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ABSTRACT

The segmented vertebral column comprises a repeat series of
vertebrae, each consisting of two key components: the vertebral body
(or centrum) and the vertebral arches. Despite being a defining
feature of the vertebrates, much remains to be understood about
vertebral development and evolution. Particular controversy surrounds
whether vertebral component structures are homologous across
vertebrates, how somite and vertebral patterning are connected,
and the developmental origin of vertebral bone-mineralizing cells.
Here, we assemble evidence from ichthyologists, palaeontologists and
developmental biologists to consider these issues. Vertebral arch
elements were present in early stem vertebrates, whereas centra arose
later. We argue that centra are homologous among jawed vertebrates,
and review evidence in teleosts that the notochord plays an instructive
role in segmental patterning, alongside the somites, and contributes to
mineralization. By clarifying the evolutionary relationship between
centra and arches, and their varying modes of skeletal mineralization,
we can better appreciate the detailed mechanisms that regulate and
diversify vertebral patterning.

KEY WORDS: Bone, Notochord, Sclerotome, Segmentation,
Vertebrae

Introduction

The vertebral column is the defining feature of vertebrates and
comprises a segmented/repeat series of individual bones, the
vertebrae. These possess two fundamental features: the vertebral
body, or centrum, which envelops the notochord to provide axial
mechanical strength, and the dorsal and ventral vertebral arches,
which enclose and protect, respectively, the spinal cord and axial
blood vessels (Fig. 1). It should be noted, however, that a variety of
anatomical terms have been used to describe vertebral sub-
components and their mineralization, with some accompanying
historical confusion (reviewed in Box 1).

The crucial role played by somite segmentation in vertebral
development and patterning has long been recognized, starting
with Robert Remak’s pioneering observations in the chick
embryo (Remak, 1855). Many recent studies have elucidated
the molecular mechanisms that control how somite boundaries
form, and that regulate the oscillatory gene expression underlying
somite formation [comprehensively reviewed by Bénazéraf and
Pourquié (2013); Delaune et al. (2012); Lewis et al. (2009);
Oates et al. (2012)]. During development, each somite
differentiates into the dermomyotome, which forms dermis and
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skeletal muscle, and the sclerotome, which gives rise to vertebral
components and their associated joints. Our understanding of
sclerotome formation comes mostly from studies in mouse
and chick, which show that sclerotome development is initiated
when sonic hedgehog (Shh) (Fan and Tessier-Lavigne, 1994,
Johnson et al., 1994) and the bone morphogenetic protein (Bmp)
antagonists noggin and gremlin (Hirsinger et al., 1997,
McMahon et al., 1998; Stafford et al., 2011) signal from the
midline notochord to induce adjacent somite cells to undergo an
epithelial-to-mesenchyme transition and adopt a sclerotome fate
(Christ et al., 2004). The sclerotome expresses transcription
factors, such as Paxl, Pax9 and Twist, which are used as
sclerotome markers (Table 1).

In amniote embryos, the medially positioned sclerotome forms a
substantial proportion of the somite. During development, its cells
migrate to surround the midline notochord and neural tube. The
cells differentiate first into chondrocytes that deposit a cartilage
intermediate, and then into osteoblasts that replace the cartilage with
bone (a process known as endochondral ossification, see Box 2) to
form the centra (ventral, around the notochord) and the vertebral
arches (dorsal, around the spinal cord) (Chal and Pourquié, 2009;
Nakashima et al., 2002; Peters et al., 1999). It is not clear, however,
whether this description holds for the centra of all vertebrates,
particularly in anamniotes (fishes and amphibians), in which the
sclerotome comprises only a small subset of cells in each segment.
Furthermore, in teleosts, the centra and most arches form by direct
ossification without a cartilage template (Box 2). Here, we review
evidence suggesting that vertebral mineralizing cells in some fish
have non-somite origins. These studies further imply that the
somites might not be solely responsible for generating vertebral
segmental patterning, as commonly assumed, and reveal significant
phylogenetic diversity in the mechanisms that mineralize the
vertebrae. We also consider the relationship between somite
segmentation and vertebral segmentation, and its variation within
different vertebrate lineages.

Vertebral arches might have evolved first in the ancestral
craniate

Craniates are chordates with a skull (Janvier, 1996) and comprise
agnathans (jawless fish) and gnathostomes (jawed vertebrates;
Fig. 2). There are two extant groups of agnathans: the lampreys
and the hagfish, collectively termed cyclostomes. Lampreys are
well known to possess cartilaginous vertebral arch elements,
positioned dorsally and periodically along the notochord, in
register with the myotomes [see e.g. Goodrich (1930)] and
corresponding to the vertebral arches of gnathostomes. These
presumably originate from sclerotome cells, as indicated by recent
studies showing the expression patterns of genes proposed as
sclerotome markers (see Table 1), such as FoxC2, ThxI8 and the
orthologue of the ancestor of scleraxis (Freitas et al., 2006), and
Col2a and Sox9 (Zhang, 2009). Until recently, the other extant
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agnathan group, the hagfish, were thought to have no vertebrae;
hence the formal classification of Vertebrata as a subdivision of
the Craniata that excludes hagfish. However, a forgotten study
from the end of the 19th century identified minute cartilaginous
nodules positioned ventral to the notochord in the tail of some
hagfish species (Ayers and Jackson, 1901). Recent reinvestigation
has revealed that these structures share molecular developmental
features with the vertebral elements of other vertebrates and are
associated with cells that express orthologues of the sclerotome
markers Pax1/9 and Twist (Ota et al., 2011, 2013). Although

Box 1. Gadow’s arcualia

Early work by Gadow (1896) and by Gadow and Abbott (1895) led
Gadow to a hypothesis that markedly influenced understanding of
vertebral development and terminology. The ‘Gadowian’ hypothesis
proposed that, across all vertebrates, four bilaterally paired primordia
called ‘arcualia’ give rise to different parts of the vertebra. The dorsal
‘basidorsals’ and ventral ‘basiventrals’ form the vertebral arches,
respectively the neural arches (enveloping spinal cord) and haemal
arches (enveloping axial blood vessels), as well as the regions of the
centra growing out (usually perichordally) from the arch bases.
Alternating with these two along the body axis, and completing the
segmental composition of a single centrum, are interdorsals and
interventrals. However, this view of a vertebra, appealing in the way it
proposes a basic uniformity among diverse vertebrates, is worrisome
because of its remarkable idealism [see especially Gadow (1933)], and
was challenged repeatedly during its long history. It was eventually
dismissed, or found not useful, for one vertebrate group after another —
tetrapods (Williams, 1959), the acanthodians (Miles, 1970) and
osteichthyans (Schaeffer, 1967), and particularly the dipnoans
(lungfish) (Arratia et al., 2001). More recent work reviewed here
provides no evidence for Gadowian organization of the centrum within
teleosts. Nonetheless, the hypothesis has not completely disappeared,
particularly from the palaeontology literature, and has caused a
persistent confusion in terminology. lts widespread acceptance
throughout much of the 20th century has probably resulted in the
shoehorning of experimental findings to fit a hypothesis that now seems
to have lost any usefulness.
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Fig. 1. Diversity in the structure of vertebrae between
different vertebrate lineages. Vertebrae from animals of
different vertebrate lineages show remarkable diversity in their
three-dimensional shape, as illustrated by images of a human
thoracic vertebra (A), a dog cervical vertebra (B), a chicken
thoracic vertebra (C), and a sea bass thoracic vertebra (D).
Vertebrae consist of a centrum (c) and vertebral arches (va).
Vertebral arches can be further defined as either neural arches
(na) that project dorsally around the spinal cord or haemal
arches (ha) that project ventrally. The pedicle (p), a named
feature of amniote vertebrae, lies at the base of the neural arch,
where it joins the centrum. Each vertebra is imaged to show its
anterior aspect, dorsal above and ventral below, with the
exception of the sea bass vertebra, which is also imaged at side
view (dorsal above, ventral below). Note the relative size of the
centrum to the arches. All vertebrae are shown at the same
magpnification; scale bar: 1 cm.

showing no clear segmental organization, these structures are
reminiscent of haemal arches (Ota et al., 2011; defined in Box 1)
and have the histological appearance of cartilage, like lamprey and
elasmobranch haemal arches.

Analysis of fossil groups has shed further light on the evolutionary
origin of vertebral elements and their segmentation. The mostly soft-
bodied fossil Haikouichthys, described as a stem craniate, has elements
positioned along its notochord that might represent vertebral
rudiments (Shu et al., 2003). Furthermore, the ancient agnathan
Euphanerops shows mineralized vertebral elements, and among these
might be morphologically distinguishable dorsal and ventral vertebral
arch elements (Janvier and Arsenault, 2002). Their distribution is
clearly periodic along the axis, resembling the lamprey dorsal arch
elements (Janvier, 2007; Janvier and Arsenault, 2002). The
phylogenetic position of Euphanerops is not clear, but it could
represent a stem cyclostome (Janvier, 2011). It has been proposed by
Ota and colleagues (2011, 2013) that the presence of only dorsal
elements in the lamprey and ventral elements in the hagfish represents
evolutionary losses of an ancestral condition in which both dorsal and
ventral elements were present, matching the condition observed in
gnathostomes. The discovery and characterization of Euphanerops
vertebral arch elements supports this hypothesis. The molecular and
histological evidence in extant agnathans and fossil examples of stem
craniates/agnathans points, therefore, towards an early evolution of the
vertebral arches, before and independent of the vertebral bodies. This
would imply that vertebral elements are present in all of the craniate
groups and that reconsideration of the Craniata/Vertebrata hierarchy is
warranted (Janvier, 2011; Ota et al., 2011, 2013).

Centra arose within gnathostomes

Mineralized centra are present in almost all of the major lineages of
Eugnathostoma, a group comprising all jawed vertebrates except
placoderms (Fig. 2). The three major living gnathostome groups —
chondrichthyans, actinopterygians and sarcopterygians (including
tetrapods) — all have examples of species that possess centra. Such a
distribution of centra among these ‘crown group’ gnathostomes
immediately suggests that centra should be considered as primitive
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Table 1. Genes used as markers of sclerotome and osteoblast differentiation

Gene Caveats

References

Sclerotome markers
Twist
the trunk (neural crest, trunk mesoderm)

Zebrafish — 2 orthologues, Twist1a and Twist1b, expressed in separate domains

Medaka — sclerotome and ‘putative’ neural crest

Pax9
Teleosts — expression throughout the sclerotome

Pax1 Chick — early marker of ventral sclerotome
Medaka — general sclerotome marker

Zebrafish — 2 orthologues, Pax7a and Pax1b®

Foxc2
(Mfh1, cFkh1)
No homologue identified in teleosts®

Scleraxis
Zebrafish possess 2 orthologues

Zic1
Mouse — dorsal sclerotome and dermomyotome
Xenopus — neural crest development

Zebrafish — dorsal somite, partially overlapping with myotome

Medaka — dorsal somite

Tbx18

Chick/mouse — not restricted to the sclerotome lineage and expressed in other tissues in

Mouse — expression restricted to the dorsal half of sclerotome and in non-somitic tissues

Chick — expressed in the paraxial mesoderm prior to somite formation, then expression
restricted within the sclerotome to a domain more dorsal and lateral to that of Pax1

Mouse and chick — expressed in part of sclerotome that gives rise to tendons and ligaments

Chick — sclerotome expression but also nascent myotome and non-migratory neural crest

Mouse — initially anterior half-somite, then just sclerotome and non-somitic domains

(Barnes and Firulli, 2009)
(Yeo et al., 2009)
(Yasutake et al., 2004)

(Peters et al., 1999)
(Peters et al., 1998)
(Mise et al., 2008)
(Fleming et al., 2004)
(Chatterjee et al., 2011)

(Christ et al., 2004)
(Mise et al., 2008)
(®http://zfin.org)

(Christ et al., 2004)

(Pbased on homology information
in Homologene database: http:/
www.ncbi.nlm.nih.gov/homologene)

(Perez et al., 2003)
(Christ et al., 2004)

(Sun Rhodes and Merzdorf, 2006)
(Aruga et al., 1999)

(Rohr et al., 1999)

(Moriyama et al., 2012)

(Kraus et al., 2001)

Zebrafish — initially anterior half somite, then around horizontal myoseptum

Differentiation markers of sclerotome/chondrocytes/osteoblasts
Sox9
— Expressed in the notochord in mouse and zebrafish

— 2 orthologues in zebrafish

— Chondrocyte marker, including those derived from cranial neural crest

(Mori-Akiyama et al., 2003)
(Barrionuevo et al., 2006)
(Yan et al., 2005)

(Zhao et al., 1997)

(Avaron et al., 2006)
(Renn et al., 2013)

Col2a — Similar expression to Sox9
Col10a1 Mouse — chondrocytes
Zebrafish — in osteoblasts of bones formed by direct ossification
Medaka — in some of sclerotome-derived but also expressed in other
vertebrae-forming cells of unknown origin
Sp7 (Osterix) — Early osteoblast marker

(Nakashima et al., 2002)
(Li et al., 2009)

In some developmental studies, expression of a single gene is used to define a cell population (e.g. sclerotome or osteoblasts). However, in many cases, these
markers are not unique to the population they are being used to identify. Here, we have provided evidence for whether the genetic markers cited in the text are faithful
markers of the cell population they are being used to study and the caveats for interpreting these findings. This is not an exhaustive list of all sclerotome or osteoblast
markers but is used to highlight the problems with interpreting data when tracking a migratory cell population in which expression profiles change over time.

within the Eugnathostoma. However, whereas the presence of
mineralized centra is widespread within the group, it is also patchy
(Fig. 2), such that within each of the major sub-lineages there are
branches that do not form centra of any type. For example, sturgeons
(actinopterygians) and paddlefish (chondrosteans) have complex
mineralized vertebral arches but no centra. Rather, their notochord
possesses a thick fibrous sheath that supports the body and onto
which the dorsal and ventral ossified vertebral arches articulate.
A similar morphology is present in the sarcopterygians, from which
tetrapods descended; the ‘living fossil’ coelacanth Latimeria has
arches but no centra (Arratia et al.,, 2001). The only group of
eugnathostomes that shows no evidence of centra comprises the
acanthodians, an extinct lineage known only from fossils. It
is possible, however, that some acanthodians possessed non-
mineralized centra that would not have been preserved during
fossilization, and hence would not be recognizable. Indeed, a

transition from a mineralized to non-mineralized state is seen in the
evolution of the skeleton of chondrichthyans (Orvig, 1951).

The inconsistent presence of centra among the gnathostomes led
Arratia and colleagues, in a detailed and influential paper (Arratia et al.,
2001), to reject the concept of homologous centra, proposing instead
that centra were not present in the stem eugnathostome and that they
arose independently in multiple subsequent lineages. However, centra
might have been more easily lost during evolution than re-invented
multiple times, and we suggest that multiple loss events is a more
parsimonious interpretation of the available phylogenetic evidence.
Where a trait is widespread but not ubiquitous within a group, West-
Eberhard (2003 ) has proposed the concept of ‘broad-sense homology’
(see Box 3) to account for recurrence or independent parallel evolution
from an ‘ancestral developmental propensity” (West-Eberhard, 2003).
Within this framework, centra can be considered homologous with one
another.
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Box 2. Methods of bone formation

Acellular bone: Bone formed by the polarised secretion of osteoid from
osteoblasts that remain at the bone surface and do not become
embedded (i.e. do not become osteocytes). This is the typical bone
found in teleosts.

Calcified cartilage: Tissue that forms where the extracellular matrix of
cartilage becomes mineralized with hydroxyapatite. Cartilage cells
persist within this matrix and no osteoblasts are present.
Endochondral ossification: The process of bone formation from an
existing cartilage template; the shape of the bone is initially formed from
cartilage and is then replaced by bone. This process is typical in the axial
skeleton and limb bones of mammals. Bones formed in this way are
termed chondroid or chondral bones.

Intramembranous ossification: The process by which bone forms in the
absence of a cartilage template, i.e. by direct ossification. During this
process, bone forms without being in contact with ectoderm or endoderm.
This process is typical in the skull bones of mammals and in the scales and
fin rays of fish. Bones formed in this way are referred to as intramembranous,
dermal or membrane bone, depending both on the species and the
anatomical location. [Note: Patterson (1977) used the terms dermal and
membrane bone to describe different modes of direct ossification.]
Ossification: The process of bone formation whereby osteoblasts (bone
cells; see below) secrete and become surrounded by a matrix that
becomes mineralized with hydroxyapatite and calcium carbonate.
Osteoblasts: Bone-forming cells. In some forms of bone formation,
these cells become embedded in the matrix they secrete and are then
termed osteocytes. Some authors also refer to atypical osteoblasts,
namely bone-secreting cells that do not express certain genes that have
previously been described for this lineage (see Table 1).

Osteoid: Recently deposited unmineralized bone that can be cellular
(containing osteocytes) or acellular (no cells embedded within it).

Centra subtypes and their formation: insights into the
evolution of vertebrae

There are several subtypes of centra, defined according to
morphology [reviewed by Arratia et al. (2001)], and here we
focus on the distinction between ‘chordacentra’ and ‘perichordal’
centra. In most tetrapods, and in some fish, centra develop only
perichordally — around and external to the notochord and its
sheath. However, in many species within two major groups of
fish, elasmobranchs (which include sharks, rays and skates) and
teleosts (ray-finned fish, including zebrafish and medaka), the
early-developing centra, known as chordacentra, first form as

Agnathans Gnathostomes
Eugnathostomes
Cyclostomes Chondrichthyans Actinopterygians

ring-shaped mineralizations within the fibrous collagen-rich
sheath of the notochord (Gadow and Abbott, 1895; Grotmol
et al., 2006). In these fish, a perichordal centrum forms
secondarily.

Ossification of the perichordal centrum

In considering whether centra are homologous, it is necessary to
consider the processes of ossification within different lineages and
what they may reveal about the evolution of this structure. In
elasmobranchs and tetrapods, the perichordal centrum forms by
endochondral ossification (Box 2), whereas in teleosts it is formed
by direct ossification (Box 2) without a cartilage intermediate
(Bensimon-Brito et al., 2012). This difference does not necessarily
argue for non-homology between the perichordal centra of teleosts
and other vertebrates. But, as clearly proposed by De Beer (1930),
and then in much more detail by Patterson (1977), the difference
does represent a radical change in how putative homologous
elements (in this case centra) can develop. Patterson hypothesized
that, in a primitive common ancestor of both groups, bones
developed in one of only two ways, either as dermal bones in the
skin mesenchyme (dermal bones of the exoskeleton) or in close
association with cartilage (chondral bones of the endoskeleton). In
derived lineages, cartilage development might regress but their
once-associated bones persist. Such ‘membrane bones’ of this third
type, as Patterson termed them, formed by direct ossification, are
frequently encountered in derived forms and in locations other than
the vertebral column (e.g. the teleost skull; Patterson, 1977).
Although the naming scheme for distinguishing the two types of
direct ossification has not caught on, his proposal fits perfectly with
broad-sense homology, and is well worth pursuing in studies of the
mineralized tissue, especially in teleosts.

Formation of the chordacentrum

Of further interest in a comparative context are the processes by
which chordacentra form in elasmobranchs and teleosts. The
elasmobranch chordacentra are usually described as composed of
‘calcified cartilage’ [e.g. Dean and Summers (2006); Peignoux-
Deville et al. (1982)], consisting of hydroxyapatite deposited in the
extracellular matrix of the cartilage. The cells and matrix of the
original cartilage persist in the calcified tissue (Ridewood, 1921)
and produce mineralized matrix (Hall, 2005). This mineralized

Fig. 2. The phylogeny and appearance
of vertebral elements in vertebrate
phyla. Vertebral arches are thought to
have arisen in the stem group that gave
rise to agnathans and gnathostomes,

Sarcopterygians

whereas centra appear later and are only
present in gnathostomes. Mineralized
vertebral elements have been identified
in the fossil Euphanerops found in the late
Devonian that lived about 380 million
years ago. Fossils of Haikouichthys are
found in the Cambrian, ~525 million
years old. Vertebrate groups are
sometimes subdivided into amniotes
(reptiles, birds and mammals) and
anamniotes (fishes and amphibians).

Jaws, bones

Haikouichthys- stem craniate
Vertebral arches
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Box 3. Broad-sense homology

Homology in a strict cladistics sense requires that, if traits in different taxa
are to be considered homologous, their expression in the monophyletic
group including these taxa must be unbroken, i.e. the trait must be
present in all of the members of the monophyletic group. Such cladistic
homology might be essential for systematics, but is over-restrictive if the
subject of interest is evolutionary change within the gnathostomes, rather
than the relationships between gnathostomes (West-Eberhard, 2003).
There are various terms for different types of homology, such as deep
homology (Shubin et al., 2009) or Wagner's special and general
homology (Wagner, 2014), each of which have nuanced differences in
definition and are useful for describing different concepts. Homology in
the ‘broad sense’ as described by West-Eberhard (2003) and similar to
what Roth (1991) means by biological, or transformational, homology is
particularly useful for understanding the evolution of development
because it admits such features as latent homologies and recursive
appearances of homologous characters in a lineage. Broad-sense
homology ‘allows’ homologous traits to be lost among members of a clade
and then to reappear sporadically (recur) among their descendants.
Recurrence in such a restricted phylogeny is not expected to be solely by
a brand-new and independent invention of the trait, but to depend on
close ancestry. Hence, the concept of broad-sense homology has some
real meaning in evolutionary biology. On the basis of broad-sense
homology, we suggest that a hypothesis of centrum homology among
eugnathostomes should not be dismissed.

tissue is histologically different from that found in the elasmobranch
vertebral arches (Eames et al., 2007; Orvig, 1951), which consist of
bone that forms around and eventually replaces the cartilage
template (Peignoux-Deville et al., 1982). Whereas elasmobranch
arches and centra therefore clearly differ in their mode of formation,
the terms used to describe the process and properties of the
mineralization of different skeletal components in all fishes might
have been oversimplified [see Eames et al. (2007) for a more
detailed review of this area], perhaps reflecting the pigeonholing of
fish mineralized skeleton into terms already described for mammals
and birds. However, the clear distinction between elasmobranch
chordacentrum calcified cartilage and arch bone is important, as it
allows for comparison with teleosts. Chordacentra in teleosts form
by the deposition and subsequent mineralization of matrix within
the collagen-rich notochord sheath. This process is similar to that
occurring in elasmobranchs, in which the cartilage itself is calcified
rather than being replaced by bone. Indeed, there is evidence that the
teleost chordacentrum mineral is hydroxyapatite (Wang et al.,
2013), matching both bone and calcified cartilage in this respect
(Hall, 2005).

Cellular origins of chordacentra

In elasmobranchs, the chordacentrum mineralizes as a layer within
cartilage that, in turn, is contained within a notochordal sheath
that earlier in development was acellular, consisting only of a
fibrous connective tissue-like extracellular matrix. The source of
the cartilage cells, assessed in many descriptive studies using
sectioned material, is likely to be the sclerotome but the evidence
is incomplete (Arratia et al., 2001; Goodrich, 1930). If correct,
sclerotome cells would have to navigate through the outermost
fibrous component of the notochord sheath, the elastica externa,
which is widely present in gnathostome fishes. Indeed,
histological evidence from Scyllium canicula (Goodrich, 1930),
suggested by Goodrich to be representative of all elasmobranchs
(Fig. 3), shows that this layer does become perforated and
that cells are sometimes present within the perforations, perhaps
caught in the act of migration. Likewise, in dipnoans (e.g.

lungfish) and sturgeons (Arratia et al., 2001; Goodrich, 1930),
cartilage cells are present within the fibrous notochordal sheath
and are hypothesized to have arrived there by migration through
the perforated elastica externa. In sturgeons and most of the
vertebral column of dipnoans, however, centra do not form. The
putative existence of these similar migration patterns in diverse
fish lineages, regardless of whether they form centra, presents an
intriguing problem with respect to centrum homologies among
gnathostomes. By contrast, there is no evidence for invasion of
the teleost notochord sheath by sclerotome cells in the three
species in which vertebral development has been experimentally
investigated in detail, namely medaka (Oryzias latipes), Atlantic
salmon (Salmo salar) and zebrafish (Danio rerio).

Given the apparent absence of sheath invasion in teleosts, the
question arises as to how their chordacentra mineralize. Electron
micrographs of medaka and Atlantic salmon show that chordacentra
form within the notochordal sheath before the perichordal centrum
(Ekanayake and Hall, 1988; Nordvik et al., 2005). Whereas the cells
that secrete the perichordal bone matrix are on the outer vertebral
surface and have been verified as sclerotome cells (Inohaya et al.,
2007), the cells responsible for the initial chordacentrum osteoid
secretion in the electron micrographs were not identified. Indeed,
several observations suggest that the cells giving rise to this initial
sheath-associated osteoid matrix are not typical bone matrix-
secreting cells (osteoblasts, see Box 2) and are not derived from the
sclerotome. First, there is no evidence that mature osteoblasts are
present at the time of chordacentrum formation. In zebrafish,

A nu

Fig. 3. Invasion of the notochord sheath by somite-derived cells in an
elasmobranch. (A) Drawing of transverse section of the notochord of a
Scyllium canicula (lesser spotted dogfish) embryo showing a sector of the
notochord sheath, comprising the inner epithelial ‘chordablast’ layer (labelled
ntep), surrounded by the ‘elastica interna’ or inner layer of the fibrous sheath
(ei), and the fibrous sheath (fs) which is invaded by sclerotome cells.

A nucleated cell (nu) is shown perforating the elastica externa (el) at the outer
part of the fibrous sheath. Cartilage (c) is present in the sclerotome outside the
sheath. The discrete layers and cell types are more apparent in the false-
coloured image (B) in which sclerotome cells are coloured purple, the fibrous
sheath is green, the elastic externa is pale yellow and the chordoblasts are
pink. Drawing reproduced from figure 9B in: E. S. Goodrich, Studies on the
Structure and Development of Vertebrates, 1930, Macmillan and Co., London;
reproduced with permission of Palgrave Macmillan.
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osteoblasts identified by the expression of sp7 (see Table 1), and
presumably of sclerotomal origin, are only detected at the onset of
vertebral arch formation, whereas chordacentra begin mineralizing
much earlier in development [5 versus 17 days after fertilization;
Spoorendonk et al. (2008)]. When sp7™ cells are observed, they are
located only at the arches and peripheral to already-established
chordacentra. Second, functional evidence indicates that
sclerotome-derived cells are not necessary for the initial formation
of segmental chordacentra. When sp7* cells are genetically ablated
in medaka, segmented chordacentra first develop normally, but then
fuse at later stages to form an unsegmented rod of bone.
Additionally, these fish do not develop vertebral arches, an
observation also consistent with an exclusive role for the
sclerotome in arch and perichordal centrum formation (Willems
etal., 2012).

How, then, does the teleost chordacentrum form? A recent
study using reporter transgenic medaka lines has identified a
possible sp7~ cell population expressing coll0al at the nascent
chordacentra, and there is some evidence that part of this
population is sclerotome derived (Renn et al., 2013). However,
morpholino studies targeting sclerotome cells earlier in their
differentiation suggest that segmented centra can form
independently of sclerotome cells. For example, knockdown of
twist in medaka results in aberrant vertebral arches but normal
centrum development (Yasutake et al., 2004). Likewise in single
and double knockdowns of pax! and pax9, centrum formation is
initially normal but vertebral arches fail to form and scoliosis
develops later (Mise et al., 2008). Such partial disruption of
vertebral column development could arise from compensatory
mechanisms or incomplete gene knockdown, and at present there
are no published null mutant analyses of these genes.

Overall, current evidence indicates that the cells generating
teleost chordacentra are neither typical osteoblasts nor necessarily
sclerotomal in origin. Additionally, the teleost notochord has been
identified as a source of chordacentrum mineralization. In support
of this, it was shown that zebrafish notochords grown in ex vivo
culture secrete an osteoid matrix, and laser ablation of single
notochord cells in vivo at segmentally repeated axial positions
results in loss of chordacentra at these positions (Fleming et al.,
2004). These studies do not, however, define the precise notochord
cell population responsible for mineralization. A good candidate is
the outer epithelial layer of ‘chordoblast’ cells that secretes the
fibrous notochord sheath, as alkaline phosphatase activity, which is
thought to be essential for mineralization (Hessle et al., 2002), has
been detected in these cells in developing Atlantic salmon (Grotmol
et al., 2005).

Segmental patterning

The evidence reviewed above indicates that the mechanisms building
teleost and tetrapod vertebrae differ significantly. Whereas tetrapod
centra are typically described as perichordal, there is a striking duality
in the origins of the teleost centrum: it forms from the primary
ossification of the chordacentrum within the notochordal sheath,
followed by reinforcement perichordal ossification by sclerotome
cells, and it is likely that two distinct osteoblast populations, one of
them derived from the notochord, cooperate to form the complete
centrum (Spoorendonk et al., 2008). This implies that the teleost
sclerotome might play a secondary role in centrum development,
perhaps maintaining rather than initiating the segmental pattern.
Whereas tetrapod centrum patterning is instructed by somite patterning
and polarization, the notochord appears to play more of an instructive
role in teleost centrum patterning.
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An instructive role for the notochord

Such a role for the notochord is supported by studies of the
zebrafish fused somites/tbx6 mutant. Here, somites show abnormal
segmentation and disrupted sclerotome patterning, resulting in
disorganized vertebral (neural and haemal) arch formation, yet
mutants retain normal centrum segmentation (Fleming et al., 2004;
Nikaido et al., 2002; van Eeden et al., 1996). Consistent with this,
Atlantic salmon notochord sheath cells (chordoblasts) re-orient
metamerically in register with chordacentrum formation (Grotmol
et al., 2003), correlating with their segmental expression of alkaline
phosphatase activity (Grotmol et al., 2005). Moreover, whereas
there is currently no strong evidence indicating that the notochord
was ancestrally segmented (Stern, 1990), a segmented notochord
architecture has been tentatively identified in the fossil
protovertebrate Pikaia (Conway Morris and Caron, 2012). The
recent suggestion that the notochord evolved from contractile axial
mesoderm cells with segmental connections to transverse muscles
in a bilaterian ancestor (Lauri et al., 2014) adds further credence to
this view. It might also be significant that segmental cartilage
formation within the notochord has been detected in light
microscope studies of centrum development in urodele and
apodan amphibia, Sphenodon and many Lacertilia (Goodrich,
1930; Lawson, 1966; Mookerjee, 1930), raising the possibility that
a similar notochord/sclerotome duality in centrum development
existed in stem tetrapods.

Resegmentation in amniotes

In amniotes, the registration between centra and somites changes
during development (Fig. 4), and since Remak’s initial observations
(Remak, 1855) this has been widely accepted to be due to a
frameshift or ‘resegmentation’ [see Verbout (1976) for a review of
the early studies]. Remak saw that the chick sclerotome is polarized
into anterior (A, cranial) and posterior (P, caudal) halves, the
anterior half containing the spinal nerves and the posterior half
producing the vertebral pedicle (uniting vertebral arch and centrum
at the mid-dorsoventral level). By contrast, adult spinal nerves are
adjacent to the posterior part of each centrum, whereas the pedicles
attach anteriorly. He therefore suggested that the centrum forms by
fusion of adjacent halves of two segments on each side, shifting the
vertebrae half a segment caudal relative to the somites (Fig. 4).

Myotome
Embryo i
Al PIAf P AEP|AYP
INotochord
T e C—

Adult

Fig. 4. lllustration of resegmentation. Following differentiation of the somite,
each sclerotome is divided into anterior (A) and posterior (P) halves, and each
A/P pair lies in register with the myotome derived from the same somite. During
resegmentation, the vertebral bodies form by the recombination of
neighbouring sclerotome halves from adjacent segments, causing a half-
segment shift in the registration of embryonic sclerotomes compared with adult
centra (dashed lines). As the myotomes retain their original segmental
positions, they are hypothesized to straddle the intervertebral discs, promoting
trunk flexibility (von Ebner, 1888).
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The polarization of somites, upon which resegmentation depends, is
now well established and plays a key role in generating spinal nerve
segmentation (Keynes and Stern, 1984; Kelly Kuan et al., 2004; Saga,
2012). Moreover, several lineage studies in avian embryos, using both
chick-quail chimeras (Aoyama and Asamoto, 2000; Bagnall et al.,
1988; Huang et al., 1996) and retroviral labelling (Ewan and Everett,
1992), are consistent with the existence of resegmentation. These
studies have also delineated sclerotome sub-regions that produce
distinct vertebral elements, for example the pedicle from posterior half-
sclerotome (Goldstein and Kalcheim, 1992), the annulus fibrosus from
‘somitocoele’ cells in the early epithelial somite (Christ et al., 2007,
Huang et al., 1994) and the tendon progenitors from sclerotome cells
immediately adjacent to myotome (Brent et al., 2003; Brent and Tabin,
2002). It is unlikely, however, that resegmentation involves a strict
lineal correspondence between pairs of half-somites and vertebrae, as a
chick study has shown that cells from one half-sclerotome can
contribute to two vertebrae rather than one (Stern and Keynes, 1987).
This raises the question: if the process of resegmentation is leaky in this
way, how is the final periodicity established?

Whereas the notochord might play an instructive role in vertebral
body periodicity in teleosts, as discussed above (Fleming et al., 2004;
Grotmol et al., 2003), a recent chick embryo transplantation study
supports an exclusively somite-based origin for vertebral body
segmentation in this amniote species (Senthinathan et al., 2012). In
amniotes, the ventral sclerotome cells on the left and right sides merge
at the midline around the notochord, and their precise alignment is
essential, for example to construct the segmented rings of Pax/
expression that prefigure the annulus fibrosus of the intervertebral disc
(Dietrich and Gruss, 1995; Wallin et al., 1994). When left-right
sclerotome pairs are experimentally misaligned (by A-P reversal ofthe
pre-somite mesoderm on one side), the left and right half-rings of Pax/
expression also misalign segmentally at the notochord. There is no
evidence, therefore, that the notochord provides instructive segmental
signalling to align opposing sclerotomes (Senthinathan et al., 2012).

The role of somite polarity in amniotes

An attractive possibility is that vertebral body periodicity in amniotes is
triggered by signalling interactions at the boundary between anterior
and posterior halves of each somite. Cell-cell interactions at segment/
compartment boundaries are well known to generate new signalling
centres and cell fate diversification, for example in vertebrate

Table 2. Genes affecting somite polarity

rhombomeres (Kiecker and Lumsden, 2005) and Drosophila
imaginal discs (Dahmann et al., 2011). Such a mechanism could
generate the somitocoele cells at the early anterior-posterior boundary
within chick somites, forming a signalling centre and subsequently a
distinct sclerotome population (“arthrotome’) that is fated to give rise to
the intervertebral discs and vertebral arch joints (Mittapalli et al.,
2005). Alongside the segmented expression of Pax/ noted above, the
development of the amniote intervertebral disc is also known to
involve the suppression of cartilage-associated gene expression via
TGFP signalling in the sclerotome (Sohn et al., 2010) and Shh
expression in the notochord (Choi and Harfe, 2011). However, the
detailed molecular interactions that position segmental Pax/
expression and the intervertebral discs, and the status of the
arthrotome in mammals, remain to be elucidated.

In support of the ‘somite polarity’ hypothesis for amniote
vertebral segmentation, it is striking that knockouts of genes
involved in establishing and maintaining mouse somite polarity
typically show disrupted vertebral body segmentation (Table 2).
The exceptions are knockouts of Mesp2 and Ripply1/2 (Takahashi
et al., 2013) and of Uncx4.1 (Leitges et al., 2000; Mansouri et al.,
2000), in which segmentation is disrupted at the mid-dorsoventral
level (vertebral pedicles) but segmentation of the ventral sclerotome
(vertebral bodies) is relatively preserved. As mouse somite
polarization involves differential A-P expression of more than 750
genes (Hughes et al., 2009), this preservation could be explained by
functional redundancy in the system at the ventral level, contrasting
as it does with the larger number of somite polarity mutations that
show disrupted ventral segmentation (Table 2).

Resegmentation and segment number in amphibia and fishes

Resegmentation has also been confirmed recently during urodele
amphibian development (Piekarski and Olsson, 2014). It therefore
operates in diverse tetrapods, and, in exploring its evolutionary
origins, it will be interesting to assess its status in basal vertebrates.
Indeed, somite polarization is well characterized in zebrafish
(Durbin et al., 2000; Jiang et al., 2000; Oates et al., 2005) and is
evident morphologically in both teleosts and elasmobranchs (Fig. 5).
In addition, a zebrafish lineage study has shown that cells from a single
parent sclerotome cell can contribute to two adjacent perichordal
centra (Morin-Kensicki et al., 2002). This finding shows that, as in the
chick, there is no strict lineal correspondence between sclerotomes and

Gene Somite polarity

References

A: Mouse mutations that disrupt vertebral body segmentation (ventral sclerotome)

(Lopez and Fan, 2013)

(Hrabé de Angelis et al., 1997)

(Dunwoodie et al., 2002; Kusumi et al., 1998)
(Bessho et al., 2001)

(Zhang and Gridley, 1998)

(Mankoo et al., 2003)

(Burgess et al., 1996; Johnson et al., 2001)
(Farin et al., 2008)

(Shen et al., 1997; Wong et al., 1997)
(Sporle and Schughart, 1998)

(Beckers et al., 2000; Nacke et al., 2000; Watabe-Rudolph et al., 2002)
(Bussen et al., 2004)

(Baffi et al., 2006, 2004)

(Leitges et al., 2000; Mansouri et al., 2000)
(Saga et al., 1997; Takahashi et al., 2013)

CREB P
Delta-1 P
Delta-3 A
Hes7 P
Lunatic Fringe P
Meox 1/2 P
Paraxis A+P
Pax3 A
Presenilin-1 P
Rab23 Not assessed
Tbx6 Presomite mesoderm
Tbx18 A
Tgfbr2 Intervertebral disc
B: Mouse mutations that disrupt vertebral pedicle segmentation (mid-dorsoventral sclerotome)
Uncx4.1 P
Mesp2 A
Ripply 1/2 A

(Morimoto et al., 2007; Takahashi et al., 2013)
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Fig. 5. Somite polarity in elasmobranch and teleost fish. (A) Sagittal section of a Scyllium canicula (elasmobranch/lesser spotted dogfish) embryo showing the
sclerotome polarized into anterior (as) and posterior (ps) halves. The ventral root (vr) of the spinal nerve lies in the anterior half-sclerotome; g, sensory ganglion;
ep, epidermis; iv, intersegmental vein; d, mesonephric duct; m, mesonephric tubule; i, intestinal wall. Drawing reproduced from figure 16C in: E. S. Goodrich,
Studies on the Structure and Development of Vertebrates, 1930, Macmillan and Co., London; reproduced with permission of Palgrave Macmillan. (B) Histological
section of a Squalus acanthias (elasmobranch/spiny dogfish) embryo. The main features in this sagittal section closely match Goodrich’s drawing (panel A); the
sclerotome is polarized into anterior (as) and posterior (ps) halves, and the ventral root (vr) lies in the anterior half-sclerotome; g, sensory ganglion. Image
reproduced courtesy of the Department of Zoology collection, University of Cambridge, UK. (C) Longitudinal section of larval Salmo trutta (teleost/brown trout).
The section shows somite derivatives on one side of the spinal cord. Each segment contains a dorsal root ganglion (g) and myotome (m); the sclerotome is
condensed in the posterior (left) part of each segment (s), separated from the ganglion in the anterior (right) part of each segment. Image reproduced courtesy of
the Department of Zoology collection, University of Cambridge, UK, and published previously as figure 4 in Keynes and Stern (1988).

vertebrae. However, unlike amniotes, the teleost centrum lies within
each muscle segment, negating the requirement for a resegmentation
frameshift (Lauder, 1980).

The observation that there is no 1:1 relationship between somites
and vertebrae raises the question as to what determines the number
of vertebral segments. Teleost vertebrae can form with normal
segmental periodicity when somite patterning is disrupted, as in the
thx6/fused somite mutant (Fleming et al., 2004; Nikaido et al., 2002;
van Eeden et al., 1996). In addition, centrum segmentation might be
lost in situations in which normal somite patterning is maintained,
for example in the over-ossification observed in cyp26b and enppl
mutants (Apschner et al., 2014; Laue et al., 2008; Spoorendonk
et al., 2008). Disruption of the segmentation clock in zebrafish hes6
mutants results in fewer somites and, later in development, fewer
vertebrae (Schréter and Oates, 2010), suggesting that vertebral
segment number is indeed linked to somite number. However, an
alternative possibility is that any somite-independent mechanisms
that may exist could also be segmented by the ‘clock’. The
observation that periodic cell cycle transitions occur within the
notochord at twice the periodicity of somite segmentation provides
some evidence not only for an intrinsic segmental pattern within the
notochord but also a link to somitic segmentation (Sugiyama et al.,
2014).

Conclusions

Vertebral arches and centra are independent units

Our intention here has been to combine evidence from the fossil
record (often overlooked in developmental biology studies) with
recent experimental evidence in model organisms. The first point to
highlight is that arches and centra do not appear coincidentally in the
fossil record. Arches are present in agnathans and precede the
appearance of centra. Recent developmental and molecular studies in
lampreys and hagfish have greatly enhanced our understanding of
vertebral development in jawless fishes. However, we note that
questions of sclerotomal origins, morphology and morphogenesis
either have never been studied, or, for lamprey, have not been
critically examined during the past 100 or more years. Developmental
studies have largely focused on the vertebrae (arches and centra) as a
whole, assuming they form as a single unit, but as they appear at
different times in the fossil record we suggest they should be
considered independent elements. Moreover, the cells giving rise to
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these elements, their patterning and the modes of mineralization
might well be different.

Homology between centra

As the fossil evidence for the appearance of centra is patchier than
for arches, the second question raised by this Review is whether
centra are homologous structures among gnathostomes, or even
eugnathostomes. This patchiness might in part be due to the
cartilaginous composition of such elements in some species, which
would not fossilize, and mineralized centra in others. Centra, or
parts of them, sometimes form in association with the vertebral
arches, but they are essentially always in association with the
notochord. Another key issue that we have considered here is that in
many species within two major groups of fish, elasmobranchs and
teleosts, the chordacentrum mineralizes within the sheath of the
notochord itself. The origin of cells mineralizing the chordacentra
could well vary among species, as we have considered in some
detail. By contrast, it is likely that perichordal centra and arches
always develop from sclerotome.

As we have detailed here, chordacentra are also becoming very
well known in teleosts. Arratia et al. argue strongly that
elasmobranch and teleost chordacentra are not homologous,
primarily because of lack of connecting intermediates (Arratia
et al., 2001), but we would argue that there are marked similarities
between the chordacentra of the two groups. The differences are
intriguing and might help us to understand evolutionary divergence,
so we want to encourage further comparative research. We also
propose that mineralization of both cartilage and bone is
evolutionarily labile, and suggest that homology of perichordal
centra within gnathostomes be neither rejected nor accepted at
present (Box 3). The hypothesis that chordacentra might be
homologous among at least crown gnathostomes (i.e. including
both chondrichthyans and osteichthyans) is admittedly more
tentative, but is offered in the spirit of encouraging new studies
that continue to address these interesting issues.

Vertebral segmentation and resegmentation

The third issue we have addressed is the still widely debated
question of how the mature segmental pattern is established. In
teleosts, it is striking that the site of union between vertebral arches
and centra is variable, even within a single animal, whereas the
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arches are consistently intersegmental (Farugi, 1935; Lauder,
1980). This might be aided by the relative independence of teleost
arch and chordacentrum development already noted, which perhaps
promotes oscillatory swimming movements (Lauder, 1980).
Enhanced axial flexibility might also explain the evolution of
diplospondyly in elasmobranchs and holocephalans, where the ratio
of centra to arches is 2:1 rather than 1:1; and, conversely, axial
stabilization might be promoted where the ratio is 1:2 (Maxwell
et al., 2013).

Such remarkable diversity of centrum segmental patterning in
teleosts has been replaced in tetrapods by a resegmentation system
with greater fixity. A plausible scenario is that it evolved in the
presence of somite polarity, under the regulation of the somite clock
(Dias et al., 2014), so facilitating construction of diverse types of
centra from sclerotome sub-components. The amniote centrum
typically develops from a single ossification centre, but that of stem
tetrapods comprises two alternating anteroventral (A-V) and
posterodorsal (P-D) components, creating so-called ‘rachitomous’
vertebrae. These components can also combine in reverse order
along the A-P axis (P-D+A-V rather than A-V+P-D), as recently
described for Ichthyostega, and this arrangement might represent
the ancestral tetrapod condition (Pierce et al., 2013).

We should also point out that the precise functional advantage of
resegmentation in amniotes remains unclear. After Remak’s anatomical
observations, von Ebner (1888) suggested that, as axial myotome
derivatives retain their original segmental positions, sclerotome
resegmentation allows axial muscles to straddle the intervertebral
joints and so promote trunk flexibility. Although this is the preferred
explanation in contemporary textbooks, there is no evidence for
segmental muscles that straddle neighbouring centra in representative
reptiles, birds and mammals, including humans (Baur, 1969). It might
apply in humans to certain deep segmental back muscles, the
attachment of which is solely to dorsal vertebral arch elements. Here,
resegmentation would shift the registration between these dorsal
muscles and the ventral intervertebral disc joints, perhaps allowing the
muscles to influence the joints with greater mechanical advantage. But
it is equally plausible that von Ebner’s functional explanation, although
elegant, is an oversimplification. Further exploration of the structure-
function relationships of the vertebra-muscular system in fish, and how
these differ in tetrapods, would shed light on the evolutionary origins of
resegmentation.

Future challenges

A key unanswered question is how the uniformity of segmentation is
established in the adult vertebral column in the absence of a strict
lineal correspondence with somites. In amniotes, we have highlighted
the possible role of a signalling centre established at the A-P
boundary within each sclerotome. In teleosts, there is evidence that
chordacentrum segmentation might arise independently of somite
segmentation, and several studies have indicated a role for the teleost
notochord in establishing the segmental pattern. While at present it is
conceptually difficult to understand how such an overtly non-
segmented structure might impose this, an A-P periodicity in
the notochord cell cycle has been reported recently (Sugiyama
etal., 2014).

Much of the recent experimental evidence for the cellular or even
evolutionary origins of different vertebral components presented here
has come from gene expression studies or the use of single gene
markers to identify cells of a particular lineage. As highlighted in
Table 1, there are questions about the reliability of such markers and it
is important to bear in mind that very few genes are lineage specific.
We therefore urge caution in the interpretation of lineage relationships

based solely on gene expression, and suggest that the definitive
relationship between tissues and structures can only be elucidated by
detailed lineage tracing studies. The growing repertoire of techniques
for lineage tracing in vivo (such as photoconvertible fluorescent
proteins, cre-lox labelling technologies and inducible gene expression)
offers huge potential to address these questions with a cleaner
experimental approach than previous studies using grafting or dye
labelling. Simultaneously, a deeper knowledge of the molecular
mechanisms of sclerotome and vertebral development in fish,
including elasmobranchs and agnathans, and the degree to which
these are conserved in amniotes, will be essential to appreciate how the
astonishing diversity of vertebral patterning has evolved.
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