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Abstract: 48  49 Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by 50 transcriptional dysregulation resulting in a block in differentiation and increased 51 malignant self-renewal. Various epigenetic therapies aimed at reversing these 52 hallmarks of AML have progressed into clinical trials, with most showing modest 53 efficacy due to an inability to effectively eradicate leukaemia stem cells (LSC)1. 54 To specifically identify novel dependencies in LSC we screened a bespoke library 55 of small hairpin RNAs (shRNAs) targeting chromatin regulators in a unique ex 56 
vivo model of LSC. We identified the MYST acetyltransferase HBO1 (KAT7 / 57 MYST2) and several known members of the HBO1 protein complex as critical 58 regulators of LSC maintenance. CRISPR domain screening and quantitative mass 59 spectrometry identified the HBO1 histone acetyltransferase (HAT) domain as 60 being essential to acetylate histone H3K14. H3K14ac facilitates the processivity 61 of RNA polymerase II to maintain the high expression of key genes including 62 
HOXA9 and HOXA10 that helps sustain the functional properties of LSC. To 63 leverage this dependency therapeutically we developed highly a potent small 64 molecule inhibitor of HBO1 and demonstrate its mode of activity as a 65 competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic 66 data and showed efficacy in a broad range of human cell lines and primary 67 patient AML cells. Together these biological, structural and chemical insights into 68 a novel therapeutic target in AML will enable the clinical translation of these 69 findings.  70 
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Manuscript 71  72 AML is organized in a loose hierarchy whereby a small population of self-73 renewing LSC give rise to a large population of more mature leukemic blasts2. 74 Whilst several human and mouse AML cell lines have undergone chemical and 75 genetic screens to identify targetable dependencies in this disease3-5, the 76 majority of these models do not replicate the functional properties of LSC. 77 Analogous to the effective maintenance of embryonic stem cells with therapeutic 78 pressure to decrease differentiation6, we serendipitously established a method 79 to sustain cells with the transcriptional and functional properties of LSC in liquid 80 culture7. Importantly, we concurrently established an isogenic population of 81 AML blasts.  82  83 As regulators of transcription are the most frequent mutational targets in AML8, 84 we performed a pooled negative selection screen with a customized shRNA 85 library against 270 known chromatin modifiers to uncover new transcriptional 86 regulators required for the maintenance of functionally validated LSC7. The 87 screen was highly reproducible and clearly identified shared and unique 88 dependencies in LSC and AML blasts (Extended Data Fig. 1a). Interestingly, we 89 observed far fewer dependencies in LSC; with less than one-third of shRNAs 90 depleted in the LSC compared to the blasts (Figure 1a, Supplementary Table 1). 91 We previously showed that the BET bromodomain proteins (BRD2/3/4) were 92 not a major dependency in this LSC model7 and in addition we found that most of 93 the hitherto identified epigenetic dependencies, including DOT1L, LSD1, EZH2 94 and PRMT5 that have been the focus of clinical therapies1 selectively eradicate 95 only the blasts and not the LSC (Extended Data Fig. 1b-c). Of the few 96 dependencies identified in the LSC, we chose to focus on HBO1 as it is not a 97 recognised essential gene and it was equally effective in eradicating the blast and 98 LSC populations (Figure 1a-b and Extended Data Fig. 1d).  HBO1 is one of five 99 mammalian members of the highly conserved MYST acetyltransferase family. 100 Recent efforts to identify unique and global genetic dependencies in human cells 101 have highlighted the fact that MOF (KAT8) and TIP60 (KAT5) are pan-essential 102 genes9, whereas HBO1 is highly expressed in human AML (Extended Data Fig. 2), 103 where it shows a clear and unique dependency9 (Figure 1 b-c, Extended Data Fig. 104 3a-b). HBO1 has been reported to function as a major transcriptional regulator 105 primarily via histone acetylation and although various histone modifications 106 have been attributed to HBO110-12, these conflicting reports are likely influenced 107 by the specificity of the antibodies used. Therefore, to precisely identify the 108 major histone modifications regulated by HBO1 we coupled conditional deletion 109 of HBO1 in AML cells with quantitative mass spectrometry13. These data clearly 110 demonstrate that acetylation of histone H3K14 (H3K14ac) is the major non-111 redundant chromatin modification mediated by HBO1 (Supplementary Table 2 112 and Figure 1c).  113 
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 114 HBO1, like most HATs can interact with several scaffolding proteins to form 115 functionally distinct catalytically active complexes14. Therefore, to identify the 116 major complex members required for the maintenance of LSC we assessed the 117 functional impact of genetic depletion of the HBO1 complex members. We found 118 that knockdown of BRPF2 (BRD1), mEAF6 and PHF16 (JADE3) phenocopied the 119 functional and biochemical effects of HBO1 reduction (Figure 1d-e and Extended 120 Data Fig. 3c). As  all of the HBO1 complex components which resulted in 121 impaired maintenance of LSC, also caused a global reduction in H3K14ac, we 122 reasoned that the catalytic domain of HBO1 might be the critical target. CRISPR 123 domain screening with five separate sgRNAs against the MYST domain 124 confirmed that this domain was essential for H3K14ac and LSC survival (Figure 125 1f-g). While CRISPR domain screening is an effective approach to identify 126 functional domains for drug discovery15, our rescue experiments with wildtype 127 and catalytically inactive HBO1 provided the highest level of confidence that the 128 HAT domain of HBO1 was the critical therapeutic target in the complex (Figure 129 1h-i).  130  131 The dominant cellular phenotypes that resulted from HBO1 loss included an 132 induction of apoptosis, a prominent G0/G1 cell cycle arrest and a marked 133 differentiation of the immature LSC population (Figure 2a-b, Extended Data Fig. 134 3d-h). Together these data highlighted the importance of HBO1 in LSC 135 maintenance in an ex vivo model system. To address the broader application of 136 our findings in the absence of therapeutic pressure to maintain the LSC state7, 137 we generated an enriched population of LSC in vivo16 and performed a 138 competition assay to assess the requirement of HBO1 for LSC maintenance in 139 
vivo. Here we transplanted a fixed ratio of 90% shRNA expressing cells and 140 followed the percentage of shRNA expressing cells contributing to the leukaemia 141 
in vivo. Despite 90% of HBO1 shRNA expressing LSC being transplanted <5% of 142 them remain at the time of death from leukaemia demonstrating a marked 143 negative selection (Figure 2c). In contrast, both the non-targeting shRNA and 144 shRNA against the closely related MYST family member MOZ (KAT6A) show no 145 detrimental effect to LSC. Similar results were also seen in the NPM1c and FLT3-146 ITD mouse model17 (Figure 2d). Moreover, the mice transplanted with HBO1 147 expressing shRNAs showed a significant survival benefit (Figure 2e, Extended 148 Data Fig. 4a) raising the prospect that HBO1 null LSC are incapable of 149 perpetuating the disease.  150  151 To explore this possibility further we generated leukaemias using an Mx1-Cre 152 model for conditional deletion of HBO1 (Extended Data Fig. 4b). The resulting 153 leukaemia was then transplanted into secondary recipient mice and 154 polyinosinic-polycytidylic (pIpC) acid was administered following engraftment. 155 Neither pIpC injection nor heterozygous deletion of HBO1 significantly impact 156 
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survival or leukaemia latency (Extended Data Fig. 4c). Leukemic cells derived 157 from Hbo1flox/flox Mx1-Cre mice show a marked survival advantage and none of 158 the fatal leukaemia that occurred in pIpC treated mice contained complete loss of 159 HBO1 (Figure 2f). In contrast, homozygous deletion of MOZ showed no 160 significant effects in two separate AML mouse models (Extended Data Fig. 4d-f). 161 Together, these data confirm the results from our ex vivo model and provide 162 compelling evidence that HBO1 is an essential requirement for LSC maintenance.    163  164 To assess the generality of our findings beyond mouse models of AML we chose 165 to delete HBO1 using CRISPR/Cas9 in a range of human AML cell lines 166 encompassing a variety of oncogenic drivers prevalent in AML8. We found the 167 majority of AML cell lines recapitulate our results in the murine LSC and show 168 impaired survival of HBO1 deleted cells resulting from an induction of apoptosis, 169 a G0/G1 cell cycle arrest and prominent differentiation (Figure 2g-k, Extended 170 Data Fig. 5). In contrast, very few non-AML cell lines show a similar dependency 171 on HBO1 (Extended Data Fig. 6). Having established the requirement of HBO1 in 172 mouse and human AML models we next wanted to understand the molecular 173 events underpinning its role in LSC maintenance. Consistent with the major 174 cellular phenotype of myeloid differentiation, we found that HBO1 loss results in 175 the marked enrichment of a myeloid differentiation gene expression program 176 (Extended Data Fig. 7a). The established role of HBO1 as a facilitator of 177 transcription led us to examine the top downregulated genes following HBO1 178 deletion. Interestingly, these downregulated genes are some of the most highly 179 expressed (Extended Data Fig. 7b) and include several homeobox genes (Figure 180 3a), which are known to be important in LSC maintenance and are commonly 181 upregulated in poor prognosis AML18. The requirement of HBO1 to sustain the 182 expression of the essential LSC genes within the 5’-HoxA cluster is conserved in 183 human AML cells (Extended Data Fig. 7c) and the dominant role of these genes in 184 mediating the cellular phenotypes of HBO1 loss is highlighted by the fact that 185 overexpression of HoxA9 or HoxA10 significantly rescues the myeloid 186 differentiation and loss of viability observed following HBO1 depletion 187 (Extended Data Fig. 7d-f).  188  189 Many of the genes downregulated following HBO1 loss, particularly the 190 homeobox genes, are established targets of both wildtype MLL1 and MLL1-191 fusion proteins19. Using quantitative proteomics in an isogenic leukaemia cell 192 line designed to express a single copy of seven distinct MLL1-fusion proteins,20 193 we identified the HBO1 complex functionally required to maintain LSC (Figure 194 1d) as strong interactors with the N-terminus of MLL1 (Figure 3b-c). Whilst 195 these findings provide molecular insights into how the HBO1 complex is 196 recruited to specific gene loci, to further understand the role of HBO1 in 197 regulating these genes we performed ChIP-Seq analyses for H3K14ac and RNA 198 polymerase-II (RNA POL-II). These data show that H3K14ac deposited by HBO1 199 
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is widespread throughout the genome but interestingly at the highly expressed 200 genes repressed by HBO1 loss, H3K14ac and RNA POL-II blanket the entire 201 coding region of the gene (Fig. 3d, Extended Data Fig. 7g). H3K14ac is an 202 evolutionarily conserved histone modification and recent evidence suggests that 203 H3K14ac may regulate transcriptional elongation21. Consistent with this, we find 204 markedly increased RNA POL-II levels within the coding region of highly 205 expressed genes containing the highest H3K14ac levels (Fig. 3e). Furthermore, 206 expressed genes with the highest level of H3K14ac have the lowest RNA POL-II 207 travelling ratio and HBO1 loss leads to a more prominent loss of RNA POL-II 208 within the body these genes (Fig. 3f, Extended Data Fig. 7h). The processivity of 209 RNA POL-II is greatly facilitated by chromatin remodelling complexes and 210 H3K14ac has been shown to be specifically bound by SMARCA422, DPF223 and 211 several members of the ISWI family where it markedly potentiates their 212 remodelling activity24. Remarkably, these chromatin remodelling complex 213 members show a similar cancer cell line dependency profile to HBO1 with a 214 predilection for AML9 and also phenocopy the effects of HBO1 loss in LSC (Fig. 215 3g-i, Extended Data Fig. 7i).   216 Our genetic data in both mouse and human AML clearly identified the catalytic 217 activity of HBO1 as the central therapeutic target. A long-standing challenge in 218 the field has been the ability to develop highly selective small molecule HAT 219 inhibitors that discriminate between the major families of histone 220 acetyltransferases. We have recently demonstrated that the 221 acylsulfonylhydrazide backbone provides a simple chemical scaffold for the 222 generation of selective MYST-family inhibitors25. Using this template, we 223 generated WM-3835 (N'-(4-fluoro-5-methyl-[1,1'-biphenyl]-3-carbonyl)-3-224 hydroxybenzenesulfonohydrazide; Figure 4a), which retains specificity for the 225 MYST acetyltransferases but has increased potency against HBO1 compared to 226 WM-1119 (Figure 4b and Extended Data Fig. 8a). Crystal structure of HBO1 with 227 WM-3835 bound in the acetyl-CoA binding site was solved to 2.14 Å (Figure 4c, 228 Extended Data Fig. 9). Overlay of this crystal structure with WM-1119 in 229 MYSTCryst 25 shows that WM-3835 makes additional interactions with the protein 230 surface, which may explain the increased activity of WM-3835 against HBO1. 231 Specifically, the WM-3835 phenol forms a hydrogen-bonding network to Glu525 232 and Lys488, neither of which is conserved throughout the MYST family. 233 WM-3835 is a cell permeable small molecule that results in a rapid and selective 234 reduction in H3K14ac levels (Figure 4d). Treatment of a diverse set of AML cell 235 lines with WM-3835 resulted in a marked reduction in tumour cell viability 236 (Figure 4e, Extended Data Fig. 10a) that was not observed following treatment 237 with the inactive analogue WM-247425 (Extended Data Fig. 8b). Notably, we 238 observed an excellent dose-response relationship between a reduction of 239 H3K14ac and cell viability (Extended Fig. 8c-d). Although WM-3835 retains 240 
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potency against MOZ and QKF/MORF (KAT6B), CRISPR/CAS9 mediated deletion 241 of these enzymes do not alter the activity of WM-3835 (Figure 4f), highlighting 242 that the efficacy of WM-3835 in AML is primarily via HBO1 inhibition. Moreover, 243 treatment of cells with WM-3835 phenocopied the molecular and cellular effects 244 of genetic depletion of HBO1 by inducing apoptosis, a G0/G1 cell cycle arrest, 245 differentiation of human AML cells and transcriptional repression on HOXA9 and 246 
HOXA10 (Figure 4g-I, Extended Data Fig. 8e-h). Similar to our genetic studies, 247 overexpression of HoxA9 and HoxA10  ameliorated the effects of WM-3835 248 (Extended Data Fig. 8i). Although the rapid metabolism, including 249 glucuronidation of WM-3835 precluded efficacy experiments in vivo (Extended 250 Data Fig. 10b-c), the compound showed a prominent reduction of clonogenic 251 potential in primary human AML cells derived from several patients harbouring 252 different driver mutations, highlighting the therapeutic potential of catalytic 253 inhibitors against HBO1 in AML (Figure 4j).  254 Central to the ambition to alter the natural history of AML is the requirement for 255 new therapies that effectively target LSC from the outset. LSC serve as the 256 reservoir for evolving resistance to conventional and targeted therapies and our 257 clinical experience has clearly proven that monotherapies are incapable to 258 subvert the vast adaptive potential of LSC. Therefore, the future lies in 259 identifying key therapeutic targets in LSC that can be leveraged in combination 260 with other effective agents including conventional chemotherapy. Here we 261 identify HBO1 as a targetable dependency in LSC. Our molecular insights suggest 262 that MLL1 recruits HBO1 to regulate highly expressed LSC genes including the 263 HOXA cluster through H3K14ac, which potentiates the activity of specific 264 chromatin remodelling complexes enabling greater processivity of RNA POL-II 265 (Figure 4k). The blueprint for selective and potent inhibition of HBO1, together 266 with these new biological insights  provide the impetus and platform for the 267 translation of these findings into the clinical setting.   268 
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Figure Legends 382 
 383 
Figure 1: HBO1 is an essential dependency in LSC. 384 
a. Pooled negative-selection screening in MLL-AF9 bulk blasts (left) and 385 leukaemic stem cells (LSC, right). Volcano plot depicting changes in 386 representation of shRNAs in the screen between days 2 and 14. One dot 387 represents the mean of two independent experiments for each gene. b. Negative 388 selection competition assays depicting the percentage of shRNA over time in 389 blasts and LSC expressing Hbo1 shRNAs. n=3 (mean + s.e.m.). c. Immunoblot of 390 HBO1, H3K14Ac and H3K27Ac n=3 and d. Negative selection competition assays 391 n=3 (mean + s.e.m.) and e. Immunoblot of H3K14ac in LSC expressing shRNAs 392 targeting Hbo1 complex members. n=3. f. Negative selection competition assays 393 n=3 (mean + s.e.m.) and g. Immunoblot of HBO1, H3K14Ac and H3K27Ac in LSC 394 expressing Cas9 and sgRNAs against Rosa26 (control) or the Hbo1 catalytic 395 domain. n=3. h. Schematic outline of Hbo1 rescue experiments. Wildtype (wt) or 396 catalytic mutant Hbo1 (E508Q) resistant to sgHbo1 e12.2 or GFP were 397 overexpressed in LSC expressing Cas9 and then transduced with sgRNAs 398 targeting Hbo1. i. Hbo1 rescue negative selection competition assays. n=3 (mean 399 
+ s.e.m.). sgHbo1 e11.1 targets endogenous (END) and overexpressed (OE) Hbo1. 400 Right panel: immunoblot of overexpressed wildtype and catalytic mutant HBO1. 401  402 
Figure 2: Loss of HBO1 impairs LSC maintenance in vivo. 403 
a. Cell cycle profile n=3 (mean + s.e.m.) and b. Surface expression of Gr1 and 404 CD11b in LSC expressing Cas9 transduced with Hbo1 sgRNAs. n=3. c. Percentage 405 of shRNA positive cells in bone marrow (BM) and spleen (SP) at endpoint in 406 recipients transplanted with 5° MLL-AF9 cells. (mean ±s.d.) n= 5/group. d. 407 Percentage of shRNA positive cells (mean ±s.e.m.) in bone marrow (BM) at 408 endpoint in recipients transplanted with 3° NPM1c/FLT3-ITD cells. n=6/group. 409 
e. Kaplan-Meier curves of recipients injected with NPM1c/FLT3-ITD cells 410 expressing hairpins targeting Hbo1. n=5/group. Inset: immunoblot of HBO1 in 411 NPM1c/FLT3-ITD cells expressing Hbo1 hairpin from a recipient that died 412 showed that the hairpin was inactivated. Hbo1 levels from parental 413 NPM1c/FLT3-ITD cells are shown for comparison. f. Kaplan-Meier curves of 414 C57BL/6 mice injected with 103 Hbo1flox/flox Mx1-Cre 1° MLL-AF9 leukaemic cells. 415 Mice were treated with saline or pIpC (arrowheads). Inset: representative 416 genotyping of recipient bone marrow at endpoint. n=6/group. g. Negative 417 selection competition assays n=3 (mean + s.e.m.) and h. Immunoblot of HBO1 418 and H3K14Ac n=3. and i. Cell cycle profile n=3 (mean + s.e.m.) and j. Apoptosis 419 n=3 (mean + s.e.m.). and k. Surface expression of CD11b in Molm13 cells 420 expressing Cas9 and HBO1 sgRNAs. n=3. 421  422 
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Figure 3: HBO1 regulates expression of the 5’ end of the HoxA cluster in 423 
AML. 424 
a. Heat map depicting normalised expression of the top 25 down-regulated 425 genes in LSC with HBO1 loss. b. Heat map displaying the mean spectral counts 426 from AP-MS data of 7 MLL1 translocation partners for all MYST family members. 427 
c. Network analysis of known protein interaction partners of HBO1 (thick grey 428 lines) linking to known members of the HBO1 complex and HBO1 network to 7 429 MLL-fusions (thin red line). Nodes size represents the mean spectral counts for 430 each interaction. Node border width is scaled to the number of interactions with 431 the MLL-fusions. d. ChIP-seq profiles of H3K14Ac and RNA Polymerase II (RNA 432 POL-II) at HOXA gene cluster in LSC expressing Cas9 and Hbo1 sgRNA. 433 Representative of n=3 biological replicates. e. RNA POLII coverage across highly 434 expressed genes (high) divided according to H3K14ac levels. f. Waterfall plots of 435 change in RNA POLII (POL-II LFC) binding throughout the gene promoter (-30 to 436 +300 bp) and gene body (+300 bp to TES) following HBO1 loss for highly 437 expressed genes divided according to H3K14ac levels. g. Negative selection 438 competition assays n=3 (mean + s.e.m.) and h. Hoxa9 and Hoxa10 mRNA 439 expression in LSC expressing Cas9 and Smarca4, Dpf2 or Smarca5 sgRNAs. n=3 440 (mean + s.e.m.) i. Surface expression of Gr1 and CD11b in LSC expressing Cas9 441 and Dpf2 sgRNAs. n=2. 442  443 
Figure 4: Treatment with WM-3835 reduces AML growth. 444 
a. Chemical structure of WM-3835. b. Selectivity and potency profile of WM-445 3835 and WM-1119 superimposed on the KAT family dendrogram as measured 446 by histone acetyltransferase inhibition assay. Values listed in Extended Data 447 Figure 8A.  c. Ribbon representation of the HBO1-BPRF2 crystal structure(cyan) 448 with WM-3835 bound (yellow with element colouring; PDB code 6MAJ) overlaid 449 with the corresponding region of MYSTCRYST with WM-1119 bound (magenta 450 with element colouring; PDB code 6BA4), where non-conserved residues of 451 MYSTCRYST are shown in (blue). Key residues highlighted show hydrogen bond 452 with the phenol of WM-3935 d. Immunoblot of H3K14Ac in LSC treated with 453 WM-3835. n=2. e. LSC and human AML cell proliferation with 1 μM WM-3835. 454 n=3 (mean + s.e.m.). f. LSC with Moz or Qkf/Morf deletion proliferation with WM-455 3835 n=3 (mean± s.e.m.). Right, immunoblot of H3K23ac and H3K14ac in LSC 456 with Moz or Qkf/Morf deletion. n=2.  g. Cell cycle profile n=3 (mean + s.e.m.) and 457 
h. Surface expression of CD11b in Molm13 cells with WM-3835. n=3. i. Hoxa9 458 expression in murine LSC and Molm13 cells with WM-3835. n=2. j. Clonogenic 459 assays with primary patient AML cells treated with WM-3835. n=5 (mean + 460 s.e.m.). k. Schematic overview of AML gene regulation by the HBO1 complex. 461 
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Extended Data Figure Legends 462 
 463 
Extended Data Figure 1. Hbo1 is an AML specific dependency.  464 
a. RNAi screen multidimensional scaling plot of shRNA sequences from bulk 465 leukaemic blasts (bulk) and leukaemic stem cells (LSC) over 14 days of 466 screening. Screens were performed in duplicate (R1 and R2). b. Ezh2, Lsd1 and 467 Prmt5 mRNA expression relative to non-targeting (NT) in LSC expressing 468 shRNAs. Validation of the shRNA’s against DOT1L have previously been 469 published26. n=3 (mean + s.e.m.) c. Negative selection competition assays in bulk 470 leukaemic blast and LSC expressing shRNAs against Ezh2, Lsd1 and Prmt5. n=3 471 (mean + s.e.m.). d. Hbo1 mRNA expression relative to non-targeting (NT) in LSC 472 expressing shRNAs. n=3 (mean + s.e.m.). 473  474 
Extended Data Figure 2. Expression levels of HBO1. 475 
a. Box plot of HBO1 expression levels in different cancer types from TCGA27. The 476 upper limit, centre and lower limit of each box denotes the upper quartile, 477 median and lower quartile of the data respectively b. Dot plot of HBO1 478 expression levels in normal haematopoietic and AML cells from BloodSpot28, line 479 indicates mean expression.  480 
 481 
Extended Data Figure 3. Hbo1 depletion increases apoptosis, cell cycle 482 
arrest and myeloid differentiation in murine LSC.  483 
a. Negative selection competition assays in LSC expressing shRNA’s against Moz, 484 
Qkf or Hbo1. n=3 (mean + s.e.m.). b. Negative selection competition assays in LSC 485 expressing Cas9 transduced with sgRNAs targeting Moz or Qkf. n=3 (mean + 486 s.e.m.). c. Hbo1 complex member expression relative to non-targeting (NT) in 487 LSC expressing shRNAs targeting individual complex members. n=3 (mean + 488 s.e.m.) d. Apoptosis of LSC expressing shRNAs targeting Hbo1. n=3 (mean + 489 s.e.m.). e. Cell cycle profile of LSC expressing shRNAs targeting Hbo1. n=3 (mean 490 + s.e.m.). f. Surface expression of Gr1 and CD11b in LSC expressing shRNAs 491 against Hbo1. n=3. g. Apoptosis of LSC expressing Cas9 and sgRNAs targeting 492 
Hbo1. n=3 (mean + s.e.m.). h. Surface expression of cKit (CD117) in LSC 493 expressing sgRNAs targeting Hbo1. Representative of n=2 biological replicates. 494  495 
Extended Data Figure 4. in vivo depletion of Hbo1 increases disease latency. 496 
a. Kaplan-Meier curves of NSG mice transplanted with quinary MLL-AF9 497 leukaemic cells expressing shRNAs targeting Hbo1 and Moz. n=6 per group. b. 498 Schematic of wildtype and Hbo1 mutant alleles with numbered black boxes 499 representing exons. Genotyping primers are indicated (adapted from Kueh et., 500 al). c. Kaplan-Meier curves of C57BL/6 mice injected with 106 Hbo1 flox/+ Mx1-Cre 501 primary MLL-AF9 leukaemic cells. Mice were treated with saline or pIpC. n=12 502 per group. Right: representative genotyping of recipient bone marrow at 503 endpoint. d. Kaplan-Meier curves of C57BL/6 mice injected with Moz+/+, Moz+/- or 504 
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Moz-/- MLL-AF9 leukaemic cells. n=5 per group. e. Kaplan-Meier curves of Balb/c 505 mice injected with Moz+/+ or Moz-/- HoxA9/Meis1 leukaemic cells. n = 5 per 506 group.  507  508 
 509 
Extended Data Figure 5. HBO1 is a dependency in various AML subtypes. 510 
a. Negative selection competition assays in human AML cell lines expressing 511 Cas9 and sgRNAs targeting HBO1. n=3 (mean + s.e.m.). Driver mutations are in 512 parentheses. b. Immunoblot of HBO1 and H3K14Ac in OCI-AML3 cells expressing 513 Cas9 and sgRNAs targeting HBO1. n=3 (mean + s.e.m.). c. Cell cycle profile of OCI-514 AML3 cells expressing Cas9 and sgRNAs targeting HBO1. n=3 (mean + s.e.m.). d. 515 Apoptosis of OCI-AML3 cells expressing Cas9 and sgRNAs targeting HBO1. n=3 516 (mean + s.e.m.). e. Surface expression of CD11b in OCI-AML3 cells expressing 517 Cas9 and sgRNAs targeting HBO1. n=3. 518  519 
Extended Data Figure 6. HBO1 dependency in other cancers. 520 Negative selection competition assays in human cancer cell lines expressing Cas9 521 and sgRNAs targeting HBO1. n=3 (mean + s.e.m.). Cancer type is in parentheses. 522 
 523 
Extended Data Figure 7. Hbo1 depletion increases myeloid signature and 524 
decreases global H3K14Ac 525 
a. Barcode plot evaluating changes in myeloid development signature following 526 HBO1 depletion with sgHbo1 e11.1 and e12.2 in LSC. n=3. b. Bar plot of changes 527 in genes expression following HBO1 deletion in LSC ranked by expression levels. 528 Green bars show the top 25 most down-regulated genes following Hbo1 deletion. 529 
c. HOXA9 and HOXA10 mRNA expression in Molm13 and OCI-AML3 cells 530 expressing Cas9 and sgRNA targeting HBO1. n=3 (mean ± s.e.m.). d. Surface 531 expression of CD11b in LSC overexpressing Hoxa9 or Hoxa10 and sgRNAs 532 targeting Hbo1. e. Immunoblot of overexpressed Hoxa9 or Hoxa10 in LSC cells 533 expressing Cas9. Representative of n=3 biological replicates. f. Hoxa9 and 534 
Hoxa10 rescue negative selection competition assays. Representative of n=3 535 biological replicates. g. ChIP-seq profiles of H3K14ac and RNA Polymerase II 536 (RNA POL-II) at the Pbx3 locus in LSC expressing Cas9 and an sgRNA targeting 537 
Hbo1. Representative of n=3 biological replicates. h. RNA PolII traveling ratio 538 distribution for highly expressed genes divided according to H3K14ac levels 539 from ChIP-seq. i. Surface expression of Gr1 in LSC overexpressing sgRNAs 540 targeting Smarca5. Representative of n=3 biological replicates.  541 
 542 
Extended Data Figure 8. WM-3835 inhibits cell growth and HOXA 543 
expression in AML. 544 
a. KAT biochemical and SPR values for WM-3835 compared to WM-1119. 545 Biochemical assay was done at 1 μM acetyl-CoA, Km of HBO1. b. Proliferation 546 assays of human AML cells treated with 1 μM WM-2474. n=3 (mean + s.e.m.) c. 547 
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Cellular H3K14Ac biomarker assay dose response curves for WM-3835 (blue) 548 and WM-1119 (red) (mean ± s.e.m.). n=6 d. Growth inhibition assays of MLL-549 AF9 AML cell line Molm13 treated with WM-3835 at doses indicated. Boxes 550 represent minimum and maximum values. n=11 (mean ± s.e.m.) e. Cell cycle 551 profile of OCI-AML3 cells treated with WM-3835 or vehicle. n=3 (mean + s.e.m.) 552 
f. Apoptosis of OCI-AML3 cells treated with WM-3835 or vehicle. n=3 (mean + 553 s.e.m.). g. Surface expression of CD11b in OCI-AML3 cells treated with WM-3835 554 or vehicle. n=3 h. HOXA10 mRNA expression in LSC and Molm13 cells treated 555 with WM-3835 or vehicle. n=3 (mean + s.e.m.) i. HOXA9 and HOXA10 mRNA 556 expression in OCI-AML3 cells treated with WM-3835. n=3 (mean + s.e.m.). j. 557 
Hoxa9 and Hoxa10 rescue proliferation assays with 1 μM WM-3835 in LSC. n=3 558 (mean ± s.e.m.).  559  560 
Extended Data Figure 9.  HBO1 Crystal Structure. 561 
a. Data collection and refinement statistics of WM-3835 HBO1-BRPF2 co-crystal 562 structure. b. WM-3835 binding site in HBO1-BRPF2. WM-3835 shown in silver 563 with element colouring and the OMIT electron density map contoured to 3 σ 564 shown in green. c. Overlay of WM-3835 and acetyl-coA (purple with element 565 colouring), showing that WM-3835 binds in the acetyl-coA binding site of HBO1. 566 
d. Ribbon diagram of HBO1-BRPF2 showing WM-3835 bound to the acetyl-coA 567 binding site. e. Space filling model showing WM-3835 (yellow with element 568 colouring) in the acetyl-coA binding pocket of HBO1-BRPF2. 569  570 
Extended Data Figure 10. High in vitro metabolism and poor in vivo oral 571 
exposure of WM-3835. 572 
a. Proliferation assays of human AML cell lines treated with 1 μM WM-3835. b. 573 WM-3835 demonstrates high clearance in both human and mouse liver 574 microsome assays. The use of dual cofactors (UDPGA and NADPH) results in an 575 increased rate of clearance in human liver microsomes, which is consistent with 576 glucuronidation having a role in the clearance of this compound. c. BALB/c 577 female mice were dosed with WM-3835 at 100 mg/kg p.o. b.i.d. formulated in 578 20% PEG400/10% Solutol or vehicle. 4 hours after the third dose blood samples 579 were collected. An average total drug concentration of 1860 nM was observed. 580 The free drug level was determined to be 2.6 nM after accounting for mouse 581 plasma protein binding (fu 0.0014). This free drug level was considered too low 582 to affect H3K14 acetylation based on the in vitro H3K14ac cellular biomarker 583 data (Figure 4). An additional chromatographic peak eluting earlier than WM-584 3835 was detected in the plasma samples from the treatment group. Subsequent 585 analyses using predicted multiple-reaction monitoring and accurate mass 586 measurement indicated that it is likely to be a glucuronide conjugate of WM-587 3835, consistent with the in vitro metabolism data.  588 
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Methods 589 
Cell Culture 590 MLL-AF9 bulk blasts and LSC were generated as previously described7. Murine 591 and human cell lines (NOMO-1, Molm13, MV4;11, HL-60, OCI-M2, OCI-AML3, 592 K562, NB4, SKM-1, and KG-1) were maintained in RPMI-1640 supplemented 593 with 10% FCS, 2 mM GlutaMAX, 100 IU ml-1 penicillin, 100 ug ml-1 streptomycin 594 under standard culture conditions (5% CO2, 37°C). Blasts and LSC were 595 maintained in the presence of 0.1% DMSO or 1 μM I-BET151, respectively, and 596 IL-3 (10 ng ml-1). HEK293T cells were maintained in DMEM supplemented with 597 10% FCS, 100 IU ml-1 penicillin, 100 ug ml-1 streptomycin in 10% CO2 at 37°C.  598 All cell lines were regularly tested and verified to be mycoplasma negative by 599 PCR analysis by in-house genotyping. Human cell lines were authenticated by 600 STR profiling through the Australian Genome Research Facility (Melbourne, 601 Victoria). 602  603 
Virus production and transduction 604 Retrovirus was produced by triple transfection of HEK293T cells with a 605 retroviral LMP-BFP transfer vector and structural pMD1-gag-pol plasmid and 606 Vsv-g envelope plasmid at a 0.75:0.22:0.03 ratio, as previously described29. 607 Lentivirus was produced by triple transfection of HEK293T cells with a lentiviral 608 transfer vector, and the packaging plasmids psPAX2 and Vsv-g at a 0.5:0.35:15 609 ratio. All transfections were performed using polyethylenimine (PEI). Viral 610 supernatants were collected 48 h following transfection, filtered through a 0.45 611 
μm filter and added to target cells. 612  613 To examine the effect of loss of MOZ function on progression of leukaemia foetal 614 liver cells were isolated from E13 embryos with a germline deletion of Moz or 615 littermate controls30. E13 embryos were used because Moz null embryos die by 616 E14. Foetal liver cells (C57B/6; CD45.2 cell surface phenotype) were transfected 617 with MSCV expressing either MLL-AFP and GFP or Meis1, Hoxa9 and GFP or 618 control viruses: empty vector (Gfp) or Meis1-Gfp or Hoxa9-Gfp alone (not 619 shown); prepared for infection as above except the ECO envelope protein was 620 used. After overnight culture infected foetal liver cells were injected into C57B/6 621 CD45.1 recipient mice, which had been irradiated with a single dose of 700 rads. 622 
 623 
Pooled negative-selection RNAi screening 624 A custom shRNA library targeting 270 murine epigenetic enzymatic genes was 625 designed using the Designer of Small Interfering RNA Website and subcloned 626 into the LMP-blue fluorescent protein (BFP) vector with selectable markers 627 EBFP/puromycin as previously described31. After sequence verification, 1922 628 shRNAs (6-8 per gene) were combined with several positive- and negative 629 control shRNAs at equal concentration in one pool. This pool was used to 630 produce retrovirus, which was then transduced into 4 x 106 MLL-AF9 bulk blasts 631 
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and LSC at a multiplicity of infection of 0.3 and selected with 3 and 5 μg ml-1 632 puromycin, respectively, commencing 30 h after transduction. Throughout 14 633 days of puromycin selection more than 20 million cells were maintained at each 634 passage to preserve 10 000-fold library representation. Genomic DNA from D2 to 635 D14 was isolated (DNeasy Blood & Tissue Kit, Qiagen) from both blasts and LSC. 636 shRNA sequences were amplified by PCR with primers containing adaptors for 637 Illumina sequencing as previously described32. The resulting libraries were 638 sequenced with single-end 50 bp reads on a HiSeq2500. The shRNA sequences 639 were mapped to the shRNAs within the pool, and the shRNA counts were 640 analysed as previously described33. The likelihood ratio test was used to 641 determine the hairpins significantly depleted over the timecourse of the 642 experiment. Genes with at least two hairpins depleted by greater than 10-fold 643 were considered to be significant dependencies. 644  645 
CRISPR-Cas9-mediated gene disruption 646 sgRNA oligonucleotides (Sigma-Aldrich) were phosphorylated, annealed and 647 cloned into lentiviral expression vectors, pKLV-U6gRNA(BbsI)-PGKpuro2ABFP 648 (Addgene 50946, deposited by K. Yusa). Cells were first transduced with the 649 FUCas9Cherry (Addgene 70182, deposited by M. Herold) and FACS sorted for 650 high mCherry expression and then subsequently transduced with the pKLV 651 sgRNA expression vector.  652  653 
shRNA and sgRNA Competitive Proliferation Assay 654 Bulk blast and LSC were transduced with retrovirus expressing a gene specific 655 shRNA and the percentage of BFP-positive cells was measured between days 1 656 and 13 post-transduction and normalised to the percentage of BFP positive cells 657 at day 1. For sgRNA, Cas9-expressing cells were transduced with a lentivirus 658 expressing an Hbo1 sgRNA and the percentage of double positive BFP and 659 mCherry cells was measured between days 2 and 14 post-transduction and 660 normalised to the percentage BFP/mCherry positive cells at day 2 or 4. All 661 shRNA and sgRNA sequences are provided in Supplementary Table 3. 662  663 
Antibodies 664 Immunoblotting: rabbit anti-acetyl-histone H3 (Lys 14) (D4B9, Cell Signalling 665 Technology), mouse anti-histone H3K14Ac (13HH3-1A5, Active Motif), rabbit 666 anti-histone H3 (acetyl K27) (ab4729, Abcam), rabbit anti-KAT7/Hbo1/MYST2 667 (ab70183, Abcam), rabbit anti-histone H3 (ab1791, Abcam), mouse anti-HSP60 668 (C10, Santa Cruz), rabbit anti-HSP60 (H-300, Santa Cruz), mouse anti-FLAG (M2, 669 Sigma), mouse anti-RNA polymerase II (CTD4H8, Millipore). Flow Cytometry: 670 Alexa Fluor 700 anti-Gr1 (108422, BioLegend) and Brilliant Violet 605 anti-671 CD11b (101237, Biolegend), APC/Cy7 anti-mouse CD117 (c-kit) (313228, 672 Biolegend). 673  674 
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Flow Cytometry  675 Cell apoptosis, hairpin or sgRNA positive cells were washed once with PBS and 676 assessed using FITC conjugated Annexin V (640906, Biolegend) and DAPI 677 (D9542, Sigma) staining according to manufacturer’s instructions. For cell cycle 678 analysis, hairpin or sgRNA positive cells were washed with PBS and fixed for at 679 least 2 hours at -20°C in 70% ethanol. Fixed cells were PBS washed and 680 incubated at 4°C in 4’,6-diamidino-2-phenylindole (DAPI) staining solution (1 mg 681 ml-1 DAPI, 0.05% (v/v) Triton X-100 in PBS) for 30 min. For surface expression 682 of myeloid markers, hairpin or sgRNA positive cells were washed in PBS and 683 stained for Gr1 or CD11b on ice for 30 min in PBS plus 5% FCS. All flow 684 cytometry analyses were performed on a LSR Fortessa X-20 flow cytometer (BD 685 Biosciences) and all data analysed with FlowJo. Cell sorting was performed on a 686 FACSAria Fusion 5 (BD Biosciences). 687  688 
Immunoblotting 689 Hairpin or sgRNA positive cells were lysed in 20 mM HEPES pH7.9, 0.5 mM 690 EDTA, 2% SDS plus 1X protease inhibitor cocktail (Roche) by brief sonication. 691 Lysates were heated to 95°C in SDS sample buffer with 50 mM DTT for 5 min, 692 separated by SDS-PAGE and transferred to PVDF membrane (Millipore). 693 Membranes were blocked in 5% milk in TBS +0.1% Tween-20, probed with the 694 indicated antibodies, and reactive bands visualised using ECL Prime (GE). 695  696 
Analysis of HBO1-regulated acetylation of core histones 697 Murine MLL-AF9 CreERT2 Hbo1fl/fl conditional knockout cells were SILAC-698 labelled with “light” (12C6,14N4-arginine and 12C6,14N2-lysine) and “heavy” 699 ((13C6,15N4-arginine and 13C6,15N2-lysine, Cambridge Isotope Laboratories). To 700 delete HBO1, the heavy-labelled cells were treated with 4-hydroxytamoxifen 701 (200 nM) for ~40 hours, and light-labelled control cells were treated with 702 vehicle control. Histones were extracted as described previously.34 Briefly, cells 703 were lysed mechanically in ice-cold hypotonic lysis buffer (10 mM Tris pH 8.0, 1 704 mM KCl, 1.5 mM MgCl2, 1 mM DTT and 1× complete protease inhibitor cocktail 705 (Roche)) and intact nuclei were harvested by centrifugation. Histones were acid-706 extracted with H2SO4 (0.4 N) and precipitated with TCA (33% final 707 concentration). Purified histones from knockout and control cells were mixed in 708 equal amounts, separated on SDS-PAGE, in-gel digested with Trypsin or LysC. 709 (Sigma). The histone peptides were analysed by online nanoflow liquid 710 chromatography coupled tandem mass spectrometry (LC-MS/MS) using a 711 Proxeon easy nLC system connected to a Q-Exactive HFX mass spectrometer 712 (Thermo Scientific). The raw data was computationally processed using 713 MaxQuant35 (Version 1.5.6.5) and searched against the UniProt database 714 (downloaded Jan 23, 2014) using the integrated Andromeda search engine 715 (http://www.maxquant.org/). The data were searched with: 3 missed cleavages, 716 
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minimum peptide length of 6 amino acids, re-quantify option selected, 717 acetylation was included as variable modification. 718  719 
Rescue Assays 720 cDNA of Hbo1 and Hoxa10 were PCR amplified from the cDNA library of murine 721 MLL-AF9 cells with primers containing a FLAG. Hoxa9 cDNA was amplified from 722 pTRE rtTA FLAG HoxA9 GFP36. Catalytic mutant HBO1 E508Q was generated by 723 site-directed mutagenesis. Wildtype and mutant Hbo1 were made resistant to 724 sgHbo1 e12.2 by silent point mutation of the PAM site corresponding this sgRNA 725 by site-directed mutagenesis. All cDNAs were cloned into the lentiviral pHRSIN-726 PSFFV-GFP-PPGK-Puro vector37. LSC expressing Cas9 were transduced with 727 expression vectors and selected with 5 μg ml-1 puromycin for one week. 728 Overexpression lines were then subsequently transduced with Hbo1 sgRNA. 729  730 
Animal details 731 All animal work was performed at the Peter MacCallum Cancer Centre animal 732 facility, under approval E530 from the Peter MacCallum Cancer Centre animal 733 ethics committee and at the Walter and Eliza Hall Institute of Medical Research 734 with approval from the Walter and Eliza Hall Institute Animal Ethics Committee 735 under approval 2015.015. Mx1-Cre Hbo1flox/flox mice10 and Moz+/- mice were as 736 previously described30. 737  738 
In vivo Competition Assay 739 6° MLL-AF9 cells were transduced with non-targeting (NT), shHbo1 or shMoz 740 hairpins at 90% transduction efficiency. 100 000 cells were transplanted 48 h 741 post-transduction into 8 week old female NSG mice. BFP positive hairpin positive 742 cells were determined by flow cytometry. 743 
 744 
Leukaemia Maintenance 745 The generation of Mx1-Cre Hbo1fl/fl conditional knockout mice have been 746 previously described10. c-kit positive cells from whole bone marrow were 747 selected through magnetic bead selection (Miltenyi Biotec) and retrovirally 748 transduced with the MSCV-MLL-AF9-IRES-YFP construct. Cells were 749 transplanted in sublethally irradiated 6-8 week-old female C57BL/6 recipients. 750 100 000 leukaemic cells from the bone marrow was collected and subsequently 751 transplanted into sublethally irradiated 11-week-old female C57BL/6 recipients. 752 Polyinosinic:polycytidylic (pIpC, GE) was i.p. administered 6, 10, 14 days post-753 transplantation at 7.5 mg/kg. Amplification of wildtype and floxed alleles of 754 leukaemic cells from bone marrow has been previously described10. 755 
 756 
RNA sequencing and analysis 757 RNA from sgRNA positive cells was prepared using the Qiagen RNeasy kit. RNA 758 concentration was quantified with a NanoDrop spectrophotometer (Thermo 759 
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Scientific). Libraries were prepared using QuantaSeq 3’ mRNA Library Prep kit 760 (Lexogen). Libraries were sequenced on a NextSeq500 with 75 bp single end 761 reads. All RNA-seq experiments were performed in triplicate. Following 762 trimming of poly-A tails with cutadapt38 (v.1.14). Reads were aligned to the 763 mouse genome (ensembl_GRC38.78) using hisat239, and assigned to genes using 764 htseq-count40. Differential gene expression analysis was performed using the 765 edgeR41 package in R (http://www.R-project.org/), adjusted p-values were 766 calculated using the Benjamini-Hochberg method.42 Genes with log fold-changes 767 below -1 and adjusted p-values below 0.05 were considered to be significantly 768 down-regulated genes. Count data was voom-transformed using the voom 769 function before performing gene set testing with the mroast function43, both 770 from the limma package44. 771  772 
Chromatin immunoprecipitation sequencing (ChIP-seq) and analysis 773 10-20 million sgRNA positive cells were cross-linked with 1% formaldehyde for 774 10 min at room temperature and cross-linking was quenched by addition of 775 0.125 M glycine. Cells then lysed in 1% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 776 8.0 and protease inhibitors. Lysates were sonicated in a Covaris ultrasonicator to 777 achieve a mean DNA fragment size of 500 bp. Immunoprecipitation with anti-778 H3K14Ac (Cell Signalling Technolgies) or anti-RNA polymerase II (Millipore) was 779 performed overnight at 4°C in modified RIPA buffer (10 mM Tris-HCl pH 8.0, 90 780 mM NaCl, 1% Triton X-100, 0.1% deoxycholate). Protein A or G magnetic beads 781 (Life Technologies) were used to bind antibody and associated chromatin. 782 Reverse crosslinking of DNA was followed by DNA purification using the 783 QIAquick PCR purification kit (Qiagen). Sequencing libraries were prepared from 784 eluted DNA using ThruPLEX DNA-seq kit (Rubicon). Libraries were size selected 785 between 200-500 bp and sequenced on a NextSeq500 with 75 bp single end 786 reads. Following the removal of Illumina adaptors using cutadapt38. Reads were 787 aligned to a joint reference genome of mouse (ensemble_GRCh38.78) and 788 drosophila (ensemble_BDGP5.78) with bwa-mem (v. 0.7.13). SAM files were 789 converted to BAM files using samtools45 (v. 1.4.1). A scaling factor was calculated 790 using the drosophila spike-in, as previously described46. The scaling factor was 791 used to normalise the coverage across the genome, when calculated using 792 
bamCoverage from deepTools47 (v. 2.5.3) with binsizes of 10 bp and filtered with 793 ENCODE project ChIP blacklist regions for mm10 794 (https://www.encodeproject.org/annotations/ENCSR636HFF/). Genome-795 browser images were generated from the conversion of BAM files to TDF using 796 igvtools48 (v. 2.3.95). Heatmap plots were generated using deepTools47 over the 797 region, 5 kb upstream to 5 kb downstream of the genebody of all genes.  798 Coverage across the length of the genebody was scaled to 5 kb, and regions with 799 no coverage were excluded from the plot.  800  801 
qRT-PCR 802 
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RNA from sgRNA positive cells 4-5 days post-transduction or cells treated with 803 WM-3835 for 6-12 h was extracted using the Qiagen RNAeasy kit. cDNA was 804 prepared using SuperScript VILO (Life Technologies) according to 805 manufacturer’s instructions. Quantitative real-time PCR was performed on an 806 Applied Biosystems StepOnePlus using Fast SYBR green reagents (Thermo 807 Scientific). Expression levels were determined using the ΔΔCt method 808 normalised to β2-microglobulin. All mRNA primer sequences are provided in 809 Supplementary Table 3. 810  811 
Cell Proliferation Assays 812 Cells were seeded at a constant density prior to treatment in triplicate and 813 treated with either 1 μM WM-3835, 1 μM WM-2474 or DMSO (0.1%) over the 814 indicated time period. Drug was refreshed at least every two days. Cells were 815 stained with DAPI and live cell number was calculated using the BD FACSVerse 816 (BD Biosciences). To determine the IC50 for the WM-3835, four hours after 817 seeding the cells at a constant density in duplicate, they were treated with WM-818 3835, DMSO or positive control (3 µM puromycin) for 10 days. Drug and media 819 were refreshed at day 4 and 7. At day 10, after incubating the cells with 600 µM 820 of resazurin for 6 h, fluorescence was measured at λex 530 nm and λem 590 nm, 821 using a Microplate Reader (EnSpire, Perkin Elmer). Relative fluorescence units 822 were converted to percent of inhibition relative to controls on the same plate 823 and the data fitted against a four-parameter logistic model to determine the 50% 824 inhibitory concentration (IC50). 825  826 
Clonogenic Assays in Methylcellulose 827 Clonogenic potential was assessed through colony growth of AML patient bone 828 marrow plated in cytokine-supplemented methylcellulose (MethoCult H4434, 829 Stemcell Technologies). Bone marrow was plated in duplicate at a cell dose of 2 X 830 104 cells per plate in the presence of vehicle (0.1% DMSO) or 1 μM WM-3835. 831 Cells were incubated at 37°C and 5% CO2 for 12 days at which time colonies 832 were counted. 833  834 
Patient Material 835 Bone marrow containing >80% blasts was obtained from patients following 836 consent and under full ethical approval by the Peter MacCallum Cancer Centre 837 Research Ethics Committee (Reference number: HREC/17/PMCC/69). 838 
 839 
Lysine acetyltransferase biochemical assays 840 KAT enzymes were either produced or purchased as previously described25. 841 Lysine acetyltransferase assays were run as described previously25 with two 842 modification. Firstly, 100 nM of full-length biotinylated histone H3 (for MOZ, 843 QKF, HBO1) or histone H4 (for KAT5, KAT8) proteins were used as the substrate, 844 
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as indicated. Secondly, assays were run with 1 µM acetyl-coA concentration, the 845 approximate Km for acetyl-coA for these enzymes in this assay format. 846 
 847 
HBO1 H3K14ac biomarker assay 848 The cell line U2OS was seeded at a density of 3,000 cells per well in 384-well 849 optical quality tissue culture plates in RPMI medium supplemented with 10% 850 foetal bovine serum and 10 mM HEPES. The cells were allowed to adhere for 24 851 hours under standard culture conditions (37°C, 5% CO2). At the end of this 852 period the cells were washed with medium. Compound dilutions prepared in 853 DMSO were added to the medium, with negative control wells reserved for 854 treatment with DMSO only and 100% inhibition positive controls at 10 μM 855 concentration. After incubation for 24 hours, the cells were fixed with 4% 856 formaldehyde in PBS for 15 minutes at room temperature, washed with 857 phosphate buffer saline and blocked with blocking buffer containing 0.2% 858 TritonX100 and 2% BSA. Anti-H3K14ac antibody (Cell Signalling Technologies) 859 in blocking buffer was added and incubated overnight at 4°C. After washing, a 860 secondary antibody labelled with AlexaFluor 488 dye (ThermoFisher) and 861 Hoechst 33342 (1 μg/mL, Life Technologies) were added for 2 hours incubation 862 at room temperature. Plates were washed and read on a PerkinElmer Opera HCS 863 high content imaging platform. Using a Columbus image analysis pipeline, 864 individual nuclei were located by Hoechst 33342 stain and the level of H3K14ac 865 was calculated from the AlexaFluor 488-related intensity in the same area. The 866 resulting mean intensity per cell was converted to percent inhibition relative to 867 controls on the same plate and the data fitted against a four-parameter logistic 868 model to determine the 50% inhibitory concentration (IC50). 869  870 
HBO1-BPRF2 protein production, SPR, and structural biology 871 HBO1-BPRF2 protein was produced as described previously49. SPR for WM-3835 872 was done as described25. HBO1-BPRF2 protein was produced as described 873 previously49. SPR for WM-3835 was done as described25. Crystals were grown at 874 the CSIRO C3 crystallisation centre in SD2 sitting drop plates at 20 °C with equal 875 volumes of protein and crystallant (200 nL plus 200 nL drops) with the reservoir 876 consisting of 244 mM diammonium tartrate and 20% PEG 3350. Crystals started 877 to form overnight and were harvested 3 days later using 20% glycerol as a 878 cryoprotectant. Data were obtained at the MX2 microfocus beamline at the 879 Australian Synchrotron. The space group was found to be H3 and the data and 880 refinement statistics can be found in Extended Data Fig. 6. The data were 881 indexed with DIALS50 (WM-3835) or XDS51 (acetyl-CoA), scaled and integrated 882 with Aimless52, the structure was solved with Phaser53 using PDB entry 5GK9 as 883 the initial model, manual refined with Coot54 and full refinement was done with 884 Phenix.refine55 (WM-3835) or REFMAC56 (acetyl-CoA).  Crystal structure data for 885 HBO1-BPRF2 in complex with WM-3835 and acetyl-CoA have been submitted to 886 the Protein Data Bank (PDB) under accession numbers 6MAJ (WM-3835) and 887 
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6MAK (acetyl-CoA).  Crystallisation and refinement statistics are shown in 888 Extended Data Fig. 10. 889  890 
In vitro metabolic stability 891 The metabolic stability assay was performed by incubating each test compound 892 in liver microsomes at 37 °C and a protein concentration of 0.4 mg/mL. The 893 metabolic reaction was initiated by the addition of either single cofactor (NADPH 894 only), or dual cofactors (NADPH and UDPGA), and quenched at various time 895 points over a 60-minute incubation period by the addition of acetonitrile 896 containing diazepam as internal standard. Control samples (containing no 897 NADPH) were included (and quenched at 2, 30 and 60 minutes) to monitor for 898 potential degradation in the absence of cofactor. The human liver microsomes 899 used in this experiment were supplied by XenoTech, lot # 1410230. The mouse 900 liver microsomes used in this experiment were supplied by XenoTech, lot # 901 1510256. Microsomal incubations were performed at a substrate concentration 902 of 1 µM. 903 
 904 
Code availability 905 All code used in this study are publically available and are detailed in the method 906 section.  907 
 908 
Data availability 909 The shRNA screen sequencing data have been deposited to the NCBI Sequence 910 Archieve under the accession number GSE120813. Source Data are provided for 911 Figs 1, 2, 3, 4.  912 
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