationship between measured HCO−

3

and SO2−
4 and HCO−

3 and SO2−
4 that have been calculated using partitioned cations is closest for

sulfuric acid weathering of carbonates in an open environment where CO2 can degas (n3). This

is likely the reaction environment in which sulfuric acid weathering of carbonates takes place.

Therefore sulfuric acid weathering of carbonates in the Mekong is most likely to occur in open

environments where CO2 can degas instantaneously.
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6.5.2 Source of DIC in the Mekong River Basin

6.5.2.1 Overview of Mekong Data as a Function of Fsulf and Fcarb

The forward model developed here based on that by Galy & France-Lanord (1999) was used to

partition Mekong river water solutes between lithology and acidity source. Using the framework

developed from Torres et al. (2016), the Mekong can be plotted in varying acidity (Fsulf ) and

lithology (Fcarb) parameter space (Figure 6.6). Fsulf , Fcarb, and CO2 values for Mekong data use

only Ca2+ in the calculation so that the data is comparable to the contours and parameter space it is

plotted on. Because Mg2+ is not included in the calculations, the CO2 consumption from carbonic

acid weathering of silicates (n1) will be underestimated, as will the CO2 release from sulfuric acid

weathering of carbonates (n3, n4). Furthermore, the data on Figure 6.6 is not scaled by discharge,

therefore it does not represent the total carbon budget of the Mekong. However, Figure 6.6 does

provide an initial estimate of the impact of weathering in the Mekong river basin on atmospheric

CO2 levels. All samples suggest that the Mekong is consuming atmospheric CO2 on the short term.

Fcarb is high in most samples except samples from Cambodia, where Xsil is high (Figure 4.24). Over

long timescales, samples from China, the Middle Mekong tributaries from the left bank in Laos,

and the main stem are all releasing CO2. The spread of data in Fsulf and Fcarb parameter space

suggests there is spatial variability in areas consuming or releasing CO2 in the Mekong river basin.

Timeseries samples collected at Chroy Changvar close to the mouth of the Mekong show temporal

variability in Fsulf over the year (Figure 6.7). The samples show a hysteresis where the lowest

Fsulf is the monsoonal months and the highest Fsulf values are calculated in the dry season.

6.5.2.2 Partitioned Source of Mekong DIC

The solutes measured in the Mekong are partitioned to their sources using the forward model

set out in Section 6.3. DIC delivered from various acid-rock interactions is calculated for a time

series collected at Chroy Changvar, close to the mouth of the Mekong river (using Equations

described in 2.2.1). DIC delivered to the South China Sea is predominantly derived from H2CO3

weathering of carbonates (67% average), followed by carbonic acid weathering of silicates (32%

average) (Figure 6.8B). If there was any DIC delivered by the H2SO4 weathering of carbonates

reaction pathway n4, then there would only be an average contribution of 6% to the total DIC flux

to the ocean. DIC flux delivered by H2CO3 weathering of silicates peaks before the flux of DIC

delivered by carbonate weathering with H2CO3. This earlier peak in silicate weathering corresponds

K.E. Relph, Ph.D. Dissertation
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Figure 6.6: Mekong main stem and tributary data as a function of varying acidity
(Fsulf) and lithology (Fcarb). Fsulf is the fraction of acidity sourced from H2SO4 as a ratio of
total H2CO3 and H2SO4. Fcarb is the fraction of cations delivered from the weathering of carbonates
as a ratio of the total rocks weathered, silicates and carbonates. The amount of CO2 consumed
(coloured area) or released (grey area) is relative to the amount of sulfuric acid weathering of
carbonates instantaneously degassing CO2 (n3). Amount of CO2 consumption is constant along the
contour lines. Fsulf , Fcarb and CO2 values for Mekong data use only Ca2+ in the calculation so the
data is comparable to the contours and parameter space it is plotted on. A: Short term CO2 impact
from reactions occurring in an open environment takes into account the drawdown of atmospheric
CO2 by carbonic acid weathering of silicates (n1) and carbonates (n2) and the instantaneous release
of CO2 from sulfuric acid weathering of carbonates (n3). B: In a closed environment, short term
CO2 takes into account the same drawdown of atmospheric CO2 by carbonic acid weathering of
silicates (n1) and carbonates (n2) but sulfuric acid weathering of carbonates does not degas CO2,
DIC is transferred to the ocean (n4). C: Long term CO2 is the offset of sulfuric acid weathering of
carbonates (n3) against long term sequestration of CO2 by carbonic acid weathering of silicates and
subsequent carbonate precipitation (n1). Symbols are locations within the Mekong basin: the upper
Mekong in China (orange squares), the left bank in the Middle Mekong draining Myanmar (green
circles), and the left (Laos) bank of the Middle Mekong (lilac diamonds), and right (Thailand) bank
of the middle Mekong (yellow inverted triangles), and the lower Mekong in Cambodia (blue-green
circles).
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Figure 6.7: Timeseries at Chroy Changvar, Mekong main stem, as a function of varying
acidity (Fsulf) and lithology (Fcarb). Fsulf , Fcarb, and n1, n2 are the same as in Figure 6.6, see
caption. A: Short term CO2 impact from reactions occurring in an open environment. B: Short
term CO2 impact from reactions occurring in a closed environment. C: Long term CO2 impact.

to the Southeast Asian monsoon hitting the basin from the south east, first hitting the Tonle Kong,

Tonle San and Tonle Srepok tributaries of Cambodia which are dominated by basalts and granites

(Figure 1.2).

Variations in DIC delivered from the Mekong Basin depend on spatial and temporal

variations in lithology (Fcarb) and acidity source (Fsulf ). There is more temporal variation

in Fsulf than Fcarb (Figure 6.8C), whereas there is more spatial variation in Fcarb than Fsulf

(i.e. Figure 4.23 and Figure 6.10A). Fcarb remains constantly high during the year (Figure 6.8C).

During the monsoon Fsulf decreases and in the early monsoon (June-November) there is a small

peak in Fcarb. The decrease in Fsulf during the monsoon is likely due to mixing rather than

a process related decrease. An early increase in flux from southern tributaries in Cambodia

would increase DIC flux from tributaries with relatively more carbonic acid weathering of silicates,

therefore decreasing Fsulf . Post monsoon Fsulf increases, suggesting a relatively larger delivery of

solutes from areas dominated by sulfuric acid weathering of carbonates.
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Figure 6.8: DIC and CO2 fluxes close to the mouth at Chroy Changvar above Phnom
Penh, Cambodia, on the Mekong main channel. A: DIC calculated with partitioned cations
from river water measurements. DIC delivered by the acidity source H2SO4 (sulf ) or H2CO3 (carb)
and the lithology silicates (sil) or carbonates (carb) in an open (O) or confined (C) environment is
the same in the legend for concentration (A) and flux (B). B: DIC flux calculated with discharge
data collected by the MRC. C: Fcarb and Fsulf parameters calculated from Equations 6.61–6.62.
D: Variation in CO2 consumption calculated across the year. The Mekong consumes CO2 in the
short term (red and pink), and is releasing CO2, or may even be CO2 neutral on long timescales
(orange). Values are calculated using Equations 2.16, 2.17 and 2.29. Samples are plotted as points
connected with line. A loess regression with 2σ error provides the smoothed error band through
the samples.
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6.5.3 CO2 Budget of the Mekong River Basin

6.5.3.1 Spatial CO2 Budget

The Mekong river is characterised by a high proportion of carbonate mineral weathering (average

Xsil over all tributaries is 0.18 ranging between 0.05-0.64). Partitioning of sulfate sources indicates

that 57% of sulfate in the Mekong is derived from oxidative weathering of pyrite. When CO2

consumption is calculated using Equations 6.78-6.80 there are orders of magnitude difference

between tributaries. CO2 consumption has been calculated as a flux in units of mol.day−1 using

discharge data from the MRC (Figure 6.9A-C), and as a specific flux where the CO2 flux is divided

by the basin area, units are mol.km−2.day−1 (Figure 6.9D-F) . On the short term the Mekong is

consuming CO2 because of the large proportion of carbonic acid weathering of carbonates. CO2

consumption is particularly high in China (Xsil = ∼0.1) and on the left bank of the Mekong

where the landscape is dominated by carbonate karst. The release of CO2 from sulfuric acid

weathering of carbonates is small (0.25 x 108mol.day−1) compared to the CO2 drawdown from

carbonic acid weathering (3.62 x 108mol.day−1) on the short term (7% average over all tributaries).

However, the amount of sulfuric acid weathering releasing CO2 on the short term is a larger

flux, on average over all tributaries, than the long term sequestration of atmospheric CO2 from

the carbonic acid weathering of silicates and subsequent precipitation of carbonates in the ocean

(0.23 x 108mol.day−1). When long term CO2 budget is mapped spatially the carbon budget for

two catchments is a net source of atmospheric CO2 (Figure 6.9C,F). This result remains the same

whether the spatial CO2 budget is calculated as a flux or as a specific flux.

Fcarb is highest in China (0.99) and downstream decreases to the lowest value in the main

stem at Vientiane (0.78). This decrease is due to the addition of tributaries draining Myanmar which

have higher Xsil than China (Figure 6.10A). The effect of an increase in solutes being delivered

by silicate weathering at Vientiane is a net CO2 sink on the long term (Figure 6.10E). Karstic

tributaries in Laos increase Fcarb between Vientiane and Pakse. Fcarb is lowest in tributaries

in Cambodia, where Xsil is high and there are a high proportion of basalts. The tributaries in

Cambodia contribute a large proportion of the total discharge of the Mekong river, the impact

on short term CO2 budget is a decrease in consumption due to the reduction of weatherability in

silicates relative to carbonates (Figure 6.10C-D). However, on the long term CO2 is only sequestered

by silicate weathering which offsets the release from sulfuric acid weathering of carbonates, hence

the signal at Kratie reflects CO2 consumption on the long term (Figure 6.10E). Fsulf decreases

K.E. Relph, Ph.D. Dissertation
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Figure 6.10: Downstream Fcarb, Fsulf and CO2 consumption. CO2 fluxes in Mekong
tributaries are calculated using partitioned cations and discharge data from sources mentioned
in Figure 6.9. Fcarb (A) and Fsulf (B) are calculated with Ca2+ only, wheras CO2 budgets
are calculated with all cations (C-E). Values are representative of monsoon CO2 consumption or
release. Instantaneous CO2 consumption takes into account CO2 consumption from carbonic acid
weathering of carbonates and silicates and CO2 instantaneous release from sulfuric acid weathering
of carbonates in an open environment where carbon is degassed as CO2 (C). The same carbonic
acid weathering is considered for the instantaneous CO2 budget in a closed environment but there
is not instantaneous release of CO2 from sulfuric acid weathering of carbonates because carbon is
transferred as DIC to the oceans (D). Long term CO2 is the CO2 sequestration by carbonic acid
weathering of silicates offset by CO2 release by sulfuric acid weathering of carbonates (E). Horizontal
line at zero indicates neutral CO2 on Panel C-E; above this line the sample is consuming CO2 and
below the line, the sample releases CO2.

K.E. Relph, Ph.D. Dissertation



Carbon Budget of the Mekong River Basin 178

downstream from 0.25 in China to 0.07 close to the mouth. 58% of the sulfate delivered from

China is sourced from the oxidative weathering of pyrite resulting in the largest release of CO2

on the long term from the mountainous Upper Mekong in China. Despite the fact that Fsulf

decreases by ∼ 15% between China and Luang Prabang and continues to decrease due to dilution

with H2CO3 dominated reactions further downstream, the flux of CO2 release by sulfuric acid

weathering of carbonates is comparative to the CO2 drawdown on the long term from carbonic

acid weathering of silicates. It is necessary to highlight that Fcarb and Fsulf are calculated with

Ca2+ only but CO2 budgets are calculated with all cations.

Generally, the areas with higher topography are areas that release CO2 on long timescales;

specifically in China where there are high elevations and steep slopes, and in the Nam Lik, where

there is dynamic karst topography. The values of consumption are also lower, relative to other areas

of the basin, on the left bank of the Middle Mekong where the Annamite mountains are creating

topography. Topography increases erosion rates, which can in turn increase weathering rates (Maher

& Chamberlain, 2014). Whilst mountainous regions are typically weathering–limited (West et al.,

2005), sulfide minerals, for example pyrite, have faster oxidation rates than the dissolution of

silicates and thus are proportionally important in mountainous areas. In the Mekong, mountainous

areas correspond to geology with a high proportion of carbonate rocks indicating a release of

CO2. In order for weathering to consume CO2 there must be enough time for silicates to weather

congruently. In the Andes–Amazon system it has been suggested that for areas of rapid erosion,

such as mountainous source regions of rivers, complete pyrite oxidation can occur whilst silicates

weather incongruently as the system is kinetically–limited (Torres et al., 2016). In lowland areas

with less topography, the duration of weathering is longer, allowing for congruent silicate dissolution

and resulting in these areas typically consuming CO2. This is similar to the Mekong (Figure 6.9).

The greatest fraction of CO2 drawdown on the short-term is from both from mountainous

tributaries in the Upper Mekong in China and from the most southerly tributaries in Cambodia

(Figure 6.9A,B). The Tonle Srepok tributary in Cambodia, Lower Mekong, has the highest

specific flux for consuming on the integrated timescale CO2 (Figure 6.9F). This tributary contains

sandstones, gneiss, schist, granite, and basalt and has one of the highest discharges of the Mekong

tributaries. Tributaries where the river cuts through deeply incised karst valleys (Northern Laos,

left bank tributaries) also have some of the highest specific on the short- and integrated–term CO2

flux. Some of largest tributaries by basin area, the Mun and the Chi on the right bank in Thailand,

have a low specific– and total–flux due to the lithology is dominated by evaporites. On the long
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term, China becomes a CO2 source whereas the majority of tributaries are close to CO2 neutral on

the long term (Figure 6.9).

6.5.3.2 Temporal CO2 Budget

CO2 consumption in the Mekong has been calculated for the long and short term reactions,

described in Sections 2.2.2 and 2.3.1. The solutes measured at Chroy Changvar integrate the

signals delivered from processes that occur within the basin. Therefore, the trends seen over the

year indicate the impact that the Mekong as a whole has on atmospheric CO2 (Figure 6.8). During

the monsoon, CO2 consumption (from timescales of dissolution in the catchment up to less than the

million-year timescale of carbonate precipitation) is up to six times greater than CO2 consumption

in the dry season, due to the increased weatherability of carbonates (Figure 6.8D). Over the year,

CO2 is released on the long–term in the dry season when silicate weathering decreases (DICcarb
sil ,

Figure 6.8B) to fluxes smaller than sulfuric acid weathering of carbonates (DICsulf
carb). Between

July and September, during the monsoon, the Mekong consumes CO2 when all weathering fluxes

increase, the amount of carbonic weathering of silicates increases relative to sulfuric acid weathering

of carbonates.

An annual total CO2 budget is calculated for the Mekong by summing the average monthly

CO2 flux. The Mekong River is a transient sink of CO2 but a small long term source of atmospheric

CO2. The annual specific fluxes (tC.km−2.yr−1) for carbon transfer through chemical weathering

reactions are illustrated in Figure 6.11. Carbonic acid weathering draws down 0.09 tC.km−2.yr−1

through silicate dissolution (Equation 2.1, Figure 6.11A) and 0.24 tC.km−2.yr−1 by carbonate

dissolution (Equation 2.2, Figure 6.11B) on the short–term. CO2 consumed on the short–term

by silicate weathering includes the weathering of Na- and K-silicates. When the long–term CO2

budget is calculated, only Ca- and Mg-silicates are taken into account because Na and K do not

precipitate in carbonates (Berner, 1992) and CO2 drawndown by Na- and K-silicates could be

re-released through reverse weathering (Mackenzie & Garrels, 1966). Therefore the actual long

term sink from carbonic acid weathering of silicates is 0.015 tC.km−2.yr−1 (Figure 6.11F). The

dissolution of carbonates with carbonic acid releases two moles of HCO−
3 where one mole of carbon

is atmospheric derived and one mole is lithological carbon from the carbonate, when the HCO−
3

is precipitated as carbonate in the oceans, one mole of carbon is returned to carbonate lithology

and one mole to the atmosphere making this a long–term carbon neutral process. The reaction of

sulfuric acid and carbonates releases CO2 to the atmosphere instantaneously if the reaction occurs

K.E. Relph, Ph.D. Dissertation
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Figure 6.11: Specific CO2 fluxes of chemical weathering reactions in the Mekong
River basin. Specific fluxes of inorganic carbon from chemical weathering of rocks are in
red (tC.km−2.yr−1). Reactions are categorised into two timescales. Letters indicate a reaction
occurring and arrows represent the transfer of carbon. The weathering of silicate rocks draws down
0.09 tC.km−2.yr−1 of atmospheric carbon during dissolution with carbonic acid (A). Carbonic
acid reacting with carbonate rocks draws down 0.24 tC.km−2.yr−1 of atmospheric carbon (B).
Sulfuric acid weathering of carbonate rocks releases 0.02 tC.km−2.yr−1 of lithological carbon back
to the atmosphere, instantaneously if the reaction occurs in an open environment, where carbon
is degassed to the atmosphere as CO2 (C) or in a confined environment where lithological carbon
is released (D) and transferred to the oceans and precipitated as carbonate, releasing CO2 on
long–term (million-year) timescales (F). Sulfuric acid weathering of silicate minerals does not
release carbon in any form (E). HCO−

3 that is sourced from carbonic acid weathering of silicates
(A) is transported to the ocean and precipitates as CaCO3 which is a sink of 0.02 tC.km−2.yr−1

atmospheric carbon (represented by the dashed downwards arrow in the ocean, F). The HCO−
3

delivered from carbonic acid weathering of carbonates (B) is returned to its source and is a carbon
neutral process on long–term timescales (no number is written but 0.024tC.km−2.yr−1 is returned
to the atmosphere at F). When carbonate precipitates it releases CO2 back to the atmosphere (F).
The precipitation of gypsum (G) from Ca2+ and SO2−

4 products of C, D and E is not involved in
the carbon cycle. The Mekong is a net source of 0.01 tC.km−2.yr−1 to atmospheric carbon when all
sources and sinks are accounted for on instantaneous and long timescales. Figure after (Gaillardet
& Galy, 2008).
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in an open environment (Equation 2.3, Figure 6.11C) or on the long term after carbon released

from the reaction is transferred as HCO−
3 to the oceans and precipitated as carbonate releasing CO2

(Equation 2.4, Figure 6.11D). Either reaction pathway releases 0.02 tC.km−2.yr−1 (Figure 6.11F).

The overall carbon budget of the Mekong is calculated by the atmospheric CO2 sequestration by

carbonic acid weathering of silicates offset by the instantaneous CO2 release from sulfuric acid

weathering of carbonates (since this is the predominant reaction pathway in the Mekong (Section

6.5.1)). There is 15% difference in the long term CO2 sequestration from carbonic acid weathering

of silicates and the release of CO2 by sulfuric acid weathering of carbonates resulting in the Mekong

being a net source of CO2 to the atmosphere by 0.01 ±0.001 tC.km−2.yr−1.

The range in spatial CO2 consumption values presented in Figure 6.9 are calculated using

individual discharge, silicate residue ratios and fpyr values. Discharge values are a combination of

ADCP data collected in 2016 and 2017, MRC historical data set, Cambodian tributaries are from

Someth et al. (2013) and some Laos tributaries from Nippon Koei (2001). Ca/Na and Mg/K ratios

are calculated from bedload samples collected from each tributary, similarly fpyr values have been

calculated from unique δ18OSO4 and δ34SSO4 measured in dissolved sulfate in each tributary. This

comprehensive data set characterising each tributary provides a robust method to calculate the

CO2 budget in catchments spatially. The most representative annual total CO2 budget would be

calculated by summing the CO2 flux of all tributaries for each month of the year. However monthly

discharge data is not available for most tributaries in the Mekong basin, so this is not yet possible.

Instead, the annual total CO2 budget is calculated using the flux at Chroy Changvar, at the mouth

of the Mekong.

Samples collected at Chroy Changvar use Ca/Na and Mg/K ratios calculated from bedload

analysed from the sample site but an fpyr value from Kratie because samples from δ34SSO4 and

δ18OSO4 measurement were not collected in Chroy Changvar. One Ca/Na, Mg/K and fpyr value

is applied to samples collected across the year at Chroy Changvar which may be an under or over

estimation of sulfuric acid weathering of carbonates if fpyr were to vary annually, which cannot be

determined from current data. Moreover one Ca/Na, Mg/K and fpyr value is applied to partition

the signal at the mouth of the river, effectively resorting back to a simpler forward partitioning

of cations (Galy & France-Lanord, 1999), losing the detail from individual tributary partitioning.

Finally, it is important to consider the δ34SSO4 and δ18OSO4 measured in SO2−
4 samples collected

from main stem. The premise of using oxygen isotopes in sulfate relies upon the sedimentary sulfide

being oxidised with local meteoric water and measured close to the location of oxidation so that

K.E. Relph, Ph.D. Dissertation
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δ18O and δ18OSO4 are relatable. However, it is unlikely that as much sedimentary sulfide is oxidised

in the main stem as that which is oxidised in the tributaries. Therefor the measured SO2−
4 at Chroy

Changvar is likely a mixture of sulfate oxidised in local tributaries and upstream and transported.

The main stem fpyr signature has only a small variation (∼5%) so this may not be a substantial

issue.

6.6 The Mekong in Global Perspective

The drawdown of atmospheric carbon by carbonic acid weathering of carbonates is 0.24 tC.km−2.yr−1

in the Mekong compared to 0.89 tC.km−2.yr−1 in the Mackenzie (Horan et al., 2019). The long

term carbon sequestration from carbonic acid weathering of silicates is 0.26-0.41 tC.km−2.yr−1

for the Mackenzie, 0.63 tC.km−2.yr−1 for the Amazon, 1.8 tC.km−2.yr−1 for the Brahmaputra

and 0.71 tC.km−2.yr−1 for the Yangtze (Gaillardet et al., 1999; Horan et al., 2019) compared to

0.02 tC.km−2.yr−1 for the Mekong. Gaillardet et al. (1999) calculate that the Mekong consumes

2.93tC.km−2.yr−1 from one spot sample collected at the mouth of the Mekong using an inverse

model. Li et al. (2014a) use MRC historical from Pakse to suggest the Mekong is a CO2 sink,

consuming 1.2tC.km−2.yr−1. In this calculation, Ca is corrected for evaporite input but not for

sulfide input, therefore it is likely an over estimate of CO2 consumption.

The most significant result of this study is that the Mekong River is a small net source

of CO2 over the year. It is crucial to re-consider the CO2 budget in catchments where carbonate

weathering is high, such as the Ganges-Brahmaputra, Yangtze, Mississippi, and Xijiang (Gaillardet

et al., 1999; Galy & France-Lanord, 1999) as the estimates could be overestimated due to sulfuric

acid weathering of carbonates releasing CO2 not being accounted for. A detailed carbon budget

considering the sulfuric acid weathering of carbonates has so far only been demonstrated for

the Mackenzie River (Calmels et al., 2007; Horan et al., 2019; Millot et al., 2003), and now for

the Mekong River. Further, it is vital to understand the impact of sulfuric acid weathering in

catchments that are heavily populated and are within developing nations, as the rate of sulfuric

acid weathering could increase with anthropogenic release of SO2 though the burning of fossil fuels

(e.g. Li et al., 2008; Li & Ji, 2016; Smith et al., 2001; Xu & Liu, 2007; Yoon et al., 2008).



Chapter 7

Chemical Weathering in the Mekong River

Basin: Summary and Conclusions

The aim of this thesis has been to calculate the inorganic carbon budget of one of the world’s largest

yet understudied river basins, the Mekong, and to assess the impact of sulfuric acid weathering of

carbonate minerals on a continental scale river basin.

The Mekong water chemistry is dominated by high concentrations of Ca2+ and HCO−
3 with

concentrations of most elements generally decreasing downstream from the headwaters in China.

An exception to this trend are the peaks in concentration of Cl−, Na+ and K+, from rivers draining

the Khorat Plateau, on the right bank of the Middle Mekong, indicating halite and potash mineral

dissolution.

Two approaches were discussed for partitioning solutes between carbonate and silicate

lithologies. Firstly, bedload sediment is sequentially leached to extract lithological components

from the bulk sediment. 87Sr/86Sr isotope measurements in the AcOH leach (thought to represent

the carbonate end member), water, and residue (representing the silicate end member) are used

to estimate fraction of silicate and carbonate weathering contributing to the water chemistry.

Secondly, Ca/Na and Mg/K ratios were calculated from analysis of the silicate fraction remaining
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after sequential leaching of bedload sediment. A fused bead method of sediment digestion was

adapted to ensure an efficient and versatile one-time digestion of small (50mg) sample sizes.

With this micro-bead method it is possible to measure major element concentrations and multiple

isotopes. Samples collected from most tributaries of the Mekong River were analysed in this

way for major elements, 87Sr/86Sr, and εNd isotopes. The isotopes highlight the heterogeneity

of lithologies in the Mekong and the need for high–resolution spatial sampling of large rivers.

Ca/Na and Mg/K ratios in the silicate fraction were combined with Na+ and K+ concentrations

in river water, corrected for rain and halite inputs, to calculate the fraction of solutes derived

from weathering of silicate minerals, Xsil. Although the results of these two approaches positively

correlate, sequential leaching of sediment gave negative values of silicate fraction contribution

potentially due to methodological issues with leaching, or, an unaccounted control of water chemistry,

for example the exchangeable fraction. Therefore the method used to calculate silicate mineral

weathering contribution is with Ca/Na and Mg/K ratios in silicate residues.

The weathering of carbonate minerals with sulfuric acid and dissolution of gypsum contribute

solutes to water chemistry (particularly Ca2+ and SO2−
4 ). Importantly the oxidative pyrite–driven

weathering of carbonates also has carbon implications for the climate. A new two end member

mixing model was used to partition the source of sulfate between gypsum, fgyp, and pyrite, fpyr.

The model employs δ18OSO4 and δ34SSO4 isotopes of dissolved SO2−
4 to characterise end members.

A gypsum end member is constrained from literature data and δ18OSO4 of a sedimentary sulfide

end member is calculated using individual sample δ18OH2O values and an assumption that pyrite is

oxidised mostly by iron reduction, with only 17% incorporation of atmospheric O2 into the product

sulfate. δ34SSO4 of the sedimentary sulfide end member is subsequently determined by the mixing

model and confirmed acceptable by comparison against common literature values. The oxidative

weathering of pyrite accounts for on average 57% of the sulfate flux that is delivered to the South

China Sea by the Mekong river, with tributary fpyr values ranging between 0.18 and 0.83.

A concern highlighted by this study is the reliability of published geological maps and their

agreement with geochemical data. For example, according to geological maps (Chinese Academy of

Geological Sciences, 1975) the Khorat Plateau, in Thailand, is dominated by evaporites, whilst

this thesis calculates up to 71% of the SO2−
4 measured in the Mun, Chi and Songkhram rivers

draining the Khorat Plateau is derived from oxidation of sulfides, not sedimentary sulfates. The

discrepancy between geochemical data and geological maps could be due to geological maps based

on poor outcrop exposure or active weathering fronts may have reached bed rock of a different
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lithological unit. Budgets of CO2 consumption from models that calculate chemical weathering

rates based on global geology, should be corroborated with geochemical data to verify geological

map accuracy (Suchet et al., 2003; Dürr et al., 2005; Hartmann & Moosdorf, 2012). Moreover,

these maps highlight the lithological heterogeneity of the Earth’s crust, and in order to understand

the impact and the controls on chemical weathering reactions occurring with particular lithologies

and at particular latitudes, high frequency sampling is preferable to one spot samples of large rivers

(Burke et al., 2018; Gaillardet et al., 1999).

A forward model to partition sources of dissolved inorganic carbon (DIC) was developed

from Galy & France-Lanord (1999) and incorporates the source of acidity in weathering reactions

(carbonic or sulfuric) and the use of individual Ca/Na and Mg/K ratios in silicate end members

of each tributary. Cations partitioned to their source lithology and acidity reaction can be used to

calculate carbon budgets of a river basin, and the dominance of particular weathering reaction

pathways may also be evaluated. The sulfuric acid weathering of carbonates instantaneously

releases CO2 as gas, or carbon released is transferred as HCO−
3 to the oceans, these two pathways

result in different river water chemistry. Cations are partitioned assuming the products and

stoichiometry of each reaction pathway. Charge balance calculations of the partitioned cations

indicate that the most likely reaction pathway of CO2 release from sulfuric acid weathering of

carbonates is instantaneous degassing.

Using a framework to track partitioned Ca2+ ions, CO2 consumption or release in the Mekong

basin is shown graphically (Torres et al., 2016). This framework demonstrates the necessity of

considering sulfuric acid weathering of silicates, which consumes acidity and provides solutes to the

river.

CO2 drawdown or release was calculated for each chemical weathering reaction occurring in

the Mekong River basin and the overall short–term and long–term carbon budgets were determined

for each tributary. On timescales shorter than carbonate precipitation, all Mekong tributaries are

a sink of atmospheric CO2. On million–year timescales, the headwater regions in China and one

karst dominated tributary in the Middle Mekong release CO2. A bi-monthly time–series collected

from Chroy Changvar close to the Mekong mouth, between 2014-2017, is used to investigate

seasonality in carbon budgets. The carbon budget of the Mekong varies throughout the year.

During the monsoonal months, the Mekong consumes atmospheric CO2 but CO2 is released during

the dry season. The total annual carbon flux is calculated from this time–series. The drawdown

of atmospheric carbon by carbonic acid weathering of silicates and carbonates is 0.33 tC.km−2.yr−1,
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16 times larger than the instantaneous release of carbon to the atmosphere by sulfuric acid weathering

of carbonates. However carbonic acid weathering of carbonates is carbon–neutral on million–year

timescales. Thus the combination of a high proportion of carbonate rocks (low Xsil) and 57% of

sulfate delivered by pyrite oxidation results in a greater release of CO2 from sulfuric acid weathering

of carbonates, marginally offsetting the long term sequestration of atmospheric CO2 by carbonic

acid weathering of silicates (0.02 tC.km−2.yr−1). Previous estimates of Mekong carbon budgets,

using historical MRC data or spot sampling, suggest the basin is a net sink (Gaillardet et al., 1999;

Li et al., 2014a), however this study determines that the Mekong river basin is an annual net source

of 0.01 tC.km−2.yr−1 to the atmosphere.

7.1 The Importance of δ18OSO4
in Determining Sulfate Source

Determining oxygen-isotopes in river water sulfate and the source of that oxygen is vital for

quantifying the proportion of pyrite derived sulfate. The pyrite end member in the two end member

mixing model is characterised using δ18OSO4 which can change depending on the proportion of

atmospheric O2 incorporation. Increasing the proportion of atmospheric O2 (with a heavy δ18O

signature) increases fpyr. Although studies determining the source of O2 incorporated into pyrite

derived sulfate have constrained the range of the atmospherically sourced O2 to between 0% and

17%, there is no way of interpreting where river samples lie in that range using δ18OSO4 and

δ34SSO4 . It may be possible, with the use of ∆17O, to track atmospheric O2 (Le Gendre et al.,

2017; Killingsworth et al., 2018; Crockford et al., 2019) which would constrain the pyrite end

member further and therefore more accurately calculate the proportion of sulfate derived from

pyrite oxidation.

The largest error in the two-end member mixing model and in the values of fpyr calculated

is due to the error in δ18OSO4 and δ34SSO4 of gypsum. The range in gypsum end member projects

through the water sample generating a large spread in δ34SSO4 . Minimising errors in gypsum

minimises the spread in the pyrite end member, further constraining fpyr values. Besides measuring

∆17O on sulfate samples to calculate atmospheric O2 incorporation during pyrite oxidation, end

member compositions could be better characterised by collecting rock samples from catchments

and measuring their isotopic compositions.

Additionally, secondary processes affecting the isotopic composition of SO2−
4 , such as

bacterial sulfate reduction, are difficult to constrain from δ18OSO4 and δ34SSO4 analysis in one
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sample collected from each tributary. High-resolution spatial sampling downstream in tributary

catchments could provide an insight into any secondary processes occurring. For example, decreases

in SO2−
4 concentration or progressively heavier δ18OSO4 and δ34SSO4 could indicate bacterial sulfate

reduction (e.g. Turchyn et al., 2013).

7.2 Assumptions on Acidity Source

An assumption is made during the partitioning of cations, about the ratio by which sulfuric acid

weathers carbonate and silicate minerals. It is assumed in the forward model that sulfuric acid

and carbonate acid weather silicate and carbonate minerals in equal proportions (Chapter 6).

The foundation of this assumption was based on the need to consider sulfuric acid weathering of

silicates in order to partition cations in Fsulf (proportion of acidity derived from sulfuric acid) and

Fcarb (proportion of carbonate weathering) space (Section 6.4.2.3). However, carbonic acid is a

weaker acid than sulfuric so any sulfuric acid present is likely to weather available minerals before

carbonic acid (Amiotte Suchet et al., 1995; Guo et al., 2015). Moreover, silicates are less reactive

than carbonate minerals (Plummer et al., 1978; White et al., 1999b). Hence in a hypothetical

environment where both sulfuric and carbonic acid and both carbonate silicate minerals are present,

the carbonate is likely to weather first with sulfuric acid, then carbonic acid would react more slowly

with silicate minerals. If this is the case, the amount of sulfuric acid weathering of carbonates in the

forward model has been underestimated, which would then suggest a greater release of lithologically

sourced carbon. However, if carbonate dissolution exhausts the supply of sulfuric acid weathering

then only carbonic acid will weather silicate minerals, all be it at a slower rate but the reaction

results in a greater sequestration of atmospheric CO2 on long time scales. A next step with this

work would be to try and quantify when the supply of sulfuric acid weathering carbonates would

be exhausted and if there is any sulfuric acid left to weather silicate minerals, or indeed if there are

any carbonate minerals left that would then be weathered by carbonic acid.

7.3 Future Considerations

The proportion of sulfate delivered by pyrite oxidation and hence the proportion of sulfuric acid

weathering carbonate minerals has been calculated at the mouth of the Mekong using one fpyr

value applied to the whole year. However, there are several reasons to suggest that the δ18OSO4
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and δ34SSO4 signature may vary through the year. Firstly, the proportion of solutes delivered from

different areas of the basin changes over the year with the affect of multiple monsoon systems

affecting different parts of the basin at different times of the year. This will contribute different

amounts of solutes derived from sulfuric acid weathering of carbonates and dissolution of gypsum

throughout the year to the basin-integrated signal at the mouth. Hence the main stem value of fpyr

may change between monsoon and dry seasons. Secondly, the product sulfate from the oxidation

of pyrite via iron reduction incorporates meteoric water, of which the δ18OH2O signature changes

through the year as a result of temperature fractionations. The δ18OSO4 ratio used to model the

proportion of sulfate derived from pyrite, fpyr, and the pyrite end member signature could therefore

change depending on season of sample collection (Killingsworth et al., 2018). Considerations for any

future sample collection would be to measure δ18OSO4 and δ34SSO4 in a time-series to investigate

magnitude in seasonal variation.

Generally the largest sources of error in calculating solutes or CO2 fluxes in large rivers is

the error associated with discharge measurements. Discharge data on the Mekong main channel has

been collected by water level gauges and old ratings curves, rather than daily aDcp measurements.

Ideally, to calculate the most representative carbon budget, monthly aDcp measurements made on

every tributary in the Mekong basin would be combined with the individual Ca/Na and Mg/K

ratios, fpyr and water chemistry values and summed to calculate an annual carbon budget. The

signals from each tributary are representative and no mixing would need to be accounted for.

Although this would be a costly and labour intensive undertaking.

7.4 Concluding Remarks

It is important to carefully consider the timescale in which CO2 is released. Although previous

estimates suggest that the Mekong is consuming CO2, these have been short–term drawdown

estimates, including weathering of K- and Na-silicate minerals, and carbonate mineral weathering.

Whereas the long term CO2 budget only considers the weathering of Ca- and Mg-silicate minerals

with carbonic acid and the reaction of sulfuric acid with Ca- and Mg-carbonate minerals. The

short–term weathering reactions in the Mekong are an atmospheric CO2 sink, not a transient source

of CO2, despite the reaction pathway of sulfuric acid weathering of carbonates instantaneously

degassing CO2 (Torres et al., 2014).

The carbon budget of large river basins containing predominantly carbonate lithology should
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be reassessed. A large proportion of sulfuric acid weathering in these catchments could outweigh the

smaller fluxes of atmospheric CO2 drawdown from carbonic acid weathering of silicates. Further,

it is vital to understand the impact of chemical weathering reactions in global river catchments in

order to predict possible enhancement of sulfuric acid weathering of carbonates as a consequence of

anthropogenic release of SO2 though the burning of fossil fuels (e.g. Li et al., 2008; Li & Ji, 2016;

Smith et al., 2001; Xu & Liu, 2007; Yoon et al., 2008).

The considerations suggested here would make a small, but important, improvement to

accuracy and precision of calculating fpyr. For large river basins with carbon budgets close to

carbon neutral, a small improvement may make a considerable difference to which side of carbon

neutral their carbon budget balances. In light of the carbon budget calculated for the Mekong by

this thesis, perhaps the role of silicate weathering in modulating climate should be re-evaluated;

if large river basins are in a delicate balance between CO2 release from sulfuric acid weathering

of carbonates and CO2 drawdown from carbonic acid weathering of silicates. If large rivers are

not a CO2 sink as was previously thought, then other sources of atmospheric CO2 removal such as

organic carbon burial or carbonate precipitation associated with marine sulfate reduction must be

significant (Bradbury & Turchyn, 2018; Calmels et al., 2007; France-Lanord & Derry, 1997; Hilton

et al., 2015; Horan et al., 2019).
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Coogan, L., Daëron, M., & Gillis, K., 2019. Seafloor weathering and the oxygen isotope ratio in
seawater: Insight from whole-rock δ18O and carbonate δ18O and δ47 from the Troodos ophiolite,
Earth and Planetary Science Letters, 508, 41 – 50.

Coogan, L. A. & Gillis, K. M., 2013. Evidence that low-temperature oceanic hydrothermal
systems play an important role in the silicate-carbonate weathering cycle and long-term climate
regulation, Geochemistry, Geophysics, Geosystems, 14(6), 1771–1786.

Cook, B. I., Bell, A. R., Anchukaitis, K. J., & Buckley, B. M., 2012. Snow cover and precipitation
impacts on dry season streamflow in the Lower Mekong Basin, Journal of Geophysical Research:
Atmospheres, 117(D16).

Coplen, T. B. & Krouse, H. R., 1998. Sulphur isotope data consistency improved, Nature,
392(6671), 32–32.

Coplen, T. B., Herczeg, A. L., & Barnes, C., 2000. Isotope engineering—using stable isotopes of
the water molecule to solve practical problems, in Environmental tracers in subsurface hydrology ,
pp. 79–110, Springer.

Crockford, P. W., Kunzmann, M., Bekker, A., Hayles, J., Bao, H., Halverson, G. P., Peng, Y.,
Bui, T. H., Cox, G. M., Gibson, T. M., Wörndle, S., Rainbird, R., Lepland, A., Swanson-Hysell,
N. L., Master, S., Sreenivas, B., Kuznetsov, A., Krupenik, V., & Wing, B. A., 2019. Claypool
continued: Extending the isotopic record of sedimentary sulfate, Chemical Geology , 513, 200 –
225.

Dai, A. & Trenberth, K. E., 2002. Estimates of freshwater discharge from continents: Latitudinal
and seasonal variations, Journal of Hydrometeorology , 3(6), 660–687.

Darby, S. E., Leyland, J., Kummu, M., Räsänen, T. A., & Lauri, H., 2013. Decoding the drivers
of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and
snowmelt, Water Resources Research, 49(4), 2146–2163.

Darby, S. E., Hackney, C. R., Leyland, J., Kummu, M., Lauri, H., Parsons, D. R., Best, J. L.,
Nicholas, A. P., & Aalto, R., 2016. Fluvial sediment supply to a mega-delta reduced by shifting
tropical-cyclone activity, Nature, 539(7628), 276–279.

Deer, W. A., Howie, R. A., & Zussman, J., 1992. An introduction to the rock-forming minerals,
Longman, Harlow, Essex, England, 2nd edn.

Delgado, J. M., Apel, H., & Merz, B., 2010. Flood trends and variability in the Mekong river,
Hydrology and Earth System Sciences, 14(3), 407–418.

Delgado, J. M., Merz, B., & Apel, H., 2012. A climate-flood link for the lower Mekong river,
Hydrology and Earth System Sciences, 16(5), 1533–1541.
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Millot, R., Gaillardet, J., Dupré, B., & Allègre, C. J., 2002. The global control of silicate weathering
rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield,
Earth and Planetary Science Letters, 196(1–2), 83 – 98.
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