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Abstract

Sensorimotor learning under switching dynamics

James Barry Heald

Humans have a remarkable capacity to learn new motor behaviours without forget-

ting old ones. This capacity relies on the ability to acquire and express multiple

motor memories without interference. Here we combine behavioural experiments and

computational modelling to investigate how the sensorimotor system uses contextual

information to create, update and recall motor memories. We first examine the role

of muscle co-contraction in the learning of novel movement dynamics. We show that

muscle co-contraction, as measured by surface electromyography, accelerates motor

learning. We then explore the role of control points on objects in the formation of motor

memories during object manipulation. We show that opposing dynamic perturbations,

which interfere when controlling a single location on an object, can be learned when each

is associated with a separate control point. To account for these results, we develop a

parametric switching state-space model, in which the association between cues (control

points) and contexts (dynamics) is learned from experience rather than fixed. We then

extend this model to a Bayesian nonparametric switching state-space model, in which

the number of contexts and cues are learned online rather than specified in advance.

This model can instantiate new memories when novel perturbations are experienced

and exhibits spontaneous recovery of a memory that has been ostensibly overwritten.

To test the model, we perform an experiment in which we briefly present a previously

experienced perturbation after behaviour has returned to baseline. As predicted, we

observe a qualitatively distinct and more pronounced form of recovery, which we

refer to as evoked recovery. Finally, we investigate Bayesian context estimation using

single-trial learning. We show that people are able to learn novel associations between

cues and contexts and that they use both contextual cues and state feedback to infer

the current context and partition learning between memories. Taken together, these

findings further the understanding of the behaviour and computational principles of

sensorimotor learning under switching dynamics.
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Pantelides kindly ran many of my experiments. Daniel McNamee encouraged me to

develop normative models of learning. Innumerable people in the Computational and

Biological Learning Lab provided inspiration and friendship. The Engineering and

Physical Sciences Research Council funded this PhD.





To my dad.





Table of contents

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Internal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Dynamic learning . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Muscle co-contraction speeds up internal model acquisition 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Movement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Force compensation . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



xii Table of contents

3 Multiple motor memories are learned to control different points on

a tool 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Experiment 1: encoding of motor memories by control points . . 60

3.2.4 Gaze fixation control . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.5 Uniform object control . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.6 Experiment 2: are separate motor memories obligatory for dif-

ferent control points? . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.7 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.8 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 A nonparametric switching state-space model of sensorimotor learn-

ing 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Spontaneous Recovery . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Spontaneous recovery as Bayesian context estimation under uncer-

tainty 109

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Table of contents xiii

5.2.3 Spontaneous recovery condition . . . . . . . . . . . . . . . . . . 111

5.2.4 Evoked recovery condition . . . . . . . . . . . . . . . . . . . . . 111

5.2.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.6 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Bayesian context estimation underlies single-trial learning 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Conclusion 141

7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References 147

Appendix A Instructions to participants in the muscle co-contraction

experiment 179

Appendix B The parametric switching state-space model 181

B.1 State inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2 Parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.2.1 Stochastic E step . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.2.2 M step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.3 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



xiv Table of contents

Appendix C The nonparametric switching state-space model 187

C.1 The Dirichlet process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.2 The nonparametric switching state-space model . . . . . . . . . . . . . 192

C.2.1 The generative model . . . . . . . . . . . . . . . . . . . . . . . . 192

C.2.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



List of figures

1.1 Schematic of the optimal feedback control loop . . . . . . . . . . . . . . 8

2.1 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Performance in the force pulse phase . . . . . . . . . . . . . . . . . . . 41

2.3 Global EMG over the course of the experiment . . . . . . . . . . . . . . 43

2.4 Muscle activity during the first half of the exposure phase . . . . . . . 45

2.5 Kinematic and dynamic adaptation over the course of the experiment . 46

3.1 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Motor adaptation as online state and parameter estimation in a switching

state-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Separate motor memories are formed for different control points . . . . 75

3.4 Hand paths at different stages of Experiment 1 . . . . . . . . . . . . . . 77

3.5 Adaptation is not gaze dependent . . . . . . . . . . . . . . . . . . . . . 78

3.6 Adaptation does not require control points to be distinct from the rest

of the object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Control points are represented in an object-centred frame of reference . 80

3.8 The formation of distinct motor memories for different control points is

not obligatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 Model fits to adaptation data from Experiment 2 . . . . . . . . . . . . 84

3.10 Slow and fast states of the switching state-space model . . . . . . . . . 85

3.11 Learning to associate contexts with cues in the SSSM . . . . . . . . . . 87



xvi List of figures

4.1 Graphical model of the NSSSM . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Spontaneous recovery can arise from a dual-rate model . . . . . . . . . 100

4.3 Spontaneous recovery in the NSSSM . . . . . . . . . . . . . . . . . . . 102

5.1 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 The memory of P+ is not destroyed during counter-adaptation to P−

and can be re-expressed . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Model fits to adaptation data . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Hidden states of the 2-rate and 3-rate models . . . . . . . . . . . . . . 120

5.5 Bayesian model comparison in the evoked recovery condition . . . . . . 121

6.1 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Bayesian context estimation modulates single-trial learning . . . . . . . 133

6.4 Single-trial learning for the training cue-field pairs throughout the ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Comparison of single-trial learning between the empirical data and the

NSSSM in both the pre-training and post-training phases . . . . . . . . 137



List of tables

3.1 Variants of the context-dependent state-space model . . . . . . . . . . . 69

3.2 Comparison of model fits for the state-space (SSM) and switching state-

space (SSSM) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86





Chapter 1

Introduction

Humans exhibit an enormous repertoire of goal-directed behaviors and can skillfully

manipulate a wide range of objects. On a typical day, a person may pour a cup of

coffee, tie their shoe laces and ride a bike, all with a level of dexterity and ease that

belies the difficulty inherent in these tasks. Such complex behaviours are not innate

but must be learned through interaction with the world. An important component of

learning is the ability to compensate for the dynamics of the body (the mapping from

muscle forces to motions of the joints). The dynamics of the body can change over

time, both slowly (e.g., as the body develops) and quickly (e.g., as muscles fatigue).

Therefore, to maintain skilled motor performance, a person must adapt their behaviour

on multiple timescales throughout their lifetime. The dynamics of the body can also

switch abruptly, such as when a person grasps an object, enters a swimming pool or

steps on ice. To cope with switching dynamics, a person could learn multiple motor

behaviours and switch between them as appropriate. The ability to learn new motor

behaviours without forgetting old ones is central to this endeavour.

In the thesis, we will focus primarily on learning studies of goal-directed reaching

movements. Our focus will be on adaptation to novel dynamic environments that alter

the relation between actions and their consequences. We will examine the role that

muscle co-contraction plays in dynamic motor learning (Chapter 2) as well as the role



2 Introduction

of control points on objects in allowing multiple motor memories to be learned during

object manipulation (Chapter 3). This will lead us to propose a new model of how

multiple memories are instantiated and updated, which can explain existing data such

as spontaneous recovery (Chapter 4). We then test predictions of the model related to

spontaneous recovery (Chapter 5) and Bayesian context estimation (Chapter 6).

In this chapter we provide a review primarily of the behavior and computational

underpinnings of sensorimotor learning. We start by reviewing two key components

of sensorimotor processing: state estimation and control. We then review learning

algorithms including error-based and reward-based learning. Finally, we focus on

experiments, models and neural underpinnings of dynamic motor learning.

1.1 Internal models

A pre-requisite for control is to know the state of the body, for example, the body’s

joint angles and joint velocities. The rare person who loses their proprioceptive sense is

severely incapacitated in their ability to perform skilled action (Rothwell et al., 1982).

In humans and other animals, the state of the environment and body is not observed

directly but must be inferred from sensory observations corrupted by noise at various

sites along the neural pathway (e.g., transduction, action potential generation, synaptic

transmission) (Faisal et al., 2008). Bayesian inference provides a principled way to

estimate state so as to reduce uncertainty in a statistically optimal manner. Given

a prior belief p(x) about a latent state x (e.g. hand location) and a likelihood p(y|x)

describing the probability of an observation of sensory input y conditioned on the

latent state, posterior inference can be performed via Bayes rule

p(x|y) = p(y|x)p(x)
p(y)

, (1.1)
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where p(y) =
∫
p(y|x)p(x)dx is a normalisation constant. Several lines of behavioural

evidence suggest that humans approximate this inference procedure. First, when

participants are instructed to report the value of a latent stimulus (e.g. the displacement

of a cursor, the orientation of a line), their estimates are systematically biased away

from the true value of the stimulus and towards the mean of the prior. Moreover, the

magnitude of this bias increases with the level of noise in the stimulus (e.g. blur),

consistent with optimal integration of the prior and the likelihood (Körding and Wolpert,

2004). Similar Bayesian processing has also been observed in a wide variety of studies

including force estimation (Körding et al., 2004) and timing judgements (Jazayeri and

Shadlen, 2010; Miyazaki et al., 2005). Although behavior tends to strive for Bayesian

processing there appears to be approximation and limits to full Bayesian processing

(Acerbi et al., 2014; Fiser et al., 2010). For example, while people are capable of

internalising simple statistics of stimuli and noise (e.g., first and second moments of

Gaussian distributions), higher-order statistical features (kurtosis, multimodality) of

distributions seem much harder to acquire (Acerbi et al., 2012). Although human

appear Bayesian there is still debate about the extent to which this behavior actually

reflects Bayesian processing on individual trials rather than on average (Laquitaine

and Gardner, 2018).

Rather than combine a prior with sensory evidence, statistical inference can also be used

to infer a latent state of the environment (e.g., the height of an object) using multiple

senses (e.g., vision and touch—a process known as cue combination). To perform

optimal cue combination, each estimate should be weighted by the inverse variance

(precision) of the noise in that sense; this yields the minimum-variance unbiased

estimator. Evidence from psychophysics has demonstrated that humans do indeed

perform cue combination in this way (Ernst and Banks, 2002; Jacobs, 1999; van Beers

et al., 1999), which demonstrates that people possess well-calibrated estimates of the

statistics of noise in different sensory modalities.
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The state of the body and environment changes over time and to estimate the time-

varying state of the motor plant, sequential Bayesian filtering can be performed such as

by Kalman Filtering (Kalman, 1960; Kalman and Bucy, 1961). This involves predicting

the next state of the motor plant and then updating the prediction once an observation

has been made. The prediction step can use a probabilistic forward dynamics model,

which maps the current motor command (i.e., efference copy) and state (e.g., position

and velocity of the limb) to a distribution of next states (Haruno et al., 2001; Wolpert

and Kawato, 1998). The predicted next state can in turn be mapped through an

observation model to generate a corollary discharge (i.e., predicted sensory feedback,

such as from joints or muscles). There are several advantages to having such an

internal forward model. First, it reduces the variance of state estimates, increasing the

robustness of control. Second, it mitigates delays inherent in the sensorimotor loop,

which can be on the order of 80–150 ms for proprioceptive to visual feedback; these

delays make feedback control too slow for rapid movements. With a forward model,

a prediction of the current state can be used for rapid online control before sensory

feedback is available.

Signatures of a forward model can be appreciated in hand localisation tasks performed

at the end of reaching movements in the absence of vision. For example, the bias

and variance of estimates of the position of the hand (as a function of movement

duration and external forces) are consistent with sequential Bayesian filtering using

a probabilistic forward model (Wolpert et al., 1995). In addition, when participants

perform hand localisation after first adapting to a visuomotor rotation, their estimates

of the position of their hand are shifted in the same direction as the rotation (Izawa

and Shadmehr, 2011), consistent with forward model recalibration.

A forward model also allows the sensory consequences of actions to be anticipated

and cancelled from incoming sensory feedback. This process—known as sensory

cancellation—increases the salience of events caused by the environment, which tend to

be more behaviorally relevant (for a review see Crapse and Sommer, 2008). For example,
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the projection of the world onto the retina shifts during eye movements. Despite this

shift, visual perception remains stable. This occurs as the superior colliculus sends an

efference copy of the eye movement command to the frontal eye field, causing the visual

receptive fields of neurons to shift (Sommer and Wurtz, 2006). Sensory cancellation

has also been demonstrated for touch. In somatosensory cortex, the response to a

self-produced tactile stimulus is attenuated compared to the response to an externally-

produced tactile stimulus (Blakemore et al., 1998). Furthermore, participants perceive

a self-produced tactile stimulus to be less ticklish than an externally-produced tactile

stimulus (Blakemore et al., 2000). Sensory cancellation is also believed to underlie

force attenuation to self-generated action (Bays et al., 2006, 2005; Shergill et al., 2003).

Finally, a forward model can be used to simulate state-action-reward trajectories for

use in planning, physical reasoning and offline reinforcement learning. For example,

knowledge of state transitions can be used to update a value function via backups,

which transfer value information back to a state from its successor states (Sutton and

Barto, 2018). A forward model can also be used to directly optimise the parameters

of a policy by performing gradient ascent on the expected return (Deisenroth and

Rasmussen, 2011), thus reducing sample complexity and increasing data efficiency.

1.1.1 Control

We now examine the type of control that the sensorimotor system might use including

inverse models and optimal feedback control as well as stiffness.

Inverse models and optimal feedback control

Classic motor control theory suggests that forward models operate in parallel to a

separate class of internal model known as inverse models, which compute the motor

command required to achieve a desired state. To execute a movement using an inverse
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model, the movement must first be specified as a desired state trajectory (i.e., a set

of desired states indexed by time) (Haruno et al., 2001; Kawato et al., 1987; Wolpert

and Kawato, 1998). Early work on unconstrained point-to-point reaching movements

suggested that the desired state trajectory could be obtained by optimising a kinematic

cost function, such as the squared jerk of the hand (Flash and Hogan, 1985), although

it is not clear how this method generalises to more complex movements, such as

grasping the handle of a cup. During execution of a movement, deviations from the

desired state (e.g., due to noise or external perturbations) can be corrected either by

passing the current state as input to the inverse model (e.g., Haruno et al., 2001) or

by incorporating a separate feedback controller (e.g., a PID controller) (e.g., Kawato,

1990; Kawato et al., 1987; Wolpert and Kawato, 1998). The goal of corrections is

to restore the state to its desired path. Crucially, however, the notion of a desired

state trajectory is not supported by recent behavioural studies of goal-direct reaching

(Nashed et al., 2012, 2014). For example, when reaching to either a small circular

target or an elongated rectangular bar, participants tend to move in a straight line to

the nearest point on the target/bar. However, if the movement is physically perturbed,

participants reaching to the circle make a correction, whereas participants reaching

to the bar allow themselves to be redirected to other locations along the bar (Nashed

et al., 2012). Goal-directed corrections of this nature can be explained by alternative

frameworks such as optimal feedback control and reinforcement learning, in which

motor commands are generated to optimise a cost/reward function, rather than produce

a pre-specified desired trajectory.

Optimal control theory (OCT) aims to find an sequence of motor commands that

optimise a cost function under boundary conditions that define a movement (e.g., start

and end state, movement duration). Originally, in the field of motor control, OCT

was applied in an open-loop manner so as to generate a feedforward sequence of states

or commands to minimise a cost. Cost functions such as integrated jerk (Flash and

Hogan, 1985), integrated change in torque (Uno et al., 1989) or integrated endpoint

variance (Harris and Wolpert, 1998) can successfully reproduce invariant features of
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movements, such as bell-shaped speed profiles, Fitts’s law and the 2/3 power law.

Crucially, however, OCT cannot predict how a person will respond to perturbations.

This shortcoming is addressed by optimal feedback control (OFC), which extends OCT

by incorporating sensory feedback into the control process. Rather than finding an

optimal sequence of feedforward motor commands, OFC finds an optimal policy (i.e.,

a mapping from the current state to a motor command, or time-varying feedback

controller) that optimises ecologically relevant costs such as task accuracy and effort.

A common cost function used in OFC is a quadratic function of states and control

signals.

In OFC, the motor system interacts with the environment in a closed loop by generating

motor commands and observing sensory feedback (Fig. 1.1). The motor command

at each time step depends on the current state of the body and the environment,

which must be estimated from time-delayed and noisy sensory feedback. To reduce

the variance of the state estimate, the next state is predicted via an internal forward

model that takes an efference copy of the motor command as input. When sensory

feedback is observed, the predicted state is updated. The updated state estimate is

used to generate a motor command from the optimal control policy. The state of the

body and the environment then undergo a transition due to dynamics that depend on

the motor command, and so the cycle continues.

OFC was first proposed as a solution to the problem of coordinating multiple effectors

(e.g., muscles, joints, limbs) to achieve a common goal (Todorov and Jordan, 2002),

which exists as the human body possesses more kinematic degrees-of-freedom than

are required to perform any particular task. A key emergent property of the OFC

framework is the minimal intervention principle, which states that deviations from the

average trajectory (e.g., due to noise or external perturbations) should only be corrected

if they degrade task performance. This conservative and goal-directed approach to error

correction avoids unnecessary effort expenditure and reduces the chance of inadvertently

worsening performance via motor noise. Due to the minimal intervention principle,
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Figure 1.1. Schematic of the optimal feedback control loop. The agent
interacts with the environment by generating motor commands (u) and observing
sensory feedback (y). To estimate the state (x) of the body and the environment,
the agent first predicts the next state (x∗) via an internal forward model and then
updates this prediction (x̂) once state feedback has been observed. The size of the
update depends on the Kalman gain (K) and the prediction error (y − Ĥx∗). The
estimate of the state is used to generate a motor command via a control policy (L). The
optimal control policy minimises a task-relevant cost function, J [q(x) + r(u)], where
q(x) encodes the goal state and r(u) penalises effort. At the next time step, the body
and the environment transition to a new state according to dynamics parameterised by
A and B.

motor variability accumulates in task-irrelevant dimensions while being reduced in

task-relevant dimensions. This induces structured variability in goal-directed tasks,

which has been well documented (Diedrichsen, 2007; Domkin et al., 2002; Latash et al.,

2002; Scholz and Schöner, 1999; Valero-Cuevas et al., 2009). As an example, when

participants control a single cursor at the midpoint of both hands, the variability in the

endpoint location of each hand is greater than the variability in the endpoint location

of the cursor (Diedrichsen, 2007). Indeed, the endpoint locations of the left and the
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right hand are negatively correlated as deviations in one hand are corrected (in part)

by the other hand. Such correlations between effectors, which emerge naturally in OFC

as a consequence of optimising state and effort costs, have previously been interpreted

as evidence for motor synergies (Santello and Soechting, 2000). In addition to these

findings, OFC can also explain the distribution of work across effectors (Diedrichsen

et al., 2010a) and the kinematics of movements in velocity-dependent curl fields (Izawa

et al., 2008).

Stiffness

Although learning an inverse model or applying OFC can specifically compensate for

the dynamics of the body and environment so as to be optimal, other less specific

control strategies are also possible. For example, to compensate for an unpredictable

perturbation muscles can co-contract to stiffen the limb so as to minimize deviations

of the arm independent of the direction of a force perturbation. Such as strategy can

reduce movement variability, by increasing the gain of the response to destabilising or

unexpected perturbations (Hogan, 1985; Mussa-Ivaldi et al., 1985). In addition, using

stiffness as a form of control can reduce time delays as the response is driven by the

properties of the muscles.

Many studies have examined stiffness of the arm measured at the hand both during

static posture as well as during movements in stable and unstable force fields. Stiffness

at the hand can be quantified by an ellipse, which describes the relation between

displacement and restoring force vectors in different directions in the horizontal plane.

The magnitude, shape and orientation of this ellipse are primarily modulated through

co-contraction of antagonistic muscles (Burdet et al., 2001; Franklin et al., 2007), though

static limb posture also plays a role (Flash and Mussa-Ivaldi, 1990; Mussa-Ivaldi et al.,

1985).
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Stiffness control offers a non-specific strategy to compensate for perturbations until a

more specific and efficient pattern of muscle activation can be learned. For example,

when participants are first exposed to a velocity-dependent force field, rapid co-

contraction of arm and chest muscles causes a global increase in stiffness (Franklin

et al., 2003) and such increases in muscle activity scale up responses to mechanical

perturbations (Pruszynski et al., 2009). As adaptation proceeds, muscle co-contraction

decreases on a time course that correlates with the reduction in kinematic error,

suggesting that the error signals themselves could drive co-contraction (Franklin et al.,

2008). Increasing stiffness during dynamic learning may have a number of effects. As

increased stiffness reduces kinematic errors it might reduce learning, but as stiffness

keep the arm close to the final adapted paths it may also increase learning. In Chapter

2 we will ask how artificially increasing or decreasing stiffness changes the rater of

internal model formation during dynamic learning.

Not only can overall stiffness be modulated but the orientation of the stiffness ellipse

can also be controlled to some extent. For example, when moving in a force field

that is unstable in one direction (an inverse spring that acts in one direction), the

stiffness ellipse has been shown to expand only in the task-relevant direction (Burdet

et al., 2001; Franklin et al., 2007). This strategy can limit the increase metabolic cost

compared to a global increase in stiffness while maintaining task performance.

Muscle co-contraction also reduces movement variability in the absence of perturbations.

Such an observation may seem counterintuitive given that muscle force variability scales

with the mean force level (Harris and Wolpert, 1998; Jones et al., 2002). However,

force variability increases at a slower rate than joint impedance as a function of muscle

co-contraction (Selen et al., 2005). Hence, muscle co-contraction has a net stabilising

effect on endpoint kinematics (Selen et al., 2009). This stabilising effect provides a

normative explanation for why muscle co-contraction increases i) towards the end of

movements, where noise has a greater effect on endpoint error and task success (Gomi

and Kawato, 1996); ii) when spatial accuracy requirements are high (Gribble et al.,
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2003; Lametti et al., 2007); and iii) during high velocity movements that require large

noisy joint torques (Bennett, 1993; Suzuki et al., 2001).

1.2 Learning

Motor learning refers to improvement in performance of a sensorimotor behaviour,

typically as a result of practice. Broadly speaking, sensorimotor learning can be divided

into three main categories: adaptation, skill learning and sequence learning (Krakauer

and Mazzoni, 2011).

Adaptation is the process of internal model recalibration so that errors are reduced.

This process is essential to maintain accurate motor performance in the face of a

changing body and environment. For example, during development, bone length and

muscle mass change; during exercise, muscles fatigue; and during disease, muscles

may weaken. Many different types of adaptation have been studied in the laboratory

including reaching under perturbations such as visuomotor displacements (including

prisms) (Krakauer et al., 1999, 2000) and robotic-induced force fields (Shadmehr et al.,

2010), saccadic adaptation of eye movements to target jumps (Pélisson et al., 2010),

and adaptation of walking patterns on a split-belt treadmill with different belt speeds

(Roemmich and Bastian, 2018). In these studies, a perturbation is applied either to the

dynamics or kinematics of the body or environment. This initially results in worsening

of performance relative to baseline. However, over repeated trials, performance tends

to improve and gradually returns towards baseline. If the perturbation is suddenly

removed following adaptation, erroneous movements are made in the opposite direction

to the initial perturbation—a phenomenon known as an after-effect (Lackner and Dizio,

1994; Lackner and DiZio, 1996).

Adaptation ensures the performance of a learned behaviour (e.g., tennis) is maintained

when the environment changes (e.g., altered playing conditions, new tennis racquet,
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physical exhaustion). However, adaptation is only one component of motor behavior.

Knowing the dynamics of a tennis racquet is insufficient to be a skilled player, which

require among others thing decisions on how to swing the racquet and what strategies

to use. This is where skill learning comes in. Everyday skills such as playing tennis,

tying your shoelaces or riding a bike involve complex spatiotemporal coordination of

effectors (e.g., arm, eye and leg muscles) guided by multimodal sensory feedback (e.g.,

vision, proprioception and touch). Skill learning proceeds by trial-and-error exploration

of the solution space under feedback provided by the environment. This process can

be accelerated by observing an expert or demonstrations from a teacher, who can also

provide explicit instructions and feedback. The initial phases of skill learning often

require conscious cognitive input, but with practice, the skill becomes automatic and

independent of conscious cognitive input. Classic assays of skill learning include the

pursuit rotor task, the serial reaction time task and the mirror tracing task, all of

which require complex hand-eye coordination Krakauer and Mazzoni (2011). More

recently, researchers have explored more naturalistic tasks such as carrying a cup of

coffee (Nasseroleslami et al., 2014), rhythmically bouncing a ball (Ronsse et al., 2010)

and playing the throwing game of skittles (Zhang et al., 2018). Skill learning has been

operationally defined as a shift in the speed-accuracy trade-off curve and reduction

in variability. Moreover, variability reduction has been further decomposed into i)

the discovery of error-tolerant solutions; ii) the covariance of execution variables to

minimise the effect of variability on the task; and iii) reduction in the variance of noise

Müller and Sternad (2004).

Skilled movements are often composed of discrete sub-movements ordered in a particular

sequence. Consider, for example, playing the piano. In the motor domain, sequence

learning has been investigated using a variety of tasks, most notably the serial reaction

time task (Nissen and Bullemer, 1987; Willingham et al., 1989) and the finger-tapping

task (Kami et al., 1995; Willingham et al., 1989). These two tasks emphasise different

components of sequence learning. The serial reaction time task examines the acquisition

of the order of elements in a sequence, and learning is demonstrated as a reduction
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in the interval between the presentation of a stimulus and the selection of the correct

response. The finger-tapping task examines the ability to execute an entire sequence

quickly and accurately. An increase in the number of correct repetitions of the sequence

in a fixed duration provides a signature of learning.

1.2.1 Computation

In this thesis, we focus primarily on motor adaptation. We now review the computations

thought to be associated with sensorimotor adaptation.

Sensorimotor-error-based learning

Motor adaptation is believed to depend on error-based recalibration of an internal

forward model (Tseng et al., 2007). Recalibration is computationally straightforward,

as the target values of the forward model—the sensory consequences of an action—

are directly sensed. Therefore, supervised learning can be performed: the forward

model predicts the sensory consequences of an action (Blakemore et al., 2000; Mehta

and Schaal, 2002; Shergill et al., 2003), and any discrepancy between the actual and

predicted sensory consequences is used to compute a sensory prediction error and

train the forward model (e.g., using standard gradient descent methods). Forward

model recalibration alters the perceived location of the hand at the end of a reaching

movement (Izawa and Shadmehr, 2011; Modchalingam et al., 2019).

How forward model recalibration leads to adaptation of motor behaviour is still an open

question (Shadmehr et al., 2010). In the framework of optimal feedback control, the

optimal control policy could be recomputed every time the forward dynamics model is

updated (Izawa et al., 2008; Liu and Todorov, 2007). This would produce incremental

changes in behaviour that accompany the gradual recalibration of the forward model

(Mitrovic et al., 2010). Similarly, in model-based reinforcement learning, the updated
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forward dynamics model could be used to calculate the change in policy that would

improve the expected reward, where reward can be defined, for example, in terms of

task accuracy and effort (Deisenroth and Rasmussen, 2011). Alternatively, in classical

sensorimotor control theory, it has been suggested that an inverse controller could

be updated using standard supervised learning techniques via the forward model to

minimise the difference between the desired and actual sensory consequences (Jordan

and Rumelhart, 1992).

Reward-based learning

Motor learning can also be driven by rewards and punishments in the absence of sensory

prediction errors. Unlike error-based learning, reward-based learning does not lead

to forward model recalibration and hence does not alter the perceived location of the

hand (Izawa and Shadmehr, 2011). Rather, reward-based learning reinforces successful

actions (Huang et al., 2011). Reward feedback can be used to learn gradual (Izawa and

Shadmehr, 2011) and abrupt (Nikooyan and Ahmed, 2014) rotations, as well as more

difficult tasks. For example, scalar reward feedback can be used to learn a curved or

sinusoidal reaching movement without visual feedback about the hand trajectory or

the rewarded shape (Wu et al., 2014).

Because scalar rewards do not provide information about the behavioural change

required to increase reward, the learner must explore the action space. One way to

explore the action space is through movement variability. In tasks that rely heavily on

exploration, movement variability—far from being a hindrance—can actually accelerate

learning (Herzfeld and Shadmehr, 2014). Indeed, in the curve tracing task mentioned

above (Wu et al., 2014), participants with higher baseline variability exhibited faster

learning. Movement variability can be modulated by reward incentives. For example,

in reward-based learning tasks, movement variability can be upregulated to promote

exploration (Wu et al., 2014), whereas outside of learning, movement variability can
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be suppressed to improve task accuracy to obtain rewards (Manohar et al., 2015).

Taken together, these results suggest that humans can activity regulate their movement

variability to navigate the trade-off between exploration and exploitation and maximise

long-term reward.

Reward-based learning and error-based learning can interact to produce greater learning

than either alone. For example, the addition of reward feedback to vision accelerates

learning (Nikooyan and Ahmed, 2014), leads to greater retention (Galea et al., 2015)

and can even overcome forgetting of an adapted movement (Shmuelof et al., 2012).

Punishment feedback can accelerate learning even more than reward feedback, although

there are no benefits to retention (Galea et al., 2015). Omitting a reward—a type

of punishment—can also induce retrieval of a previously rewarded behaviour (Pekny

et al., 2011). These results suggests that different mechanisms underpin learning

and retention in motor adaptation, and that motor adaptation can be influenced by

motivational feedback.

The notion of reward-based learning poses the question: what constitutes reward? In

a typical reward-based learning paradigm, the experimenter provides explicit rewards

or punishments (e.g., points, money, aversive stimuli). However, hitting a target and

expending little energy (i.e., successfully completing a task) may also provide an implicit

reward. Indeed, in an adaptation setting, it has been suggested that the final adapted

movement is reinforced in this way (Huang et al., 2011). This raises the possibility

that reward is a composite function of both explicit and implicit factors.

Use-dependent learning

Recently, a third type of motor learning has been identified that makes movements

more similar to past movements. This phenomenon, called use-dependent learning,

was first observed in planar movements with task-redundant dimensions (Diedrichsen

et al., 2010b). In a passive condition, participants had their hand guided along a tilted



16 Introduction

trajectory to an elongated bar. Because all points on the bar were equally-valid goals,

the titled motion occurred in a task-redundant dimension. Subsequent free movements

were biased in the same direction as the imposed tilt, demonstrating use-dependent

learning. The same bias was also seen when participants made active movements to the

bar; this time, the tilted trajectory was imposed using a force channel (a spring wall

that constrains movements to a straight line). When the force channel was removed,

free movements were initially biased away from the imposed tilt—an after-effect of

error-based learning. However, after several trials, the movements became biased

towards the imposed tilt, revealing use-dependent learning. This study demonstrated

that use-dependent learning and error-based learning can occur simultaneously, and

that use-dependent learning is retained for longer than error-based learning.

Shortly afterwards, it was shown that use-dependent learning can also be induced along

a task-relevant dimension of a movement in the setting of adaptation (Huang et al.,

2011). Participants reached to multiple targets under different visuomotor rotations.

Crucially, the relationship between the target locations and the visuomotor rotations

was such that the ideal movement in hand space was the same for all target-rotation

pairs. Hence, adaptation promoted repetition of this movement. This repetition

induced a directional bias towards the repeated movement, which was comparable for

trained and untrained targets and increased in absolute size for farther away targets.

The authors hypothesised that successful error reduction produced an implicit reward

that reinforced the ideal movement. Interestingly, this implies that use-dependent

learning may in fact be reward-based learning. Use-dependent learning has also been

interpreted as a bias induced by a prior belief over reach directions in a Bayesian

framework (Verstynen and Sabes, 2011).
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1.2.2 Dynamic learning

Skilled movement depends on the ability to compensate for the dynamics of the

body and external perturbations. How this ability is acquired has been the focus

of much research. So-called dynamic learning is typically investigated by having

participants grasp the handle of a robotic manipulandum that can generate forces that

depend on the state of the hand (Shadmehr and Mussa-Ivaldi, 1994). This imposes

a physical perturbation that alters both the visual and proprioceptive consequences

of motor commands. Robotic manipulanda have been used to simulate naturalistic

object dynamics (Dingwell et al., 2002; Howard et al., 2009; Krakauer et al., 1999;

Nasseroleslami et al., 2014) as well as more unusual dynamics. For example, one

perturbation that has been extensively studied is a velocity-dependent curl field, which

generates forces on the hand that act perpendicular to the velocity of the hand and

proportional to its speed. Dynamic learning has also been studied using non-contact

Coriolis forces by having participants make reaching movements in a rotating room

(Lackner and Dizio, 1994; Lackner and DiZio, 1996).

Savings

It is often faster to relearn a task the second time around—a phenomenon known

as savings (Brashers-Krug et al., 1996; Caithness et al., 2004; Klassen et al., 2005;

Krakauer et al., 2005; Shadmehr and Brashers-Krug, 1997). Typically, savings is

demonstrated by having a participant learn a task (e.g., a force field), and then,

following either de-adaptation (i.e., washout) or an interval of time (e.g., 24 hours),

relearn the same task. If the learning and relearning sessions are separated by time

alone, savings can be induced by as few as five trials (Huberdeau et al., 2015) and can

be observed after an interval of five months (Shadmehr and Brashers-Krug, 1997). In

general, savings are more pronounced when a task is performed for longer (Huberdeau

et al., 2015; Roemmich and Bastian, 2015), although this effect saturates. Interestingly,
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if the learning session is divided into multiple smaller sessions separated by washout

blocks, savings is enhanced (Day et al., 2018). This suggests that abrupt switches

in the environment may play an important role in facilitating savings, perhaps by

highlighting the presence of multiple contexts. Indeed, savings occurs when a task is

introduced abruptly but not when it is introduce gradually (Roemmich and Bastian,

2015).

There have been several attempts to explain savings. One possibility is that the state

of adaptation is not at baseline at re-exposure. This could be because some adaptation

is retained by a slow learning process (see Modelling section below) (Körding et al.,

2007b; Smith et al., 2006) or because the memory is protected from interference during

de-adaptation (Criscimagna-Hemminger and Shadmehr, 2008; Oh and Schweighofer,

2018; Pekny et al., 2011). An alternative explanation is that the learning rate or

retention parameters of the motor system are modified during exposure, enabling faster

learning or greater retention on re-exposure (Herzfeld et al., 2014; Huang and Shadmehr,

2009). This explanation can account for the observation that savings occurs even after

de-adaptation with a counter-perturbation or washout (Zarahn et al., 2008). Savings

has also been attributed to reinforcement learning, such that successful adaptation

reinforces the adapted movement, enabling it to be recalled on re-exposure (Huang

et al., 2011).

Interference

When multiple conflicting tasks are learned in close temporal proximity, substantial

interference often occurs (Brashers-Krug et al., 1996; Caithness et al., 2004; Gandolfo

et al., 1996; Krakauer et al., 1999; Shadmehr and Brashers-Krug, 1997). Classically,

interference has been studied using the A-B-A paradigm, where task A (e.g., a clockwise

curl field) is learned first, followed by task B (e.g., a counterclockwise curl field) and then

task A again. Two types of interference can be observed in this paradigm: anterograde
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and retrograde interference. Anterograde interference occurs when experience of the

first task A interferes with subsequent performance on task B and is assessed by

comparing learning of task B with and without prior exposure to task A. Retrograde

interference occurs when the experience of task B after A interferes with subsequent

performance on task A (due to disruption of the previous memory of task A) and is

assessed by comparing learning of task A before and after exposure to task B.

Early research found that when task B is performed immediately after task A, task A

interferes with task B (anterograde interference), and no savings are observed when

task A is relearned 24 hours later (retrograde interference). However, when task B is

performed 6 hours after task A, task A does not interfere with task B, and savings are

observed when task A is relearned 24 hours later (Brashers-Krug et al., 1996; Shadmehr

and Brashers-Krug, 1997). These results provided evidence that task A had been

consolidated in memory in the 6 hours after it had had first been learned; that is, the

memory of task A had been transferred from a short-term labile state to a long-term

fixed state that was resistant to disruption. A subsequent study found that if the

amount of initial exposure to task A is doubled, interference can be prevented even if

task B is performed as soon as 5 minutes after task A (Krakauer et al., 2005). Despite

the appeal of the consolidation theory, one well-powered study failed to replicate

these findings and found no evidence of consolidation (Caithness et al., 2004); for

both visuomotor rotations and force fields (both position- and velocity-dependent), no

evidence of savings was observed when task A was relearned, even though task B was

performed 24 hours after task A. That is, task A and task B always interfered.

Early work on motor adaptation demonstrated that inertial loads (acceleration-

dependent force fields) and position-dependent visuomotor rotations do not interfere

(Krakauer et al., 1999). This was taken as evidence that movement dynamics and

kinematics are represented by independent internal models (Krakauer et al., 1999).

However, an alternative interpretation of this result is that perturbations interfere

when they depend on the same kinematic variable. This was latter interpretation was
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supported in an experiment that demonstrated interference between position-dependent

force fields and position-dependent visuomotor rotations (Tong et al., 2002).

Generalisation

When people make reaching movements in a velocity-dependent curl field, learning

acquired at trained movements generalises to untrained movements made in novel

regions of the workspace. Importantly, learning decays smoothly as a function of

the distance between the trained movement and untrained movements, revealing a

fundamental property of motor adaptation, namely that it is local (Donchin et al., 2003;

Gandolfo et al., 1996; Thoroughman and Shadmehr, 2000). Early studies suggested

that learning was represented in intrinsic joint-based coordinates (Gandolfo et al.,

1996; Malfait et al., 2002; Shadmehr and Mussa-Ivaldi, 1994). However, more recent

work has revealed a more complex picture involving a mixture of intrinsic, extrinsic

and object-centered coordinate frames (Berniker et al., 2013; Brayanov et al., 2012).

Interestingly, learning does not always decay with generalisation. For example, when

participants were trained to make reaching movements of a particular duration and

amplitude in a velocity-dependent curl field, test movements performed at half the

duration or twice the amplitude exhibited a linear extrapolation of forces as a function

of velocity (Goodbody and Wolpert, 1998).

From a normative perspective, generalisation should reflect inductive biases about how

dynamics vary across the state space (Williams and Rasmussen, 2006). For example,

when dynamics vary slowly across state space, generalisation should be broad, whereas

when dynamics vary rapidly, generalisation should be narrow. This principle was

demonstrated in an experiment in which participants adapted to force fields of varying

spatial frequency (Thoroughman and Taylor, 2005). Over minutes of training, the

generalisation function became increasingly narrow for environments with higher spatial

frequencies.
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Context-dependent learning

The interference we have described above occurs when there are no cues to the dynamics

other than the experience of the perturbation themselves. A number of studies have

examined how context can enable multiple motor memories to exist by minimizing

interference.

The dynamics of the body and the environment often change in a discrete manner, such

as when we grasp an object, step onto ice or experience an injury. Such abrupt changes

in dynamics occur during a context switch. To maintain accurate performance in such

environments that switch between contexts, a person could learn multiple models of

their environment and switch between these models whenever the context switches.

The dominant paradigm for investigating context-dependent learning is dual-adaptation

in which two opposite perturbations (e.g., a clockwise and a counterclockwise curl

field) are presented in either an alternating or random order. In contrast to adaptation

to a single force field, which is almost complete (Shadmehr and Mussa-Ivaldi, 1994),

adaptation to two opposing force fields is limited due to interference between the

memories of each field (Brashers-Krug et al., 1996; Caithness et al., 2004; Gandolfo

et al., 1996; Krakauer et al., 1999; Shadmehr and Brashers-Krug, 1997). However,

if each force field is paired with an effective contextual cue, this interference can be

reduced (Addou et al., 2011; Cothros et al., 2009; Howard et al., 2013; Osu et al., 2004a;

Richter et al., 2004; Wada et al., 2003). For example, opposite force fields can be

learned if each force field is associated with a different posture of the body (Gandolfo

et al., 1996; Richter et al., 2004; Yeo et al., 2015) or a different end effector (Krakauer

et al., 2006; Nozaki et al., 2006). Opposite force fields can also be learned if each

force field is associated with a different lead-in or follow-through movement (Howard

et al., 2012, 2015; Sarwary et al., 2015; Sheahan et al., 2016) or if each force field is

associated with a different movement in visual space (Hirashima and Nozaki, 2012). It

may even be possible to learn opposite force fields if they are presented in a predictable
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sequence (Wainscott et al., 2005); although results on this question are conflicting

(Karniel and Mussa-Ivaldi, 2002). On the whole, arbitrary visual cues such as color

do not allow opposite force fields to be learned (Gandolfo et al., 1996; Howard et al.,

2013). However, if a static visual cue provides an instruction to switch control policy

(e.g., one-cursor vs. two-cursor control in a bimanual reaching task), opposite force

fields can be learned (White and Diedrichsen, 2013). This suggests that the hallmark

of an effective contextual cue may be its ability to engage different control policies

before learning.

In Chapter 3 we examine whether the location on a tool can act as a contextual cue so

that for the same movement of the tool, controlling different locations can be associated

with difference motor memories.

Choosing which model to select and update on each time step, however, is not straight-

forward, as the context is often unknown. For example, when lifting a carton of milk,

a person may not know whether the carton is full or empty (Wolpert and Ghahramani,

2000). One computational model that addressed context-dependent motor control

and learning is the modular selection and identification for control (MOSAIC) model

(Haruno et al., 2001; Wolpert and Kawato, 1998). This model postulates multiple

context-specific pairs of forward (predictor) and inverse (controller) models known

as modules. The goal of the MOSAIC model is to optimally partition control and

learning between these modules on each time step using Bayesian context estimation.

Before movement execution, sensory contextual cues are used to compute the prior

probability of each context (e.g., empty or full carton). These prior probabilities then

weight the outputs of each inverse model to compute the motor command (feedforward

control). During movement execution, each forward model predicts the next state

of the system based on the current state and the current motor command. This

leads to a module-specific prediction error that is used to calculate the likelihood of

each context. The prior and the likelihood are then combined using Bayes rule to

calculate the posterior probability of each context. This posterior probability signals



1.2 Learning 23

the responsibility of each module and is used i) to re-weight the contribution of each

inverse model to the final motor command (feedback control) and ii) to determine

how much the forward and inverse models of each module should be updated based on

their prediction error. During movement execution, context transition probabilities can

also be learned and exploited to predict the current context using a hidden Markov

model. In simulation, the MOSAIC model was able to learn to manipulate and switch

between multiple objects, generalise to novel objects and perform online corrections

when misleading cues were presented (Haruno et al., 2001; Wolpert and Kawato, 1998).

Importantly, the number of modules in the MOSAIC model is pre-specified, and there

is no mechanism for adding or removing modules online with experience (e.g., as

new objects appear or disappear). This is a significant limitation, as the number of

tasks a person will perform in their lifetime is not fixed or known in advance. This

issue was later addressed using an alternative architecture (locally weighted projection

regression) to represent the inverse model as a weighted combination of linear models,

where the number of linear models can grow as needed (Lonini et al., 2009). Using this

architecture, this alternative model was able to learn to compensate for a novel velocity-

dependent force field while still retaining a previously learned ability to manipulate

three objects.

The question of whether new experiences overwrite existing memories or create new

memories has recently been explored in sensorimotor learning (Oh and Schweighofer,

2018; Pekny et al., 2011; Roemmich and Bastian, 2015). One way in which this

question has been investigated is by examining how people relearn a task they have

previously learned and (ostensibly) unlearned via de-adaptation. In both visuomotor

rotation (Herzfeld et al., 2014) and split-belt treadmill tasks (Roemmich and Bastian,

2015), faster re-adaptation (savings) has been observed when the initial perturbation

was introduced abruptly but not when it was introduced gradually. One plausible

interpretation of this result is that the abrupt introduction of the perturbation lead

to the creation of a new memory and that apparent unlearning during washout was
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in fact re-expression of the baseline memory (Oh and Schweighofer, 2018); according

to this interpretation, the memory of the perturbation was preserved during washout,

allowing faster re-adaptation. The impetus to create a new memory may have been

provided by large errors, which the abrupt perturbation induced but the gradual

perturbation did not. In support of this view, abrupt introduction of a large but

not a small visuomotor rotation leads to savings (Morehead et al., 2015; Oh and

Schweighofer, 2018). Interestingly, savings has also been observed in an experiment

where a visuomotor rotation was introduced gradually but quickly (Turnham et al.,

2011). This raises the possibility that the rate of change of a perturbation, which

undergoes an abrupt step when the perturbation is introduced gradually, can also

result in new memory creation.

In Chapter 4 we develop a novel normative model of learning that can automatically

determine when to create a new memory vs. update existing memories, and in the

latter case which memories and how to update them.

Modelling

State-space models have emerged as the dominant model of trial-by-trial motor adap-

tation (Albert and Shadmehr, 2017; Cheng and Sabes, 2006; Donchin et al., 2003;

Thoroughman and Shadmehr, 2000). These models frame motor adaptation as se-

quential estimation of a task perturbation (e.g., a force field or visuomotor rotation).

On trial t, an adaptive state (xt) is updated by forgetting some of what has been

learned and correcting for part of an error (et). The error is defined as the difference

between the task perturbation (ft) and the motor output: et = ft − xt. The amount of

forgetting and learning are determined by a retention factor (0 < a < 1) and a learning

rate (0 < b < 1), respectively. The update rule for the single-rate state-space model is

xt+1 = axt + bet. (1.2)
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This basic state-space model can be generalised by adding additional states that forget

and learn at different rates (Inoue et al., 2014; Smith et al., 2006). The most influential

of these multi-rate models is the dual-rate model, which assumes that two hidden

states, a slow state (xs,t) and a fast state (xf,t) , are updated in parallel. These states

sum to give the motor output (yt = xs,t + xf,t), which determines the error used for

learning: et = ft − yt. The updates rules for the slow state and the fast state are

xs,t+1 = asxs,t + bset,

xf,t+1 = afxf,t + bfet.
(1.3)

where as > af and bs < bf. These inequalities ensure that the slow state learns and

forgets gradually and the fast state learns and forgets quickly. The dual-rate model

is able to explain a range of adaptation phenomena that a single-rate model cannot

capture, such as savings, anterograde interference and rapid unlearning (Smith et al.,

2006). However, the phenomenon that is thought of as the strongest evidence for

the dual-rate model is spontaneous recovery. Spontaneous recovery can be observed

when a series of error-clamp trials are presented after an adaptation-extinction training

paradigm which uses a prolonged period of field A followed by a short period of the

opposite field (-A) to bring adaptation back to baseline. Although the motor output is

at baseline at the start of the error-clamp phase, this arises from the combination of

the slow state being negative and the fast state being positive. Because the fast state

decays quicker than the slow state, the motor output exhibits spontaneous recovery

with forces generated in the channel appropriate for field A. Interestingly, although

the slow and fast states of the dual-rate model are hidden, they appear to map onto

identified learning systems. For example, in visuomotor rotation experiments, the

time courses of these states mirror implicit and explicit learning processes, respectively

(McDougle et al., 2015; Taylor et al., 2014).
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In Chapter 4 we will show how spontaneous recovery may not reflect a dual-rate model

but instead reflects switching between existing motor memories, an idea we test and

confirm in Chapter 5.

The state-space models presented so far also have Bayesian counterparts. Under the

assumption that the task perturbation evolves as a linear-Gaussian dynamical system,

optimal motor adaptation can be performed using a Kalman filter (Baddeley et al.,

2003; Berniker and Kording, 2008; Burge et al., 2008; Korenberg and Ghahramani,

2002; Wei and Körding, 2010). Like the dual-rate model, the Kalman filter can also

incorporate multiple states, allowing the learner to adapt to a body that changes over

multiple timescales, such as during growth, fatigue and injury (Körding et al., 2007b).

The Kalman filter model of motor adaptation makes a number of predictions pertaining

to the rate of learning. First, learning should be slower under higher measurement noise.

This has been confirmed in experiments where the feedback of a visual perturbation is

blurred (Burge et al., 2008; Wei and Körding, 2010). Second, learning should be faster

under higher state uncertainty. This has also been confirmed in an experiment where

the volatility of a perturbation was varied (Burge et al., 2008), as well as an experiment

where participants sat idle without vision prior to experiencing a perturbation (Wei

and Körding, 2010).

Not all predictions of the Kalman filter model agree with experimental data. For

example, whereas the learning rate of the Kalman filter is independent of error size,

the motor system is more sensitive to smaller errors (Fine and Thoroughman, 2007;

Marko et al., 2012; Wei and Kording, 2009), and learning saturates for large errors

(Herzfeld et al., 2014; Robinson et al., 2003). These discrepancies have been accounted

for by assuming multiple causes of errors, some of which are more relevant (i.e., worthy

of correction) than others (Körding et al., 2007a). Accordingly, when an error is

experienced, the learner must assign credit between relevant and irrelevant causes of

the error. Under the assumption that larger errors are less likely to be relevant (e.g.,
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caused by the motor plant), this framework can account for the observed dependence

of learning rate on error size.

In environments that switch between multiple perturbations, the rate of learning

adapts to the consistency of the environment (Castro et al., 2014; Herzfeld et al., 2014;

Takiyama et al., 2015). For example, during rapid switching between a clockwise and

a counterclockwise curl field, the rate of learning decreases, and vice versa for a slowly

switching environment (Herzfeld et al., 2014). To explain this finding, the authors

proposed a modified state-space model where the learning rate adapted online based

on the signs of consecutive errors. A similar result was also observed in a study where

the persistence of a single force field was varied. When the force field was presented for

1, 7 or 20 trials, the rate of learning decreased, stay the same or increased, respectively

(Castro et al., 2014). In these experiments, the change in learning rate occurred over

many tens to hundreds of trials, suggesting that the statistics of the environment were

slowly internalised.

State-space models assume that the adaptive state decays to zero in the absence of error

(Smith et al., 2006). However, adaptation often decays to a non-zero endpoint in error-

clamp trials (Criscimagna-Hemminger and Shadmehr, 2008; Keisler and Shadmehr,

2010; Pekny et al., 2011; Vaswani and Shadmehr, 2013). This non-zero endpoint has

been interpreted as a component of motor memory that is resistant to de-instantiation

(Vaswani and Shadmehr, 2013). State-space models also assume that the adaptive state

decays on every trial (Smith et al., 2006). This assumption was recently challenged

following evidence of lags to decay when a change in context was masked (Vaswani

and Shadmehr, 2013). However, these observed lags appeared to be an artifact of

inappropriate analysis assumptions (Brennan and Smith, 2015). Under appropriate

assumptions, decay appeared to be independent of context change detection, consistent

with standard modelling assumptions (Brennan and Smith, 2015).
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Neural correlates of control and learning

How the brain generates voluntary movement is a central question in motor control.

The functional contribution of primary motor cortex to movement can be understood

from the perspective of two models: the representational model and the dynamical

systems model. The representational model proposes that single neurons in motor

cortex encode movement-related parameters. Substantial controversy has centered

around whether these parameters represent low-level dynamics variables such as force

or high-level kinematics variables such as movement direction (for review see Omrani

et al., 2017). Both these variables correlate with activity in motor cortex, although

responses of individual neurons are often complex, labile and heterogeneous (Churchland

and Shenoy, 2007; Scott, 2008). The dynamical systems model views motor cortex

as a pattern generator for producing temporally and spatially complex patterns of

muscle activity. This perspective emphasises two distinct periods in the production

of movement. In the preparatory period, inputs to motor cortex drive the neural

population to an initial state that subsequently determines the evolution of neural

activity during the movement period (Churchland et al., 2010). These preparatory

dynamics occur in a null space that does not produce movement (Kaufman et al.,

2014). In the movement period, the state of the neural population exhibits oscillations

that drive downstream multiphasic electromyographic signals (Churchland et al., 2012).

Interestingly, neural network models trained to perform a motor task or reproduce

muscle activity can exhibit both directional tuning at the single-unit level (Lillicrap

and Scott, 2013) and oscillatory dynamics at the population level (Sussillo et al.,

2015). This suggests that the dynamical systems model may offer a unifying view of

motor cortex. Whether or not motor cortex implements an optimal feedback controller

remains an open question (Scott, 2008).

Substantial evidence suggests that fast trial-by-trial motor adaptation depends on the

cerebellum. The principal site of learning in the cerebellum is the synapse between

parallel fibres and Purkinje cells (Albus, 1971; Marr and Thach, 1991). The Purkinje
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cell is the sole output cell of the cerebellar cortex and receives convergent inputs from

two main excitatory sources: parallel fibers and climbing fibers. It is thought that

parallel fibers convey sensorimotor contextual information regarding the state of the

body, the goal of the movement and an efference copy of the motor command, and

climbing fibers convey sensory error signals in motor coordinates (Kitazawa et al., 1998;

Kobayashi et al., 1998).

It has been widely hypothesized that the cerebellum is the anatomical locus of a forward

model. Several lines of evidence from single cell recordings in monkeys support this

hypothesis. First, the cerebellum receives the necessary inputs to implement a forward

model, namely the current state of the plant and the motor command (Stein and

Glickstein, 1992). Second, simple spike discharges of Purkinje cells of the cerebellum

precede movement kinematics and encode the position, direction of movement and

speed of arm movements (Hewitt et al., 2011; Roitman et al., 2005), consistent with a

role in predicting the next state. Third, deep cerebellar output neurons encode sensory

prediction errors—a key signal for learning a forward model—and these signals evolve

on the same time course as behavioural learning during motor adaptation (Brooks

et al., 2015). In addition, the cerebellar-like structure of the electric fish has a similar

architecture to the cerebellum and is known to implement a forward model that cancels

the predictable sensory consequences of self-generated electric fields (for review see

Bell et al., 2008).

The role of the cerebellum as a forward model is also supported by clinical studies.

For example, cerebellar patients have proprioceptive deficits during active movement,

but not when the arm is moved passively (Bhanpuri et al., 2013), and cerebellar

patients who adapt to a gradual visuomotor rotation do not show recalibration in a

proprioceptive localisation task (Izawa et al., 2012). Further evidence implicating the

cerebellum in forward state estimation also comes from functional neuroimaging (e.g.,

Blakemore et al., 1998) and non-invasive stimulation studies (Miall et al., 2007).





Chapter 2

Increasing muscle co-contraction

speeds up internal model acquisition

during dynamic motor learning

2.1 Introduction

The reduction of kinematic errors during reaching movements in the presence of novel

dynamics occurs through at least two complementary mechanisms (Franklin et al.,

2003; Osu et al., 2003). First, participants can learn an internal model of the dynamics

and use this model to anticipate and compensate for perturbations (Conditt et al.,

1997; Donchin et al., 2003; Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994).

Second, participants can use a less-specific strategy of stiffening up the limb through

muscle co-contraction, that is use impedance control (Burdet et al., 2006; Hogan, 1985;

Mitrovic et al., 2010; Shadmehr and Mussa-Ivaldi, 1994) to reduce the kinematic errors

that result from perturbing dynamics (Burdet et al., 2001; Lametti et al., 2007; Osu

et al., 2004b). Several studies have shown that both these mechanisms contribute

to the early compensation for novel dynamics (Albert and Shadmehr, 2016; Darainy
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and Ostry, 2008; Franklin et al., 2008; Milner and Franklin, 2005; Sing et al., 2009)

and that muscle co-contraction decreases as the internal model is learned (Franklin

et al., 2003, 2012; Huang et al., 2012; Thoroughman and Shadmehr, 1999). Therefore,

muscle co-contraction offers a temporary, non-specific strategy to compensate for novel

dynamics until they are learned by the internal model. Here we ask whether the increase

in muscle co-contraction during exposure to novel dynamics affects the learning of the

internal model.

Muscle co-contraction could affect dynamic motor learning in three contrasting ways.

First, it could facilitate learning by keeping the state of the limb close to the desired

state required for task success (i.e., the target). By resisting force-field displacements,

muscle co-contraction increases the alignment between the actual motions experienced

and the motion to be learned. Importantly, because participants learn the mapping

from visited states, rather than planned states, to dynamics (Castro et al., 2011),

increased muscle co-contraction should accelerate learning by concentrating adaptation

within the region of state space associated with the planned motion. Indeed, in artificial

neural networks, it has been shown that the inverse dynamics of a plant can be learned

faster when the actual trajectories executed are closer to the desired trajectories to

be learned, as this ensures that local error information is applicable to the region of

state space to be learned (Sanger, 1994). Conversely, reduced muscle co-contraction

should slow down learning by increasing the range of actual motions experienced and

thus spreading adaptation more thinly across state space. Consistent with this idea,

adaptation to a visuomotor rotation is less complete when the rotation is introduced

abruptly compared with gradually (Kagerer et al., 1997).

Second, muscle co-contraction could impede learning by reducing kinematic variability

(Burdet et al., 2001; Gribble et al., 2003; Selen et al., 2005; Wong et al., 2009), which

has been shown in some forms to enhance error-based learning, both in humans (Wu

et al., 2014) and in songbirds (Charlesworth et al., 2012; Kao et al., 2005; Tumer and

Brainard, 2007). Moreover, muscle co-contraction reduces kinematic errors, which are
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a key training signal for internal model acquisition (Fine and Thoroughman, 2007;

Kawato et al., 1987; Milner and Hinder, 2006; Thoroughman and Shadmehr, 2000).

Although some saturation is seen for large errors, in general, trial-to-trial learning

increases with the magnitude of the error on the previous trial (Körding and Wolpert,

2004; Wei and Kording, 2009). Therefore, by reducing kinematic errors, muscle co-

contraction could reduce trial-to-trial learning and thus decrease the overall rate or

extent of learning.

Third, muscle co-contraction could have no effect on learning if kinematic errors are

normalized against the current level of muscle co-contraction. Indeed, incoming sensory

information is often pre-processed on the basis of motor output. For example, reafferent

feedback is attenuated by sensory predictions based on efference copies of motor

commands (Blakemore et al., 2000, 1998; Shergill et al., 2003). It is therefore possible

that error-based learning is driven by pre-processed kinematic errors. Consequently,

even though kinematic errors are smaller during muscle co-contraction, the motor

system may still adapt to the true internal model performance error. Alternatively, or

concurrently, the opposing effects of concentrated learning in state space (hypothesis

one) and smaller kinematic errors (hypothesis two) could cancel out such that muscle

co-contraction has no effect on learning.

To differentiate between these hypotheses, we developed a novel paradigm in which

participants were either pretrained to increase (stiff group) or decrease (relaxed group)

muscle co-contraction in the presence of dynamic perturbations. A third group (control

group) was not pretrained at all. We then examined force-field adaptation using

channel trials, which constrain movements to a straight line and allow us to measure

the force generated into the channel walls as a measure of predictive compensation.

In the initial stage of exposure, the stiff group adapted more than both the relaxed

group and the control group. In both the initial and final stage of exposure, we found

a positive correlation between an individual’s level of muscle co-contraction and their

level of adaptation.



34 Muscle co-contraction speeds up internal model acquisition

2.2 Methods

Thirty-six neurologically intact participants (16 men and 20 women; age 25.3 ± 5.3 yr,

mean ± s.d.) were recruited to participate in the experiment, which had been approved

by the Cambridge Psychology Research Ethics Committee and was performed in

accordance with guidelines and regulations. All participants provided written informed

consent and were right-handed according to the Edinburgh handedness inventory

(Oldfield, 1971). Participants had not previously performed any experiments involving

velocity-dependent curl fields.

2.2.1 Apparatus

Experiments were performed using a vBOT planar robotic manipulandum (Howard

et al., 2009) with virtual-reality system and air table (Fig. 2.1a). The vBOT is

a modular, general-purpose, two-dimensional planar manipulandum optimized for

dynamic learning paradigms. Position was measured using optical encoders sampled

at 1 kHz. Torque motors allowed forces to be generated at the endpoint. A monitor

mounted above the vBOT projected visual feedback into the plane of movement via

a horizontal mirror. The location of the mirror prevented direct vision of the hand

and forearm. Participants were seated in front of the robotic manipulandum with

their torso restrained by a four-point harness to reduce movement. The handle of the

manipulandum was grasped with the right hand, while the right forearm was supported

on an air sled, which constrained arm movements to the horizontal plane.

Movements were performed in either a null field (vBOT passive), a velocity-dependent

curl force field or in a simulated channel. In the curl field, the force generated at the
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Figure 2.1. Experimental paradigm. a, The participant grasped the handle of the
robotic manipulandum (vBOT) while seated. Visual feedback was presented veridically
using a horizontally-mounted monitor viewed through a mirror. b, At the start of
each reaching trial, a target was illuminated (yellow circle), cueing the participant to
move their hand (green circle) from the center of the workspace to the illuminated
target by making a fast reaching movement. In the pulse phase, a series of brief pulses
of force (black arrow) was applied to the handle of the manipulandum in a random
direction. Participants in the stiff group were instructed to keep their hand within a
1.5 cm radius of the home position (red ring) by co-contracting the muscles of their
arm. Participants in the relaxed group were instructed to let their hand move freely by
relaxing the muscles of their arm. In the exposure phase, a velocity-dependent force
field was applied. Channel trials were used to assess adaptation for the 90◦ target only.

handle of the manipulandum was given by:fx

fy

 = b

0 −1

1 0

ẋ

ẏ

 , (2.1)

where fx, fy, ẋ and ẏ are the forces and velocities at the handle in the x- and y-

directions respectively. The gain b was set to ± 16 Ns/m, where the sign of b specified

the direction of the curl (clockwise or counterclockwise). On channel trials, the hand

was constrained to move along a straight line from the home position to the target,

using stiffness (6,000 N/m) and damping (5 Ns/m) perpendicular to the movement

direction. Channel trials clamped the kinematic error to zero, allowing forces that were

generated in a feedforward manner to be measured orthogonal to the direction of reach

(Milner and Franklin, 2005; Scheidt et al., 2000).



36 Muscle co-contraction speeds up internal model acquisition

2.2.2 Electromyography

Surface electromyography (EMG) was recorded from two monoarticular shoulder

muscles (pectoralis major and posterior deltoid), two biarticular shoulder-elbow muscles

(biceps brachii and the long head of the triceps) and two monoarticular elbow muscles

(the lateral head of the triceps and brachioradialis). The EMG was recorded using the

Delsys Bagnoli 8 electromyography system (Boston, MA). The skin was cleaned with

alcohol and prepared with an abrasive gel to increase conductance. After the abrasive

gel was removed with cotton wool, conductive gel was applied to the electrodes, which

were secured to the skin with tape. Electrode placement was chosen to maximize signal

while minimizing crosstalk from adjacent muscles. EMG signals were analog band-pass

filtered between 20 and 450 Hz (in the Delsys Bagnoli EMG system) and then sampled

at 2 kHz.

2.2.3 Paradigm

With the exception of the pulse phase, in which a series of force pulses was applied

to the handle of the robot while the hand was stationary, participants made 12 cm

center-out reaching movements to one of four targets located at 0◦, 90◦, 180◦ and 270◦.

Visual feedback consisted of the home position (0.7 cm radius disk), the four targets

(0.7 cm radius rings), a set of red lines connecting each target to the home position

and the hand cursor (0.5 cm radius disk) (Fig. 2.1b). The four targets, the home

position and the connecting lines were displayed at all times, except during the pulse

phase. Each trial started when the hand cursor had remained within 0.3 cm of the

home position at a speed below 0.5 cm/s for 100 ms. One of the targets was then filled

in, followed 500 ms later by an auditory tone, which cued the participant to initiate

their movement. The trial ended when the hand cursor had remained within 0.3 cm of

the target position for 500 ms. If the peak speed of the movement was less than 40
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cm/s or greater than 60 cm/s, a low-frequency auditory tone was played, and a ‘Too

Slow’ or ‘Too Fast’ message was displayed, respectively. At the end of each trial, the

hand was passively returned to the home position by the robotic manipulandum.

Participants were assigned to either a stiff group (n = 12), a relaxed group (n = 12) or

a control group (n = 12). Each experiment began with a training phase to familiarize

participants with the passive dynamics of the robot and the requirements of the task.

Participants then performed a pre-exposure phase consisting of 100 null-field trials

(20 blocks), a pulse phase consisting of 50 trials (stiff and relaxed groups only), a

post-pulse phase consisting of four null-field trials, an exposure phase consisting of 410

force-field trials (83 blocks) and a post-exposure phase consisting of 100 null-field trials

(20 blocks). Each block of five trials consisted of one null or field trial to each target

and one channel trial to the 90◦ target. We only applied channel trials for one of the

four targets (the 90◦ target for all participants to allow comparison) to provide enough

force-field trials for learning without making the experiment excessively long. The order

of trials within a block was pseudorandom, except that a channel trial never occurred

on the first trial of a block. The force field direction was fixed for each participant but

counterbalanced across participants.

The pulse phase was designed to increase muscle co-contraction in the stiff group and

decrease muscle co-contraction in the relaxed group. Each trial started with the hand

in the home position. A single force pulse (5 N for 500 ms) was then applied to the

hand. The 50 force pulses (one for each trial) ranged uniformly in direction over 360◦

and were presented in a pseudorandom order. Participants in the stiff group were

instructed to keep the handle positioned within a border (1.5 cm radius ring) around

the home position by co-contracting the muscles of their limb (Fig. 2.1b). Participants

in the relaxed group were instructed to let their hand move freely by relaxing the

muscles of their limb. After the force pulse had ended, the handle of the manipulandum

was passively returned to the home position in preparation for the next trial.
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During the exposure phase, participants in the stiff group were instructed to maintain

their arm stiff and to not deviate from the red lines connecting the home position to

the target (described above), and participants in the relaxed group were instructed

to relax their arm. The control group did not perform the pulse phase and were not

given any explicit instructions regarding muscle co-contraction. The exact instructions

given to participants can be found in Appendix A.

Participants were given a 45 second rest break after the pre-exposure phase and after

every 13 blocks (65 trials) in the exposure phase, with the exception of the end of the

exposure phase, which was followed directly by the post-exposure phase. At the end

of each rest break, participants in the stiff group were reminded that co-contracting

their muscles may help them to make straight reaching movements, and participants

in the relaxed group were reminded that if they relaxed their arm their movements

would naturally become straighter. To mitigate the effects of time-dependent decay of

memory, a channel trial did not occur in the first four movements after each rest break.

2.2.4 Analysis

Data analysis was performed using MATLAB R2017b. Two measures of performance

were computed. On exposure and null-field trials the maximum distance between the

path of the hand and a straight line connecting the initial hand position and the target

(maximum perpendicular error) was computed. On channel trials the percentage of

the force field that was compensated for (adaptation) was computed by regressing the

actual forces fa(t) generated by participants in the channel on the ideal forces fi(t)

that would fully compensate for the forces on a force-field trial (defined in equation

2.1):

fa(t) = k × fi(t) (2.2)

adaptation = k × 100%, (2.3)
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where k is the regression coefficient and t is the discrete time step of the channel

trial. The offset of the regression was constrained to zero. For this analysis, we used

the portion of the movement where the hand speed was greater than 1 cm/s. At all

stages of the experiment the ideal force term fi(t) refers to the force required to fully

compensate for the force field present in the exposure phase. Therefore, adaptation

in the pre-exposure phase prior to learning should be close to zero. To combine

maximum perpendicular error (MPE) and adaptation data across participants, data

from individual participants was sign adjusted according to the direction of the field

they were trained on.

To quantify oscillations on individual channel trials, we calculated an oscillation index

that was the path length of each force profile (from when the hand speed exceeded 1

cm/s to when it dropped below 1 cm/s), where a greater path length indicates a more

oscillatory profile. To control for differences in movement duration and adaptation

level, each force profile was first normalized in amplitude by dividing by the force range

(max - min) and normalized in time between 0 and 1.

The raw EMG signal was bandpass filtered (30–500 Hz) using a 10th-order Butterworth

filter implemented with MATLAB’s filtfilt function and then full-wave rectified. We

examined the EMG over two periods: an early period comprised of feedforward signals

and a later period comprised of both feedforward and feedback signals. These periods

were defined separately for the pulse phase and for reaching movements. In the pulse

phase, the early period was taken from 200 ms before the perturbation onset to the

perturbation onset, and the later period was taken from the perturbation onset to

130 ms after the perturbation onset. During reaching movements, the early period

was taken from 200 ms before movement onset to 130 ms after movement onset. This

period can be used as a measure of the feedforward muscle activation as feedback

components of EMG are first detectable around 130 ms after movement onset when the

hand is smoothly perturbed by a velocity-dependent force field (Franklin et al., 2008).

The later period was taken from 130 ms to 400 ms after movement onset. To normalize
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EMG traces across the muscles, we first computed for each muscle the mean EMG

over the early period for the non-channel trials in the pre-exposure phase. We then

normalized the EMG trace for each trial by dividing the trace by the corresponding

mean for that muscle (Franklin et al., 2012). Note that this only scales the EMG

traces for each muscle and does not affect the temporal profile. A global measure of

muscle activity was then computed for each trial by calculating the difference between

the summed EMG across muscles (first averaged across time points on a trial) and

the summed pre-exposure EMG across muscles (first averaged across time points and

trials for the pre-exposure phase). Accordingly, negative global EMG signifies reduced

activity relative to the pre-exposure phase, whereas positive global EMG signifies

increased activity relative to the pre-exposure phase. For plotting purposes, EMG

waveforms were time normalized by resampling 1000 data points between movement

onset and movement end on each trial for each participant. Movement onset was

defined as the time the cursor first moved 0.3 cm from the center of the home position.

Movement end was defined as the time the cursor was first within 0.3 cm of the center

of the target position. Each resampled data point was assigned a time point linearly

spaced between 0 and the mean movement duration across participants.

To identify differences in global EMG, MPE and adaptation between the groups,

between-subjects ANOVAs, mixed-design ANOVAs and unpaired t-tests were per-

formed. We also performed linear regression and ANCOVAs to identify a linear

relationship between global EMG and adaptation. All statistical tests were two-sided

with significance set to P < 0.05. Data are reported as mean ± standard error of the

mean (s.e.m.).

2.3 Results

Participants started the experiment by making center-out reaching movements in a null

field (pre-exposure phase). Then, in the stiff and relaxed groups, voluntary changes to
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Figure 2.2. Performance in the force pulse phase. a, Polar plot of the maximum
distance (cm) the hand moved as a function of the force pulse direction. Data show
mean ± s.e.m. across participants. b, Global EMG before (left) and after (right) the
force pulse for the stiff (red) and relaxed (blue) groups. Data show mean ± s.e.m.
across participants.

muscle co-contraction were elicited by instructing participants to resist or comply with

a sequence of force pulses while the hand was stationary (pulse phase). Figure 2.2a

shows the maximum distance moved by the hand following force pulses in different

directions. The maximum distance moved by the hand was smaller in the stiff group

compared with the relaxed group (stiff: 1.7 cm ± 0.1, relaxed: 23.2 ± 0.9, unpaired

t-test, t22 = 22.81, P = 8× 10−17). This was due to greater muscle co-contraction, as
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confirmed by global EMG (stiff: 2.9 ± 1.4, relaxed: -4.0 ± 0.1, mixed-design ANOVA,

F1,22 = 25.74, P = 4× 10−5), both in the period preceding the force pulse (Fig. 2.2b;

stiff: 2.5 ± 1.3, relaxed: -4.0 ± 0.1, unpaired t-test, t22 = 4.87, P = 7×10−5) and in the

period following pulse onset (Fig. 2.2b; stiff: 3.4 ± 1.4, relaxed: -3.9 ± 0.1, unpaired

t-test, t22 = 5.26, P = 3× 10−5). The variability of global EMG was greater for the

stiff group (Fig. 2.2b). This is most likely because the relaxed group are bounded

by an EMG of zero, whereas the stiff group can stiffen up to different extents due

to different bounds across participants. Note that because joint impedance increases

faster than force variability as a function of muscle co-contraction (Selen et al., 2005),

co-contraction has a net stabilizing effect on endpoint kinematics (Gribble et al., 2003;

Selen et al., 2009). The pulse phase was omitted for the control group.

2.3.1 Electromyography

After the pulse phase (stiff and relaxed groups) or the pre-exposure phase (control

group), participants performed reaching movements in a velocity-dependent curl field

(exposure phase). Figure 2.3 shows global EMG for all groups over the course of the

experiment, split into periods separated by rest breaks. To identify differences in

muscle co-contraction between the groups during the exposure phase, we performed

a mixed-design ANOVA with stage of exposure (first vs. second half) and period of

movement (early vs. later period) as within-subject factors and global EMG as the

response variable. We found a main effect of group (mixed-design ANOVA, F2,33 =

8.59, P = 0.001) but no interaction between group and stage of exposure (mixed-design

ANOVA, F2,33 = 1.58, P = 0.220). We therefore combined data from the first and

second halves of the exposure phase. Importantly, global EMG was greater in the stiff

group than the relaxed group, both in the early period of the movement (Fig. 2.3a;

stiff: 2.3 ± 0.8, relaxed: -0.4 ± 0.2, unpaired t-test, t22 = 3.42, P = 0.002) and in the

later period of the movement (Fig. 2.3b; stiff: 4.1 ± 1.1, relaxed: 0.1 ± 0.3, unpaired

t-test, t22 = 3.44, P = 0.002). Global EMG was also greater in the stiff group than
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Figure 2.3. Global EMG over the course of the experiment a,b, Global EMG,
which is a proxy for stiffness, was calculated on each trial and plotted as an average of
a block of five trials. Data show mean ± s.e.m. across participants in the stiff (red),
relaxed (blue) and control (cyan) groups. Vertical dashed lines indicate rest breaks.
a, Global EMG from -200 ms to 130 ms relative to movement onset. b, Global EMG
from 130 ms to 400 ms relative to movement onset.

the control group, both in the early period of the movement (Fig. 2.3a; control: 0.5

± 0.2, two-tailed unpaired t-test, t22 = 2.28, P = 0.033) and in the later period of

the movement (Fig. 2.3b; control: 1.5 ± 0.4, unpaired t-test, t22 = 2.20, P = 0.038).

Finally, Global EMG was greater in the control group than the relaxed group, both in

the early period of the movement (Fig. 2.3a; unpaired t-test, t22 = 3.15, P = 0.005)
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and in the later period of the movement (Fig. 2.3b; unpaired t-test, t22 = 2.70, P =

0.013). Therefore, as expected, the stiff group exhibited the greatest degree of muscle

co-contraction, followed by the control group and then the relaxed group.

Figure 2.4 shows the average EMG of the stiff (red), relaxed (blue) and control (cyan)

groups during the first half of the exposure phase. This shows an increase in EMG

both prior to and during movement in many of the muscles. Overall, a clear voluntary

increase in EMG can be seen for the stiff group compared with the relaxed group.

This increase is seen in all muscles pairs, suggesting that muscle co-contraction is not

specific to a single joint. The EMG of the control group is intermediate between the

stiff and relaxed groups.

2.3.2 Movement Analysis

In the pre-exposure phase, reaching movements were relatively straight in all groups,

as demonstrated by small MPEs (Fig. 2.5a). During the exposure phase, there was

no difference in peak velocity between the groups (stiff: 48.8 ± 0.4 cm/s, relaxed:

48.4 ± 0.5, control: 48.0 ± 0.5, between-subjects ANOVA, F2,33 = 0.61, P = 0.549).

Therefore, each group experienced similar forces during learning. In the first block (5

trials) of the exposure phase, all groups showed large deviations from a straight line,

and these deviations were different between the groups (between-subjects ANOVA,

F2,33 = 9.94, P = 4 × 10−4). Importantly, MPE was, as expected, smaller in the

stiff group compared with the relaxed group (stiff: 3.3 cm ± 0.2, relaxed: 4.5 ± 0.2,

unpaired t-test, t22 = 5.42, P = 2× 10−5). Furthermore, MPE was also smaller in the

control group compared with the relaxed group (control: 3.2 ± 0.3, unpaired t-test,

t22 = 3.49, P = 0.002). However, there was no difference in MPE between the stiff

group and the control group (unpaired t-test, t22 = 0.03, P = 0.977). As the exposure

phase progressed, MPE decreased in all groups. By the final 13 blocks (65 trials) of the

exposure phase, there was no difference in MPE between the groups (stiff: 0.4 cm ±
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Figure 2.4. Muscle activity during the first half of the exposure phase. The
EMG is averaged across all directions on force field trials. The period after movement
onset has been time normalized. The time from 0 ms to 400 ms corresponds to
approximately 64% of the mean movement duration across participants. The period
before movement onset is shown in real time. Data show mean ± s.e.m. across all
participants in the stiff (red), relaxed (blue) and control (cyan) groups.

0.1, relaxed: 0.7 ± 0.1, control: 0.7 ± 0.2, between-subjects ANOVA, F2,33 = 1.94, P

= 0.160). In the null field of the post-exposure phase, MPE rose again, demonstrating

after-effects.
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Figure 2.5. Kinematic and dynamic adaptation over the course of the
experiment. a, Maximum perpendicular error (MPE) was calculated on each trial
and plotted as an average of a block of five trials. Data show mean ± s.e.m. across
participants in the stiff (red), relaxed (blue) and control (cyan) groups. Vertical dashed
lines indicate rest breaks. b, is the same as a but for adaptation measured on channel
trials. c, Mean ± s.e.m. initial adaptation (first 13 blocks of the exposure phase) and
final adaptation (last 13 blocks of the exposure phase) for all groups. Asterisks indicate
significant (∗P < 0.05), ns indicates not significant. d,e, Least-squares regression
between each participant’s global EMG (first 13 blocks of the exposure phase, early
and later periods of movement combined) and their initial adaptation (d) and their
final adaptation (e). Dashed curves show 95% confidence intervals for the fitted linear
model. Data from all groups have been pooled.
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In the relaxed group, increases in MPE can be seen at the start of each rest break (Fig.

5a; vertical dashed lines) when participants were reminded that their movements would

naturally become straighter if they relaxed their arm. In the stiff group, changes in

MPE cannot be seen at the start of each rest break. This is likely because decreases in

MPE due to increased co-contraction are offset by increases in MPE due to forgetting

of learning during rest breaks.

2.3.3 Force compensation

In the pre-exposure phase, adaptation measured on channel trials was, as expected,

close to zero in all groups (Fig. 2.5b). During exposure, adaptation increased in

all groups, eventually reaching asymptote. To assess learning, we compared initial

(first 13 blocks of the exposure phase) and final (last 13 blocks of the exposure phase)

adaptation between the groups. This revealed a main effect of group (mixed-design

ANOVA, F2,33 = 3.75, P = 0.034) and no interaction (mixed-design ANOVA, F2,33

= 2.35, P = 0.111). Initial adaptation was greater in the stiff group than both the

relaxed group (Fig. 2.5c; stiff: 43.5 ± 2.9, relaxed: 33.2 ± 2.5, unpaired t-test, t22 =

2.68, P = 0.014) and the control group (Fig. 2.5c; control: 32.6 ± 3.7, unpaired t-test,

t22 = 2.31, P = 0.031). However, there was no difference in initial adaptation between

the relaxed group and the control group (Fig. 2.5c; unpaired t-test, t22 = 0.12, P =

0.904). Final adaptation was not significantly different between the groups (Fig. 2.5c;

stiff: 86.9 ± 2.8, relaxed: 78.9 ± 2.9, control: 85.9 ± 2.7, between-subjects ANOVA,

F2,33 = 2.49, P = 0.099).

We examined data at the individual level pooling across all three groups. This revealed

a significant linear relationship between a participant’s global EMG (first 13 blocks of

the exposure phase, early and later periods of the movement combined) and both their

initial adaptation (Fig. 2.5d; R2 = 0.14, β = 1.74, F -test, F1,34 = 5.45, P = 0.026)

and their final adaptation (Fig. 2.5e; R2 = 0.25, β = 2.02, F -test, F1,34 = 11.17, P =
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0.002). To rule out the possibility that muscle co-contraction influences adaptation

by increasing/decreasing oscillations on channel trials, we performed multiple linear

regression with global EMG and oscillation index (see methods) as predictors and

adaptation as the response variable. Importantly, oscillation index was not a significant

predictor of either initial adaptation (β = -0.17, t-test, t33 = 0.04, P = 0.971) or final

adaptation (β = -7.58, t-test, t33 = 1.00, P = 0.327). In contrast, global EMG was

a significant predictor of both initial adaptation (β = 1.75, t-test, t33 = 2.19, P =

0.036) and final adaptation (β = 2.25, t-test, t33 = 3.24, P = 0.003). Therefore, the

relationship between global EMG and adaptation cannot be explained in terms of

increased/ decreased oscillations on channel trials due to muscle co-contraction.

To investigate whether the significant linear relationship between global EMG and

adaptation (Fig. 2.5d-e) is a consequence of the previously reported inter-group

differences in adaptation (Fig. 2.5c), we performed an ANCOVA with adaptation as

the dependent variable, group as the independent variable and global EMG as the

covariate. In initial adaptation, there was no main effect of global EMG (ANCOVA,

F1,30 = 1.68, P = 0.205) and no interaction between global EMG and group (ANCOVA,

F2,30 = 1.67, P = 0.206). In contrast, in final adaptation, there was a main effect of

global EMG (ANCOVA, F1,30 = 5.59, P = 0.025) and no interaction between global

EMG and group (ANCOVA, F2,30 = 0.32, P = 0.731). Therefore, global EMG remained

a significant predictor of final adaptation at the individual level.

2.3.4 Discussion

We examined force-field adaptation under increased, decreased and baseline levels of

muscle co-contraction. Participants were randomly assigned to either a stiff, relaxed or

control group. The stiff and relaxed groups were pretrained using a sequence of force

pulses to either increase (stiff group) or decrease (relaxed group) muscle co-contraction

in the presence of perturbations. The control group was not pretrained. All groups
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performed reaching movements in a velocity-dependent curl field. We assessed learning

by measuring adaptation, that is predictive force compensation using channels trials. In

the initial stage of exposure, the stiff group adapted more than the relaxed and control

groups, despite experiencing smaller kinematic errors, an important training signal for

error-based learning. Furthermore, at the individual level, muscle co-contraction was

significantly correlated with adaptation in the final stage of exposure. These results

show that, in addition to improving kinematic accuracy, muscle co-contraction also

increases the rate of acquisition of an internal model.

There are a number of reasons why increased muscle co-contraction could lead to an

increase in the rate of dynamic motor learning. First, when motor errors are experienced,

the internal model is updated with respect to the actual states visited rather than

the intended states, a process termed motion-referenced learning (Castro et al., 2011).

Consequently, any intervention that increases the overlap between the actual motions

experienced and the motion required to reach the target, such as increased muscle

co-contraction, could increase the rate of adaptation. Second, error sensitivity is greater

for smaller errors (Fine and Thoroughman, 2007; Marko et al., 2012; Wei and Kording,

2009). This could explain why muscle co-contraction accelerates adaptation, despite

decreasing the size of errors. In a causal inference framework (Körding et al., 2007a),

larger errors are more likely to have been caused by factors extrinsic to the motor

plant and so should be discounted to a greater extent. Consequently, larger errors

do not guarantee greater learning. Indeed, single-trial adaptation (the product of

error sensitivity and error magnitude) appears to be non-monotonic with a peak at

an intermediate error magnitude (Herzfeld et al., 2014; Robinson et al., 2003). This

non-monotonic relationship can be appreciated in studies of error augmentation. For

example, during reach adaptation to a visuomotor rotation, the rate of learning almost

doubles when visual errors are amplified by a gain of 2 (Patton et al., 2013). However,

when visual errors are amplified by a gain of 3, the rate of learning returns to the

level associated with veridical visual feedback. Given this non-monotonic relationship

between adaptation and error magnitude, it is possible that muscle co-contraction
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increases the rate of adaptation by reducing errors to a size that induces greater

learning.

Previous studies of error sensitivity (Fine and Thoroughman, 2007; Franklin et al.,

2008; Herzfeld et al., 2014; Marko et al., 2012; Robinson et al., 2003; Wei and Kording,

2009) did not examine its dependence on muscle co-contraction. Therefore, it is

possible that error sensitivity is a function of muscle co-contraction, such that as

muscle co-contraction increases, single-trial adaptation is maximized by progressively

smaller errors. For the sensorimotor system to implement such an error-sensitivity

function, it would need to have knowledge of the effects of muscle co-contraction on

the statistics of kinematic errors. Such knowledge has been postulated in normative

models of impedance control, in which muscle co-contraction emerges as a strategy

to minimize the expected cost of movement by reducing uncertainty in the forward

dynamics model (Mitrovic et al., 2010). If error sensitivity were a function of muscle

co-contraction, when kinematic errors are experienced, the sensorimotor system could

appropriately assign credit between the forward dynamics model and sensorimotor

noise, controlling for the level of muscle co-contraction. Interestingly, the forward

dynamics model, which maps current states and motor commands to next states, is

also a function of muscle co-contraction (a state determined by a motor command),

and so it is an open question to what degree adaptation under increased co-contraction

generalizes to other co-contraction levels.

Muscle co-contraction could affect motor performance indirectly via an effect on

proprioception. Proprioception is primarily mediated by muscle spindle receptors,

which encode the length and velocity of muscles (Dimitriou, 2014; Ribot-Ciscar and

Roll, 1998). The sensitivity of muscle spindles to stretch is maintained by alpha-

gamma coactivation (Vallbo, 1970, 1974). Alpha motor neurons activate extrafusal

muscle fibres, while gamma motor neurons activate the contractile polar ends of muscle

spindles to prevent spindle slackening during contraction of the extrafusal muscle. If

a contracting muscle does not shorten (e.g., during co-contraction) but the muscle
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spindle does, the spindle will become taught, potentially increasing its sensitivity

to stretch. Hence, in principle, increased alpha-gamma coactivation during muscle

co-contraction could enhance proprioceptive acuity. Indeed, early work suggested that

the threshold for detecting movements imposed at the elbow is lower when muscles

are contracted compared to relaxed (Colebatch and McCloskey, 1987; Taylor and

McCloskey, 1992). This gave rise to the common view that proprioception is more

accurate under active than passive conditions (Gandevia et al., 1992). However, these

experiments were subsequently criticised on the basis that the muscles had not been

appropriately conditioned to remove slack in the spindles that arises due to thixotropy

(the dependence of a muscle’s state on its contraction and length change history)

(Proske and Gandevia, 2012). Critically, subsequent experiments that did condition

the muscles found the opposite result; the ability to detect limb movement (Wise et al.,

1998) and to match limb position (Wise and Fallon, 2002) at the elbow was reduced

when muscles were co-contracted compared to relaxed. Hence proprioceptive acuity

was diminished when muscles were co-contracted. It has been suggested that this

reduction in acuity could arise from a decrease in muscle spindle responsiveness to

stretch during co-contraction (Wise et al., 1999), which may help avoid oscillations in

agonist-antagonist muscle pairs that exhibit reciprocal inhibition (Dideriksen et al.,

2015; Nielsen and Kagamihara, 1993). It should be noted that to measure movement

detection thresholds, these experiments imposed small angular displacements of < 1◦,

which are substantially smaller than the displacements imposed by the force field in

our experiment. Nevertheless, given these findings, it seems unlikely that the greater

adaptation we observed in the stiff group is due to enhanced proprioception arising

from increased muscle co-contraction.

In the pulse phase, the stiff group were instructed to keep the handle as still as possible,

whereas the relaxed group were instructed to let their hand move freely to wherever the

handle took it. Because the direction of each force pulse was unpredictable, participants

in the stiff group had to use impedance control and feedback mechanisms to minimise

displacement of their hand. Therefore, it is possible that participants in the stiff
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group upregulated their feedback gains (Scott, 2004; Scott et al., 2015), and that

these feedback gains persisted into the exposure phase. Importantly, however, the

channel trials used to assess adaptation measure feedforward rather than feedback force

compensation, so it is unlikely that enhanced feedback gains promoted by instructions

in the pulse phase are responsible for the greater adaptation that we observed in the

stiff group. It is also unlikely that the instructions given to the relaxed group in the

pulse phase reduced their engagement with the task, as adaptation was not different

between the relaxed and control groups.

In the exposure phase, the stiff group were instructed to to stay as close as possible to

the red lines leading from the home position to the targets, whereas the relaxed group

were not. From the perspective of optimal feedback control, this instruction defines

a cost function that penalises deviations of the hand from the red line throughout

the movement. Importantly, this cost function will lead to less (not more) adaptation

than the typical cost function used for point-to-point reaching movements that only

penalises the terminal state of the movement. This is because—when the terminal

state alone is penalised—the optimal policy in a viscous curl field leads to hand paths

that overcompensate for the field, and humans exhibit such overcompensation (Izawa

et al., 2008). Therefore, the instruction to stay as close as possible to the red line will

likely have diminished or even eliminated this overcompensation and thus produced less

adaptation according to our measure (the proportion of the force field compensated for).

Finally, it is possible that participants in the stiff group adopted an explicit strategy

to stay close to the red lines. However, the role of explicit strategy use in force-field

adaptation has received little attention in the literature and is not well understood

(Schween et al., 2019).

All participants were able to form an internal model of the force field, as demonstrated

by adaptation on channel trials and after-effects in the post-exposure phase. This

is consistent with previous studies that have demonstrated that people can adapt

to viscous force fields that are superimposed on background loads (Kurtzer et al.,
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2005; Liu and Reinkensmeyer, 2007). It has even been suggested that people partition

force fields into dynamic and static components (Kurtzer et al., 2005), which could

allow velocity-dependent dynamics to be learned across a range of muscle load states.

However, not all muscle states appear to be available to the internal model. For

example, after recovery from fatigue, muscles initially generate excessive force, as if

the internal model is still producing motor commands appropriate for fatigued muscles

(Takahashi et al., 2006).

In our study, although participants made movements in four directions, we only

measured adaptation for one direction to limit the length of the experiment. Given that

endpoint stiffness is in general anisotropic (Burdet et al., 2001; Franklin et al., 2007,

2004), adaptation may similarly have been anisotropic, giving rise to an adaptation

ellipse. Moreover, the geometry (size, shape, orientation) of this adaptation ellipse, like

the geometry of the stiffness ellipse (Burdet et al., 2001; Franklin et al., 2007, 2004),

may be modifiable, allowing the rate of adaptation to be modulated in a direction-

dependent manner. For example, by orienting the major axis of the stiffness ellipse

in the direction of greatest unpredictability in the environment, it may be possible to

maximize the rate of adaptation in the direction it is needed most: where errors are

largest.

It remains an open question whether muscle co-contraction can modulate adaptation

independently of the errors experienced. Feedback error learning (FEL) (Kawato,

1990; Kawato et al., 1987) provides one possible mechanism by which this could

occur. According to FEL, the feedback response to error acts as a teaching signal for

motor adaptation. Consistent with FEL, single-trial adaptation has been shown to

correlate with the magnitude of the feedback response (Albert and Shadmehr, 2016).

Given that feedback gains scale with muscle activity (Pruszynski et al., 2009) and

feedback responses are potentiated when muscles are co-contracted (Akazawa et al.,

1983; Doemges and Rack, 1992; Krutky et al., 2009), adaptation to an error of a given

magnitude should be larger when muscles are co-contracted.
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In conclusion, we have shown that muscle co-contraction accelerates dynamic motor

learning, despite reducing kinematic errors, which are the main driving force behind

adaptation. Muscle co-contraction therefore improves both kinematic accuracy and

dynamic learning, simultaneously enhancing present and future motor performance. The

modifiable nature of muscle co-contraction suggests that the rate of motor adaptation

can be actively modulated.



Chapter 3

Multiple motor memories are learned

to control different points on a tool

3.1 Introduction

In Chapter 2 we examined how a single novel dynamic environment is learned and

how muscle co-contraction affects that learning. In this chapter we focus on how

participants learn the dynamics of an object and, in particular, whether difference

control locations on a tool can be associated with distinct dynamics.

Understanding how humans learn to use tools is a central challenge in neuroscience

(Ingram and Wolpert, 2011). Tool use requires knowledge of the dynamics of objects

(relating applied force to motion), which depends on both the physical properties of

objects (e.g., mass, mass distribution and friction) and how objects are used to interact

with the environment (e.g., for transport or percussion). Numerous paradigms have

been developed to explore how humans learn the dynamics of objects. In conventional

object-manipulation tasks, participants grasp and lift physical objects with familiar

dynamics (Johansson and Westling, 1988, 1984; Westling and Johansson, 1984). When
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lifting an object for the first time, visual cues about size and surface material strongly

influence lift forces (Baugh et al., 2012; Flanagan and Beltzner, 2000; Gordon et al.,

1993). However, after several lifts, participants learn the dynamics of the object, as

demonstrated by adaptation of grip and lift forces measured at the fingertips before

object lift off (Flanagan et al., 2006; Johansson and Flanagan, 2009). If the dynamics of

the object is simple, learning can occur in a single trial (Gordon et al., 1993). However,

even for objects with simple dynamics, interference can be seen when alternately lifting

the same object and grasping it at different locations (Fu and Santello, 2012, 2014).

Robotic manipulanda offer an alternative testbed for object-manipulation studies

(Wolpert and Flanagan, 2010). These interfaces can simulate objects with unfamiliar

dynamics (Dingwell et al., 2002, 2004; Flanagan and Wing, 1997; Nagengast et al.,

2009; Nasseroleslami et al., 2014; Shadmehr and Mussa-Ivaldi, 1994) and provide an

opportunity to manipulate the relationship between haptic and visual feedback (Ahmed

et al., 2008; Danion et al., 2011). In a typical adaptation experiment, participants grasp

the handle of a robotic manipulandum and make reaching movements that are perturbed

by the robot. For example, a perturbation that has been examined extensively is

a viscous curl field that generates forces on the hand that act perpendicular to the

velocity of the hand and proportional to its speed (Scheidt et al., 2000; Shadmehr and

Mussa-Ivaldi, 1994; Sheahan et al., 2016; Smith et al., 2006). Over repeated movements,

participants learn to generate the forces required to compensate for the perturbation,

forming a motor memory of the grasped object (Cothros et al., 2006; Kluzik et al.,

2008). However, the capacity to learn different dynamics in such paradigms appears

to be surprisingly limited when the same movement is made (under veridical visual

feedback) in force fields that act in opposite directions (Gandolfo et al., 1996; Howard

et al., 2013).

In the standard force-field adaptation paradigm, the ‘object’ being moved to a target is

a small disc and the task involves controlling the centre of the disc. However, in natural

object-manipulation tasks involving objects with more complex geometries, we can
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exert control over different locations, or ‘control points’, on the object. For example,

when using a wide broom to sweep along a wall, we could control the edge of the broom

that is nearest to the wall to make contact with the wall. Such contact will perturb

the head of the broom, rotating it in opposite directions for walls on the left and right;

that is, when controlling the left and right side of the broom. Similarly, when drinking

from a wine glass, we can control the near rim as we lift the glass to our mouth and

then control the base of the stem as we replace the glass. Numerous studies of object

manipulation have examined how memories of object dynamics transfer across changes

in grasp configurations (Bursztyn and Flanagan, 2008; Fu and Santello, 2012, 2014;

Ingram et al., 2013, 2010, 2011; Salimi et al., 2000). However, none of these previous

studies have explicitly manipulated the location of the control point independently of

either the grasp location or the required movement of the object.

Here, we tested the hypothesis that the motor system can flexibly engage separate

memories when controlling different points on a single object, allowing different dy-

namics to be learned and associated with these control points. Using a planar robotic

interface and virtual-reality system, we linked the movement of a rectangular virtual

object to the motion of the hand. The hand was clearly visible at all times and located

at the centre of the object (Fig. 3.1). There were two control points, located on the

left and right of the object, and two corresponding targets. The two control points

were linked to opposing viscous curl fields. On each trial, the participant was required

to generate a straight ahead hand movement to align either the left or right control

point with its corresponding target. Thus, the required movement was the same for

both control points.

We found that participants could learn opposing dynamics when it was linked to these

different points. By testing generalization, we show that this learning is associated

with control points, rather than hand or target locations. In addition, we show that

the motor system only assigns distinct memories to control points if they are linked

to different dynamics, allowing flexible and efficient use of motor memory. Finally,
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we show that our results are best accounted for by a normative switching state-space

model (SSSM). Unlike standard state-space models (SSMs), the SSSM can learn the

probability of cues (that is, control points) given the context (that is, force field)

and infer the state for each context based on motor errors. Our results uncover an

important mechanism through which the human motor system can generate flexible

and dextrous motor behaviour.

3.2 Methods

3.2.1 Participants

A total of 50 neurologically intact participants (22 males and 28 females; age 28.2 ±

7.8, mean ± s.d.) were recruited to participate in four experiments, which had been

approved by the Cambridge Psychology Research Ethics Committee. All participants

provided written informed consent and were right-handed according to the Edinburgh

handedness inventory (Oldfield, 1971).

3.2.2 Apparatus

All experiments were performed using a vBOT planar robotic manipulandum with

a virtual-reality system and air table, which we described in Chapter 2. A monitor

mounted above the vBOT projected virtual images into the plane of movement via a

horizontal semi-silvered mirror. (Fig. 3.1a). Participants were seated in front of the

vBOT and grasped its handle with their right hand. A lamp was used to illuminate the

hand below the mirror with the illumination adjusted so that both the vBOT, hand,

arm and virtual images were clearly visible (Fig. 3.1b). This was done to ensure that

participants always had an accurate estimate of the state of their hand and arm.
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Figure 3.1. Experimental paradigm. a, Participants grasped the handle of a
robotic manipulandum. A semi-silvered mirror allowed the participant to view their
hand as well as a virtual object that was reflected from the monitor. LCD, liquid-
crystal display. b, Photograph of the hand, virtual object and target as seen from the
perspective of the participant. Depending on the experiment and trial type, one of
three control points on the object had to be aligned with a target placed above it.

On each trial, the vBOT could generate forces associated with either a velocity-

dependent curl field (force-field trials) or a force channel (channel trials). Alternatively,

in the case of the null field, no forces were generated (null-field trials). For the curl

field, the force generated on the hand was given byfx

fy

 = g

0 −1

1 0

ẋ

ẏ

 , (3.1)

where fx, fy, ẋ and ẏ are the forces and velocities at the handle in the x- and y-

directions (mediolateral and anteroposterior, respectively). The field gain g was set to

± 15 Nsm−1 and the sign of g specified whether the curl field was clockwise (CW) or

counterclockwise (CCW).

In all experiments, participants first performed a familiarization phase of between 96

and 128 trials, consisting of null-field trials and channel trials for each control point in

a pseudorandomized order.
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To have precise control over vision and dynamics in our experiment, we used a

robotic interface and virtual-reality system. Importantly, a number of previous object-

manipulation studies using robotic manipulanda have been shown to produce similar

results to experiments that use real-world physical objects (Fu and Santello, 2012;

Howard et al., 2009; Ingram et al., 2010, 2017; Ingram and Wolpert, 2011).

3.2.3 Experiment 1: encoding of motor memories by control

points

Two-control-points condition

In the two-control-points condition, we investigated whether participants could learn

opposing (CW and CCW) force fields when each field was associated with a different

control point on the object. The paradigm consisted of pre-exposure, exposure,

generalization and de-adaptation (‘washout’) phases, as detailed below.

Pre-exposure, exposure and de-adaptation phases

Participants (n = 10) grasped the handle of the vBOT and a virtual object (solid

red rectangle of 16 cm × 3 cm) was displayed centred on the hand (Fig. 3.1b). The

position of the object translated with the hand. The object had two potential control

points (green discs with a radius of 0.4 cm) ± 7 cm lateral to the centre of the object.

To start each trial, participants aligned the centre of the object (indicted by a yellow

cross) with the home position (a circle with a radius of 0.5 cm) situated in the midline

approximately 30 cm in front of the participant’s chest. The trial started after the

centre point was within 0.3 cm of the home position and had remained below a speed

of 0.5 cm s−1 for 100 ms. After a 0.2 s delay, a target (a circle with a radius of 0.5 cm)

appeared 12 cm away (anteriorly along the y axis) above either the left or right control

point. A tone indicated that the participants should initiate a reaching movement to
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the target. Participants were instructed to move the corresponding control point to

the target. That is, if the target was aligned with the left control point, they should

move the left control point to the target, and conversely for the target aligned with

the right control point. Crucially, because each target was aligned with its respective

control point, the hand moved to the same location to attain both targets.

A trial ended when the control point had remained within 0.3 cm of the target for

50 ms. If the peak speed of the movement was less than 50 cm s−1 or more than 70

cm s−1, a low-pitch tone sounded and a ‘too slow’ or ‘too fast’ message was displayed,

respectively. At the end of each trial, the vBOT actively returned the hand to the

home position.

After familiarization, participants performed blocks of eight trials in which one of the

trials (not the first) was randomly chosen as a channel trial and the remainder were

either null-field trials or force-field trials. The paradigm consisted of a pre-exposure

phase (4 blocks/32 trials), an exposure phase (52 blocks/416 trials), a generalization

phase (71 blocks/568 trials; see below) and a de-adaptation phase (12 blocks/96 null-

field trials). Each target appeared an equal number of times within a block in a

pseudorandom order.

During the exposure phase, the location of the target (left or right) determined the

direction of the force field (CW or CCW) applied during the movement. As such, the

field direction was associated with the particular control point on the object (left or

right) and its corresponding target (Fig. 3.3a). The direction of the force field for each

control point was counterbalanced across participants. A 45 s rest break was given

after blocks 12, 25, 38 and 51 of the exposure phase.

Generalization

The generalization phase (immediately after the exposure phase) was used to investigate

the representation of the memories for the two force fields. Specifically, we tested
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whether the representations were object-centred (associated with the location of the

control points on the object), body-centred (associated with the locations of the

targets/control points relative to the body) or hand-centred (associated with the location

of the targets/control points relative to the hand). The generalization phase included

force-field trials (to maintain adaptation), as well as channel trials (to monitor ongoing

adaptation and examine generalization). To monitor adaptation, participants performed

channel trials with the hand and object in the original exposure configuration. To

examine generalization, participants performed channel trials during lateral translations

(± 14 cm) of either the object or the hand, or both the object and the hand. This gave

three kinds of generalization trial (Fig. 3.7a).

On object-and-hand translation trials, participants translated the hand and the object

± 14 cm along the x axis before the trial started. For leftward translations of the object

and hand, the left target was cued and the participant moved the right control point

toward the target (which was now aligned with the left target). The converse was true

for rightward translations. Importantly, as on all trials in the study, the control points

and targets were always aligned along the y axis, thus requiring a straight movement.

On hand translation trials, participants translated their hand ± 14 cm along the x axis

while the object remained in the centre of the workspace. For leftward translations of

the hand, the left target was cued and the participant moved the left control point

toward the target. The converse was true for rightward translations.

On object translation trials, the object was visually translated ± 14 cm along the x

axis while the hand remained in the centre of the workspace. For leftward translations

of the object, the left target was cued and the participant moved the right control

point toward the target. The converse was true for rightward translations.

In all conditions, the object tracked the hand during the movement with the fixed

offset associated with the particular generalization type maintained throughout the

trial.
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A 2.5 s delay was imposed at the start of each channel trial to allow time for the

participant to translate their hand and/or the object, if required. A 15 s rest break

was given every 9 blocks during the generalization phase starting at block 8. A block

of force-field trials (with no channel trials) followed each rest break to mitigate the

effects of any time-dependent decay of motor memory. Each of the channel types (2 to

monitor ongoing adaptation and 6 for generalization) was repeated 8 times and there

were 7 pure exposure blocks post-rest, giving 71 blocks (568 trials).

Note that the familiarization phase in the two-control-points condition included trials

for each of the generalization conditions described above.

Single-control-point condition

In the single-control-point condition, we examined whether the visual targets alone

could provide a contextual cue for learning. A separate group of participants (n =

8) performed the single-control-point condition task. As for the two-control-points

condition (described above), the left and right control points were displayed on the

object. Similarly, the left and right targets were displayed and were always associated

with the particular field direction (CW or CCW). However, participants were instructed

to move the central control point (yellow cross) on the object to a central target (which

remained on the screen at all times) (Fig. 3.3b) and to ignore the lateral targets.

Participants were thus required to control a single control point. The paradigm

consisted of the same pre-exposure (4 blocks/32 trials), exposure (51 blocks/408 trials)

and de-adaptation (12 blocks/96 trials) phases as for the two-control-points condition.

However, in this condition the generalization phase was omitted.
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3.2.4 Gaze fixation control

During target-directed reaches, people tend to fixate the target (Johansson et al., 2001;

Land and Furneaux, 1997; Land et al., 1999). The gaze fixation experiment (n = 8)

was performed to exclude the possibility that gaze direction, rather than the control

point on the object, was the contextual cue responsible for adaptation to opposing

force fields.

An EyeLink 1000 eye tracker was used to track the position of the left eye at 500

Hz. The eye tracker was mounted at an oblique angle between the handle of the

manipulandum and a transparent reflective sheet of plastic that was used to project

visual feedback (replacing the semi-silvered mirror). A forehead rest was used to

stabilize the head. The eye tracker was calibrated at the start of the experiment and

after every rest break using a nine-point grid.

The paradigm included both fixation and free-gaze trials. On fixation trials, participants

had to fixate a small cross (located 8 cm above the home position) while performing

the task (moving the left or right control point to the left or right target, respectively).

Because movements were guided by peripheral vision, the spatial tolerance of the target

was increased to 0.6 cm. If the participant broke fixation (> 2 cm), the trial was

aborted and repeated. The central control point on the object was not displayed to

prevent participants from using it to guide the movement towards the fixation point.

The home position was indicated by a rectangular frame that was visible at all times

during the experiment. On free-gaze trials, no fixation cross was displayed and eye

movements were unconstrained.

After familiarization (described above), participants performed a fixation pre-exposure

phase (4 blocks/32 trials), a fixation exposure phase (65 blocks/520 trials), a free-

gaze exposure phase (64 blocks/512 trials) and a free-gaze de-adaptation phase (12

blocks/96 trials). The direction of the force field associated with each control point
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was counterbalanced across participants. Each block had the same structure as for the

two-control-points condition, with seven exposure trials and one channel trial.

A 45 s rest break was given every 13 blocks during the exposure phase starting at block

12. A block of force-field trials (with no channel trials) followed each rest break to

mitigate the effects of any time-dependent decay of motor memory.

3.2.5 Uniform object control

The object used in the main experiment consisted of different visual elements (green cir-

cular control points embedded in a red rectangle) that could conceivably be interpreted

as distinct objects. We therefore repeated the exposure phase in the two-control-points

group using an object that no longer contained different visual elements. A separate

group of participants (n = 8) controlled a new uniform object with control points

that were not discriminable from the rest of the object by colour (Fig. 3.6). The red

rectangle was removed from the original object and the control points (green discs

with a radius of 0.4 cm) were connected by a bar (solid green rectangle of 14 cm × 0.6

cm) that was the same colour as the control points. Importantly, these control points

were the same size and in the same location as those of the original experiment. We

reduced the size of the central cross so that it would fit inside the connecting bar.

As in the two-control-points experiment (described above), participants moved the

corresponding control point to the displayed target, which was always associated

with a particular field direction (CW or CCW). The paradigm consisted of the same

pre-exposure (4 blocks/32 trials), exposure (51 blocks/408 trials) and de-adaptation

(12 blocks/96 trials) phases as in the single-control-point experiment.



66 Multiple motor memories are learned to control different points on a tool

3.2.6 Experiment 2: are separate motor memories obligatory

for different control points?

This experiment was performed to investigate whether separate motor memories are

formed even when the dynamics experienced at the two control points on the object

are the same.

After familiarization, participants performed a pre-exposure phase, an exposure phase

and a de-adaptation phase. The pre-exposure (4 blocks/32 trials) and exposure phases

(51 blocks/408 trials) were the same as in experiment 1. Participants performed blocks

of eight trials consisting of seven null (preexposure) or field (exposure) trials and

one channel trial. In the exposure phase, half the participants (n = 8) experienced

opposing fields at each control point (as in experiment 1) and the other half (n

= 8) experienced the same field at each control point. In both the opposing-field

and same-field conditions, the direction of the force field for each control point was

counterbalanced across participants. A 45 s rest break was given after blocks 12, 25

and 38 of the exposure phase. A block of force-field trials (with no channel trials)

followed each rest break to mitigate the effects of any time-dependent decay of motor

memory.

The exposure phase was followed by 50 blocks of de-adaptation, with each block

consisting of 1 null-field trial and 1 channel trial. Importantly, one control point

was cued throughout the first half of the de-adaptation phase (the first 25 blocks/50

trials) and the other control point was cued throughout the second half (the last 25

blocks/50 trials). The order in which each control point (left or right) was cued was

counterbalanced across participants.

If the dynamics at both control points is encoded by a single representation, de-

adaptation at one control point should also lead to de-adaptation at the other control

point. Alternatively, if the representations are separate, de-adaptation at one control



3.2 Methods 67

point should have minimal effect on the representation associated with the other control

point.

3.2.7 Data analysis

Data analysis was performed using MATLAB R2017a. Two measures of performance

were calculated. On null-field and force-field trials, we calculated the maximum distance

between the path of the hand and a straight line connecting the start position and the

target (that is, the MPE). On channel trials, we calculated the percentage of the force

field that was compensated for (adaptation), as described in Chapter 2.

To combine MPE and adaptation results across participants, data from individual

participants were sign adjusted according to the direction of the field.

To identify changes in MPE and adaptation within and between experiments, mixed-

design ANOVAs and paired t-tests were performed. Comparisons of the final level of

adaptation between experiments were performed using between-subjects ANOVAs and

unpaired t-tests. All statistical tests were two-sided with significance set to P < 0.05.

Where values are reported, they represent the mean ± s.e.m.

3.2.8 Models

We fit two classes of model to experiment 2. The first class was a deterministic,

context-dependent state-space model (SSM) based on (Kim et al., 2015; Lee and

Schweighofer, 2009; Nozaki and Scott, 2009). The second class was a probabilistic

switching state-space model (SSSM). We did not fit the models to experiment 1 as

this experiment was not designed to distinguish between the model classes. Note,

however, that the initial part of experiment 1 was identical to the initial part for the

opposing-field group in experiment 2.
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Context-dependent SSM

We used a context-dependent SSM that included separate states for different contexts

and also different rates of adaptation (slow versus fast adaptive processes). In the

current study, there were two contexts (the left and right control points) and each

context could include states that updated with slow and fast rates. This gave a total

of four states (two contexts and two rates) that could be represented by the elements

of a state vector

x = (x(1)
s x

(1)
f x(2)

s x
(2)
f )⊺, (3.2)

where the superscripts represent which context the state is associated with (for example,

1 = left and 2 = right control points), the subscripts represent the slow (s) and fast (f)

adaptation processes, and ⊺ is the transpose operator. The motor output on trial t was

a weighted sum of the elements in the state vector, with the weighting determined by

the context:

y(t) = x(t)T · c(t), (3.3)

where the context weighting vector, c, varies according to the context for the trial (left

or right control point). The error on a trial is the difference between the motor output

and the task perturbation:

e(t) = f(t)− y(t). (3.4)

In the current study, the task perturbation, f , is zero for null-field trials, +1 for CW

field trials and -1 for CCW field trials. The state vector is updated across trials:

x(t+ 1) = a⊙ x(t) + e(t) · b⊙ c(t), (3.5)

where ⊙ represents element-wise multiplication. Trial-by-trial decay is determined by

the retention vector a. Error-dependent adaptation of states is determined by the

context weighting vector and the learning-rate vector b.
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Table 3.1. Variants of the context-dependent state-space model

Model DOF Retention vector a Learning-rate vector b Context vector c Effective states

SSM1 3
(
as 0 as 0

)⊺ (
bs 0 bs 0

)⊺ c(1) =

(
1 0 cs 0

)⊺

c(2) =

(
cs 0 1 0

)⊺ 2

SSM2 3
(
a a a 0

)⊺ (
bs bf bs 0

)⊺ c(1) =

(
1 1 0 0

)⊺

c(2) =

(
0 1 1 0

)⊺ 3

SSM3 4
(
as af as 0

)⊺ (
bs bf bs 0

)⊺ c(1) =

(
1 1 0 0

)⊺

c(2) =

(
0 1 1 0

)⊺ 3

SSM4 5
(
as af as 0

)⊺ (
bs bf bs 0

)⊺ c(1) =

(
1 1 cs 0

)⊺

c(2) =

(
cs 1 1 0

)⊺ 3

SSM5 5
(
as af as af

)⊺ (
bs bf bs bf

)⊺ c(1) =

(
1 1 0 cf

)⊺

c(2) =

(
0 cf 1 1

)⊺ 4

SSM6 5
(
as af as af

)⊺ (
bs bf bs bf

)⊺ c(1) =

(
1 1 cs 0

)⊺

c(2) =

(
cs 0 1 1

)⊺ 4

SSM7 6
(
as af as af

)⊺ (
bs bf bs bf

)⊺ c(1) =

(
1 1 cs cf

)⊺

c(2) =

(
cs cf 1 1

)⊺ 4

We examined 7 context-dependent state-space models, which varied in their number of
parameters (DOF). The models could vary in the retention parameters, learning rates
and coupling. The setting of the parameters determine the effective number of states
in each model. Note that models 2-4 do not map the states on to contexts 1 and 2 in
equation 3.2 as one of the states is shared by both contexts (i.e., context independent).
Furthermore, model 2 does not necessarily map the states on to the fast and slow
states in equation 3.2 as the context-independent state can be either fast or slow.

We considered seven variants of the model, which determine the way a, b and c are

parameterized (Table 3.1). The models vary as to whether there is a single context-

dependent state (SSM 1), a slow/fast context-independent state and a fast/slow

context-dependent state (SSMs 2-4), or both fast and slow context-dependent states

(SSMs 5-7). For context-dependent states, the values in the context weighting vector

determine the coupling (if any) between contexts. Models that include parameters
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cs and cf can have coupling between the contexts for the slow and/or fast processes,

respectively.

SSSM

The generative model

Here, we develop a probabilistic SSSM that allows the sensorimotor system to optimally

partition learning across contexts. We assume that the environment consists of distinct

contexts that switch in a probabilistic manner according to a hidden Markov model (Fig.

3.2). Each context is associated with its own perturbations, which evolve according to

linear-Gaussian dynamics. We assume that participants possess an internal generative

model of perturbations that matches the environment. We characterize this model as

an SSSM—a generalization of the SSM to systems with multiple operating regimes or

modes. SSSMs define a probability density over a time series of discrete and continuous

states. Here, the discrete states represent contexts and the continuous states represent

perturbations. We implement the model with two contexts, although the extension to

more than two contexts is straightforward.

On trial t, the environment is in one of two contexts, ct ∈ {1, 2}, and between trials

the context either remains the same or switches in a stochastic manner. The context

transition probabilities are defined by the matrix Π, where

πij = p(ct = j|ct−1 = i). (3.6)

To reduce the number of free parameters in the model, we assume that the context

remains the same or switches with equal probability, that is πij = 0.5 for all i, j. This

is consistent with the exposure phase of our experiment in which each force field is

presented with equal frequency and in a pseudorandom order.
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Figure 3.2. Motor adaptation as online state and parameter estimation in
a switching state-space model. a, The graphical model. The discrete context,
ct, and the continuous perturbations, xt, evolve according to Markovian dynamics.
The context determines both which observable cue, qt, is emitted and how each
perturbation contributes to the continuous observation yt. Observed and latent variables
are represented by gray and white nodes, respectively. The dashed arrows indicate
dependencies that are learned online. b, The GPB1 algorithm. Given a single estimate
of the state on trial t − 1, each Kalman filter predicts the state on trial t and then
updates its prediction when yt is observed. The updated estimates of each filter are
then merged into a single estimate. The probability of each context, which depends
on both the contextual cue and the prediction error of each filter, determines how to
merge the estimates in an optimal manner.

On trial t, the context gives rise to one of two observable cues, qt ∈ {1, 2}, corresponding

to the location of the control point. The cue emission probabilities are defined by the

matrix Φ, where

ϕkj = p(qt = k|ct = j). (3.7)

The perturbations in each context evolve independently according to linear-Gaussian

dynamics, as defined by the state transition function

xt+1 = Axt +wt, (3.8)

where xt = (x
(1)
s,t x

(1)
f,t x

(2)
s,t x

(2)
f,t )

⊺ is a vector of slow and fast states (subscripts) for

contexts 1 and 2 (superscripts), A is a diagonal matrix of the form diag(as, aa, as, aa)

and wt is zero-mean Gaussian process noise with covariance Q = diag(qs, qf, qs, qf).

Thus, we implement a probabilistic context-dependent dual-rate model.
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The context determines which perturbations are observed, as defined by the output

function

yt = h(ct)xt + vt, (3.9)

where h(1) = (1 1 0 0) is the observation vector for context 1, h(2) = (0 0 1 1) is the

observation vector for context 2 and vt is zero-mean Gaussian observation noise with

variance r.

State inference

To operate effectively, the sensorimotor system must keep track of perturbations in the

environment, as well as the contexts in which they occur. However, both perturbations

and contexts are latent variables, which must be inferred from a sequence of observations

{y1:t, q1:t}. In Appendix B, we present the algorithm that we use to perform state

inference in the switching state-space model. Figure 3.2b shows a schematic of the

algorithm.

Parameter learning

To perform state inference, the sensorimotor system must set the parameters, θ =

{A,Q,h(1),h(2), r,Π,Φ}, of the SSSM. Importantly, these parameters need not be

fixed but may be learned online. In general, the sensorimotor system could learn all

of these parameters online. However, to reduce the degrees of freedom of the model

for our data set, we assume that the sensorimotor system only learns the cue emission

probabilities and that all other parameter estimates are fixed. In Appendix B, we

present the algorithm that we use to perform parameter learning in the switching

state-space model.
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Model fitting

We simulated each model separately for each participant using the particular sequence

of cues they observed. We then calculated the mean model data across participants for

each group and each control point. We assume that adaptation measured on channel

trials represents predicted observations that have been corrupted by independent and

identically distributed Gaussian motor noise. Maximum-likelihood estimates of the

free parameters of the models (Table 3.2) were therefore obtained by minimizing the

sum-of-squared errors between the mean model data (equation 3.3 for the SSMs and

equation B.2 for the SSSM) and the mean experimental data measured on channel

trials. As each model involved fitting both same- and opposing-field groups jointly

with the same set of parameters, we chose to fit the mean adaptation data across

participants to reduce variability in the data set.

Model comparison

Model selection was performed using the Bayesian Information Criterion (BIC):

BIC = n · ln[(1−R2)/n] + k · ln(n) + const., (3.10)

where n (204) is the number of data points, k is the number of free parameters and

the constant does not depend on the model. The first term in the BIC penalizes

underfitting, whereas the second term penalizes model complexity, as measured by the

number of free parameters in the model. Taking the difference in BIC values for two

competing models approximates twice the log of the Bayes factor (Kass and Raftery,

1995). A BIC difference of greater than 4.6 (a Bayes factor of greater than 10) is

considered to provide strong evidence in favour of the model with the lower BIC value

(Jeffreys, 1998).
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3.3 Results

We carried out two experiments to examine the mapping of motor memories to control

points. In experiment 1, we examined the ability of participants to learn opposing

dynamics when they are associated with either different control points or a single

control point. We then examined the reference frame in which control points are

represented by testing generalization of learning. In experiment 2, we tested whether

the assignment of separate memories to control points is obligatory or whether this

only occurs when necessary.

Participants grasped the handle of a robotic interface (Fig. 3.1a), and a semi-silvered

mirror was used to display a rectangular virtual object centred on the hand. The

object translated with the hand. The workspace under the mirror was illuminated so

that both the hand and the object were always visible (Fig. 3.1b). The object had

three visible control points: circles displayed on the left and right of the object and a

cross at the centre of the object. For participants in the two-control-points group (n =

10), a target appeared above one of the two lateral control points at the start of each

trial and participants were instructed to move the corresponding control point to the

target (Fig. 3.3a). The target location (left or right) cued the direction of the force

field on exposure trials (see below). For participants in the single-control-point group

(n = 8), a central target appeared above the central control point and participants

were instructed to move the central control point to this target (Fig. 3.3b). In this

group, as in the two-control-points group, a lateral ‘target’ was also displayed to cue

the direction of the force field. Crucially, for both groups, the start position of the

hand and the required final position of the hand were the same in all trials.

In the pre-exposure phase, participants made movements in a null field. In the exposure

phase, opposing force fields were associated with the two lateral targets. Hence, for

participants in the two-control- points group, each force field was also associated with



3.3 Results 75

Figure 3.3. Separate motor memories are formed for different control
points. Learning curves for experiment 1. a, Participants in the two-control-points
group moved the left or right control point to its corresponding target. The direction
of the force field applied to the hand was determined by the target/control point.
b, Participants in the single-control-point group moved the central control point to
a central target. The direction of the field applied to the hand was cued by which
lateral ‘target’ was displayed. c, Kinematic error measured as the MPE (deviation
from a straight line to the target) over the course of the experiment. Data were first
averaged over blocks of eight exposure trials and then plotted as mean ± s.e.m. across
participants. The grey background shows the period when the force field was turned
on. d, Same as c, but for percentage adaptation measured on channel trials. The
generalization phase was performed by the two-control-points group (n = 10), but
omitted for the single-control-point group (n = 8).

the point on the object that had to be controlled. To produce the same movement of

the hand in both force fields, participants needed to learn the opposing dynamics.

Participants performed 52 blocks of 8 trials (416 trials) in the exposure phase with an

equal number of trials for each target in a pseudorandom order. So that predictive
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force compensation could be assessed independently from co-contraction, one randomly

selected trial in each block was a channel trial (Milner and Franklin, 2005; Scheidt

et al., 2000), in which the movement was confined to a simulated mechanical channel

to the target. On these trials, the forces generated by participants into the wall of the

channel could be measured.

To assess performance, we measured kinematic error, defined as the maximum per-

pendicular error (MPE), between the actual and ideal (that is, straight) hand path.

We also measured force compensation on channel trials, defined as the percentage

of the force required to fully compensate for the force field (adaptation). During

the pre-exposure phase, as expected, the kinematic error and adaptation were close

to zero (Fig. 3.3c,d). At the start of the exposure phase, the force fields produced

substantial deviations of the hand path from a straight line (Fig. 3.4). To assess

learning, we compared adaptation, which unlike MPE is not influenced by stiffness, in

the final two blocks of the pre-exposure and exposure phases. This revealed a significant

interaction between group and epoch (mixed-design analysis of variance (ANOVA),

F1,16 = 73.31, P = 2× 10−7). Adaptation reached 68.1 ± 6.6% and -0.2 ± 4.3% of full

force compensation by the end of the exposure phase for the two- and single-control-

point groups (Fig. 3.3d), respectively. For the two-control-points group, the increase

in adaptation was significant (paired t-test, 69.4 ± 6.7%, t9 = 10.99, P = 2× 10−6).

The failure to learn when controlling a single control point is consistent with previous

studies showing that arbitrary visual cues do not facilitate learning of opposing force

fields (Gandolfo et al., 1996; Howard et al., 2012, 2013), and indicates that the learning

observed when controlling two different control points—despite making similar hand

movements—is not simply due to the contextual cues provided by the lateral targets.

We performed two additional control experiments. In the first (Fig. 3.5), we show that

participants (n = 8) can learn opposing fields, linked to different control points, even

when they are required to fixate a central fixation point. This rules out the possibility



3.3 Results 77

Figure 3.4. Hand paths at different stages of Experiment 1. a,b, In early
exposure, the force fields produced substantial deviations of the hand path from
a straight line. For the two-control-points groups (n = 10) (a), hand paths were
significantly straighter by late exposure, and clear after-effects were seen in early
post-exposure. For the single-control-point group (n = 8) (b), hand paths were not
significantly straighter by late exposure, and no after-effects were seen. Traces show
mean ± s.e.m. across participants hand paths over two blocks.

that learning is due to associating field direction with gaze position. The second control

was designed to rule out the possibility that subjects might be treating the two control

points (small circles) as separate objects, despite the fact that they move coherently

and are bound by a rectangle. In this control, we used an object where the control

points were defined by the geometry of the object and there were no distinct visual

elements (Fig. 3.6). We show that participants (n = 8) can still learn opposing fields

linked to these different control points (Fig. 3.6).
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Figure 3.5. Adaptation is not gaze dependent. In the fixation stage of the
exposure phase, participants (n = 8) were required to fixate a cross in the midline
of the workspace. In the free-gaze stage of the exposure phase, no fixation cross
was displayed and gaze was unconstrained. a,b, Mean ± s.e.m. (a) MPE and (b)
adaptation across all participants. Each MPE data point represents the mean of a
block of eight trials. To assess learning, we compared adaptation in the final two blocks
of the pre-exposure phase with the final two blocks of the fixation stage. We found a
significant increase in adaptation (paired t-test, 60.2 ± 8.4%, t7 = 7.70, P = 1× 10−4),
which reached 59.0 ± 7.9% (mean ± s.e.m.) of full compensation by the final two blocks
of the fixation stage. We contrasted the adaptation reached by blocks 23-24 of the
exposure phase with the two-control-points and opposing-field groups who experienced
the same task with free gaze. This revealed no significant difference (between-subjects
ANOVA, F2,23 = 2.07, P = 0.149), indicating that fixation did not detriment learning.
We allowed the fixation group to continue exposure after the fixation phase but with
free gaze. There was no significant additional learning after 616 further trials (paired
t-test, 6.4 ± 10.4%, t7 = 0.67, P = 0.526).

Our hypothesis that separate memories can be formed for different control points

on manipulated objects assumes that these points are represented in object-centred

coordinates; that is, that translating the object would not interfere with the learned

memories associated with these points. However, other interpretations are possible

based on the results for the two-control-points group. Specifically, whereas our hypoth-

esis assumes that memories formed for the two fields are linked to the locations of

the control points relative to the object (object-centred representation), it is possible

that these memories are linked to the locations of the targets relative to the body



3.3 Results 79

Figure 3.6. Adaptation does not require control points to be distinct from
the rest of the object. a, Participants (n = 8) controlled a uniform object composed
of two green disks connected by a green bar. Because the disks and bar were the
same color, the object did not contain any distinct visual elements. b,c, Mean ±
s.e.m. (b) MPE and (c) adaptation across all participants. Each MPE data point
represents the mean of a block of eight trials. To assess learning, we compared
adaptation in the final two blocks of the pre-exposure phase with the final two blocks
of the exposure phase. We found a significant increase in adaptation (paired t-test,
52.3 ± 9.3%, t7 = 6.08, P = 5 × 10−4), which reached 50.7 ± 8.5% (mean ± s.e.m.)
of full compensation by the final two blocks of the exposure phase. We contrasted
the adaptation reached by this stage with the two-control-point and opposing-field
groups who experienced the same task with control points displayed as green disks
on a red rectangle. There was no significant difference (between-subjects ANOVA,
F2,23 = 2.11, P = 0.144), indicating that the uniform object did not detriment learning.

(body-centred representation) or the locations of the targets and control points relative

to the hand (hand-centred representation).

Based on our hypothesis and pilot data, we anticipated that participants in the two-

control-points group would learn the two force fields. Therefore, for this group only,

we included a generalization phase following the exposure phase in which we tested
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Figure 3.7. Control points are represented in an object-centred frame of
reference. a, Configurations used to examine generalization of learning for trials
with the left target. For trials with the right target all translations were reversed. All
these trials were channel trials. b, Predictions of the direction of force according to
the three possible representations. Note that these are for the scenario in which the
left and right targets/control points were associated with the CW and CCW fields,
respectively. The predictions for the right target (not shown) are in the opposite
directions. c, Mean + s.e.m. signed adaptation across participants (n = 10) relative
to the ideal compensation on exposure trials. The sign of the bar (+ or –) indicates
compensatory forces appropriate for CCW and CW fields, respectively. Black and grey
bars correspond to trials with the left and right targets, respectively. Dots represent
data from individual participants.

the alternative interpretations outlined above. As shown in Fig. 3.3c,d, performance—

measured by both the kinematic error and adaptation—was stable during this phase.

In the generalization phase, we used channel trials to measure the forces produced in four

configurations (Fig. 3.7a) where: (1) the hand and object were in the original exposure

configuration; (2) both the object and hand translated; (3) only the hand translated;

and (4) only the object translated. Note that Fig. 3.7a shows the generalization trials

involving the left target. In trials involving the right target, the hand and/or object

were translated in the opposite direction. In all configurations, the object moved with
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the hand with the appropriate offset throughout the movement. Fig. 3.7b shows the

direction of force we expect the participants to generate for each possible representation

(that is, body-, hand- or object-centred) for each configuration. All predictions are

for the case in which the left and right targets/control points were associated with

clockwise and counterclockwise, respectively. In the exposure configuration, we expect

participants to generate forces in the appropriate (in this case, leftward) direction, and

this is consistent with all three possible representations (Fig. 3.7b, left). Importantly,

however, the pattern across the other three configurations is different for each possible

representation.

The thick black bars in Fig. 3.7c show the measured force compensation (signed

adaptation) in all four configurations relative to the force required to fully compensate

for the force field in the exposure configuration. The thin grey bars show the force

compensation in trials involving the right target, in which all predicted forces were in the

opposite direction. Separate t-tests revealed that adaptation was significantly different

from zero for both the left and right targets in the object-and-hand (one-sample t-test,

left target: 32.6±9.2%, t9 = 3.75, P = 0.005; right target: −48.0±8.3%, t9 = 6.12, P =

2× 10−4) and hand translation configurations (one-sample t-test, left target: 34.4 ±

5.9%, t9 = 6.14, P = 2 × 10−4; right target: 34.5 ± 5.0%, t9 = 7.28, P = 5 × 10−5).

Furthermore, the direction of adaptation in these configurations was only consistent

with the object-based predictions. Although adaptation was not significantly different

from zero for either target in the object translation configuration (one-sample t-test, left

target: 12.5 ± 6.5%, t9 = 2.03, P = 0.072; right target: -3.54 ± 49.9%, t9 = 0.38, P =

0.714), the sign of adaptation was again consistent with the object-based predictions.

Note that the magnitude of force compensation (that is, length of the bars) relative to

the exposure configuration decreased in all three generalization configurations, involving

translation of the hand and object, object or hand. This decrease is consistent with a

large body of literature showing that motor learning is generally local, with graded

reduction with changes in context (Berniker et al., 2013; Wolpert et al., 2011). Overall,
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Figure 3.8. The formation of distinct motor memories for different control
points is not obligatory. a,b, MPE ± s.e.m. (a) and adaptation ± s.e.m. (b) for
each control point in the group that experienced opposing force fields at each control
point (n = 8). Data in the pre-exposure (Pre) and exposure phases were first averaged
over blocks of eight trials. The post-exposure phase (Post) has been expanded for
clarity. For simplicity, the sign of adaptation for control point 2 has been inverted.
c,d, Same as a and b, respectively, but for the group that experienced the same force
field at each control point (n = 8). Solid lines in b and d show the mean SSSM fits
across participants.

these results clearly support the hypothesis that separate memories are formed for

control points represented in object-centred coordinates.

Having established that participants can form separate motor memories for different

control points, we asked whether this process is obligatory or flexible. Specifically, we

tested whether separate memories are formed even when the dynamics experienced
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for the different control points is the same. In contrast with experiment 1, here, a

single motor memory would be sufficient for representing the dynamics of both control

points and would also support efficient allocation of neural resources. Two groups were

examined: participants in the opposing-field group (n = 8) experienced a different

(opposing) force field for each control point, whereas participants in the same-field

group (n = 8) experienced the same force field for each control point. To assess the

separation of motor memories, after learning we de-adapted one control point with

null-field trials and then assessed the state of adaptation when controlling the other

control point (Fig. 3.8). If the memories are separate, de-adapting one control point

should not de-adapt the memory for the other control point.

Both groups learned to compensate for the perturbation (Fig. 3.8a,c, MPE; Fig. 3.8b,d,

adaptation) and, as expected, learning was greater for the group who learned the same

field for both control points. By the final block of the exposure phase, there was no

significant difference in adaptation between the opposing-field group (52.8±12.1%) and

the two-control-points group (experiment 1) (68.9±5.9%) who performed the same task

(unpaired t-test, 16.1 ±13.1%, t16 = 1.27, P = 0.222). To assess whether de-adapting

one memory led to de-adaptation of the other memory, we compared the mean of the

last two channel trials in the post-exposure phase for the first control point with the

first channel trial in the post-exposure phase for the second control point. For the

group who learned opposing force fields, after de-adapting one control point, substantial

adaptation re-emerged (Fig. 3.8b; paired t-test, 37.6 ±8.6%, t7 = 4.69, P = 0.002)

when controlling the other control point. Although this effect is primarily driven by the

first channel trial, this first trial provides a critical test for the separation of memories.

This suggests that separate representations existed for each control point. In contrast,

for the group that experienced the same force field for both control points, when we

de-adapted one control point there was minimal adaptation remaining (Fig. 3.8d;

paired t-test, 9.4 ±7.8%, t7 = 1.31, P = 0.232) when switching to the other control

point. This was despite the greater adaptation observed in the same-field group, which

increased the power to detect a difference in adaptation between the two control points
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Figure 3.9. Model fits to adaptation data from Experiment 2. Solid lines
show the mean fits across participants for the switching state-space model (SSSM) and
state-space model 7 (SSM7), which had the next best BIC. Experimental data is shown
as in Fig. 3.8b,d for the opposing-field (n = 8) and same-field (n = 8) groups. The
superiority of the SSSM is most apparent in the fit to data from the opposing-field
group.

during de-adaptation. This suggests that a single representation existed for both

control points in this case.

We fit several candidate models to the data and performed model comparison. Context-

dependent SSMs have been used to account for motor learning of opposing perturbations

(Kim et al., 2015; Lee and Schweighofer, 2009; Nozaki and Scott, 2009). Briefly, these

models assume that each context (force field) is associated with separate states of

adaptation that are updated based on the error from the previous trial. Contexts
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Figure 3.10. Slow and fast states of the switching state-space model. a,
Mean state estimates across participants for the group that experienced opposing force
fields at each control point. The slow and fast states of each context learn to represent
different perturbations and, due to the learned association between contexts and cues,
de-adapt at different rates during washout. For simplicity, the signs of the slow and
fast states for context 2 have been inverted. b, For the group that experienced the
same force field at each control point, the slow and fast states of each context represent
the same perturbation and de-adapt at the same rate during washout.

can be coupled such that errors in one context update the states associated with the

other context, and states associated with both contexts contribute to the final output.

However, critically, these models assume that the coupling between contexts is known

in advance and remains fixed over time. Therefore, they predict that: (1) with no

coupling, two separate memories will be formed; (2) with complete coupling, a single

memory will be formed; and (3) with partial coupling, two overlapping memories will

be formed. While it is difficult to account for our results with either no coupling or

complete coupling, it is possible that a context-dependent SSM with partial coupling

could explain the data.

Context-dependent SSMs can be either single-rate (Ingram et al., 2011; Thoroughman

and Shadmehr, 2000) or dual-rate, in which the total adaptation involves two memory

processes: (1) a fast process that both adapts and decays quickly; and (2) a slow

process that adapts and decays more gradually (Smith et al., 2006; Trewartha et al.,

2014). We examined seven variants of the context-dependent SSM (Table 3.1) (Kim
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Table 3.2. Comparison of model fits for the state-space (SSM) and switching state-
space (SSSM) models

State-space models R2 ∆BIC DOF as bs cs af bf cf

SSM1 0.92 135.3 3 0.9858 0.0730 0.4578 - - -

SSM2 0.92 135.3 3 0.9858 0.0215 [0] 0.9858 0.0668 [1]

SSM3 0.92 140.6 4 0.9858 0.0215 [0] 0.9858 0.0668 [1]

SSM4 0.93 117.3 5 0.9905 0.0445 0.4040 0.9229 0.0922 [1]

SSM5 0.92 145.9 5 0.9862 0.0007 [0] 0.9858 0.0721 0.4636

SSM6 0.93 129.6 5 0.9895 0.0502 0.5234 0.8860 0.0553 [0]

SSM7 0.94 112.4 6 0.9932 0.0295 0.4660 0.9405 0.0888 0.4340

Switching state-space model R2 ∆BIC DOF as qs af qf r α

SSSM 0.96 0 6 0.9946 0.0003 0.9404 0.0068 0.0792 0.6067

Numbers in square brackets are fixed and not fit to the data. Note that although the
R2 values are similar these are independent of the number of data points, whereas the
BIC scales with the number of data points. Therefore, the small improvement in R2

for a model can translate into a large difference in likelihood and hence BIC. In SSM2,
the fast state corresponds to the context-independent state shared by both contexts
(see Table 3.1 for details).

et al., 2015; Nozaki and Scott, 2009), which vary as to whether single- or dual-rate

states are included and also which states are coupled (see Methods) for details).

As an alternative, we also developed a normative SSSM (Ackerson and Fu, 1970; Chang

and Athans, 1978; Shumway and Stoffer, 1991) of motor learning. The SSSM is a

generalization of the SSM to systems with multiple operating modes (here, contexts),

each of which can be associated with different, and even evolving, dynamics. On each

trial, the system is in one context that determines both the dynamics experienced

and the cues observed. Between trials, contexts switch stochastically. On each trial,

the learner must infer the probability of each context (from control-point cues and

prediction errors) and use this information to partition control and learning between

two context-specific dual-rate states (see Methods) for details). Importantly, although

the association between cues and contexts is deterministic (the control point perfectly
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Figure 3.11. Learning to associate contexts with cues in the SSSM. The
SSSM estimates the probability of each context given the cue (plotted here for the
right control point cue before movement). Following exposure to opposing force fields,
participants learn to differentiate between the two contexts given the right control
point. Participants trained on the same force field at each control point do not learn to
differentiate between contexts, leading to a single motor memory. Traces show mean
model fits across participants. The plot for the left control point (not shown) is the
mirror image about the line 0.5.

predicts the force-field direction), this association must be learned through experience.

We therefore reasoned that the formation of separate motor memories may arise from

participants learning the association between cues and contexts. Critically, in the SSSM,

the probabilities of cues (control points) given contexts (force fields) are therefore

learned online.

We fit each model to the data from both the opposing- and same-field groups simulta-

neously, and performed model comparison using the Bayesian information criterion

(BIC) (Table 3.2). Although the context-dependent SSMs qualitatively capture the

difference in post-washout adaptation between the same- and opposing-field groups

(Fig. 3.9), the SSSM fits the overall time course of adaptation and de-adaptation in the
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opposing-field group better (Fig. 3.8b,d, solid lines; slow and fast states shown in Fig.

3.10) and has much stronger support (∆ BIC of 112.4 relative to the next-best model).

To understand how the SSSM works, we examined how the estimated probability of

each context given a cue evolves for each group. As shown in Fig. 3.11, at the start of

the experiment both contexts are activated equally by the right control point (that

is, the probability of each context given the right control point is 0.5). Therefore, the

model starts naive with respect to how control points relate to contexts. In the same-

field group, both contexts are activated equally throughout the experiment, regardless

of the control point, leading effectively to a single motor memory. In contrast, in

the opposing-field group, each context becomes paired with a different control point,

resulting in separate motor memories.

3.4 Discussion

Our results demonstrate that the motor system can form separate memories for different

control points on the same object, even when the movements associated with these

points are the same. By examining generalization, we found that learning was associated

with control points on the object and not with the location of the object in extrinsic

space or the location of the control point relative to the hand. Moreover, we found

that the motor system only forms distinct memories if the dynamics of the control

points differs, allowing efficient and flexible allocation of motor memory. Finally, we

developed a normative model of context-dependent motor adaptation that can account

for such flexible parcellation of motor memories.

Humans have a remarkable capacity to manipulate objects with different dynamics,

and a central focus of research in motor control has been to elucidate how the brain

learns and represents these dynamics. To investigate how contextual information

can be used to learn different dynamics, numerous studies have used opposing novel
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dynamics (e.g., viscous curl fields) that perturb the hand in opposite directions. This

work has shown that the ability to learn opposing dynamics, when each is associated

with a visual cue, such as the colour of the cursor or background, is generally highly

limited (Gandolfo et al., 1996; Howard et al., 2012, 2013). Similarly, when lifting

physical objects with different mass distributions, substantial interference is observed

when each mass distribution is associated with a different visual geometric cue (Fu

and Santello, 2012, 2014). In agreement with these findings, we show that when

controlling a single control point, participants cannot learn opposing fields when they

are associated with the location of peripheral visual cues that correspond to the targets

in the two-control-points group.

Several studies have shown that opposing fields can be learned if the perturbed

movement is preceded or followed by a separate movement that differs for each field,

or if the perturbed movement is accompanied by a concurrent movement of the other

hand that again differs for each field (Howard et al., 2012, 2015; Nozaki et al., 2006;

Sheahan et al., 2016; Yokoi et al., 2011). Furthermore, previous studies have shown

that opposing fields can be learned if they are associated with different states of the

limb, as when the arm operates in a different region of the workspace for each field

(Howard et al., 2013; Hwang et al., 2006; Richter et al., 2004; Yeo et al., 2015) or a

visual–proprioceptive discrepancy is introduced so that the perceived state of the limb

is different for each field (Hirashima and Nozaki, 2012; Howard et al., 2013). Critically,

in our experiment, and in contrast with these previous studies, veridical visual feedback

of the hand was provided throughout the movement, and the movement start and end

points were the same for the opposing fields. Consequently, participants’ estimates of

the state of the limb did not differ for the two fields. Therefore, we can be confident

that it is the control of different points on the object that allows the formation of

separate memories for different dynamical contexts. Moreover, we show clearly that

the learning of each control point is linked to the location on the object.
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Tool use generally involves controlling a specific location, or ‘control point’, on the

tool as it interacts with the environment, such as the face of a hammer striking a

nail or the eraser of a pencil rubbing a page. Skilled performance when using tools

requires knowledge of the dynamics of the tool (relating applied force to motion) as

well as contact mechanics (Casadio et al., 2015; Chib et al., 2009), which may vary

across control points. Most natural manipulation tasks involve a series of action phases

separated by contact events (Flanagan et al., 2006; Johansson and Flanagan, 2009).

Consider, for example, grasping a pencil, lifting it out of a container and transporting

it to a piece of paper, using it to erase a pencil mark and then replacing it in the

container. Here, contact between the fingertips and pencil marks the end of the reach

phase, contact between the pencil and paper marks the end of the transport phase, the

breaking of contact between the pencil and paper marks the end of the erase phase,

and so on. By comparing predicted and actual sensory signals associated with these

contact events, the motor system can monitor task progress, launch corrective actions

as needed, and calibrate internal models of objects and their interactions (Flanagan

et al., 2006; Johansson and Flanagan, 2009). Critically, both the control point on the

object and the dynamics may change from phase to phase. For example, while erasing,

the eraser end of the pencil is controlled and the dynamics includes the friction between

the eraser and paper. The ability to form separate motor memories for different control

points may thus be an essential component of skilled object manipulation and tool use.

Recent studies in neurophysiology, neuroimaging and neuropsychology support the

idea that tools are incorporated into a body schema. For example, monkeys have

been trained to use a rake to retrieve a pellet of food that could not be reached by

hand (Iriki et al., 1996). Following tool use, the visual receptive fields of intraparietal

neurons expanded beyond the space surrounding the hand to include the tip of the rake.

Similar incorporation of tools is supported by studies in humans making temporal

order judgements of tactile stimuli on the hand (Yamamoto and Kitazawa, 2001).

Importantly, such incorporation is seen only for the functional part of a tool (Farnè

et al., 2005) and a tool must be actively controlled for assimilation to occur (Iriki
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et al., 1996; Witt et al., 2005). This suggests that the point being controlled on a

tool determines how the body schema changes with tool use. Interestingly, the body

schema is thought to consist of distinct neural modules that represent different body

parts (Benton, 1959; Haggard and Wolpert, 2005). It is therefore conceivable that

different control points are assimilated by different body schema modules. Indeed,

one may expect to find intraparietal neurons that respond differently for different

control points on a tool. Furthermore, following incorporation of control points into the

body schema, the effective ‘state’ of the body may include the control point, allowing

different dynamics to be associated with different states linked to control points.

We found that the formation of distinct motor memories for different control points

is not obligatory, but only occurs if the dynamics for each control point is different.

Therefore, the allocation of motor memory is both flexible and efficient. To explain

this result, we developed a model of motor adaptation based on an SSSM (Ackerson

and Fu, 1970; Chang and Athans, 1978; Shumway and Stoffer, 1991), which is a

generalization of the mixture-of-experts architecture in neural networks (Jacobs et al.,

1991; Wolpert and Kawato, 1998) to dynamical systems (Ghahramani and Hinton,

2000). The SSSM is, unlike these previous models, normative and therefore derived from

first principles. Moreover, although the context-dependent SSMs could qualitatively

capture the difference in post-washout adaptation between the same- and opposing-field

groups, model comparison convincingly selected the SSSM over existing models. SSSMs

combine a hidden Markov model with linear dynamical systems and can be used to

model systems with multiple discrete operating regimes, termed modes. An SSSM

with one mode is an SSM. The key innovation of the SSSM is that only one of the

state-space modes is active at any one time and, over time, the system can transition

between modes. For example, an SSSM would be appropriate when handling different

objects. The transition between the use of different objects can be considered as a

Markov process specifying the probability of switching from one object to another (e.g.,

from kettle to cup) and the dynamics of each object can be different and change over

time (e.g., as the kettle empties and the cup fills).
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Within this framework, the problem for the sensorimotor system in our experiment

is twofold. First, it must infer the current mode (e.g., the context) and the state of

the dynamics (for example, the force-field perturbation) based on the parameters of

the SSSM. The expected perturbation is then a weighted sum of the perturbations

expected for each mode, with weights given by the probability of each mode. Second,

it must update the parameters of the SSSM online to ensure that these inferences are

as accurate as possible. Here, we provide evidence to support the idea that motor

adaptation involves not only state inference but also parameter learning or system

identification (Baddeley et al., 2003; Burge et al., 2008; Huang and Shadmehr, 2009;

Zarahn et al., 2008).

For simplicity, the SSSM we used had two modes. However, in general, SSSMs can have

any number of modes. Central to the performance of the model here is its capacity to

learn through experience (that is, during the experiment) the associations between cues

(e.g., control points) and contexts (e.g., force fields) via online parameter estimation.

To reduce the degrees of freedom of the model, we restricted the simulation to only

update the parameters that determine the probabilities of the cues given the contexts.

However, in general, all parameters of the model can be updated online. The fits of

the SSSM suggest that participants only develop distinct memories for each control

point if the dynamics are different (Fig. 3.11). In non-parametric extensions of the

standard SSSM, the number of modes is learned through experience, rather than fixed

a priori (Fox et al., 2009). Such a model would allow the motor system to be efficient

by recruiting additional context-dependent memories (that is, modes) when control

points have different dynamics and, conversely, removing modes that are redundant

when control points have the same dynamics.

Our results suggest that objects are not represented by the motor system as holistic

entities, but are instead parcellated in a task-dependent manner according to control

points. Interestingly, the results of the SSSM suggest that effective contextual cues,

such as control points, do not necessarily engage distinct motor memories a priori.
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Instead, they engage online parameter-learning processes that form distinct motor

memories only if and when needed.





Chapter 4

A nonparametric switching

state-space model of sensorimotor

learning

4.1 Introduction

In Chapter 3 we proposed a switching state-space model to explain dynamic motor

learning during tool use. In the model we assumed that the number of contexts and

cues are known in advance and fixed. Hence, the number of memories (one per context)

do not change over time. However, in the real world, a learner does not know, a priori,

how many contexts or cues exist. Therefore, a key element missing from current models

(including the one proposed in Chapter 3) is an understanding of when sensorimotor

experience leads to the formation of a new memory as opposed to the refinement of

an existing memory. Current frameworks primarily deal with adaptation of existing

memories, with mechanistic models designed to explain overall trial-to-trial learning

behavior (e.g., Smith et al., 2006; Thoroughman and Shadmehr, 2000). The few

models that have examined multiple memories have done so, as in the previous chapter,
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by hard-coding the number of memories and cues as well as how much each memory is

expressed and updated on each trial (Lee and Schweighofer, 2009; Nozaki and Scott,

2009).

Here we develop a novel normative model of sensorimotor learning, which departs

substantially from previous models of sensorimotor learning. To do this we extend

the switching state-space framework to a nonparametric version—the nonparametric

switching state-space model (NSSSM). In the parametric version of the SSSM, the

complexity of the model is fixed by specifying the number of contexts (i.e., tasks).

Specifying too many contexts can lead to overfitting of the data, whereas specifying

too few contexts can lead to interference. Nonparametric models have recently been

used in the machine learning field to allow the complexity of the model to adapt to

the data (Gershman and Blei, 2012). Despite their name, nonparametric models are

not models without parameters. Rather, they are infinite-capacity models defined by a

finite number of hyperparameters. The hyperparameters control factors such as the

willingness to increase the number of contexts based on the data.

In this chapter we will introduce some of the key features of the model. We will

then show that the NSSSM can produce spontaneous recovery, which is typically

considered a hallmark of the dual-rate model (Smith et al., 2006). According to the

NSSSM, spontaneous recovery reflects the re-expression of a memory acquired in a

previous context due to Bayesian context estimation, and there is no need to posit

multiple processes with different rates. For ease of reading, in this chapter we give an

overview of the features that are critical to understanding how the model works. We

relegate the extensive details (which are uncontroversial in the machine learning field)

to Appendix C.
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4.2 Model

The relation between motor outputs and sensory consequences (e.g., dynamics) can

change abruptly based on the sensorimotor context (e.g., as we grasp a glass, walk onto

a slippery surface, or let go of a rehabilitation robotic device) or gradually as the state

changes within a context (e.g., as we drink from the glass or rotate it in our grasp). In

the NSSSM, we assume that the world can be in one of a potentially large (or even

infinite) set of contexts (Fig 4.1). Each context is associated with a perturbation to the

motor-to-sensory mapping (e.g., based on the weight of an object or the level of fatigue)

(Ackerson and Fu, 1970; Chang and Athans, 1978; Shumway and Stoffer, 1991). Each

perturbation evolves over time according to its own state transition properties (drift,

decay and process noise). The context stochastically determines sensory observations

in the form of state feedback that arises during movement (e.g., the perturbed state of

the limb) and discrete contextual cues (e.g., the visual geometry of an object). Across

time, the environment can switch stochastically between contexts.

Critically, the number of contexts is not fixed but can increase over time (this is the

meaning of nonparametric in the model title). Therefore, at each point in time, the

environment can either transition to a previously experienced context (including the

current context) or to a new context. Similarly, at each point in time, the environment

can either emit a previously observed cue or emit a new cue.

Specifying the model requires placing priors over the parameters that govern the

context transitions, the cue emissions, the state update and state observations. The

context transition matrix is Markovian with elements πij representing the probability

of transitioning from context i to context j and includes transitions to previously

experienced contexts as well as to new contexts yet to be experienced. We use a

prior for this matrix based on the hierarchical Dirichlet Process (or Chinese restaurant

franchise) (Teh et al., 2006). This prior is specified by 3 hyperparameters: one (γ)
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Figure 4.1. Graphical model of the NSSSM. The environment can transition
between an unknown, potentially infinite number of contexts. Only two contexts are
shown here for clarity. Each context is associated with a perturbation that evolves
independent from all other perturbations. The current context influences which cue
is emitted and which perturbation contributes to the observed state feedback (solid
vs. dashed arrows). In this example, the environment transitions between context 1
(yellow) and context 2 (blue), with context 2 first experienced at time t.

governs how the number of experienced contexts is expected to grow with time, another

(α) determines how similar rows of the transition matrix are (i.e., how strongly the

probability of transitioning to a particular context depends on the current context) and

the other (κ) imposes a self-transition bias (i.e., makes self-transitions more probable

than transitions between contexts).

The cue emission matrix has elements ϕjk specifying the probability of experiencing

cue k in context j. The prior for this matrix is also based on a hierarchical Dirichlet

Process, but there is no notion of a self-transition. Therefore, the prior is specified by

2 hyperparameters: one (γ′) governs the expected number of cues associated with each

context (as a function of the number of times the context has been visited) and the

other (α′) determines how similar the rows of the cue emission matrix are (i.e., how

strongly the probability of a particular cue depends on the current context).
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Each context (j) is associated with a perturbation (xj
t) that evolves independent from

all other perturbations as a linear dynamical system:

xj
t = ajx

j
t−1 + dj + wj

t wj
t ∼ N (0, sj), (4.1)

where aj is the state transition coefficient, dj is the state drift and sj is the variance of

the process noise, each associated with context j. The perturbation associated with

the current context (ct) gives rise to state feedback:

yt = xct
t + vt vt ∼ N (0, rct), (4.2)

where rct is the variance of the measurement noise associated with context ct.

In the most general form of the NSSSM, all parameters of the state update and

observation equations are learned online. In this setting, we place a normal-inverse-

gamma prior over the parameters (aj, dj, sk) of equation 4.1 and an inverse-gamma prior

over the parameter (rj) of equation 4.2. These are the conjugate priors to the normal

distribution with unknown mean and/or variance that facilitate exact computation of

the posteriors. The hyperparameters of these distributions (4 for equation 4.1 and 2

for equation 4.2) govern the mean and variance of the parameters.

Within this framework, the problem for the sensorimotor system is to use the sequence

of sensory cues and state feedback to infer i) the number of contexts that have been

experienced, ii) the context transition and cue emission matrices, iii) the parameters of

the state update and observation equations for each perturbation and iv) the current

context and the states of all perturbations. Therefore, unlike standard state-space

models, the parameters governing the behavior of the learner change with experience

(i.e. within an experiment).

This is a hard inference problem as the states and parameters are coupled. We perform

online state inference and parameter learning to simulate the learning process and fit
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the model to experimental data. To this end, we use a Monte Carlo simulation strategy

based on a resample-sampling framework known as particle learning (PL) (Carvalho

et al., 2010). See Appendix C for full details of the model.

4.3 Results

4.3.1 Spontaneous Recovery
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Figure 4.2. Spontaneous recovery can arise from a dual-rate model. The
perturbation schedule used to elicit spontaneous recovery (black). After a series of
null-field trials (P 0), the participant is exposed to a series of P+ trials followed by brief
exposure to P−. This is followed by a sequence of channel trials (parallel horizontal
lines). The fast (green) and slow (red) processes of the dual-rate model sum to produce
the motor output (blue). The parameters of the dual-rate model (af = 0.92, as = 0.996,
bf = 0.03, bs = 0.004) are taken from Smith et al. (2006).

Conventional wisdom is that motor adaptation consists of two (or more) parallel

processes operating on different timescales (slow and fast learners), with spontaneous

recovery taken as the most compelling piece of evidence. Spontaneous recovery is seen

after adaptation to a positive perturbation (which we term P+, e.g., a clockwise viscous
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curl field) followed by a brief period of negative perturbation (which we term P−,

e.g., a counter-clockwise viscous curl field) that brings performance back to baseline.

When presented with a long series of channel trials, spontaneous recovery, or rebound,

is observed (Keisler and Shadmehr, 2010; Smith et al., 2006). According to multi-

rate models, this rebound results from the interaction of the slow and fast processes

decaying at different rates in the absence of error (Fig 4.2). The initial adaptation

to P+ is achieved by both the slow and fast processes contributing to learning. The

rapid de-adaptation in P− is achieved by the fast process becoming negative (green

curve) while the slow process remains positive (red curve), thereby leading to no

apparent adaptation (blue curve). During the channel trials the fast process rapidly

decays to zero revealing the slow process, which is still partially adapted to the initial

perturbation.

The NSSSM provides a contrasting interpretation of spontaneous recovery in terms of

memory re-expression due to Bayesian context estimation. Fig 4.3 shows the NSSSM

fit to a typical spontaneous recovery paradigm (Fig 4.3a) and data set (Fig 4.3b).

The NSSSM treats P 0, P+ and P− as separate contexts. Over the course of the

experiment, the number of inferred contexts increases (Fig 4.3c). The model starts

with one memory instantiated for P 0 (Fig 4.3e). Then on the introduction of P+ and

P−, a second and then memory are instantiated (Fig 4.3f-g). Importantly, the addition

of new memories is an automatic Bayesian process based on whether or not the model

can explain the observed data. The memories are instantiated close to the correct

value for the perturbations (Fig 4.3e-g) and tend to decay if the force fields are not

presented. When a force field is not presented, the associated memory becomes more

uncertain (Fig 4.3e-g note spreading of colors).

To explain spontaneous recovery in the NSSSM, we first need to explain how the

motor output depends on the estimated context. In the NSSSM, the motor output is a

weighted sum of the perturbations expected in each context, with weights given by the

prior probability of each context (i.e., the probability of each context prior to moving).
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Figure 4.3. Spontaneous recovery in the NSSSM. a, The perturbation schedule
used to elicit spontaneous recovery. Occasional channel trials are presented during the
P 0 and P+ phases to assess learning. b, Adaptation to P+ measured on channel trials
shows learning of P+ and de-adaptation to baseline after P−. In the series of channel
trials there is re-expression of positive adaptation termed spontaneous recovery. The
data shown are from a typical participant (circles). The fit of the NSSSM is shown in
red. c, The average number of instantiated contexts across particles show that a new
context is inferred following the introduction of P+ and P−. d, The prior probability
of context P 0 (red), P+ (green) and P− (blue). e-g, The three states are shown in the
order they are instantiated (grey prior to instantiation) and are labelled by the context
that led to their instantiation. The colormap indicates the probability of the state of
each perturbation. h, The predicted perturbation is a weighted sum of the individual
perturbation estimates (e-g), where the weights are given by the prior probabilities
(d). The motor output (red) is the mean of the predicted perturbation. Note that in
c-h, we simulated the NSSSM without channel trials during the exposure phase for
clarity.
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The prior probability of each context depends on three components. First, it depends

on how common each context is, which is estimated by inferring the context counts

(i.e., the number of times each context has occurred). Second, it depends how common

each context is given the previous context. This can estimated by inferring the context

transition counts (i.e., the number of times each context has followed each previous

context). Third, it depends on a self-transition bias, which determines the tendency

of the previous context (regardless of its identity) to transition to itself. Because the

context counts and context transition counts are estimated and updated online, the

prior probability of each context varies across trials (Fig 4.3d).

One additional aspect of the model behaviour that is key to its behavior is what

happens on channel trials (one-dimensional spring-like force field that constrains the

hand to a straight-line path to the target). The classical view of channel trials in a

state-space model is that there is no learning as the channel leads to no performance

error. In the absence of errors, states simply decay over repeated trials. In contrast, in

the NSSSM, perfect performance in the channel trial arises as the motor output exactly

matches the perturbation. This is equivalent to observing a perturbation that is the

opposite of the motor output, which we will term a fictitious perturbation (in that

it is self generated and would be absent if the participant chose to move as in a null

field). Because the motor output is a weighted sum of the perturbations expected in

each context, the fictitious perturbation will be different from at least one perturbation

estimate (and in general from all perturbation estimates), unless all perturbation

estimates are identical. Therefore, in the NSSSM, there will be learning on channel

trials. Hence, we use the term ‘channel trial’ rather than ‘error-clamp’ trial. This

alternative perspective predicts that in channel trials there will be active unlearning

(in addition to decay), whereas with the passage of time alone there will only be decay.

Consistent with this prediction, de-adaptation is faster when movements are performed

in channel trials compared with the passage of time alone (Criscimagna-Hemminger

and Shadmehr, 2008; Ingram et al., 2013; Kitago et al., 2013).
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Having given some intuitions about the behaviour of the NSSSM, we now return to the

simulations. Although the introduction of P+ leads to a new state that is instantiated

close to P+, the motor output only slowly transitions to P+ (Fig 4.3b trials from 50

onwards). This is because the weight for P 0 is initially greater than the weight for P+

(Fig 4.3d), as P 0 has been experienced more often. As P+ is repeatedly encountered,

the weight becomes greater for P+, leading to a gradual expression of adaptation to

the force field. When P− is introduced abruptly, another state is instantiated close to

P−. Again, as P− is repeatedly encountered, the weight for P− increases. The motor

output is close to zero at the end of the counter-exposure phase as the weights for P+

and P− are approximately equal.

Once the channel trial phase starts, the prior probabilities of contexts P 0, P+ and

P− and their associated state estimates determine the motor output. On the first

trial of the channel phase, the motor output is slightly negative, inducing a fictitious

observation that most closely resembles the P 0 perturbation. This causes the memory

of P 0 to become negative (Fig 4.3e) and the prior probability of P 0 on the second

trial of the channel phase to increase (Fig 4.3d). The prior probability of P− drops

precipitously (Fig 4.3d), as this context has been encountered the least throughout

the experiment. This precipitous drop means that the memory for P− contributes less

to the motor output on the second trial of the channel phase, and hence the second

fictitious observation is less negative than the first. Importantly, the memory for P 0

tracks this fictitious observation and so becomes less negative itself (Fig 4.3e). This

in turn causes the motor output (and fictitious observation) on the third trial of the

channel phase to become even less negative. And so the cycle continues. Eventually,

the motor output becomes positive due to the contribution of the memory of P+. This

produces spontaneous recovery, which eventually decays due to decay of the memories

of P 0 and P+. In Chapter 5 we will test this interpretation of spontaneous recovery

directly.
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4.4 Discussion

The NSSSM improves upon the switching state-space model (SSSM) described in

Chapter 3 in several respects. First, we estimate the number of contexts and cues

online and instantiate new memories in an automatic, Bayesian manner. Second, we

learn the context transition probabilities (as well as the cue emission probabilities).

Third, we extend parameter learning to the state-space parameters that govern how

perturbations evolve over time (i.e., state transition coefficient, drift, process noise)

and how perturbations give rise to state feedback (i.e., measurement noise). Fourth,

we introduce the concept of fictitious observations, which leads to learning in channel

trials.

The dual-rate model assumes that there are multiple states with different learning and

retention parameters. Although the NSSSM also posits multiple states (one for each

context), each state is instantiated with the same parameters (when the parameters

are assumed to be known and shared across contexts) or with the same prior belief

over parameters (when the parameters are assumed to be unknown and need to be

learned online). Depending on the values of hyperparameters, states and parameters

can be learned on different timescales in the NSSSM. We saw an example of this in the

simulations of spontaneous recovery, where the state was learned quickly (each state

estimate was instantiated close to the true perturbation), and the context transition

distribution was learned slowly (it took many trials for the learner to believe with

high confidence that the P+ context would persist). Thus, in the NSSSM, learning on

multiple timescales is achieved not by endowing states with different parameters but

by performing combined state and parameter estimation.

The NSSSM can be contrasted against two related models in the literature. The

first is an extension of the dual-rate model to environments with multiple contexts

(Lee and Schweighofer, 2009; Pekny et al., 2011). This model consists of a single
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context-independent fast process and multiple context-dependent slow processes, the

number of which is specified in advance. The model assumes that the first trial of a

perturbation engages a slow process specific to that context. This slow process—and

no other slow process—is then expressed and updated on each subsequent trial. This

implies that the learner is certain that the perturbation experienced on one trial will

persist to the next trial. In contrast, in the NSSSM, the learner initially thinks that

P 0 is more probable and only gradually comes to expect that P+ will persist. The

models also behave differently on channel trials. For example, in the multiple-context

state-space model, each slow process contributes an equal amount to the motor output

(Pekny et al., 2011), whereas in the NSSSM, the amount that each memory contributes

to the motor output depends on prior experience and varies across trials.

The second model worthy of comparison is a switching Kalman filter model (Oh and

Schweighofer, 2018). This model consists of two Kalman filters—a baseline filter and

a novice filter that can develop into an expert perturbation filter. In contrast to the

NSSSM, which can infer new contexts, the number of filters in the switching Kalman

filter model is specified in advance, and there is no mechanism for adding new filters

online. The switching Kalman filter model places a prior probability on each filter.

However, these probabilities are fixed and they do not depend on the previous context.

In contrast, in the NSSSM, the probability of each context is learned from experience

and depends on the learned context transition frequencies. The switching Kalman filter

model also uses a ‘winner-take-all’ strategy to decide which filter to engage and train

on each trial. In contrast, in the NSSSM, all memories are engaged and trained on each

trial by an amount proportional to the probability of their respective contexts. Thus,

the NSSSM represents uncertainty about the current context, whereas the switching

Kalman filter model does not.

The NSSSM infers the number of contexts as well as the frequencies of contexts and

the statistics of contexts transitions. Therefore, even in the absence of contextual

cues, the NSSSM can construct rich models of the environment. There is some
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experimental evidence to suggest that humans also do this. For example, people can

adapt to forces acting on the hand when they depend on the order of a movement in

a predefined sequence (Wainscott et al., 2005), and people can learn the transitions

between visuomotor transformations that switch mid-movement to improve online

control (Vetter and Wolpert, 2000).

In the next two chapters we test novel predictions of the model related to spontaneous

recovery and Bayesian context estimation.





Chapter 5

Spontaneous recovery as Bayesian

context estimation under uncertainty

5.1 Introduction

In the previous chapter we proposed a nonparametric switching state-space model of

dynamic motor learning. This model was able to produce spontaneous recovery, which is

typically accounted for with a dual-rate model in the motor learning literature (Keisler

and Shadmehr, 2010; Smith et al., 2006; Trewartha et al., 2014). The mechanism by

which spontaneous recovery occurs in the NSSSM is very different from in the dual-rate

model. In the dual-rate model, spontaneous recovery arises from the interaction of a

fast process and a slow process that adapt and forget on different timescales. In the

NSSSM, spontaneous recovery arises from the re-expression of a memory acquired in

a previous context. In this chapter, we perform an experiment to test the NSSSM

interpretation of spontaneous recovery.

We wanted to modify the standard spontaneous recovery paradigm as little as possible

to distinguish the NSSSM from the dual-rate model. Simulations suggested that this
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could be achieved by replacing the 3rd and 4th trials in the channel trial phase with

P+ trials. The NSSSM predicts that these trials should cause participants to believe

with high confidence that the P+ context has returned. This in turn should lead to

more rapid and complete re-expression of the memory of P+. We refer to this rapid

re-expression as ‘evoked recovery’, to emphasise its dependence on re-exposure to the

force field. Our experimental findings confirmed this prediction. Moreover, model

comparison revealed that the NSSSM is superior to the dual-rate model at describing

both spontaneous recovery and evoked recovery.

5.2 Methods

5.2.1 Participants

A total of 16 neurologically intact participants (8 males and 8 females; age 29.7 ± 6.8,

mean ± s.d.) were recruited to participate in the experiment, which had been approved

by the Columbia University IRB. All participants provided written informed consent

and were right-handed according to the Edinburgh handedness inventory (Oldfield,

1971).

5.2.2 Apparatus

All experiments were performed using a vBOT planar robotic manipulandum with a

virtual-reality system and air table, which we have described in Chapters 2 and 3.
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5.2.3 Spontaneous recovery condition

Participants (n = 8) in the spontaneous recovery condition performed the standard

spontaneous recovery paradigm. The paradigm consisted of pre-exposure, exposure,

counter-exposure and channel phases, as detailed below.

The paradigm consisted of a pre-exposure phase (5 blocks/50 trials), an exposure phase

(12 blocks/120 trials), a counter-exposure phase (15 trials) and a channel phase (150

trials) (Fig. 5.1a). In the pre-exposure and exposure phases, participants performed

blocks of ten trials in which one of the trials (not the first) was randomly chosen as a

channel trial and the remainder were either null-field trials (pre-exposure) or force-field

trials (exposure). The counter-exposure phase consisted only of force-field trials and

the channel phase consisted only of channel trials. A 45 s rest break was given after

block 6 of the exposure phase. A block of 5 force-field trials (with no channel trials)

followed this rest break to mitigate the effects of any time-dependent decay of motor

memory.

The direction of the force field (CW or CCW) in the exposure phase was counterbalanced

across participants. The direction of the force field in the counter-exposure phase was

opposite to that of the exposure phase. Throughout this chapter, we refer to the null

field, the exposure field and the counter-exposure field as P 0, P+ and P−, respectively.

5.2.4 Evoked recovery condition

Participants (n = 8) in the evoked recovery condition performed a modified version of

the spontaneous recovery paradigm. The modified version was identical to the original

paradigm except that trials 3 and 4 of the channel phase were replaced with P+ trials

(Fig. 5.1b). We chose to replace trials 3 and 4 of the channel phase (as opposed to trials
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Figure 5.1. Experimental paradigm. a, The perturbation schedule used to elicit
spontaneous recovery. After a series of P 0 trials the participant is exposed to series of
P+ trials followed by brief counter-exposure to P−. This is followed by a sequence of
channel trials (parallel horizontal lines). b, In the evoked recovery condition, the 3rd

and 4th trials of the channel phase are replaced with P+ trials.

1 and 2) so that adaptation could be measured before and after the P+ intervention

trials.

5.2.5 Data analysis

Data analysis was performed using MATLAB R2018b. Adaptation was measured on

channel trials as the percentage of the force field that was compensated for, which have

described in Chapter 2.

To identify changes in adaptation between conditions, a mixed-design ANOVA was

performed with significance set to P < 0.05.
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5.2.6 Model fitting

We fit several candidate models to the data of individual participants. These models

include the NSSSM, the dual-rate model (Smith et al., 2006) and a 3-rate model (Inoue

et al., 2014). The 3-rate model is a generalisation of the dual-rate model to 3 processes.

We do not apply inequality constraints when fitting the 3-rate model so that the model

can perform to its fullest potential. Henceforth, we refer to the dual-rate model as the

2-rate model, to emphasise that it is a member of a wider n-rate model class that also

includes the 3-rate model.

We fit each model separately for each participant using the particular sequence of

perturbations they experienced. Under the assumption that the model errors are

independent and identically distributed according to a normal distribution, we obtained

maximum likelihood estimates of the free parameters/hyperparameters of the models

by minimising the mean squared error between model output and adaptation measured

on channel trials.

To fit the NSSSM, we used Bayesian adaptive direct search (BADS; Acerbi and Ma,

2017), a Bayesian optimization algorithm that is suitable when no gradient information

is available and the objective function is stochastic. BADS alternates between a series

of fast, local Bayesian optimization steps and a systematic, slower exploration of a

mesh grid. To ensure that our results did not arise from using different optimisers for

different models, we fit each model with both BADS and fmincon (from 20 different

initial parameters settings) and we report the best solution found by either optimiser.

Model comparison

The aim of model comparison is often to select a single model that best explains the

data collected from multiple participants. This ‘best model’ approach assumes that all

the participants’ data are generated by the same model. An alternative approach is to



114 Spontaneous recovery as Bayesian context estimation under uncertainty

assume that each participant’s data is generated from a model that is sampled from

an unknown multinomial distribution over a finite set of candidate models (Rigoux

et al., 2014; Stephan et al., 2009). Here, the aim of model comparison is to i) infer the

posterior probability, for each participant, of belonging to each model; and ii) infer

the posterior distribution over the unknown multinomial distribution. Importantly,

this hierarchical approach is more robust to the presence of outlier participants when

the population is heterogeneous. Furthermore, the set of candidate models can be

partitioned into disjoint subsets known as families and inference can be performed at

the level of families of models rather than at the level of individual models (Penny

et al., 2010; Stephan et al., 2009). In so-called ‘family-level inference’, the aim of model

comparison is to i) infer the posterior probability, for each participant, of belonging

to each family; and ii) infer the posterior distribution over the unknown multinomial

distribution over families of models. Importantly, family-level inference allows one to

compare characteristics of interest that are shared across models while still leveraging

the statistical strength of all models.

We performed family-level inference by considering two families of models: an NSSSM

family and a multi-rate SSM family. For the NSSSM family, we defined a full model

and three nested models, which are special cases of the full model that lack certain

attributes or with a subset of parameters set to special values. The full model has

a non-zero self-transition bias and learns the drift parameter online. This requires

specifying two free parameters: the self-transition bias and the precision of the Gaussian

prior on the drift parameter (the mean is set to zero). The three nested models set the

self-transition bias and/or the drift parameter to zero. Collectively, the full and nested

models form the NSSSM family. The two-rate and three-rate SSM models form the

multi-rate SSM family. Importantly, although these families contain different numbers

of models (4 vs. 2), family-level inference is unbiased as a uniform prior is placed

over the family probabilities; this is achieved by placing smaller prior probability on

individual models that belong to larger families (Penny et al., 2010).
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We performed family-level inference using the Variational Bayesian Analysis (VBA)

toolbox, which is available online at http://mbb-team.github.io/VBA-toolbox. This

inference procedure uses variational Bayes to estimate the parameters of a Dirichlet

distribution over the probabilities of all candidate models (for details see Stephan

et al., 2009). The procedure requires only the log model evidences for each model

and each participant. The log model evidence for each model and each participant

can be approximated as half the negative of either the Akaike information criterion

(AIC; Akaike, 1974) or the Bayesian information criterion (BIC; Schwarz et al., 1978)

(Murphy, 2012). Under the assumption that the model errors are independent and

identically distributed according to a normal distribution, the AIC is (up to an additive

constant that does not depend on the model)

AIC = n · ln[(1−R2)/n] + 2 · k, (5.1)

where n (167 for the spontaneous recovery condition and 165 for the evoked recovery

condition) is the number of data points and k (4 for the 2-rate model, 6 for the 3-rate

model and 4-6 for the variants of the NSSSM) is the number of free parameters. The

first term in the AIC rewards goodness of fit, and the second term penalizes model

complexity, as measured by the number of free parameters in the model. Under the

same Gaussian i.i.d assumption, the BIC is (up to an additive constant)

BIC = n · ln[(1−R2)/n] + k · ln(n). (5.2)

The AIC and the BIC differ only in the size of the penalty term—the AIC has a fixed

penalty that does not scale with the number of data points. When n > e2 ≈ 7, the BIC

penalises model complexity more heavily than the AIC. Thus, the AIC tends to choose

models that are too complex, and the BIC tends to choose models that are too simple

(Hastie et al., 2005). For model selection purposes, there is no clear choice between the

http://mbb-team.github.io/VBA-toolbox


116 Spontaneous recovery as Bayesian context estimation under uncertainty

AIC and the BIC. Therefore, following Penny et al. (2004), we perform family-level

inference using both AIC and BIC (separately) and draw conclusions regarding the

superiority of one particular family only when both metrics agree, that is, we choose

the most conservative of the two metrics.

We compare families of models at both the level of individual participants and at the

group level. At the level of individual participants, we report the posterior probability,

for each participant, of belonging to each family. At the group level, we report the

exceedance probability, which is the posterior probability that one family (here the

NSSSM) is more frequent in the population than the other family (here the multi-rate

SSM) (Stephan et al., 2009).

5.3 Results

In this experiment, we investigated whether spontaneous recovery arises from the

re-expression of a memory acquired in a previous context. We recruited 16 participants

to perform either a spontaneous recovery (n = 8) or an evoked recovery paradigm (n

= 8). We begin by describing the spontaneous recovery condition.

Spontaneous recovery

Participants started the experiment in a null field (P 0) and then performed 12 blocks

of 10 trials (120 trials) in a force field (P+) (Fig. 5.1a). In these pre-exposure and

exposure phases, one randomly selected trial in each block of 10 trials was a channel

trial, in which the movement was constrained to a straight line between the home

position and the target (Milner and Franklin, 2005; Scheidt et al., 2000). On these

trials, the lateral forces generated by participants were recorded to provide a measure

of adaptation (Fig. 5.2 blue). By the end of the exposure phase, participants had
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Figure 5.2. The memory of P+ is not destroyed during counter-adaptation
to P− and can be re-expressed. Adaptation measured on channel trials over
the course of the experiment. Trials associated with P 0, P+ and P− perturbations
are indicated by grey, blue and green backgrounds, respectively. The channel phase
is indicated by a white background. Data are plotted as mean ± s.e.m. for the
spontaneous recovery group (n = 8) and the evoked recovery group (n = 8).

learned to compensate for the force field (Fig. 5.2), and then performed 15 trials in

the opposite force field (P−). During this counter-exposure phase, adaptation reduced

to slightly below baseline. Participants then performed 150 channel trials. During the

first ten trials of this channel phase, adaptation to P+ re-emerged—demonstrating

spontaneous recovery—and then slowly declined.

We fit several candidate models to the data of the individual participants. These

models were the 2-rate model, the 3-rate model and 4 variants of the NSSSM (a full

model and 3 nested models, see Model comparison). We divided these 6 models into

2 families (a multi-rate SSM family and an NSSSM family) and performed Bayesian

model comparison of these families. Note that rather than assume that all participants’

data was generated by the same model, we treat the best model as a random effect

that can vary across participants. This approach is considerably more robust than

conventional fixed-effects analyses (e.g., based on the group Bayes Factor), especially

in the presence of outliers (Stephan et al., 2009).
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As expected, both the NSSSM (Fig. 5.3a solid blue line) and the 2-rate model (Fig.

5.3b solid blue line) were able to qualitatively capture the time course of adaptation

throughout the experiment, although the NSSSM provided a better fit than the 2-

rate model to the initial adaptation to P+ and the initial rebound. Bayesian model

comparison showed that the NSSSM family was superior to the multi-rate family. For

all eight participants, the posterior probability of the NSSSM family was greater than

0.9995 based on AIC and greater than 0.9999 based on BIC.

Evoked recovery

In an attempt to induce more complete recovery of the memory of P+, we performed a

separate evoked recovery condition (n = 8), where we replaced the 3rd and 4th trials of

the channel phase with P+ trials (Fig. 5.1b). An ideal observer should predict that

the 5th trial of the channel phase is highly likely to be a P+ trial, as nearly all of the

P+ trials presented earlier in the experiment were followed by a P+ trial (only the last

trial of the exposure phase was followed by a P− trial). Therefore, according to the

NSSSM, the P+ trials presented on the 3rd and 4th trials of the channel phase should

increase the prior probability of P+ on the 5th of the channel phase (as well as on the

trials beyond), leading to greater recovery of the memory of P+.

As expected, the evoked recovery group adapted and de-adapted similarly to the

spontaneous recovery group during the exposure and counter-exposure phases (Fig.

5.2 red). There was no significant difference in adaptation between the groups in

the final two blocks of the exposure phase or in the first 2 trials of the channel

phase (mixed-design ANOVA, main effect: F1,14 = 1.37, P = 0.261, interaction effect:

F1,14 = 0.94, P = 0.348). As predicted by the NSSSM, the two P+ trials in the channel

phase induced rapid recovery of the memory of P+, as demonstrated by an abrupt

step in adaptation towards P+. Following this abrupt step, adaptation decayed over

∼30 trials to a non-zero endpoint. Interestingly, the adaptation trace in the evoked



5.3 Results 119

0 50 175 340
Trial

-50

0

50

100
Spontaneous recovery
Evoked recovery

0 50 175 340
Trial

-50

0

50

100
Spontaneous recovery
Evoked recovery

a

b

NSSSM

2-rate model

Figure 5.3. Model fits to adaptation data. a, The NSSSM model fit to the
spontaneous and evoked recovery data sets. Filled data points show the mean adaptation
across participants. Solid lines show the average of the fits to individual participants.
For each participant, we used the NSSSM variant that has the highest posterior
probability. b, Same as a but for the 2-rate model.

recovery condition (Fig. 5.2) looks remarkably similar to the P+ memory trace in the

spontaneous recovery simulation in Chapter 4 (Fig. 4.3f), suggesting that the previous

memory of P+ may have been re-expressed.

The NSSSM was able to fit the first 2 trials of the channel phase, the abrupt step in

adaptation following the two P+ trials and the time course of subsequent decay (Fig.

5.3a solid red line). In contrast, the 2-rate model provided a poor fit to the first 2

trials of the channel phase and failed to reproduce the time course of decay (Fig. 5.3b

solid blue line). Following the two P+ trials, adaptation in the 2-rate model decayed
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Figure 5.4. Hidden states of the 2-rate and 3-rate models. a, The 2-rate
model fit to the spontaneous recovery data set. Data points in black show the mean
adaptation across participants. Solid lines show the average of the fits to individual
participants. The fast and slow states are shown in blue and green, respectively, and
the net motor output is shown in red. b, Same as a but for the evoked recovery data
set. c,d, Same as a and b, respectively, but for the 3-rate model. The hidden states
have not been labelled as fast, slow and ultraslow processes, as we did not impose
inequality constraints on the parameters when fitting the model to data.
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Figure 5.5. Bayesian model comparison in the evoked recovery condition.
a, The posterior probability that a model in the NSSSM family generated the data
of each participant. Model comparison was performed using the Akaike information
criterion (AIC) to approximate the log model evidence. b, Same as a but using the
Bayesian information criterion (BIC) to approximate the log model evidence.

rapidly over ∼5 trials before exhibiting a slower decline. The reason for this is clear.

In the 2-rate model, the abrupt step in adaptation following the 2 P+ trials is driven

almost entirely by the fast process, which decays quickly (Fig. 5.4b). The addition of

a third process was unable to fix this problem (Fig. 5.4d).

Bayesian model comparison revealed that the NSSSM family was more likely than

the multi-rate family for the majority of participants (6/8) in the evoked recovery

condition (Fig. 5.5). The superiority of the NSSSM was also supported at the group

level—the exceedance probability that the NSSSM family was more likely than the

multi-rate family (given the data of all participants in both groups) was greater than

0.9999 based on AIC and greater than 0.9995 based on BIC.

Taken together, these experimental and modelling findings provide compelling evidence

that the NSSSM is a better model of spontaneous recovery than typical multi-rate

state-space models. This suggests that spontaneous recovery is better interpreted as

the re-expression of a memory acquired in a previous context due to dynamic Bayesian

context estimation.
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5.4 Discussion

In the previous chapter we presented a novel interpretation of spontaneous recovery

based on the NSSSM. Here we tested a prediction of this interpretation, namely, that it

should be possible to re-express the memory of P+ if it has not been overwritten by P−.

This prediction was borne out. The two P+ trials in the channel trial phase induced

a qualitative switch in behaviour. That is, rather than observing a non-monotonic

spontaneous recovery curve, we observed a monotonically decreasing adaptation trace

that started from a level close to P+. Moreover, model comparison revealed that

the NSSSM provided a better description of the data than the multi-rate class of

state-space models, which includes the dual-rate model that is typically used to model

spontaneous recovery. Importantly, the multi-rate class of models showed qualitative

mismatches on the evoked recovery data set, as they failed to capture the time course

of decay following the two P+ trials. In contrast, the NSSSM was able to account for

both the spontaneous and evoked recovery data sets.

A previous study by Pekny et al. (2011) explored the question of whether the memory of

a perturbation is destroyed during counter-adaptation to an opposite perturbation. To

address this question, the authors had participants first adapt to P− and then perform

the standard spontaneous recovery paradigm. Compared with a control group that did

not adapt to P− before performing the spontaneous recovery paradigm, the amount of

rebound in the channel trial phase was reduced (i.e., adaptation was biased towards

P−). The authors concluded that the memory of P− had been partially protected from

destruction during adaptation to P+. This between-groups effect provided indirect

evidence that two separate context-specific memories had been created and existed

at the same time. In the current experiment, we show this definitively by evoking

the memory of P+ in individual participants. That is, we provide direct evidence

that—even in the absence of conventional contextual cues—multiple context-specific

memories are created, exist simultaneously and can be switched between. Interestingly,
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in the same paper, Pekny et al. (2011) also showed that spontaneous recovery can be

induced by omitting reward feedback after a participant has adapted and de-adapted to

a perturbation. This finding is outside the remit of the NSSSM, which does not include

explicit rewards. To explain this finding, the NSSSM would need to be incorporated

into a wider reinforcement learning framework.

In visuomotor rotation learning, attempts have been made to map the slow and fast

states of the dual-rate model onto implicit and explicit learning systems (McDougle

et al., 2015). A recent force-field adaptation study by Keisler and Shadmehr (2010)

also claimed to show that the fast process of the dual-rate model can be interrupted

by a declarative memory task. In this study, the authors had participants perform a 3-

minute declarative memory task in between the counter-exposure phase and the channel

trial phase of a spontaneous recovery paradigm. Rather than observing spontaneous

recovery in the channel trial phase, the authors observed a monotonically decaying

adaptation trace that resembled the slow process of the dual-rate model. Therefore,

they concluded that the fast process had been disrupted by the memory task and

that this disruption implies that the fast process shares resources with the declarative

memory system. Interestingly, the monotonically decaying adaptation trace that they

observed looks very similar to the trace that we observe following evoked recovery.

Hence, the NSSSM offers an alternative interpretation of their data, namely, that the

declarative memory task, like the P+ trials in the evoked recovery paradigm, altered

or disrupted the context estimate. This implies that the declarative memory system

is involved in context estimation. In the NSSSM, the context estimate is made up

of multiple terms including one that depends on the previous context (how common

each context transition is) and one that is independent of the previous context (how

common each context is). One could speculate that the declarative memory task erases

the memory of the previous context, P−, causing the context estimate to depend only

on the most frequently encountered context, P+. Indeed, recent work has suggested

that the prefrontal cortex can be viewed a recurrent neural network that learns the

statistical structure of tasks (Wang et al., 2018), and so it is conceivable that this
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brain region plays an important role in learning context transitions in motor tasks and

performing Bayesian context estimation.

In the next chapter, we test another prediction of the NSSSM, that the partitioning of

learning between memories and the expression of learning are determined by Bayesian

context estimation.



Chapter 6

Bayesian context estimation underlies

single-trial learning

6.1 Introduction

The NSSSM introduced in Chapter 4 suggests that the belief about the context after

the movement should influence which memories are updated in response to errors.

It also predicts that the motor output (that is, the expression of learning) should

depend on the prior belief about the context before the movement. In this chapter, we

test these predictions by investigating how the posterior probability of each context

influences single-trial learning and how the prior probability of each context affects the

subsequent expression of learning.

According to the NSSSM, the posterior probabilities determine how much each mem-

ory is updated when a perturbation is experienced (i.e., how learning is partitioned

across memories). The NSSSM assumes that only one perturbation—the perturbation

associated with the current context—influences the state feedback. Therefore, after

observing the state feedback, if the current context is known, only the estimate of the
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perturbation associated with this context should be updated:

x̂j
t|t(ct) =

x̂j
t|t−1 + kj

t (yt − x̂j
t|t−1) if ct = j

x̂j
t|t−1 if ct ̸= j,

(6.1)

where x̂j
t|t−1 and x̂j

t|t are the predicted and updated estimates of the perturbation

associated with context j; kj
t is the Kalman gain for context j; yt is the state feedback;

and ct is the current context.

However, in general, the context is not known and must be inferred. This uncertainty

can be dealt with in a Bayesian manner by calculating a weighted average of updates

across contexts:

x̂j
t|t =

∑
j

p(ct = j|y1:t, q1:t)x̂j
t|t(ct)

= x̂j
t|t−1 + p(ct = j|y1:t, q1:t)kj

t︸ ︷︷ ︸
effective learning rate

(yt − x̂j
t|t−1),

(6.2)

where the weights are given by the posterior probabilities of the contexts. The update

rule in equation 6.2 is governed by three factors: the discrepancy between the predicted

and actual state feedback (prediction error), the Kalman gain (learning rate), and the

posterior probability that the perturbation generated the state feedback (responsibility).

The posterior probability effectively scales the Kalman gain for each context, giving rise

to an effective learning rate that lies between kj
t (certain that ct = j) and zero (certain

that ct ̸= j). The posterior probability of each context is calculated by combining the

prior probability of each context with the likelihood via Bayes’ rule:

p(ct = j|y1:t, q1:t)︸ ︷︷ ︸
posterior

∝ p(ct = j|y1:t−1, q1:t)︸ ︷︷ ︸
prior

p(yt|ct = j, y1:t−1, q1:t)︸ ︷︷ ︸
likelihood

. (6.3)

The prior probability of each context is calculated before the movement and depends

on the contextual cue (qt), whereas the likelihood is calculated after the movement and



6.2 Methods 127

depends on the state feedback (yt). Therefore, different combinations of contextual

cues and state feedback will produce different posterior probabilities and hence different

effective learning rates.

Here we test this prediction by examining single-trial learning under different combina-

tions of contextual cues and force fields. We build on Chapter 3 by associating left and

right control points on an object with CW and CCW force fields. We present control

points and force fields that are either consistent or inconsistent with these trained

associations and examine single-trial learning.

6.2 Methods

6.2.1 Participants

A total of 24 neurologically intact participants (10 males and 14 females; age 26.4

± 4.2, mean ± s.d.) were recruited to participate in the experiment, which had

been approved by the Cambridge Psychology Research Ethics Committee and the

Columbia University IRB. All participants provided written informed consent and were

right-handed according to the Edinburgh handedness inventory (Oldfield, 1971).

6.2.2 Apparatus

All experiments were performed using a vBOT planar robotic manipulandum with a

virtual-reality system and air table, which have been described in Chapters 2 and 3.
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6.2.3 Experiment

The aim of this experiment was to elucidate the relationship between context estimation

and single-trial learning. We investigated whether context estimation depends on both

the contextual cue (q1 or q2) and the perturbation (P+ or P−) and whether the context

estimate modulates single-trial learning.

Paradigm

In all experiments, participants first performed a familiarisation phase of 80 trials

consisting of null-field trials and channel trials for each contextual cue in a pseudoran-

domised order.

Participants began the experiment with a pre-training phase (Fig. 6.1). There were 4

blocks in the pre-training phase and each block contained 4 mini-blocks. Each mini-

block was composed of a series of null-field trials followed by 1 triplet (Fig. 6.2). The

null-field trials in each mini-block contained an equal number of both contextual cues

presented in a pseudorandom order. The number of null-field trials in each mini-block

was uniformly sampled without replacement from {8, 10, 12}; whenever the sample

space emptied it was replenished. Each triplet type was presented once per block

in a pseudorandom order. Note that there was no consistent relationship between

contextual cues and force fields in the pre-training phase, as each triplet type was

presented an equal number of times.

The pre-training training phase was followed by the training phase. There were 24

blocks in the training phase. Each block included the following sequence of trials:

2 channel trials; 32 force-field trials; 2 channel trials; 14, 16 or 18 null-field trials; 1

triplet; 6, 8 or 10 null-field trials; and 1 triplet. Each pair of channel trials presented

each contextual cue once in an order that was counterbalanced every block. The 32

force-field trials were composed of 4 mini-blocks of 8 trials. Each mini-block contained
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Figure 6.1. Experimental paradigm. In the pre-training phase, all 4 triplet types
(filled bars) were presented in between null-field trials. The control point and the force
field of the exposure trial of each triplet is denoted by the colour and direction of
the filled bars, respectively. The red and blue colours also indicate the identity of
the contextual cue on null-field and force-field trials outside of the triplets. During
the force-field trials of the training phase, 2 cue-field associations were presented in a
pseudorandom order. These trials were followed by null-field trials and then 2 triplets.
The exposure trials of the triplets used the same cue-field pairs that were presented
in the force-field trials. The post-training phase repeated the pre-training triplet
paradigm.

an equal number of both force fields (P+ and P−) presented in a pseudorandom order.

There was a one-to-one mapping between the force fields and the contextual cues. This

mapping was preserved across blocks. The force field associated with each contextual

cue was counterbalanced across participants. The mini-blocks of null-field trials that

preceded each triplet contained an equal number of both contextual cues presented

in a pseudorandom order. The number of null-field trials was uniformly sampled

without replacement from the sample spaces described above, which were replenished

whenever they emptied. The exposure trials of the triplets employed the same cue-field

relationships that participants were trained on in the force-field trials. Thus, only 2

of the 4 triplet types were presented in the training phase. The order in which each

triplet type was presented in a block was counterbalanced every block. A 60 s rest

break was given after every 3 blocks during the training phase. After each rest break,

8 null-field trials were performed in which the contextual cues were presented in a

pseudorandom order.
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Contextual cue

Channel Exposure Channel

Figure 6.2. Triplets. On each trial, a target appeared either on the left or on the
right and participants were instructed to move the corresponding left (q1) or right (q2)
control point on a virtual object to the target. Both instructions required the same
movement of the arm. Two possible force fields (P+ or P−) could be applied on each
trial. To examine single-trial learning, we used a triplet probe in which an exposure
(force-field) trial was performed in between two channel trials (both associated with
q1). The exposure trial could be one of 4 types based on all combinations of force
fields (P+ or P−) and contextual cues (q1 or q2). Single-trial learning was calculated
as the change in adaptation across the channel trials, with positive single-trial learning
indicating increased adaptation to the force field presented on the exposure trial.

The training phase was followed by the post-training phase. The post-training phase

started with 2 channel trials, 32 force-field trials, and 2 channel trials (just as in the

training phase). Thereafter, the post-training phase was the same as the pre-training
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phase, bar the following two exceptions. First, there were 2, 4 or 6 null-field trials

between each triplet. Second, 8 blocks were performed instead of 4.

6.2.4 Data analysis

Data analysis was performed using MATLAB R2018b. Adaptation was measured on

channel trials as the percentage of the force field that was compensated for, as described

in Chapter 2.

To measure single-trial learning, we used a triplet probe consisting of a channel trial,

an exposure (force-field) trial and a channel trial, in that order (Castro et al., 2014;

Herzfeld et al., 2014). Single-trial learning (STL) was calculated as the change in

adaptation from the first channel trial to the second second channel, where adaptation

was calculated with respect to the force field presented on the exposure trial.

The exposure trial of the triplet could be one of 4 types based on different combinations

of the force-field direction and the contextual cue. Thus, there were 4 triplet types

in total. We refer to the field-cue pairings on the exposure trials of these triplets as

P+q1, P+q2, P−q1, P−q2. The same contextual cue (q1) was presented on both channel

trials of the triples. The control point associated with q1 was counterbalanced across

participants.

To identify changes in adaptation between triplets, repeated-measures ANOVAs and

paired t-tests were performed. All statistical tests were two-sided with significance set

to P < 0.05. Where values are reported, they represent the mean ± s.e.m.
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6.3 Results

Throughout the experiment we used triplets to measure single-trial learning. Although

the middle exposure trial of each triplet varied across triplets, the bracketing channel

trials were always performed with the same contextual cue q1 (the control point

associated with q1 was counterbalanced across participants).

In the pre-training phase, participants performed multiple repetitions of all triplet types,

which were interspersed between null-field trials. The field-cue pairings presented on

the exposure trials of these triplets could be P+q1, P+q2, P−q1 or P−q2. Fig 6.3b shows

single-trial learning in the pre-training phase. There was no significant different in single-

trial learning across the 4 triplets (repeated-measures ANOVA, F3,69 = 1.87, P = 0.142).

If participants believed a priori that control points were informative of the perturbation,

we would expect them to express more learning for the triplets with cue q1 on the

exposure trial, as cue q1 was also presented on the neighbouring channel trials. The

lack of such an effect suggests that participants did not hold such a belief at the start

of the experiment.

In the training phase, participants experienced a consistent pairing of field and cue,

that is P+q1 and P−q2 trials, and we used triplets with these same two combinations to

assess single-trial learning. Although, in the pre-training phase there was no significant

difference between the these two triplets (paired t-test, t23 = 1.71, P = 0.100), the

two triplets diverged over the training phase. Fig 6.4 shows single-trial learning for

the P+q1 (red) and P−q2 (blue) triplets over the course of the experiment (note that

positive values of single-trial learning reflect adaptation to the field experienced on the

exposure trial of the triplet). Single-trial learning increased for the P+q1 triplet and

decreased for the P−q2 triplet. This suggests that participants learned that the control

points were informative of the context, as they became able to differentially express

learning based on whether the cue on the exposure trial of the triplet was the same as
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Figure 6.3. Bayesian context estimation modulates single-trial learning. a,
Single-trial learning was calculated as the change in adaptation across the channel trials
of a triplet, with positive single-trial learning indicating increased adaptation to the
force field presented on the exposure trial. b, Single-trial learning for all combinations
of cues and fields in the pre-training phase. Note that cue q1 was presented on the
channel trials of all triplets, and that this is crucial to the interpretation of the data.
Positive values of single-trial learning reflects adaptation to the field experienced on
the exposure trial of the triplet. Data averaged over all repetitions of each triplet and
plotted as mean ± s.e.m. c, Same as b but for the fit of the NSSSM. d, The posterior
probability, prior probability and normalised likelihood of context 1 (see text) on the
exposure trial of each triplet in the NSSSM. The posterior probability is obtained by
combining the prior and the likelihood via Bayes’ rule. Probabilities were averaged
over blocks 2-4 of the pre-training phase and plotted as mean ± s.e.m. Block 1 was
excluded as P+ (context 1) may not have been experienced on some of the triplets.
Note that although we only show the probabilities for context 1, the probabilities for
context 2 are implied by symmetry. For example, the probabilities for context 1 on
the exposure trial of the P+q1 triplet are approximately equal to the probabilities for
context 2 on the exposure trial of the P−q2 triplet, and the probabilities for context 1
on the exposure trial of the P+q2 triplet are approximately equal to the probabilities
for context 2 on the exposure trial of the P−q1 triplet etc. The probabilities for the
null-field context are equal to 1 minus the probabilities of contexts 1 and 2 summed
together. e–g Same as b–d but for the post-training phase.
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Figure 6.4. Single-trial learning for the training cue-field pairs throughout
the experiment. Single-trial learning for the P+q1 triplet (red) and the P−q2 (blue)
triplet in the pre-training, training (grey background) and post-training phases. Cue q1

was presented on the channel trials of both triplets. Data are plotted as mean ± s.e.m.
The solid lines show the mean NSSSM fit across participants. The model explains
78.0% of the variance of the data.

the cue on the neighbouring channel trials of the triplet. By the last two blocks of the

training phase, single-trial learning was significantly different between the two triplet

types (paired t-test, t23 = 4.72, P = 9× 10−5).

Finally, and key to the study, the post-training phase examined all four triplet types

again (as in the pre-training phase). How might single-trial learning now differ across

the triplet types? The training phase has repeatedly presented two contexts of central

importance: P+q1 (context 1) and P−q2 (context 2). On the exposure trial of a triplet,

the learner must infer the context, and then update the memories for context 1 and

context 2 based on this inference. Both memories may be updated on the exposure

trial. However, the memory for context 1 will be preferentially expressed on the channel

trials of the triplets, as cue q1 is presented on these trials. Therefore, single-trial

learning should be greatest when the posterior probability of context 1 on the exposure

trial is greatest. This means that single-trial learning should be greatest for P+q1, as

both the field and the cue are more probable in context 1; smallest for P−q2, as both

the field and the cue are more probable in context 2; and intermediate for P+q2 and
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P−q1, as the field and cue are more probable in different contexts (i.e., the contextual

information is conflicting).

Fig 6.3e shows single-trial learning in the post-training phase for all four triplets.

A gradation in the levels was observed, suggesting that both the force field and

the control point contributed to context estimation (repeated-measures ANOVA,

F3,66 = 15.30, P = 1× 10−7). As predicted, single-trial learning was greatest for P+q1,

smallest for P−q2, and intermediate for P+q2 and P−q1. Interestingly, single-trial

learning was greater for P+q2 compared with P−q1, implying that the force field may

have been more informative of the context than the contextual cue.

We fit the NSSSM model to the average data across participants. The model correctly

instantiated three contexts—one for the null field and one each of the two force fields.

In the pre-training phase, there is little difference in single-trial learning across the

triplets (Fig 6.3c). On the exposure trial of each triplet, the prior probability of context

1 (and by symmetry context 2) is independent of the cue presented (Fig 6.3d prior),

and hence the contextual cue is uninformative of the context. The uninformativeness

of the cue arises because the cue emission distributions are the same across all contexts

a priori—in the NSSSM, an uninformative cue is a cue that is equally probable in all

contexts. The likelihood of context 1 depends on the force field presented (Fig 6.3d

likelihood), and hence, in contrast to the cue, the state feedback is highly informative of

the context. This results in a posterior distribution over contexts that is concentrated

on context 1 or context 2 depending on the force field (Fig 6.3d posterior), and hence

learning is predominantly assigned to one of these contexts. Crucially, the amount

of learning that is expressed on the subsequent channel trial depends on the prior

probability of each context, which determines how much each memory contributes to

the motor output. Because the contextual cue is uninformative, the prior probabilities

of contexts 1 and 2 are approximately the same on the channel trial, and so the

memories of contexts 1 and 2 contribute equally to the motor output. Therefore, the

expression of learning on the channel trial is independent of the partitioning of learning
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between contexts 1 and 2 on the previous exposure trial, resulting in similar amounts

of single-trial learning across the triplets.

The small prior probability of context 1 (and context 2) (Fig 6.3d prior) implies that

the null-field context— which has been encountered most often—is the most probable

context prior to movement. The high prior probability of the null-field context at this

early stage of the experiment produces a relatively low amount of single-trial learning

(Fig 6.3c).

The NSSSM is able to reproduce the divergence in single-trial learning between the

P+q1 and P−q2 triplets in the training phase (Fig. 6.4 solid lines). This occurs as the

context-specific cue emission distributions are updated during training. Because the

model learns that q1 is more probable in context 1, it expresses more of the memory

of context 1 and less of the memory of context 2 on the channel trials of the triplets

(in which q1 is presented). This results in an increase in single-trial learning for the

P+q1 triplet (where learning is predominantly assigned to context 1) and a decrease in

single-trial learning for the P−q2 triplet (where learning is predominantly assigned to

context 2). The NSSSM accounts for 78.0% of the variance for single-trial learning in

these two triplets throughout the experiment.

In the post-training phase, single-trial learning in the NSSSM (Fig. 6.3f) shows the

same gradation as the empirical data. Because the cue emission probabilities are

updated during training, the prior probability of context 1 on the exposure trial of the

triplet now depends on the contextual cue presented, and so the prior exhibits two

levels (one for each cue) (Fig. 6.3g prior). As in the pre-training phase, the likelihood of

context 1 also exhibits two levels (one for each force field) (Fig. 6.3g likelihood). When

the two levels of the prior and the likelihood are combined via Bayes’ rule, a posterior

with four levels is produced (Fig. 6.3g posterior). Because the cue is informative of

the context, the prior probability of context 1 on the channel trial (in which q1 is

presented) is greater than the prior probability of context 2, and so the memory of



6.4 Discussion 137

0 5 10 15 20 25 30
Single-trial learning (%) data

0

5

10

15

20

25

30

S
in

gl
e-

tr
ia

l l
ea

rn
in

g 
(%

) 
N

S
S

S
M

P+q1

P+q2

P-q1

P-q2

Pre
Post

Figure 6.5. Comparison of single-trial learning between the empirical data
and the NSSSM. The plot shows NSSSM fits vs. empirical single-trial learning for
all four triplets of the pre-training (triangles) and post-training (circles) phases. Data
averaged over all repetitions of each triplet and plotted as mean ± s.e.m. Some error
bars are contained within the symbols. The model explains 74.0% of the variance of
the data.

context 1 contributes more to the motor output than the memory of context 2. Hence,

the expression of learning on the channel trial now depends on the partitioning of

learning between contexts 1 and 2 on the previous exposure trial. This allows the four

levels of the internal memory updates induced by the posterior to manifest as four

levels of single-trial learning.

The NSSSM explains 74.0% of the variance for single-trial learning across all four

triplets during the pre- and post-training phases (Fig 6.5).

6.4 Discussion

In this experiment, we used single-trial learning as a window into context estimation.

This allowed us to dissect the contributions of cues and state feedback to context

estimation and validate a number of key predictions of the NSSSM. First, we showed that

learning is partitioned between context-specific memories in a Bayes-optimal manner,
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that is, single-trial learning was proportional to the posterior context probability.

Second, we showed that both the force field and the contextual cue are used to infer

the context. Third, we showed that the effectiveness of contextual cues is not fixed but

can adapt to the environment.

The idea that learning within internal models should be gated by context probabilities

has been proposed before. In the MOSAIC model (Haruno et al., 2001; Wolpert and

Kawato, 1998), internal models are trained via error signals that are scaled by their

posterior probabilities. These posterior probabilities are referred to as responsibility

signals. Responsibility signals are not unique to the MOSAIC model. They are a

feature of all models that switch between multiple discrete latent states (e.g., Gaussian

mixture models, the hidden Markov model, the switching state-space model), where

they represent the posterior probability that a particular state generated the current

observation. Importantly, the MOSAIC model did not provide experimental evidence

of responsibility signals in human motor learning. Here we provide experimental

evidence that responsibility signals do indeed gate human motor learning. Progress on

this question was made possible by the recently developed triplet assay of single-trial

learning (Castro et al., 2014; Herzfeld et al., 2014).

Note that the NSSSM is richer than the MOSAIC model in two key respects. First,

the NSSSM contains an explicit model of how perturbations evolve over time, whereas

the MOSAIC model does not. Therefore, memories in the NSSSM can be forgotten or

drift over time, even in the absence of errors. In contrast, memories in the MOSAIC

model do not change in the absence of errors. Second, the number of contexts and

cues in the NSSSM is learned online, whereas the number of modules in the MOSAIC

model is specified in advance and fixed. Therefore, while the NSSSM can adapt its

complexity to the environment, the MOSAIC model cannot.

We found that participants were able to learn to use contextual cues to infer the current

context. Initially, control points had no effect on single-trial learning. However, once



6.4 Discussion 139

each control point had been paired with a different force field in the training phase,

differences in single-trial learning emerged between the triplets. This suggests that

the control points became able to preferentially weight some memories over others

during the expression of learning. This raises the question of why some contextual

cues (e.g., control points) can become effective with training and others (e.g., colours)

can’t (Gandolfo et al., 1996; Howard et al., 2013; Krakauer, 2009). One possibility is

that participants enter the laboratory with strong prior beliefs about particular cues

and their informativeness. For example, a participant may have experienced the color

red with both heavy and light objects before, rendering it an uninformative cue, and a

typical experiment may be too short to overcome this prior experience. However, it

should be possible to overwhelm prior experience with evidence. In support of this view,

color cues can facilitate adaptation to multiple dynamic contexts following extensive

training over several days (Addou et al., 2011; Krouchev and Kalaska, 2003; Wada

et al., 2003).

The post-exposure phase demonstrated that single-trial learning was modulated by

both the force field direction and the contextual cue. This finding cannot be explained

by models that assume that the contextual cue alone determines how much to update

each memory (Kim et al., 2015; Lee and Schweighofer, 2009). Recently, Ingram et al.

(2017) developed an ‘error-tuned model’ for sensorimotor learning that consisted of a set

of primitives that were each able to compensate for errors in a single direction. When

a kinematic error was experienced, each primitive updated its adaptive state based

on two factors: i) the contextual tuning of the primitive to a visual cue; and ii) the

ability of the primitive to reduce the kinematic error. While this superficially resembles

the integration of contextual cues and state feedback in the NSSSM, a number of

important differences should be noted. First, the error-tuned model is a mechanistic

model, whereas the NSSSM is a normative probabilistic model. Second, the contextual

tuning and preferred direction of each primitive in the error-tuned model are fixed

from the start and do not change with experience. In contrast, in the NSSSM, the

relationship between contexts and cues is learned online by estimating the cue emission
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counts. Moreover, the relationship between contexts and perturbations is also learned

online as the likelihood of each context depends on the time-varying estimate of the

perturbation. These differences mean that the NSSSM has greater learning capabilities

and flexibility compared to the error-tuned model, which has several hand-crafted

features.



Chapter 7

Conclusion

The aim of this thesis was to investigate sensorimotor learning under switching dynamics,

including switching from unperturbed to perturbed and switching between different

perturbations. We first examined the role that muscle co-contraction plays in learning

dynamics. When the dynamics of the motor plant undergo an abrupt switch (e.g.,

following the introduction of a force field), motor performance worsens, causing muscle

co-contraction to increase. It is well known that muscle co-contraction leads to an

immediate improvement in task accuracy, as the motor plant is more robust to external

perturbations and intrinsic noise. In Chapter 2, we demonstrated an additional

benefit, namely, that muscle co-contraction increases the rate of dynamic learning.

We speculated that this increase in learning might arise as muscle co-contraction

concentrates learning in the region of state-space close to the final solution.

The remaining chapters focused on learning multiple perturbations. In Chapter 3

we explored how controlling different locations on a tool affected dynamic learning.

Flexible and dexterous tool use relies on the ability to learn the dynamics of objects.

It has been assumed that objects dynamics are learned in a holistic way, that is, once

the dynamics of an object are learned, one can manipulate the object in a variety of

different scenarios (e.g., hitting, balancing, cleaning). Contrary to this view, we found
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that learning to manipulate an object depends in a fundamental way on the point

on the object that a person controls. For example, when a person strikes a ball with

the midpoint vs. the tip of a bat, different motor memories are engaged, even if the

motion of the hand and the bat are identical for either control point. This suggests

that objects are not represented in the sensorimotor system as holistic entities, but

rather in terms of the specific tasks and control problems that they are being used to

perform.

We modeled this learning using a switching state space model in which the cues (control

points) and sensory feedback were used to estimate which of the two context (dynamic

perturbations) was likely to experience. Although this model fit the data well, it had

the weakness that we specified the number of contexts and cues in the model to be the

same as in the experiment. In Chapter 4, we relaxed this assumption by developing a

nonparametric version of the model which does not pre-specify the number of contexts

or cues but has to estimate these as part of the learning process.

This novel normative model of sensorimotor learning departed substantially from

previous models. The model has five key innovations. First, we generalised the Kalman

filter to environments with multiple switching contexts that are observed indirectly

via state feedback and contextual cues. Second, we assumed that participants do

not know the number of contexts or cues in the environment and must learn these

online from experience. Third, we treated the parameters of the model as latent

variables and model motor adaptation as combined Bayesian state and parameter

estimation. This produces rich temporal behaviour on multiple timescales and increases

the expressiveness of the model. Fourth, we introduced a new parameter called drift

that can capture perturbations that increase over time (e.g., when muscles become

fatigued with exertion). Fifth, we incorporated fictitious observations into channel trials,

which support learning. The NSSSM provided a unifying explanation of phenomena

such as spontaneous recovery and the effect of environmental consistency and context

transition frequencies on single-trial learning.
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In Chapter 5, we directly tested the NSSSM interpretation of spontaneous recovery.

The NSSSM assumes that spontaneous recovery reflects the re-expression of a memory

acquired in a previous context. This re-expression relies on Bayesian context estimation.

Because there is no strong contextual information in channel trials, the re-expression

is gradual. By briefly presenting two force-field trials early in the channel trial phase,

we were able to produce rapid re-expression of the memory, which we refer to as

‘evoked recovery’. Model comparison showed that the NSSSM was a superior fit to

the data than the the multi-rate state-space model, which is typically used to explain

spontaneous recovery.

The NSSSM specifies how sensory cues and sensory feedback should affect context

estimation and how this should change with experience. In Chapter 6, we investigated

these predictions of the model. Knowledge of the context allows the learner to i) engage

the appropriate context-specific memory during movement and ii) assign responsibilities

to context-specific memories when a movement is perturbed. We used single-trial

learning as a window into context estimation. The NSSSM predicted that single-trial

learning would be modulated by both contextual cues and state feedback as both

influence context estimation. We confirmed this prediction. We also confirmed that

control points only become effective as contextual cues once they have been paired

with different perturbations.

7.1 Future directions

In a non-switching state-space model, there is only one state, and so the origin of

each observation is known. This allows exact inference to be performed in closed-form

using a Kalman filter. In contrast, in a switching state-space model, multiple states

co-exist, and so the origin of each observation is unknown. Hence, exact inference

in the switching state-space model—even when the number of contexts is known—is

intractable. This leads to a well-known problem called the data association problem
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(Bar-Shalom et al., 2009). Knowing the origin of each observation is crucial, as it

determines which state to update following an observation. In the absence of such

knowledge, one must consider all possible assignments of observations to states, which

is computationally infeasible. For example, the number of possible associations of T

observations to C states is CT . Therefore, approximate inference schemes are required.

An interesting line of future research would be to investigate what kinds of approxima-

tions the brain makes to tackle intractable inference problems. Approximate Bayesian

inference can be performed using either deterministic (e.g., variational Bayes) or

sampling-based (e.g., Sequential Monte Carlo) algorithms (Bishop, 2006). In this thesis,

we provided examples of both: the parametric SSSM in Chapter 3 used a deterministic

algorithm known as the generalized pseudo-Bayesian estimator of order 1 (GPB1), and

the nonparametric SSSM in Chapter 4 used a sampling-based algorithm known as

particle learning. However, we make no claims at the algorithmic level. Instead, we

draw conclusions at the computational level concerning the types of generative models

that people build and the kinds of inferences that they perform in those generative

models. It remains an open question whether studies of behaviour can shed light on

the algorithms used by the brain, as different algorithms that realise or approximate

the same computation may produce indistinguishable behaviour. Hence, progress at

the algorithmic level may require converging evidence from behavioural experiments,

imaging studies and neural recordings.

The NSSSM has a number of limitations that should be addressed in future research.

For example, although the parameters of the NSSSM can be learned online, we

assumed that the true parameters being learned are static (i.e., time-invariant). This

simplifying assumption is unlikely to be true, particularly over long timescales. An

obvious extension of the model would be to assume that the parameters—like the

perturbations—vary over time. The time evolution of the parameters could be described

by a transition function that itself has parameters. In principle, these higher-level

parameters could also evolve over time, perhaps on a slower timescale. Thus, it is



7.1 Future directions 145

possible to construct deep hierarchical state-space models, in which the parameters at

each level determine the time evolution of the parameters at the level below (Mathys

et al., 2011, 2014). Additional temporal richness could also be added by modelling each

perturbation as a vector that is composed of fast and slow (and ultra-slow, hyper-slow

etc.) states. In a nonparametric setting, the dimensionality of each perturbation could

also be learned online (Fox et al., 2011a).

Once a memory has been instantiated in the NSSSM, it persists forever. This is because

the NSSSM assumes that new contexts can be added but old contexts can never be

removed. Hence, the number of contexts is a monotonically increasing function of time.

This may not be an accurate description of the real world, in which contexts both

come and go (i.e. a perturbation you will never experience again such as the last time

you snowboard). An alternative model that addresses this shortcoming is the multiple

target tracking model (Vo and Ma, 2006). In the multiple target tracking model, there

are an unknown and time-varying number of targets (e.g., perturbations), whose latent

states and parameters need be estimated from observations of unknown origin (Yıldırım

et al., 2015). At each point in time, new targets can be born, and existing targets can

die. When a target disappears from the environment, the memory associated with that

target is no longer needed and can be removed. The removal of superfluous memories

reduces the complexity of inference and frees up memory resources. However, the

multiple target tracking model has its own shortcomings. For example, there is no

notion of context transition probabilities, that is, the probability of observing a target

on one trial does not depend on the target that was observed on the previous trial. An

interesting direction for future research would be to merge the NSSSM and the multiple

target tracking model into a single framework that incorporates desirable features of

both models, such as the death of targets and Markovian transition probabilities.

Many tasks involve sequences of subtasks that are coordinated to achieve higher-level

goals. Consider making a cup of tea, which involves boiling water, which in turn

involves turning on a stove, filling a kettle, etc. Hierarchical models can support
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efficient representations of such tasks and facilitate the discovery of new adaptive

behaviors (Solway et al., 2014). The switching state-space model could be extended

to environments with hierarchically-organised contexts. In a two-level hierarchy, the

high-level context could determine the parameters of the hidden Markov model (e.g.,

the context transition probabilities and cue emission probabilities) at the level below,

and the low-level context could determine which perturbation is observed. Thus,

both the parameters of the hidden Markov model at the lower level and the observed

perturbation can switch. Such a model could account for paradigms when the context

transitions probabilities themselves switch over time (e.g., Experiment 2 in Herzfeld

et al., 2014).

The state-space framework reduces the problem of learning a control policy in a

high-dimensional state and action space to the abstract problem of estimating a low-

dimensional perturbation. While this simplification helps to distill certain high-level

processes, it also discards many details that make motor learning hard. For example, it

does not address the curse of dimensionality, the exploration-exploitation dilemma and

the temporal credit assignment problem. An interesting future direction would be to

incorporate the NSSSM into a reinforcement learning algorithm that learns to control

an anthropomorphic limb in simulation (e.g., using the MuJoCo physics engine). In

the nonparametric setting, the dynamics of the limb could switch between an unknown

number of probabilistic forward models. The agent could learn multiple context-specific

dynamics models, value functions and control policies and perform state estimation,

planning and real-time control to maximise a task-relevant reward function, such as the

negative cost function of OFC. The richer state and action space as well as the ability

to plan would allow new questions to be investigated with respect to sensorimotor

learning under switching dynamics.

In conclusion, this thesis has provided novel experimental results which we have

interpreted within a new framework, the NSSSM. This has led to predictions that we

have experimentally confirmed.
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Appendix A

Instructions to participants in the

muscle co-contraction experiment

Instructions to the stiff group (provided prior to commencement of the pulse phase)

I’m now going to describe the next phase of the experiment. Each trial will start when

you place the green cursor in the center of the white home position. A brief force will

then be applied to the handle of the robot in a randomly chosen direction. This will

only last for half a second. Your task will be to keep the handle as still as possible. To

keep the handle still, you will need to stiffen up your arm by tensing the muscles in

your hand, arm and chest. If on one trial you get pushed outside of the red ring that

surrounds the white home position, you should try to stiffen up more on the next trial

to help you stay within the ring. Ideally, you should keep the handle as still and as

close to the center of the white home position as possible. Once you have completed

this phase of the experiment, all subsequent trials will be similar to the ones you’ve

just done; that is, they will involve you making straight reaching movements to one of

four targets. However, at some point your movements will be unexpectedly thrown off

course by forces generated by the robot. Your task will be to keep your movements as

straight as possible. In particular, you should try to stay as close as possible to the
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red lines that lead from the home position to the targets. You may find that stiffening

up your arm will help you to do this. If at any point you feel as though your arm is

too sore or tired, just let me know and you can have a rest break immediately. You

will automatically get a rest break every 5 minutes though and ideally you should wait

until then in order to allow the experiment to run smoothly.

Instructions to the relaxed group (provided prior to commencement of the pulse phase)

I’m now going to describe the next phase of the experiment. Each trial will start when

you place the green cursor in the center of the white home position. A brief force

will then be applied to the handle of the robot in a randomly chosen direction. This

will only last for half a second. You should let your hand move freely to wherever

the handle takes it. To do this, you should relax the muscles in your arm as much

as possible so that you don’t provide any resistance to the handle as it moves. Once

the handle has stopped the robot will automatically bring you back to the central

home position. Once again, you should keep your arm as relaxed as possible when this

happens. Throughout all the trials of this phase you will see a red ring surrounding

the white home position. This ring has no relevance and you should ignore it. Once

you have completed this phase of the experiment, all subsequent trials will be similar

to the ones you’ve just done; that is, they will involve you making straight reaching

movements to one of four targets. However, at some point your movements will be

unexpectedly thrown off course by forces generated by the robot. Try not to stiffen

up when this happens. If you relax your arm you will find that your movements will

naturally become straighter as you adapt to the forces.

Instructions to the control group (provided prior to commencement of the experiment)

At some point during the experiment, your movements will be unexpectedly thrown

off course by forces generated by the robot. When this happens, keep trying to reach

the target, and you will find that you will naturally adapt to the forces over time.



Appendix B

The parametric switching state-space

model

B.1 State inference

Several techniques have been developed to infer the joint state, {ct,xt}, of an SSSM

(Ackerson and Fu, 1970; Bar-Shalom et al., 2004; Chang and Athans, 1978; Doucet

et al., 2001; Ghahramani and Hinton, 2000; Shumway and Stoffer, 1991). Here, we focus

on a technique known as the generalized pseudo-Bayesian estimator of order 1 (GPB1)

(Bar-Shalom et al., 2004), which we adapt for an SSSM in which the context, ct, emits

observable cues qt. The GPB1 is an assumed-density filtering method that approximates

the exact posterior of the state (a mixture of Gaussians with ml components, where m

is the number of modes and l is the number of trials) with a single Gaussian.

To maintain an estimate of the state, two Kalman filters operate in parallel (Fig. 3.2).

Each filter has a different observation vector, h(j) (defined in the text), and is thus

specialized for a different context; all remaining parameters are the same for both

filters. On trial t, both filters operate on the same Gaussian estimate of the continuous
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state from the previous trial, with mean x̂t−1|t−1 and covariance V t−1|t−1, to generate

a Gaussian estimate of the continuous state on the current trial, with mean x̂
(j)
t|t and

covariance V
(j)
t|t . This produces a mixture of Gaussians with mixing weights given by

the probability of each context γ(j)
t . Because the number of possible context sequences

doubles with every trial, the number of components in this mixture will also double if

no approximations are made, making inference intractable. Therefore, after each trial,

the mixture of Gaussians is approximated by a single Gaussian via moment matching

(Fig. 3.2), rendering inference tractable but approximate.

Upon observation of the contextual cue qt, but prior to movement, the probability of

each context (assuming equiprobable context transitions) is

ρ
(j)
t =

ϕqtj∑2
j′=1 ϕqtj′

. (B.1)

The predicted observation used for control is

ŷt =
2∑

j=1

ρ
(j)
t ŷ

(j)
t , (B.2)

where ŷ
(j)
t = h(j)x̂

(j)
t|t−1 is the observation predicted for each context. We assume that

the predicted observation is expressed through a motor action that is corrupted by

zero-mean Gaussian noise (see Model Fitting).

After the movement, the likelihood of the observation yt given each context is

λ
(j)
t = N (yt|ŷ(j)t , σ

2(j)
t ). (B.3)

Here, we use N (yt|ŷ(j)t , σ
2(j)
t ) to denote the probability density function for the normal

distribution with mean ŷ
(j)
t and variance σ

2(j)
t , where σ

2(j)
t is the standard Kalman

filter innovation covariance. The final probability of each context is given by Bayes’
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rule:

γ
(j)
t =

λ
(j)
t ρ

(j)
t∑2

i=1 λ
(i)
t ρ

(i)
t

. (B.4)

Finally, a single Gaussian estimate of the perturbations is obtained via moment

matching:

x̂t|t =
2∑

j=1

γ
(j)
t x̂

(j)
t|t , (B.5)

V t|t =
2∑

j=1

γ
(j)
t {V (j)

t|t + [x̂
(j)
t|t − x̂t|t][x̂

(j)
t|t − x̂t|t]

T}. (B.6)

B.2 Parameter learning

To learn the cue emission probabilities, we perform expectation maximization (EM)—an

iterative method for obtaining maximum-likelihood estimates of unknown parameters

in probabilistic models involving latent variables (Dempster et al., 1977). We utilize

an online formulation of EM that can be interpreted as a stochastic approximation

recursion on the expected complete-data sufficient statistics. A detailed description of

this method can be found in refs (Cappé, 2011; Cappé and Moulines, 2009). Here we

provide a brief outline as applied to our perturbation study.

The algorithm iterates between an E step, in which the joint probability of ct and qt is

estimated, and an M step, in which the joint probability of ct and qt is normalized to

obtain the probability of qt given ct.

B.2.1 Stochastic E step

The aim of the E step is to count the number of times that each value of ct and qt

co-occur. If both ct and qt were known, this would involve summing (over trials) a
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count of these co-occurrences:

S l =
l∑

t=1

St(qt, ct), (B.7)

where the matrix St(qt, ct) is the complete-data sufficient statistic for a multinomial

distribution and has a single unity entry defined by the indicator function

st(qt, ct)kj =

1 if qt = k, ct = j

0 otherwise.
(B.8)

To avoid storing the entire history of sufficient statistics, this sum can be calculated in

a recursive manner:

St = St−1 + St(qt, ct), (B.9)

with S0 initialized to a matrix of zeros. However, because ct is a latent variable, this

recursion must be modified in the following two ways. First, St(qt, ct) is estimated in

the form of an expectation:

Eθ̂t−1
[St(qt, ct)|q1:t, y1:t] =

2∑
j=1

γ
(j)
t St(qt, ct = j), (B.10)

where the hat notation is used to indicate an estimated value. Second, because of

observation noise, the expectations in equation B.10 will show trial-to-trial variability.

Therefore, an adaptive stepsize, ηt = α/(α + t− 1), is used to average the sequence

of expectations and promote convergence (George and Powell, 2006). Because the

stepsize decreases to zero according to the requirements of stochastic approximation

theory,
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
2
t < ∞, the effects of noise are eliminated in the long

run (Robbins and Monro, 1951). Increasing α slows the rate at which the stepsize

decreases, placing greater weight on more recent observations compared with older

observations. We treat α as a free parameter of the model. Taken together, these two
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modifications lead to the following recursion:

St = (1− ηt)St−1 + ηtEθ̂t−1
[St(qt, ct)|q1:t, y1:t], (B.11)

which computes a running average of the expected complete-data sufficient statistics.

It is useful to note that the convex combination in equation B.11 ensures that all

elements of St sum to 1. As such, St can be interpreted as an estimate of the joint

probability of ct and qt, which is proportional to the expected number of times that

each value of ct and qt co-occurred.

While it is possible to compute smoothed estimates of the complete-data sufficient

statistics (Del Moral et al., 2010), exact computation of these smoothed estimates

is intractable, requiring sequential Monte Carlo sampling techniques (Özkan et al.,

2014). For simplicity, we only compute filtered estimates of the complete-data sufficient

statistics, as in equation B.10.

B.2.2 M step

To calculate Φ̂t, we normalize St by dividing each element by its corresponding column

sum to ensure that the probability of either cue being emitted in each context is 1.

Note all elements of St must be nonzero for the solution of the EM algorithm to be

well defined (otherwise some probabilities will always remain zero). Therefore, we omit

the M step for the first 8 trials to ensure that both contextual cues have been observed.

Importantly, to infer the probability of each context given an observed cue, the model

of how contexts emit cues (equation 3.7) is inverted (equation B.1).
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B.3 Model implementation

We applied the above inference and learning algorithms to a sequence of noiseless

observations, y1:l, assigned values of 0 (null-field trials) or ± 1 (force-field trials),

corresponding to the actual perturbations delivered by the robot. We also examined

adding zero-mean Gaussian noise (variance r) to the delivered sequence of perturbations

to include observation noise. However, because the observation noise that participants

perceived is unknown to us, it must be marginalized out (e.g., using Monte Carlo

integration). The inclusion of observation noise also results in a stochastic objective

function, which requires alternative parameter optimization techniques. For simplicity,

we only report fits to noiseless observations as the addition of observation noise did

not qualitatively change the model fit or the outcome of model comparison.

To update the estimate of the continuous state, we applied the standard Kalman

filter recursive equations (Kalman, 1960). The prior estimate of the continuous state

was initialized with mean, x̂0|0, and covariance, V 0|0, equal to zero and the mean

steady-state covariance matrix across Kalman filters, respectively. The prediction error

of each Kalman filter, yt − ŷ
(j)
t , was set to zero on channel trials.

We set h(j) and Π as described in the text and initialized Φ̂0 as a symmetric matrix:

Φ̂0 =


β 1− β

1− β β

 , (B.12)

where β = 0.5 + ϵ and ϵ = 10−6. Thus the learner starts naive with respect to how

cues relate to contexts. Φ̂t was updated recursively using the online expectation

maximization algorithm. The small amount of jitter, ϵ, was added to allow symmetry

breaking. We used qt = 1 and qt = 2 for the left and right control points, respectively.



Appendix C

The nonparametric switching

state-space model

Here we develop a switching state-space model with an unknown, potentially infinite

number of contexts and cues. Before we describe the nonparametric switching state-

space model, we first introduce the underlying theory of Dirichlet and hierarchical

Dirichlet processes (Teh et al., 2006).

C.1 The Dirichlet process

A Dirichlet process (DP) is a distribution over a countably infinite random probability

measure on a parameter space Θ. The Dirichlet process is the infinite-dimensional

generalisation of the Dirichlet distribution. Whereas samples from the Dirichlet

distribution assign probability mass to each of the n items in {1, . . . , n}, samples from

a Dirichlet process assign probability mass to a countably infinite subset of a parameter

space Θ. We write G0 ∼ DP(γ,H) if G0 is a random distribution distributed as a

Dirichlet process with concentration parameter γ and base distribution H. The base
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distribution H is the mean of the Dirichlet process (E[G0] = H) and the concentration

parameter γ can be understood as the inverse variance, which governs how much G0

varies around H. A random distribution drawn from a DP can be expressed using a

stick-breaking representation (Sethuraman, 1994):

G0 =
∞∑
k=1

βkδθk θk | H ∼ H, (C.1)

where δθk denotes a delta-Dirac mass located at θk and βk is the weight assigned to

that mass. The base distribution H furnishes a prior over the parameters θk. The

weights are sampled via a stick-breaking construction:

βk = β′
k

k−1∏
l=1

(1− β′
l) β′

k | γ ∼ Beta(1, γ). (C.2)

We denote this distribution by β = (βk)
∞
k=1 ∼ GEM(γ). Note that

∑∞
k=1 βk = 1. This

representation makes explicit that draws from a Dirichlet process are countably infinite

and discrete (even if H is continuous).

A common application of the Dirichlet process is as a prior on the parameters and

mixing coefficients of a mixture model with an unknown, potentially infinite number

of components. This is known as the DPMM. In this setting, each θk represents the

parameters of component k and β represents the vector of mixing coefficients. To

generate datapoint i, we first draw parameter θ̄i ∼ G0 and then draw observation

yi ∼ F (θ̄i), where F (θ̄i) is the distribution of yi given θ̄i.

The hierarchical Dirichlet process

In the hierarchical Dirichlet process, a second Dirichlet process is defined with base

distribution G0 and concentration parameter α. Hence, in the hierarchical Dirichlet

process, the base distribution is itself distributed as a Dirichlet process. A draw from
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this Dirichlet process Gj ∼ DP(α,G0) can again be expressed using a stick-breaking

representation:

Gj =
∞∑
t=1

π̃jtδθ̃jt θ̃jt | G0 ∼ G0

π̃j | α ∼ GEM(α),

(C.3)

where π̃j = (π̃jt)
∞
t=1. An alternative representation of Gj is

Gj =
∞∑
k=1

πjkδθk πj | α,β ∼ DP(α,β), (C.4)

where β and πj = (πjk)
∞
k=1 are interpreted as distributions on the positive integers.

This representation is made possible as G0 and Gj have support at the same points:

(θk)
∞
k=1. The hyperparameters of the hierarchical Dirichlet process are H, γ and α.

One important application of the hierarchical Dirichlet process is as a prior on the

parameters and state transition matrix of a hidden Markov model (HMM) with an

unknown, potentially infinite number of states. This is known as the HDP-HMM and

forms the basis of the NSSSM. In the HDP-HMM, each θk represents the emission

parameters of state k, and each πj represents a state-specific transition distribution

that defines the probability of transitioning from state zt−1 = j to state zt. The

global transition distribution β is the mean of each state-specific transition distribution

(E[πj] = β), and the concentration parameter α governs how much each πj varies

around β. To generate datapoint t, we first draw state zt ∼ πzt−1 and transition from

state zt−1 to state zt and then draw observation yt ∼ F (θzt) conditioned on parameter

θzt .

We now describe an alternative representation of the hierarchical Dirichlet process

known as the Chinese restaurant franchise (CRF), which will come in use when

performing inference in the hierarchical Dirichlet process.
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The Chinese restaurant franchise

Consider a Chinese restaurant franchise with J restaurants. Each restaurant has an

infinite number of tables, and each table serves one dish from a global menu. Upon

entering restaurant j, customer i sits at an occupied table with probability proportional

to the number of people already sitting at that table or sits at a new table with

probability proportional to α:

p(tji|tj1, . . . , tji−1, α) ∝
mj.∑
t=1

ñjt.δ(tji, t) + αδ(tji,mj. + 1), (C.5)

where ñjtk denotes the number of customers in restaurant j sitting at table t eating

dish k, and mjk denotes the number of occupied tables in restaurant j serving dish k.

Marginal counts are represented with dots. For example, ñjt. =
∑

k ñjtk denotes the

number of customers in restaurant j sitting at table t, and mj. =
∑

k mjk denotes the

number of occupied tables in restaurant j.

The first customer to sit at a table chooses a dish for that table with probability

proportional to the number of other tables in the franchise serving that dish or chooses

a new dish with probability proportional to γ:

p(kjt|̄k1, . . . ,
¯
kj, γ) ∝

K∑
k=1

m.kδ(kjt, k) + γδ(kjt, K + 1), (C.6)

where
¯
kj = {kj1, . . . , kjmj.

} and K is the total number of unique dishes being served at

occupied tables in the franchise.

In the HDP-HMM, each restaurant corresponds to a state zt = j, and each dish

corresponds to a parameter θk. The dish served at table t in restaurant j is distributed

as kjt | β ∼ β, where β now represents the overall popularity or ratings of the dishes.

Multiple tables in multiple restaurants can serve the same dish.
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State persistence

The discrete state of the world often persists for many time steps before switching.

This suggests that self-transitions are common than transitions between states. One

shortcoming of the HDP-HMM is that it cannot differentiate self transitions from

transitions between states, as the expected transition probabilities are independent of

the previous state (E[πjk] = βk). To address this issue, Fox et al. (2011b) developed

the sticky HDP-HMM. In this generalisation of the HDP-HMM, the Dirichlet process

prior over the state-specific transition distribution (equation C.4) becomes

β | γ ∼ GEM(γ) πj |α, κ,β ∼ DP
(
α + κ,

αβ + κδj
α + κ

)
. (C.7)

Here a self-transition bias κ has been added to the jth component of αβ. This increases

the prior probability of self-transitions E[πjj] by an amount proportional to κ. By

setting κ = 0, the original HDP-HMM is recovered.

The sticky HDP-HMM can be understood by extending the metaphor of the Chinese

restaurant franchise to include loyal customers. Each restaurant has a specialty dish

whose index is the same as that of the restaurant (e.g., dish j is the speciality dish of

restaurant j). This dish is available in all restaurants, but it is more popular in the

dish’s namesake restaurant. As we shall see, this leads to family loyalty to a restaurant.

We refer to zt−1, zt and zt+1 as the grandparent, parent and child, respectively. The

parent enters restaurant j, determined by the grandparent zt−1 = j, and sits at table

tji ∼ π̃j that serves dish kjtji . The dish the parent eats determines the restaurant that

the child eats at, that is kjtji = zt. The increased popularity of the specialty dish means

that children are more likely to eat at the same restaurant as their parent. Hence,

multiple generations often eat at the same restaurant, demonstrating family loyalty

To simplify inference in the Chinese restaurant franchise with loyal customers, a

distinction is made between considered dishes and served dishes. The first customer
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to sit at a table chooses a dish for the table without acknowledging the increased

popularity of the specialty dish of the restaurant. However, with some probability, this

considered dish is overridden (perhaps by a waiter’s suggestion) and the specialty dish

is served instead. This process is described as follows:

k̄jt | β ∼ β

wjt | α, κ ∼ Ber
(

κ

α + κ

)

kjt =

k̄jt if wjt = 0

j if wjt = 1,

(C.8)

where k̄jt is the considered dish, wjt is an override variable, Ber is the Bernoulli

distribution and kjt is the served dish. When κ = 0, the considered dish is always

served as wjt = 0.

The increased popularity of the specialty dish leads to the following modified dish

ratings:

kjt | α, κ,β ∼ αβ + κδj
α + κ

. (C.9)

C.2 The nonparametric switching state-space model

C.2.1 The generative model

We use the HDP-HMM as a prior on the context transition and cue emission matrices

of a switching state-space model with an unknown, potentially infinite number of

contexts and cues. For the context transition matrix, we use the sticky HDP-HMM to

incorporate a self-transition bias. For the cue emission matrix, we use the standard

HDP-HMM, as there is no notion of a self transition. We describe the model in its



C.2 The nonparametric switching state-space model 193

most general form, in which all parameters of the linear dynamical systems are random

variables to be inferred.

In the nonparametric switching state-space model, the environment is in one context

ct at any time t. The context evolves as a first-order hidden Markov process:

ct | ct−1, (πi)
∞
i=1 ∼ πct−1 , (C.10)

where each context-specific transition distribution πi is distributed as

β | γ ∼ GEM(γ) πj |α, κ,β ∼ DP
(
α + κ,

αβ + κδj
α + κ

)
. (C.11)

The context can emit an observable cue qt (a discrete symbol) according to emission

probabilities given by

qt | ct, (ϕi)
∞
i=1 ∼ ϕct , (C.12)

where each context-specific emission distribution ϕi is distributed as

β′ | γ′ ∼ GEM(γ′) ϕi | α′,β′ ∼ DP(α′,β′). (C.13)

Each context is associated with a latent perturbation that evolves independently of all

other perturbations as a linear dynamical system:

xj
t = ajx

j
t−1 + dj + wj

t wj
t ∼ N (0, sj), (C.14)

where xj
t is the perturbation, aj is the state transition coefficient, dj is the state drift

and sj is the variance of the process noise, all associated with context j.

At each time step, the perturbation associated with the current context emits an

observation (the state feedback):

yt = xct
t + vt vt ∼ N (0, rct), (C.15)
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where rct is the variance of the measurement noise associated with the current context.

The parameters of the state transition function (equation C.14) are sampled from a

normal-inverse-gamma distribution:

f j, sj | µ0,Λ0, ν0, η0 ∼ NIG(µ0,Λ0, ν0, η0), (C.16)

where f j = [aj dj ]
⊺, µ0 = [µa µd]

⊺, Λ0 is a 2× 2 diagonal precision matrix, and ν0 and

η0 are shape and scale parameters that can be interpreted as having arisen from 2ν0

effective prior observations having variance η0/ν0. The parameter of the observation

function (equation C.15) is sampled from a separate inverse-gamma distribution:

rj | ϵ0, τ0 ∼ IG(ϵ0, τ0). (C.17)

We examined two versions of the NSSSM that made different assumptions about the

distribution N (µ0, σ
2
0) of a perturbation the first time it is encountered. In one version

(employed in the spontaneous recovery simulations in Chapters 4 and 5), we assumed

that the perturbation is distributed according to the initial distribution N (0, 0.5). In

another version (employed in the context estimation simulation in Chapter 6), we

assumed that the perturbation is distributed according to its stationary distribution

N (dj/(1− aj), sj/(1− a2j)).

C.2.2 Inference

The goal of the learner is to use state feedback and contextual cues to infer the

current context, the number of contexts, the context transition probabilities, the cue

emission probabilities, the perturbations and the parameters of the state transition

and observation functions associated with the perturbations. To perform inference,

we use a Monte Carlo simulation strategy based on a resample-sampling framework

known as particle learning (Carvalho et al., 2010). Central to particle learning is the
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essential state vector:

Zt = ({c1:t, Ct, Qt, {nij,t}, {n
′

jk,t},βt,β
′
t, s

x
t , s

θ
t , θ}(i))Ni=1,

which contains the sampled context sequence c1:t, the number of instantiated contexts

Ct, the number of observed cues Qt, the number of transitions {nij,t} from each

context i to each context j, the number of emissions {n′

jk,t} of each cue k in each

context j, the global transition distribution βt, the global emission distribution β′
t, the

sufficient statistics (mean and variance) for the perturbations sxt , the sufficient statistics

(equation C.36) for the parameters of the perturbations sθt and the parameters of the

perturbations θ.

The algorithm is initialised by setting C0 = 0, Q0 = 0,β0 = 1,β′
0 = 1 for all particles.

Resample particles

For clarity, we suppress the indices of individual particle throughout most of the text.

At time t, resample particles with weights proportional to the predictive distribution:

wt ∝ p(yt, qt|c1:t−1, q1:t−1, s
x
t−1, θ,β

′
t−1, α

′,βt−1, α, κ)

=

Ct−1+1∑
ct=1

p(yt, qt, ct|c1:t−1, q1:t−1, s
x
t−1, θ,β

′
t−1, α

′,βt−1, α, κ)

=

Ct−1+1∑
ct=1

p(yt|ct, sxt−1, θ)p(qt|c1:t, q1:t−1,β
′
t−1, α

′)p(ct|c1:t−1,βt−1, α, κ).

(C.18)

The context transition term of the predictive distribution is obtained by integrating

out the transition distribution πct−1 and can be written as

p(ct|c1:t−1,βt−1, α, κ) =
αβct,t−1 + κδ(ct−1, ct) + nct−1ct,t−1

α + κ+ nct−1.,t−1

, (C.19)
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where nct−1ct,t−1 denotes the number of transitions from context ct−1 to context ct up

to time t − 1. Marginal counts are represented with dots. For example, nct−1.,t−1 =∑
ct
nct−1ct,t−1 is the number of transitions out of context ct−1 up to time t− 1.

The cue emission term is obtained by integrating out the emission distribution ϕct and

has a similar formulation to the context transition term but with no self-transition

bias:

p(qt|c1:t, q1:t−1,β
′
t−1, α

′) =
α′β′

qt,t−1 + n′
ctqt,t−1

α′ + n′
ct.,t−1

, (C.20)

where n′
ctqt,t−1 denotes the number of emissions of cue qt in context ct up to time t− 1,

and n′
ct.,t−1 =

∑
qt
n′
ctqt,t−1 is the number of cues emitted in context ct up to time t− 1.

The state feedback term depends on the estimate of the perturbation and is given by

p(yt|ct, sxt−1, θ) = N (yt|ŷctt , pctt ), (C.21)

where ŷctt and pctt are the mean and variance of the predicted observation for the

perturbation associated with context ct (see Algorithm 1). For a new context (i.e.,

ct = Ct−1+1), ŷctt = µ0 and pctt = σ2
0+rct , where rct is sampled from the prior (equation

C.17).

Propagate the context

To propagate the context, sample ct ∈ {1, . . . , Ct−1 + 1} from the posterior:

p(ct|yt, qt, c1:t−1, q1:t−1, s
x
t−1, θ,β

′
t−1, α

′,βt−1, α, κ). (C.22)
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Update the number of instantiated contexts and observed cues:

Ct =

Ct−1 + 1 if ct = Ct−1 + 1

Ct−1 otherwise
Qt =

Qt−1 + 1 if qt = Qt−1 + 1

Qt−1 otherwise.
(C.23)

Update the context transition and cue emission counts:

nij,t =

nij,t−1 + 1 if ct−1 = i, ct = j

nij,t−1 otherwise
n′
jk,t =

n′
jk,t−1 + 1 if ct = j, qt = k

n′
jk,t−1 otherwise.

(C.24)

If ct is a new context, sample b ∼ Beta(1, γ) and update the global transition distribu-

tion:

βj,t =


βj,t−1 if j < Ct

bβj,t−1 if j = Ct

(1− b)βj,t−1 if j = Ct + 1.

(C.25)

Otherwise, set βt = βt−1.

If qt is a new cue, sample b′ ∼ Beta(1, γ′) and update the global emission distribution:

β′
k,t =


β′
k,t−1 if k < Qt

b′β′
k,t−1 if k = Qt

(1− b′)β′
k,t−1 if k = Qt + 1.

(C.26)

Otherwise, set β′
t = β′

t−1.

Propagate the sufficient statistics for the perturbation

Update the sufficient statistics for the perturbation (mean and variance) using the

Kalman filter equations (Algorithm 1).



198 The nonparametric switching state-space model

Algorithm 1 The recursive update equations K(·) for the sufficient statistics for the
continuous state

Time update
if j ≤ Ct−1 then
x̂j
t|t−1 = ajx̂

j
t−1|t−1 + dj

vjt|t−1 = ajv
j
t−1|t−1aj + qj

else if j = Ct−1 + 1 then
x̂j
t|t−1 = µ0

vjt|t−1 = σ2
0

end if
ŷjt = x̂j

t|t−1

pjt = vjt|t−1 + rj
Measurement update
if ct = j then

kj
t = vjt|t−1/p

j
t

x̂j
t|t = x̂j

t|t−1 + kt(yt − ŷjt )

vjt|t = (1− kj
t )v

j
t|t−1

else
x̂j
t|t = x̂j

t|t−1

vjt|t = vjt|t−1

end if

Sample the global emission distribution

The posterior distribution of the global emission distribution is

(β′
1, . . . , β

′
Qt
, β′

q̃) ∼ Dir(m′
.1, . . . ,m

′
.Qt

, γ′), (C.27)

where β′
q̃ =

∑∞
k=Qt+1 β

′
k. To sample β′, first simulate a Chinese restaurant process to

sample each m′
jk, which represents the number of tables in restaurant j serving dish

k. For each j ∈ {1, . . . , Ct} and k ∈ {1, . . . , Qt}, set m′
jk = 0 and n′ = 0. Then, for

i = 1, . . . , n′
jk (i.e., for each customer in restaurant j eating dish k), sample

x ∼ Ber
(

α′β′
k

n+ α′β′
k

)
, (C.28)

increment n′, and if x = 1 increment m′
jk.



C.2 The nonparametric switching state-space model 199

Conditioned on the number of tables serving dish k, m′
.k, sample the global emission

distribution

(β′
1, . . . , β

′
Qt
, β′

q̃) ∼ Dir(m′
.1, . . . ,m

′
.Qt

, γ′), (C.29)

Sample the global transition distribution

The posterior distribution of the global transition distribution is

(β1, . . . , βCt , βc̃) ∼ Dir(m̄.1, . . . , m̄.Ct , γ), (C.30)

where βc̃ =
∑∞

j=Ct+1 βj. To sample β, first simulate a Chinese restaurant process to

sample mij, which represents the number of tables in restaurant i serving dish j. For

each i, j ∈ {1, . . . , Ct}2, set mij = 0 and n = 0. Then, for i = 1, . . . , nij (i.e., for each

customer in restaurant i eating dish j), sample

x ∼ Ber
(

αβj + κδ(i, j)

n+ αβj + κδ(i, j)

)
, (C.31)

increment n, and if x = 1 increment mij.

To obtain m̄ij, which represents the number of tables in restaurant i considering

dish j, subtract the number of override variables in restaurant i from mii. For each

i ∈ {1, . . . , Ct}, sample the number of override variables in restaurant i

wi. ∼ Binomial
(
mii,

ρ

ρ+ βi(1− ρ)

)
, (C.32)

where ρ = κ/(α+ κ), and set the number of tables in restaurant i considering dish j to

m̄ij =

mii − wi. if i = j

mij otherwise.
(C.33)
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Conditioned on the number of tables considering dish j, m̄.j , sample the global transition

distribution

(β1, . . . , βCt , βc̃) ∼ Dir(m̄.1, . . . , m̄.Ct , γ), (C.34)

Propagate the sufficient statistics for the parameters

To propagate the sufficient statistics for the parameters, for each j ∈ {1, . . . , Ct}, first

sample xj
t−1 and xj

t from

p(xj
t−1, x

j
t |ct, sxt−1, θ, yt) = p(xj

t |x
j
t−1, ct, θ, yt)p(x

j
t−1|ct, sxt−1, θ, yt). (C.35)

This can be achieved by sampling xj
t−1 from p(xj

t−1|ct, sxt−1, θ, yt) and then sampling

xj
t from p(xj

t |x
j
t−1, ct, θ, yt). The sampled values of xj

t−1, x
j
t and ct are used with the

observation yt to update the sufficient statistics for the parameters:

sj,1,t = sj,1,t−1 + xj
t x̄

j
t−1

sj,2,t = sj,2,t−1 + x̄j
t−1x̄

j
t−1

⊺

sj,3,t = sj,3,t−1 + 1

sj,4,t = sj,4,t−1 + xj
t
2

sj,5,t = sj,5,t−1 + 1(ct = j)

sj,6,t = sj,6,t−1 + 1(ct = j)(yt − xj
t)

2,

(C.36)

where x̄j
t−1 = [xj

t−1 1]⊺ is an augmented state vector and 1(·) is the indicator function.
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Sample the parameters

Conditioned on the updated sufficient statistics for the parameters, the posterior

distributions at the end of trial t are

f j, sj | µj,t,Λj,t, νj,t, ηj,t ∼ NIG(µj,t,Λj,t, νj,t, ηj,t) r | ϵj,t, τj,t ∼ IG(ϵj,t, τj,t),

(C.37)

where

µj,t = Λ−1
j,t (Λ0µ0 + sj,1,t) ϵj,t = ϵ0 +

sj,5,t
2

Λj,t = (Λ0 + sj,2,t) τj,t = τ0 +
sj,6,t
2

.

νj,t = ν0 +
sj,3,t
2

ηj,t = η0 +
1

2
[µ⊺

0Λ0µ0 + sj,4,t − µ⊺
j,tΛj,tµj,t]

(C.38)

At the end of each trial, a new set of parameters is sampled from the updated posteriors.

The motor output

The motor output is modeled as the mean of the predictive distribution, which is

calculated by marginalising out the context and summing over particles:

ut =
1

N

N∑
i=1

Ct−1+1∑
j=1

w̃
j(i)
t ŷ

j(i)
t . (C.39)

For particle i, the contribution of context j to the motor output is given by the prior

probability of context j:

w̃j
t =

p(qt|ct = j, c1:t−1, q1:t−1,β
′
t−1, α

′)p(ct = j|c1:t−1,βt−1, α, κ)∑Ct−1+1
ct=j′ p(qt|ct = j′, c1:t−1, q1:t−1,β

′
t−1, α

′)p(j′ = 1|c1:t−1,βt−1, α, κ)
. (C.40)
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On channel trials, we assume that participants observe a fictitious observation yt = ut.

Model implementation

For all simulations, we set γ and γ
′ to 0.1. We used N = 103 particles.

Although the number of contexts that the model can instantiate is unbounded, in

practice, we limit the number to ten by truncating the stick-breaking process (equations

C.11 and C.25).
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