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Abstract 

 

The Impact of Radiation on Glioblastoma Evolution 

Joseph Hiram McAbee 

 

Glioblastoma (GB) is the most common and malignant primary adult brain cancer with 

a median survival of 15 months despite treatment with surgical resection followed by chemo-

radiotherapy.  The clonal diversity and evolutionary dynamics inherent to GBs is considered a 

major obstacle to effective treatment response.  While studies have focused on temozolomide, 

a role for radiotherapy as an independent driver of GB evolution has not been investigated.  We 

addressed the impact of radiation on glioblastoma evolution and potential treatment 

implications by examining the influence of intratumoral heterogeneity (ITH) on intrinsic 

radiosensitivity, by determining the effects of radiation on glioma stem-like cell (GSC) initiated 

orthotopic xenografts, and by assessing radioresistance with a reirradiation protocol.   

To determine the impact of ITH on intrinsic radiosensitivity, we performed whole-

exome sequencing (WES) of multiple tumour fragments and corresponding patient-derived cell 

lines that underwent γH2AX foci analysis and limiting dilution assay analysis.  Cell lines from 

the same tumour seem to display similar levels of intrinsic radiosensitivity despite genomic 

differences, suggesting that radiotherapy regimens may be effective for the whole of the 

tumour.  To test the ability of radiation to drive GB evolution, we utilised GSC-initiated 

orthotopic xenograft models treated with or without fractionated radiation (3x5Gy) to examine 

differences in survival, morphology/histology, Viral integration site analysis (VISA), and 

WES.  Irradiated mice experienced a survival advantage and harboured less invasive tumours 

compared to control mice.   VISA revealed that control tumours harbour fewer clones than in 

vitro lines and that irradiated tumours harbour the fewest clones of all suggesting that radiation, 

particularly in the context of the brain microenvironment, drives GBM evolution.  WES results 

demonstrated that variants from irradiated tumours mapped to different COSMIC mutational 

signatures and displayed a considerable amount of subpopulation shifting compared to control 

tumours, consistent with radiation-induced evolution and subpopulation selection.  By adding 

a reirradiation protocol to this GSC-initiated orthotopic xenograft model, we sought to better 

understand the functional impact of radiotherapy on recurrent GB evolution and to establish an 

in vivo model for studying reirradiation.  After initial treatment, mice were rerandomised into 
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control (3x5Gy-Control) and radiation therapy groups (3x5Gy-3x5Gy) and retreated once the 

average BLI ratio began to increase.  A further survival advantage was found for mice 

undergoing reirradiation compared to mice receiving only one course of radiation.  This 

survival advantage was supported by clonogenic survival and reimplanta tion studies of cell 

lines derived from control and irradiated NSC11 tumours that did not demonstrate a difference 

in survival after radiation regardless of the previous tumour’s treatment regimen.  Whereas 

radiation-induced evolution may not influence radioresponse, it may lead to the identification 

of novel targets for sensitisation which may ultimately yield more effective treatment 

strategies. 

  Our results demonstrate that radiation, a treatment component for almost all 

glioblastoma patients, can have wide-ranging effects on the evolution of this dynamic tumour.  

In particular, the pressures imposed by radiation treatment seem to lead to the selection of a 

reduced number of clones.  This selection may have future implications for tumour evolution 

and the treatment of recurrent GB.  In addition, we have demonstrated for the first time the 

utility of a GSC-initiated orthotopic xenograft model for studying retreatment protocols and 

recurrent GB biology.  This reirradiation model may provide the opportunity to design and test 

more effective recurrent GB treatment strategies centered around recurrent biology. 
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Chapter 1. Introduction 
 

1.1 The Evolution of Cancer 

 

 The cancer burden is increasing.  In the United States, almost 40% of adults are 

expected to be diagnosed with cancer at some point during their lifetimes.  While the rate of 

deaths attributable to cancer fell by 26% from 1991 to 2015, the international incidence of 

cancer cases is expected to rise from 14.1 million in 2012 to an estimated 23.6 million by 2030 

(1).  Certainly, this elevation in cancer incidence can be attributed in some degree to a 

combination of improved methods of early cancer detection, increased post-reproductive 

average lifespan, and continued exposure to harmful carcinogens.  But the increased burden 

and the need for more effective treatments necessitate a better understanding of the various 

cancer types and the evolutionary processes which lead to their development, maintenance, 

progression, and resistance.  This thesis will examine the radiation-induced evolution of 

glioblastoma, the most malignant form of brain cancer.  We will first discuss some important 

aspects of cancer evolution, in general, before describing how glioblastoma specifically fits 

into an evolutionary framework.   

 

1.1.1 Determinants of Cancer 

 

In order for cancer cells to develop, survive, and proliferate, they must acquire several 

distinct capabilities which provide them a fitness advantage to generate a tumour and progress 

to malignancy.  Hanahan and Weinberg proposed a list of such cancer hallmarks (2).  As a 

cancer is a collection of aberrantly proliferating, mutated cells, two necessary and fundamental 

traits of neoplastic cells are their ability to sustain proliferative signaling and evade growth 

suppressors.  Neoplasms sustain chronic proliferation through many redundant mechanisms 

such as increased production of growth factors, amplification of receptor expression, or 

mutation-induced structural changes in receptors leading to ligand-independent constitutive 

activation (3).  In addition to enhancing proliferation, cancer cells must simultaneously be able 

to evade the normal cellular regulations against such uninhibited proliferation.  The 

retinoblastoma (Rb) and TP53 proteins and the cell cycle progression role which they command 
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are two extremely important examples of tumour suppressors.  Rb and TP53, or elements in 

their respective pathways, are often mutated in cancers and allow cancer cells to evade these 

critical gatekeepers regardless of high levels of extracellular or intracellular stress signals or 

genomic damage (4).  Further to the ability to evade growth suppressors, is the ability to resist 

cell death through apoptosis (5).  TP53 plays a major role in inducing apoptosis after extensive 

DNA damage but is one of the most commonly mutated tumour suppressors, resulting in the 

loss of apoptotic regulation.  Apoptosis can also be reduced in cancer cells through  a tumour-

promoting imbalance of anti-apoptotic (Bcl-2, Bcl-xL) and pro-apoptotic (Bax, Bim) factors.  

Other avenues of resisting cell death or capitalizing off of cell death of other cells involve 

autophagy which can cause cancer cells to shrink and become reversibly dormant (6) or 

necrosis which can recruit tumour-promoting immune cells to the tumour microenvironment 

through extracellular release of proinflammatory contents (7). 

Longevity of cancer cells is important for providing adequate time to attain and 

propagate cancer attributes.  While resisting cell death is an important contributory factor to 

this longevity, mechanisms by which cancer cells maintain replicative immortality are also 

important for tumour survival and progression.  Telomeres, which protect the ends of 

chromosomes with multiple tandem hexanucleotide repeats, are maintained in many cancers  

allowing neoplastic cells to undergo unlimited cycles of proliferation (8).  Increased expression 

of telomerase, which adds repeats to chromosome ends, enables cancer cells to avoid 

senescence and apoptosis to achieve a relatively immortalized state.   

Cancer cells which have evolved to the point of replicating and proliferating without 

regulation may be able to grow and progress into a full tumour.  Some of the extrinsic factors 

which can contribute to the natural evolution of a growing tumour are limitations on available 

space and nutrients.  Angiogenesis, a normal, transient component of wound healing, is co-

opted and continuously activated by cancer to produce new vessels for the provision of more 

nutrients and oxygen for tumour expansion as well as waste disposal (9).  Vascular endothelial 

growth factor (VEGF) is an angiogenesis inducer that is commonly upregulated in cancer by 

oncogenic signaling or hypoxic environments (10).  Angiogenesis represents a dynamic 

interaction between a tumour and its microenvironment.  In addition to angiogenesis, limited 

space and resources may also contribute to a cancer cell’s predilection for invasion and 

metastasis.  A cellular program typically involved in development, epithelial-mesenchymal 

transition (EMT), has been implicated in the invasion-metastasis cascade (11).  EMT-inducing 

transcription factors have been demonstrated in various cancer types and contribute to a variety 
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of functions including loss of adherens junctions, increased motility , and expression of matrix-

degrading enzymes which contribute to an invasive phenotype. 

Hanahan and Weinberg also describe two additional emerging hallmarks of cancer  

(immune evasion and metabolic reprogramming) and two characteristics of most cancers 

(tumour-promoting inflammation and genomic instability) which enable them to acquire many 

of the hallmarks discussed above (see Figure 1.1) (2).  Despite a usually intact host immune 

response, cancer cells which grow into tumours have successfully evaded destruction.   Because 

cancer cells are derived from a patient’s own cells and undergo periods of quiescence, a certain 

degree of self-tolerance can be built up (12).  More directly, cancer cells can downregulate its 

tumour-specific antigens and dysregulate antigen processing.  Cancer cells may also actively 

suppress the immune system through cytokine secretion (TGFβ and IL10) or PD-L1 expression 

which can reduce the level of active T cells and increase T regulatory cell function  (13).  

Immune cells not only fail to destroy cancer cells but can actually contribute to tumour survival 

as inflammation, which may originate as non-specific anti-tumour responses, may ultimately 

provide a source of growth factors, survival factors, and angiogenesis inducers that are 

necessary for cancer survival (14). 

   

Figure 1.1 Cancer Hallmarks.  

Established hallmarks, emerging 

hallmarks, and cancer 

characteristics as proposed by 

Hanahan and Weinberg (2). 
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 While angiogenesis manipulates the microenvironment to increase oxygen and nutrient 

availability, reprogramming of metabolic pathways is an intrinsic attempt to quickly obtain the 

energy required to undergo cell proliferation.  For instance, cancer cells have been shown to 

obtain a large portion of their energy through aerobic glycolysis (15).  While not as fruitful in 

ATP production as oxidative phosphorylation, aerobic glycolysis does provide a rapid source 

of ATP through breakdown of extracellular glucose which produces both energy and  

biosynthetic intermediates (16).  Such reprogramming can be directed by overexpression or 

overactivation of Myc, HIF-1, and PI3K pathways which are commonly altered in cancers to 

promote proliferation.  But clearly, very few of the hallmarks and characteristics listed above 

would be possible without underlying genomic alterations triggering cancer phenotypes.  

Therefore, genomic instability has emerged as an important characteristic of tumour cells  

(17,18).  As more mutations are gained the likelihood increases of acquiring advantageous 

mutations which confer necessary cancer hallmarks.  Increased mutation rates, dysfunctional 

DNA repair mechanisms, or epigenetic silencing can all contribute to genomic instability and 

intratumoral heterogeneity which ultimately leads to the production of cancer cells with enough 

advantageous mutations and acquired hallmarks to grow and populate a fully formed tumour. 

 

1.1.2 The Cancer Stem Cell Hypothesis 

 

Once a subset of cancer cells acquires the hallmarks mentioned above, the cancer cells 

must then proliferate.  This requirement for extensive self-renewal is one reason why “cancer 

stem cells” (CSC) represent potential units of selection for cancer evolution (19-21).  The 

cancer stem cell hypothesis originally developed through studies of leukaemia in which a 

cellular hierarchy emerged with CSCs at the apex (22).  Other cancers, including solid tumours, 

have since been described as developing through this process.  Essentially, CSCs are 

considered cancer cells which possess many of the same properties of adult somatic stem cells, 

i.e. replicative immortality and propagation of differentiated cells.  The ability of CSCs to 

produce a diverse pool of differentiated cells also grants them tumourigenic potential, another 

important feature of cells which are thought to promote development, progression, and 

resistance of cancer. 

An underlying prerequisite to produce a diverse cohort of progenitor and differentiated 

cells which encompass a heterogeneous tumour is that CSCs must themselves express a high 
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level of genotypic and phenotypic diversity.  The diversity inherent in CSCs makes them prime 

units of selection, because they harbour many mutations with different relative fitness levels.  

Based on the specific selective pressure driving evolution or the current need of the cancer, 

CSCs can redirect towards the resistant or most fit clone or subclone for a given situation.  The 

extensive self-renewal properties of CSCs allow them to then propagate whichever cell 

underwent positive selection.  Thus, sufficient genetic diversity of CSCs allows for 

evolutionary selection while extensive self-renewal allows for the selected trait to be passed on 

to cells that can populate a tumour (23,24).  CSCs have also been shown to be intrinsically 

resistant to therapies (25) which may be due to intrinsic diversity, stem cell niches, or periods 

of transient quiescence (26).  In fact, CSCs in glioblastoma are able to transition between 

proliferative and slow cycling states by Notch signalling and upregulation of histone 

demethylases (27).  Taken together, CSCs give rise to heterogeneous tumours capable of 

adaptation under evolutionary selective pressures (Figure 1.2).    

 

Figure 1.2 CSCs as Units of Evolution. A) Cancer stems cells propagate differentiated/fate-
restricted cancer cells to produce a heterogeneous tumour. B) Cancer cells with fitness 

advantages are better able to compete for limited space and resources. C) Therapeutic selection 
pressures such as surgery, radiotherapy, and chemotherapy are applied to the tumour. D) CSCs 
sometimes survive to repropagate a heterogeneous recurrent tumour because of resistance to or 
protection from therapy. E) Competitive release can eliminate or reduce larger, therapy-

sensitive populations providing the opportunity for smaller subpopulations to expand and 
populate a recurrent tumour. E) Intrinsic therapeutic resistance can cause a clonal population 
to continue to thrive during and after treatment.      
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1.1.3 Cancer as a Darwinian Process 

 

Cancer can be considered a complex, Darwinian, adaptive system (28,29) in part 

because cancer arises through a protracted evolutionary course in which various challenges and 

pressures contribute to the accumulation of adapted phenotypes and genotypes  (30).  As 

discussed, heterogeneity is a requirement for Darwinian selection as the intratumoral diversity 

within a given cancer type allows for natural selection to drive the cancer into a more well 

suited, more fit state (23).  Mutations with the potential to drive or enhance carcinogenesis 

(driver mutations) may arise through neutral evolution (large scale genomic/chromosomal 

instability that blindly increases rate of mutations), natural evolution (space and nutrient 

competition selects for clones better equipped to survive in harsh environments), or selective 

evolution (therapeutic pressures lead to the expansion of resistant clones) (31).  The interplay 

of acquired intrinsic mutations with extrinsic factors which test the fitness of those mutations 

contributes to the development of cancer.  The diversity of extrinsic factors demonstrate that 

cancer does not grow in a vacuum but is instead impacted by a dynamic milieu of diverse cell 

types, extracellular networks, and anti-cancer compounds.                 

The diversity between unique cancers originating in different tissue types demonstrate 

that local interactions with and restrictions by the tumour microenvironment can affect 

diversity over time.  The tissue ecosystem in which a tumour resides not only provides the 

location for natural selection to occur, but also provides its own set of challenges to determine 

fitness selection and impact clonal evolution (32).  The microenvironment provides many 

levels of mutual interactions with cancer cells ranging from immune cell infiltration with 

subsequent anti-tumour or even pro-tumour effects to providing protective/supportive niches 

for phenotypically inclined CSCs to promoting invasion/migration by the spatial heterogeneity 

of available resources (24,31).  Like cancer cells, the tumour microenvironment can also be 

impacted and altered by carcinogenic exposures and chemoradiotherapy.  In fact, the 

remodelled microenvironment post-therapy may provide new selection pressures or 

advantageous expansion opportunities for cancer cells that survived treatment either through 

intrinsic resistance or protective niches (33).  An alternative to the unidirectional hierarchy of 

the CSCs postulates that tumours arise from common ancestors of malignant cells that exist in 

a limited set of cellular expression states (NPC-like, OPC-like, Astrocyte-like, Mesenchymal-

like) with inherent plasticity which allows tumours to evolve and reversibly transition between 

states in response to various pressures (34).  Such complex interactions and evolutionary 



 1. Introduction 

 

  21 

possibilities make it obvious that we cannot solely rely on the underlying mutational 

architecture of primary cancers to provide insight into cancer biology.  We must also work to 

better understand the dynamic nature of cancer as an evolutionary, adaptive system. 

 

1.1.4 Selection Pressures Drive Evolution 

 

Maley and a panel of experts developed a consensus framework for classifying tumours 

and investigating the clinical implications of cancer evolution and ecology (35).  The 

components which make up their proposed ecological index are the available resources which 

sustain cancer cells and the potential hazards which harm them.  Certainly, cancer cells need 

oxygen, glucose, growth signals, and survival factors to develop and proliferate.  As stated 

previously, the microenvironment plays a significant role in this capacity and is a major source 

of selection pressures which drive evolution at all stages of cancer development and 

progression.  In addition to the microenvironment, one of the most potent sources of selective 

pressure with the ability to drive cancer evolution is anti-cancer therapy.     

Cancer therapeutics, such as chemotherapy or radiotherapy, impose artificial selection 

pressures which lead to high levels of cellular death, thus providing cells with resistance 

mutations or cells which evade treatment through other mechanisms to proliferate with less 

competition.  In addition to selecting cells which already possess intrinsic resistant properties, 

genotoxic drugs such as chemotherapies can induce novel mutations which can further enhance 

cancer cell fitness (24,36).  Even targeted therapies which incorporate knowledge of genetic 

alterations in cancer to attack a clonal driver mutation can be overcome as a subclone present 

at low frequency prior to treatment could potentially expand after therapy to generate a 

resistant, recurrent tumour (37-39).  Additionally, it has been postulated that another possibility 

for targeted therapy failure is because recurrences emerge from a persistent cellular reservoir 

of common ancestors which possess early truncal events no t in common protein-coding 

variants, but in larger genetic alterations such as whole copy-loss of chromosome 10, copy gain 

of chromosome 7, or TERT promoter mutations (40).  It is important, therefore, to examine 

cancer genomics both before and after treatment to obtain a more longitudinal picture of cancer 

evolution.  In order to design more effective therapies, we must consider the dynamic interplay 

between the genomic architecture of cancer, the tumour microenvironment, and therapy-driven 

evolution.  Glioblastoma is a rapidly evolving, heterogeneous brain cancer and elucidating the 
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impact of radiation on glioblastoma evolution could provide valuable insights for recurrent 

tumour biology and treatment. 

 

 

1.2 Glioblastoma 

 

Glioblastoma (GB), the most common and malignant form of adult brain cancer (41), 

develops de novo (primary) or from a lower grade tumour (secondary) (42).  It is of 

neuroepithelial origin and is thought to arise from neural stem cells, glial progenitor cells (such 

as OPCs), or astrocytes (43,44).  The incidence of GB is 3.21 per 100,000 in the United States 

and 4.64 per 100,000 in the United Kingdom (45,46).  The highest incidence rates of GB occur 

after the fifth decade of life and the cancer is 1.58 times more commonly diagnosed in men 

than women (45).  However, glioblastoma is diagnosed across all ages and is almost uniformly 

fatal, causing it to have one of the highest average years of life lost of any cancer (47). 

According to the World Health Organisation (WHO) classification of brain tumours, GB 

is considered a grade 4 neoplasm due to its malignant histological/cytological features, invasive 

propensity, rapid disease evolution, and poor outcomes (48).  Typically, glioblastoma has been 

presumptively diagnosed as a heterogeneously, peripherally enhancing lesion on T1-weighted 

MRI with gadolinium contrast and definitively diagnosed after surgical resection and 

histopathological analysis.  In particular, evidence of nuclear atypia, increased mitotic activity, 

palisading necrosis and/or microvascular proliferation provide support for a diagnosis of 

glioblastoma (48).  The most recent iteration of the WHO classification scheme also considers 

some molecular markers to more accurately subtype gliomas.  In particular, the 2016 

classification scheme divides GB into IDH-wildtype (90%), IDH-mutant (10%; secondary 

GB), and GB NOS (IDH evaluation not available) (49).  ATRX loss and TP53 mutation are 

commonly identified in IDH mutant diffuse astrocytomas, whereas 1p/19q codeletion defines 

oligodendrogliomas, a different diffuse glioma entity not typically associated with GB (49).  

While the current WHO classification system is an improvement because it utilises some 

molecular evidence in its algorithm, the molecular and phenotypic landscape of GB is much 

more diverse and complicated than the few mutations mentioned in the classification scheme.   
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1.2.1 Intrinsic Mutational Landscape 

 

Glioblastoma was one of the first solid tumours investigated by The Cancer Genome 

Atlas (TCGA).  In 2008, the TCGA published its initial findings after examining the 

methylation, gene expression and copy number profiles of over 200 human GB samples (50).  

Almost half of the tumours were also subjected to genomic variant analysis.  Integrating 

multiple types of analysis for such a large cohort allowed for the delineation of three core GB 

pathogenesis pathways: receptor tyrosine kinases (RTK/RAS/PI3K), retinoblastoma (Rb), and 

tumour suppressor p53 (TP53). Of the tumours sampled approximately 75% contained 

mutations in all three of the core pathways, suggesting potential targets for therapeutic 

intervention (50) and highlighting the need for multi-target combination therapies.   

One of the most commonly mutated RTKs is epidermal growth factor receptor (EGFR).  

EGFR, which is encoded on chromosome 7p12, has been shown to be overexpressed or 

amplified in over 40% of GB (51,52) or structurally altered in others.  The most common 

mutant structural variant (EGFRvIII) is caused by a deletion of exons 2 to 7 which results in 

truncation of the extracellular domain of the receptor and ultimately causes ligand-independent 

constitutive activation of EGFR (53).  Constitutive activation of the RTK leads to activation of 

the PI3K downstream signaling pathway which has been implicated in proliferation through 

alteration of mRNA for enhanced association with polysomes for active transcription (54).  

While the implications of EGFR amplification and variants on clinical outcomes have not been 

completely determined, they have been proposed as potential indicators of poor prognosis.  The 

prevalence of EGFR variants has made the receptor an attractive option for drug targeting 

(55,56).     

While EGFR is a very prevalent gain of function mutation in GB, PTEN (tyrosine 

phosphatase/tensin homolog protein), a negative regulator of the PI3K/Akt pathway, is 

considered to be one of the most common loss of function genetic alterations (57).  PTEN 

deletion occurs most commonly through loss of heterozygosity (LOH) of chromosome 10q.  In 

LOH an entire gene and its surrounding chromosomal region is lost, and if the gene in question 

is a tumour suppressor then the remaining copy is left vulnerable to future mutations and 

subsequent malignant transformation (58).  In the case of PTEN, loss of this tumour suppressor 

prevents negative regulation of PI3K which can lead to uncontrolled activation and 

proliferation, particularly in the context of additional mutations which constitutively activate 
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the pathway (59,60), as described above.  PTEN has been associated with poor prognosis (61), 

is found more frequently in primary GB (62), and may represent an important early genetic 

step leading to the glioblastoma phenotype.    

TP53 has been found to be mutated in up to 30% of primary GB, although mutations 

are more commonly detected in low grade astrocytomas and secondary GB (57).  However, it 

is estimated that at least one component of the TP53 pathway is mutated in over 80% of all 

GBs (52).  TP53 mutations are common to many cancer types as the normal tumour suppressor 

function of TP53 must be overcome for cancer cells to survive and proliferate (63).  The TP53 

pathway, when functioning normally, regulates cell cycle progression, response to DNA 

damage, and apoptosis.  When the p53 transcription factor is activated, it promotes cell cycle 

arrest or apoptosis through activation of target genes.  P53 activation also leads to the activation 

of MDM2 (an E3 ubiquitin ligase) which serves as an autoregulatory feedback loop to inhibit 

and degrade p53.  MDM2 is itself inhibited by the tumour suppressor protein p14ARF (64).  

Therefore, mutation of TP53, amplification of MDM2, or deletion of p14ARF can ultimately 

lead to the inactivation of the p53 pathway and the survival of cancer cells  (65).  While the 

prognostic significance of TP53 mutations is unclear, it has been shown that TP53 

overexpression may be associated with improved progression free survival (PFS) for patients 

who received long courses of adjuvant temozolomide (66). 

Another tumour suppressor protein involved in the regulation of cellular proliferation 

and survival, retinoblastoma, is found to be deleted in a small number of GBs (50).  

Retinoblastoma normally binds E2F to prevent it from activating cell cycle progression target 

genes (67).  The phosphorylation of Rb by cyclin-D1-CDK 4/6 complexes causes it to release 

E2F to allow G1-S progression (68).  CDK4/6 can be overexpressed in GB leading to 

uncontrolled progression.  A more common alteration in this pathway is the upstream regulator 

of CDK4/6, CDKN2A (2B less commonly).  CDKN2A (or p16INK4a) is a tumour suppressor 

protein that is encoded at the same locus as p14ARF and normally works to inhibit CDK4 from 

phosphorylating Rb (69,70).  As with the TP53 and RTK pathways, any of the mediators 

mentioned above could be mutated to cause uninhibited cell cycle progression and enhanced 

survival of cancer cells bearing the Rb pathway mutation (71,72).    

As seen by the WHO classification, isocitrate dehydrogenase (IDH) is an important 

molecular marker for delineating the evolutionary history of a GB.  IDH, an enzyme involved 

in the citric acid cycle, is often mutated in low grade gliomas and secondary GBs (73) and in a 
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small subset of primary GBs (74).  IDH mutations are conserved through cycles of malignant 

progression, suggesting that they are an early event in glioma development (75).  IDH1 is the 

most commonly mutated enzyme and exists in the cytoplasm, while IDH2 exists in the 

mitochondria (76,77).  Wild type IDH oxidatively decarboxylates isocitrate to α-ketoglutarate 

and carbon dioxide, but its altered enzymatic action in IDH-mutant gliomas yields reduced 

levels of α-ketoglutarate and increased levels of 2-hydroxyglutarate (2-HG).  The elevated 

levels of 2-HG inhibit enzymes involved in histone and DNA demethylation leading to changes 

in epigenetic alterations and gene expression that impact various tumour-related pathways such 

as invasion, survival, and hypoxia signalling (78-80).  It has been suggested that the epigenetic 

alterations induced by IDH1 mutations may be sufficient for the glioma hypermethylation 

phenotype.  IDH1 mutations are often associated with younger patients, longer survival, and 

lower grade gliomas (74) and can be detected most often by R132H antibody specific 

immunohistochemistry  (the most common amino acid change) (81).  Other clinical 

implications of IDH mutations include higher rates of TMZ response (82), association with 

larger extent of surgical resection (83), and a novel method of non-invasive biomarker imaging 

of 2-HG on magnetic resonance spectroscopy (84).  The inclusion of IDH mutation status in 

the WHO classification scheme reflects its relative importance in both prognosis and 

development of glioblastoma. 

In addition to IDH mutation status, MGMT methylation status is also now routinely 

tested in GB patients due to its potential to predict prognosis and response to alkylating 

chemotherapy.  The MGMT gene encodes for O6-methylguanine DNA methyltransferase, an 

enzyme involved in DNA repair.  MGMT normally counteracts the alkylation caused by 

temozolomide by removing alkyl groups from guanine to its own cysteine residue so that the 

cell can survive and continue to replicate (85,86).  When the MGMT promoter is methylated, 

the gene is effectively silenced, MGMT cannot repair the alkylation caused by TMZ, and cell 

death is initiated.  Therefore, MGMT promoter methylation is associated with increased patient 

survival and improved response to TMZ (87,88).  Interestingly, MGMT promoter methylation 

has also been shown to be predictive of improved response to radiotherapy (89).  Inversely, if 

a GB expresses high levels of MGMT, then it can provide an avenue for TMZ resistance.   

However, MGMT is only a single component in the DNA repair response to chemotherapy.  If 

MGMT is unable to remove alkyl groups, then normally the DNA mismatch repair system will 

recognize O6-methylguanine mismatches and trigger apoptosis after unsuccessful repair and 

induction of cytotoxic double-strand breaks.  Unfortunately, mutations can also occur in MMR 
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genes (MSH2, MSH6, MLH1, MLH3, PMS1, PMS2).  Mutations in MSH6, in particular, have 

been associated with GB (90,91) as MSH6 deficient cells cannot properly trigger cell cycle 

arrest in response to DNA damage caused by TMZ.  If MGMT promoter methylation is coupled 

with MSH6 mutation/loss, then a GB becomes resistant to both the alkylation by TMZ and the 

killing which should be induced by that alkylation.  The loss of normal MMR function in this 

context leads to an increased tolerance to mutagenic activity and thus a hypermutation 

phenotype observed in recurrent tumours (92).  Our group has recently shown the impact of 

treatment pressures on DNA repair genes and hypermutation, as a patient who underwent three 

surgical resections with intervening treatments including alkylating chemotherapy 

demonstrated hypermutation after the final resection suggesting that acquired mutations in 

DNA repair genes may have allowed such extensive numbers of mutations to occur unhindered.     

TERT (telomerase reverse transcriptase) and ATRX (alpha-thalassemia X-linked 

mental retardation protein) mutations are an important aspect of GB’s ability to  maintain 

replicative immortality despite ongoing divisions through telomere maintenance.   As 

mentioned previously, for stem cells and cancer cells, elevated levels of telomerase leads to 

continual elongation of the telomeres and thus continual division (93).  Point mutations (G>A 

transitions) in the TERT promoter leads to increased TERT expression and telomerase activity 

and increased cancer cell DNA viability (94,95).  Alternatively, ATRX interacts with DAXX 

to form a complex that deposits H3.3 histone variants at telomeres to maintain their length (96).  

ATRX mutation/loss has been associated with IDH1 mutations and alternative lengthening of 

telomeres phenotype (ALT) through dysregulation of macroH2A1 telomere deposition, 

decreased binding of polymerase tankyrase 1 to macroH2A1, and lack of telomere sister 

cohesion resolution (97).  ALT leads to longer telomeres compared to samples with TERT 

promoter mutations (98,99).  TERT and ATRX mutations seem to be mutually exclusive in 

gliomas, possibly reflecting the similar survival advantage conferred by both mutation types 

(94). 

While the above variants represent some of the most common mutations in GB, there 

is considerably more variation in GB.  Therefore, in an attempt to stratify GBs based on 

recurring patterns within this heterogeneous group of tumours, various classification schemes 

have been proposed (100-103).  One of the most commonly utilised classification schemes was 

proposed by Verhaak et al. and placed GB into Proneural, Neural, Classical, and Mesenchymal 

subtypes based on TCGA gene expression data (102).  GBs in the Proneural subtype commonly 

exhibit mutations in IDH1, PDGFRA, and TP53.  Patients in this subgroup tend to be younger 
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and tend to experience longer overall survival (OS), as would be expected for IDH-mutant 

GBs.  The neural subtype is not characterized by particular mutations but by the expression of 

neuronal markers.  Classical subtype GBs harbour frequent EGFR amplification, chromosome 

7 amplification, and chromosome 10 loss.  Classical GBs lack TP53 mutations and tend to have 

the best response to aggressive treatment.  Lastly, the Mesenchymal subtype typically includes 

NF1 and PTEN deletions/mutations.  The survival advantage after treatment is also significant 

for the mesenchymal subtype although patients in this subgroup have the worst prognosis  

overall.    

Eckel-Passow proposed a simpler scheme by classifying GBs based on the presence of 

3 molecular markers: IDH mutations, TERT promoter mutations, and 1p/19q codeletions (low 

grade gliomas) (104).  GBs with TERT only mutations were the most common and patients 

were the oldest mean age at diagnosis, while IDH-only mutated GBs were associated with the 

youngest age at diagnosis.  The molecular subgroups were not associated with overall survival 

in GB although TERT-only GBs had the shortest survival.  With more recent TCGA findings, 

a new glioblastoma classification scheme has been proposed that includes not only biomarker 

expression but also DNA methylation profiles, gene expression patterns, and telomere 

length/maintenance description (98).  While the classical and mesenchymal subtypes were 

mostly retained in this scheme (“classic-like” and “mesenchymal-like”), the proneural and 

neural subtypes were replaced with further subgroups.  In particular, IDH-mutant gliomas 

(without 1p/19q co-deletion) were subdivided into G-CIMP-low and G-CIMP-high subgroups 

based on their relative levels of DNA methylation.  G-CIMP (glioma-CpG island methylator 

phenotype) was demonstrated by gliomas with high levels of methylation at many loci (105).  

G-CIMP tumours are found in younger patients with better prognosis and are typically 

associated with IDH mutations (106).  As discussed previously, IDH mutations and the 

competitive inhibition of α-ketoglutarate enzymes, such as ten-eleven translocation 

methylcytosine dioxygenase (TET) DNA demethylases, may represent the molecular 

mechanism for such hypermethylation (107).  While patients with G-CIMP tumours of any 

type generally have a better prognosis than IDH-wildtype tumours, G-CIMP-high tumours had 

better prognosis when compared to G-CIMP-low tumours.  The neural subtype was basically 

replaced with a small subset of IDH-wildtype GB which corresponded to the LGm6 

methylation cluster assignment (LGm6-GBM).  While these and other classification schemes 

are thought to provide information for patient stratification, prognosis, and treatment response 

(108,109), the importance of subtyping is ultimately unclear due to the observed intratumoral 
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heterogeneity (ITH) of GB which can lead to the presence of multiple subtypes within the same 

tumour (Figure 1.3). 

 

Figure 1.3 Glioblastoma intratumoral heterogeneity . An illustrated simple example of GB 

ITH in which spatially distinct tumour fragments may harbour different subtypes.  Common 
mutations for each subtype are listed as an example of potential observable diversity, but ITH 
may also be observed in DNA methylation patterns, gene expression, and more.  Separate 
clones may possess many similar mutations to other clones (linear evolution) or only a few 

similarities in probable early event mutations that are shared from ancestral precursors 
(divergent evolution).   

 

1.2.2 Intratumoral Heterogeneity 

 

While knowledge of common mutations, core pathways, and molecular subtypes is 

necessary and important, many of the above studies characterized genomic mutation patterns 

of GB based on single surgical biopsies and thus may not have captured the full genomic 

architecture of each tumour.  In fact, it has been shown that a single tumour can harbour 

spatially distinct tumour fragments which correspond to different GB subtypes, making the 

utility of any classification scheme difficult.  Sottoriva et al. utilised comparisons of copy 
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number alterations (CNA) and reconstructed tumour fragment phylogenies to examine the 

relative heterogeneity between spatially and temporally distinct tumour fragments within the 

same tumour (110).  The prevalence of a given copy number event allows for inferring 

evolutionary trends.  Common CNAs found in all fragments were considered to be early events 

in the evolutionary process whereas shared CNAs (found in more than one fragment) and 

unique CNAs (found in only one fragment) were considered middle and late events, 

respectively.  For GB, CNAs in EGFR and CDKN2A were found to be early events whereas 

CNAs in PTEN and PDGFRA were considered to be late events.  Tumour phylogenies were 

reconstructed through molecular clock analysis.  Molecular clock analysis utilises a measure 

of mitotic distance between cells within a fragment, namely the number of cell divisions, to 

identify subclones.  The genomic locus IRX2 has been shown to accumulate methylation errors 

linearly with age (111).  By examining the relative amount of methylation on the IRX2 locus 

for a given cell population (a mitotic clone corresponds to a unique methylation tag), the 

composition and hierarchical relationships of mitotic clones within tumour fragments can be 

determined.  As such, even within single tumour fragments, multiple mitotic clones with 

differing cell lineages were delineated.  Another study which sequenced multiple tumour 

fragments found evidence of similar extensive ITH as only 51% of mutations were clonal and 

two of the treatment-naïve tumours even contained small fragments with hypermutator 

phenotype (112).  Possible therapeutic targets were inconsistently identified within different 

fragments from a given tumour, demonstrating that a multi-sampling surgical and sequencing 

technique provides a more complete picture of a given GB’s genomic makeup  (112).   

In addition to differences in genomic patterns, ITH has also been shown at the level of 

transcription.  Patel et al showed by single-cell RNA-Seq of 430 cells from five GBs that 

diverse programs of transcription were variably expressed between cells from a single tumour.  

The cells within a given tumour corresponded to multiple GB subtypes further highlighting 

ITH and the potential limitations of utilising subtypes for treatment decisions.  Another study 

based on RNA-Seq analysis found differences in molecular composition and GB subtypes 

between cells from the contrast-enhancing tumour core and cells from the non-enhancing 

tumour margin (mostly neural subtype).  While the expression patterns of the marginal samples 

were contaminated with “normal” brain cells, the microenvironment could ultimately influence 

expression patterns of residual neoplastic cells within the parenchyma and contribute to 

observed differences in cell type-specific alteration patterns.   
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Differences in DNA methylation patterns (113,114) and drug sensitivity (115) have 

provided an even more comprehensive understanding of contributions to and implications of 

GB ITH.  Such extensive ITH is thought to be a major factor behind the inevitable tumour 

progression, treatment resistance, and recurrence observed in GB (116-119), as multiple 

subclones with differential treatment sensitivity can exist within the same tumour.  For 

example, single tumours were found to harbour amplifications in three different receptor 

tyrosine kinases (120), representing potential intrinsic resistance routes to treatments targeting 

a single specific RTK.  EGFR, MET, and PDGFRA driver genes, which all contribute to protein 

production, were amplified in different cells coexisting within the same tumour.  Similar results 

in which two or more RTKs were amplified within a single tumour were found in 34 TCGA 

cases (121).  Furthermore, in vitro inhibition of the PI3K pathway for cell lines derived from 

gliomas expressing RTK coamplification required inhibition of both EGFR and PDGFR.  The 

addition of therapeutic selection pressures to the context of ITH can lead to the contraction or 

expansion of various subclones and the potential for a recurrent tumour to be populated with 

resistant cell populations.  The importance of this evolutionary process and its implications for 

effective treatment development necessitates further analysis of ITH and GB evolution in order 

to elucidate genomic patterns, early and late evolutionary events, and key, actionable branch 

points in a tumour’s evolutionary history. 

  

1.2.3 Treatment and Survival 

 

Glioblastoma is a rapidly progressing and evolving disease.  As such, patients who 

remain untreated experience an overall survival time of less than 6 months.  After maximal 

safe surgical resection, the current standard of care for newly diagnosed glioblastoma, the 

Stupp Protocol, consists of fractionated radiotherapy (30 fractions of 2Gy) and concomitant 

and adjuvant temozolomide (TMZ) (122).  Despite such radical treatment, the median survival 

is still only about 15 months.  Glioblastoma has 5-year and 10-year post-diagnosis survival 

estimates of less than 6% and 3%, respectively, some of the lowest rates among all forms of 

cancer (41).        

Surgical resection is important for both diagnostic purposes and to relieve tumour 

burden and mass effect on the brain.  In addition to providing relief from symptoms and 

improving postoperative function (123), patients who underwent resection had increased 
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survival (124).  Furthermore, those patients who received a more extensive resection enjoyed 

a greater survival advantage (125,126).  In fact, partial resection or biopsy is associated with 

greater risk of postoperative complications such as hemorrhage, herniation, and oedema (127).  

While the preoperative performance status and location of tumour relative to eloquent brain 

areas must be considered to properly weigh the risk-benefit ratio, in general, the greater the 

resection, the better the outcome.  This survival advantage is applicable to all glioblastoma 

patients, regardless of age (128,129).  This may be due in part to the many surgical advances 

which have improved the safety of GB surgical resection.  Intraoperative electrocortical 

stimulation, awake craniotomy, and neuronavigation provide surgeons with tools necessary to 

better avoid language and motor-associated areas.  Intraoperative MRI and f luorescence-

guided surgical resection have been developed to improve extent of resection.  While both do 

improve resection, iMRI has not been clearly shown to improve survival for GB patients (130), 

while fluorescence-guided surgical resection has been associated with an increase in PFS 

(131,132).  Fluorescence-guided surgical sampling involves the use of 5-ALA (5-

Aminolevulinic acid; Gliolan) which is taken by the patient preoperatively to cause 

fluorescence of GB tissue when exposed to 405-nm wavelength blue light.  Fluorescence is due 

to uptake of drug through the blood-brain-barrier (BBB) and into glioma cells where it is 

converted into protoporphyrin IX (fluorescent metabolite).  The exact mechanism that leads to 

fluorescence has not been confirmed, but some hypotheses include low levels of ferrochelatase, 

high levels of metabolism, or disturbances in mitochondrial electron transport changes leading 

to accumulation of reactive oxygen species and ultimately reduction in heme synthesis (133-

135).  Regardless of the mechanism of action of 5-ALA, fluorescence-guided surgical sampling 

has also been important for studies on ITH as it aids in the collection of better-quality, spatially 

distinct tissue for downstream experimentation (110,136). 

Another important benefit of surgical resection is the improved response to adjuvant 

therapy experienced by patients who undergo resection, particularly gross total resection.  This 

benefit is evident for multiple modalities of therapy including radiotherapy after 5-ALA 

resection, temozolomide, standard chemoradiotherapy, and BCNU wafers (137).  As seen with 

BCNU wafers, surgery also provides the opportunity to add therapies directly to the tumour 

cavity to treat GB locally and immediately after surgery, which will be discussed in more detail 

in Section 1.2.4.    The cytoreductive results of maximal, safe surgical resection thus provide 

many benefits to the GB patient and should be included in first line GB treatment regimens 

whenever possible. 
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After recovery from surgery, typically 3-4 weeks, patients undergo conformal external-

beam radiotherapy (discussed in Section 1.2.5) with concomitant daily temozolomide 

(75mg/m2/d).  After 6 weeks of combined treatment, patients will continue adjuvant 

temozolomide (150-200 mg/m2/d) for 1 week per month for six monthly cycles.  Except for 

occasional nausea/vomiting and myelosuppression, which is monitored by serial blood counts, 

TMZ is usually well tolerated.  Many patients who experience myelosuppression are able to 

continue taking TMZ at a reduced dose.  While many chemotherapies have been studied for 

survival benefit with GB (138), TMZ has emerged as the current standard chemotherapeutic 

agent due to demonstrated improvement in median survival when coupled with RT compared 

to RT alone (122).  This benefit was confirmed in both the 2-year and 5-year survival follow-

up (139), thus solidifying the use of TMZ for first line GB treatment with radiotherapy.    

Many clinical trials have tested various alternative strategies for treating GB.  In an 

effort to treat the disease by inhibiting a fundamental aspect of its biology, a monoclonal 

antibody (Bevacizumab) was developed to inhibit VEGF-A (140).  Because GB is a highly 

vascular and quickly expanding tumour, angiogenesis inhibitors represent an attractive strategy 

to combat this biological feature and deprive the tumour of a potential mechanism of obtaining 

needed resources.  The safety of bevacizumab was first established for recurrent GB.  After 

successful phase II trials which demonstrated clinical activity, increased 6-month PFS 

compared to other recurrent treatment modalities, and decreased steroid doses required to 

control oedema, the FDA approved it for recurrent GB in 2009 (141-143).  After its testing 

with recurrent GB, bevacizumab was then added to the Stupp protocol for newly diagnosed 

GB.  Unfortunately, the results were even less clear than for recurrent GB, as the results from 

two randomised, double-blind, placebo-controlled phase III trials demonstrated only minor 

improvements in PFS and no change in median OS when comparing bevacizumab to placebo 

controls (144,145).  Because bevacizumab can disrupt contrast-enhancement, pseudoresponses 

are common in which a tumour may appear to be stable radiologically even if the tumour is 

really growing.  Such a phenomenon could explain why PFS was extended but not OS.  

Therefore, it seems that bevacizumab may not provide much clinical benefit for newly 

diagnosed GB.  The lack of clinical utility coupled with an increased number of observed 

complications and severe adverse events in the bevacizumab group has limited its use.     

Immunotherapies are becoming another popular method to inhibit a fundamental 

characteristic of GB; in this case immune evasion (146,147).  The brain, due to the restrictions 

of the blood brain barrier, is not as easily accessible for immune cells as other parts of the body.  
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However, microglia within the brain are capable of immune responses (148) and bone marrow-

derived macrophages can get recruited to brain tumours, particularly when the BBB becomes 

leaky or disrupted during tumour progression or treatment (149).  Also, tumour-associated 

macrophages (TAMs) have been found in high grade gliomas and have been attributed to 

immunosuppressive phenotypes via STAT3 signaling (150).  While there have been many 

efforts to more effectively harness intrinsic antitumour responses and to reduce the tumour’s 

ability to evade the immune system, to date, immunotherapies against GB have not been 

extremely successful.  A recent phase III trial (CheckMate-143) of nivolumab, a PD-1 

checkpoint inhibitor, sought to inhibit the ability of GB to trigger immune suppression.  PD-1 

is expressed on activated T cells that secrete IFN-γ, but PD-1 receptor expression also leads to 

increased PD-L1 expression and resulting interaction on surrounding cells which triggers an 

inhibitory feedback loop to suppress T cell proliferation and enhance T regulatory cell 

development (151).  The CheckMate-143 trial was stopped after interim analysis as nivolumab 

did not improve median OS over bevacizumab for recurrent GB patients (152).  A phase II 

study of pembrolizumab, another PD-1 inhibitor, treated recurrent GB patients with 

pembrolizumab with or without bevacizumab and compared findings to historical controls of 

recurrent GBs treated with bevacizumab alone.  The study found that pembrolizumab alone did 

not significantly contribute to an increase in median OS, further suggesting that checkpoint 

inhibitors may have limited activity as monotherapies (153).  Many trials are ongoing which 

pair checkpoint inhibitors with various other forms of therapy in an effort to enhance clinical 

and immune responses.   

There have also been several attempts at producing effective vaccines against GB.  

Rindopepimut, a peptide vaccine against EGFRvIII, showed promise in early clinical trials and 

in combination with bevacizumab.  However, a phase III trial of the vaccine was halted at 

interim analysis due to a lack of OS benefit (154,155).  Dendritic cell (DC) vaccines pulse a 

patient’s own monocyte-differentiated dendritic cells with tumour antigens or resection lysates 

for delivery back into the patient to generate tumour-specific effector cells and immune 

response.  A phase II trial for tumour lysate-pulsed DC vaccines demonstrated enhanced 

cytokine response in “vaccine responders” who had longer times to tumour progression and 

survival compared to nonresponders.  Compared to patients who received chemotherapy only, 

both responders and nonresponders experienced longer survival when chemotherapy was 

added after vaccination, although higher fold responders experienced increased time to tumour 

progression after the addition of chemotherapy (156).  While several phase I and II trials 
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demonstrate the safety and potential utility of DC vaccines, randomized control trials are 

necessary to establish clinical efficacy (157).  In addition, subsets of responders and 

nonresponders need to be studied and compared in more detail to better understand the diverse 

mechanisms of immune evasion.  Other strategies include viral vaccines, oncolytic viral 

therapy, and CAR-T cell therapy.  Viral vaccines provide the opportunity for gene therapy 

centered around directly killing the cell or activating the immune system, and an early phase I 

trial established the safety and tolerability of adenovirus transduction of herpes simplex virus 

thymidine kinase with subsequent ganciclovir treatment (158,159).  Oncolytic viral therapies 

lead to viral replication in tumour cells and subsequent lytic cell destruction .  A phase I dose-

finding and toxicity study of convection-enhanced, intratumoral delivery of poliovirus 

demonstrated a 21% overall survival rate at 24 and 36 months compared to 14 and 4%, 

respectively for historical controls (160).  CAR-T cell therapy relies on the modification of T 

cells to target tumours based on selected antigens and then cause lytic killing of the identified 

tumour cells (161,162).  However, CAR-T cell therapy is associated with high risk toxicities 

such as Cytokine-release syndrome and CAR-T-cell-related encephalopathy syndrome, and 

therefore requires intensive monitoring and patient workups.  While many of these new 

treatment modalities are interesting, again, randomized control trials will ultimately be required 

to establish clinical efficacy.  Several of these studies have produced a small subset of long-

term survivors, similar to the standard of care Stupp protocol which provides a 2 and 5 -year 

overall survival rate of around 10% and 5%, respectively.  For younger or IDH mutant patients, 

the percentage of long-term survivors is higher.  While a small subset of long-term survivors 

may not point towards significant clinical benefits, the underlying biology and characteristics 

of these long-term survivors need to be better understood so that future patients could 

potentially be stratified and treated based on their predicted response.  This is especially 

important due to the potential significant toxicities associated with some of these modalities.  

As the difficulties with translating immunotherapies into clinical benefit makes clear, a better 

understanding of both primary and recurrent GB biology, the immune response, and the 

microenvironment is needed in order to improve combinatorial therapeutics for GB.  These 

approaches must also take into account possible methods of GB resistance and evasion.     
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1.2.4 Local Delivery Strategies 

 

One strategy for improving therapy is through bypassing the blood brain barrier.  After 

resection, chemotherapeutics or other targeted modalities can be delivered directly to the 

tumour cavity for local treatment of residual disease.  Local delivery also provides treatment 

in a therapeutic window of opportunity: the weeks during recovery from surgery in which 

patients currently receive no form of anti-neoplastic therapy.  Many chemotherapeutic drugs 

have shown efficacy against GB cells in vitro or in vivo, but when translated to the clinic they 

do not display the same efficacy.  It is hypothesised that one factor contributing to this lack of 

clinical efficacy may be the BBB preventing certain chemotherapies and other systemic drugs 

from entering the brain at high enough concentrations to produce an observable clinical effect.  

Thus, there are potentially many drugs and combinations of drugs which could be repurposed 

for GB if the BBB could be successfully and efficaciously circumvented (163).   

Gliadel is a technology that bypasses the BBB by implanting carmustine-loaded, rigid 

polymer wafers into the cavity after GB resection.  Like Bevacizumab, Gliadel is also one of 

the few therapies to have been FDA-approved for treatment of newly diagnosed and recurrent 

malignant gliomas in recent years.  The wafers allow drug diffusion at higher than systemic 

concentrations over a period of several weeks to the tissue surrounding the cavity which 

contains residual cells.  However, the utility of Gliadel has been controversial.  While initial 

studies in recurrent GB demonstrated an advantage in median OS and 6 -month survival for 

Gliadel versus placebo controls (164), trial results in newly diagnosed GB are less clear.  A 

large phase III trial of 240 patients demonstrated an increased OS (13.9 months versus 11.6 

months) for Gliadel with radiotherapy compared with placebo and radiotherapy (165).  

However, subgroup analysis revealed the GB subgroup did not experience a statistically 

significant survival advantage and that incidence of CSF leak and intracran ial hypertension 

were elevated with Gliadel.  A more recent trial which examined Gliadel implant after 5 -ALA 

guided resection (14.2 months) showed no survival benefit over 5-ALA resection alone (14.3 

months) and demonstrated an increased incidence of wound infection in the wafer group (166).  

Even though a single institutional study found no difference in perioperative morbidity after 

Gliadel wafer treatment (167), the potential for side effects shown in other studies coupled with 

the little to no increase in survival benefit, has limited the clinical adoption of this local delivery 

strategy (168).  A potential cause of its limited clinical performance is the stiffness of the 

polymer which seems to make it difficult to achieve optimal tissue apposition and controlled 
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drug diffusion.  The Melville Laboratory for Polymer synthesis has developed a hyaluronic 

acid-based hydrogel delivery system for the treatment of GB that avoids the pitfalls mentioned 

for Gliadel (169,170).  These hydrogels represent a new avenue for local delivery of 

chemotherapeutics, radiosensitisers, and other drugs, and will be discussed in more detail in 

Appendix A. 

 

1.2.5 The Role of Radiation for Glioblastoma 

 

Because most GBs recur within 2 centimetres of the original tumour site (171-173), 

radiation of the tumour bed and the immediately surrounding tissue has been a major part of 

GB therapy for many years.  Fractionated radiotherapy (3D conformal RT) up to 60Gy is the 

gold standard for treating newly diagnosed GB after resection as it has been shown to provide 

significant survival benefit alone (174,175) and an additive survival benefit when in 

combination with TMZ (139,176).  RTOG guidelines for target volume delineation involve 

treating the FLAIR signal hyperintensity with a cone-down boost to the T1 MRI Contrast-

enhancing region with a 2-cm expansion around the tumour region (177).  In a phase III trial 

comparing standard TMZ with dose-dense TMZ for newly diagnosed GB, either RTOG or 

EORTC (more conservative target volume delineation that does not include oedema) guidelines 

were allowed for radiotherapy planning.  Cox modeling demonstrated that the choice of 

radiation technique was not a significant predictor of overall survival in this trial (178,179), 

suggesting comparable outcomes between the guidelines.  While randomized stud ies are 

needed to definitively compare efficacy between the two,  use of the EORTC guidelines is 

associated with smaller irradiated normal brain volumes without an increase in recurrences at 

the margin (180).  Importantly, intensity-modulated RT allows radiation oncologists to provide 

the prescribed RT dose while limiting radiation exposure to important neuroanatomical 

structures (brainstem, optic nerves, optic chiasm) (181-183).  While hyperfractionation 

(184,185) and accelerated fractionation (186) protocols have undergone clinical testing, these 

regimens have shown no survival benefit or only similar benefit to standard fractionation, 

respectively, thus limiting their use in the context of GB.  Interestingly, abbreviated (short 

course) RT protocols have shown clinical benefit by increasing survival and reducing risk for 

treatment of newly diagnosed GB in the elderly and patients with a poor performance status 

(187,188).   
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Other radiotherapy modalities have been examined for their potential to improve 

survival by providing boosts of radiation in addition to standard fractionation.  Interstitial 

brachytherapy with iodine-125 failed to demonstrate a statistically significant increase in 

survival when compared with standard RT (189,190).  Stereotactic radiosurgery (SRS) uses 

either a cobalt source (Gamma Knife) or a linear photon accelerator (LINAC) to achieve large 

doses of RT in the tumour volume while sparing the surrounding tissue.  When SRS was 

coupled with fractionated radiotherapy for newly diagnosed GB, no survival ben efit was 

attained.  This lack of clinical improvement was consistent regardless of whether SRS occurred 

concurrently with fractionated RT (+/- chemotherapy) (191,192) or after fractionated RT (193).  

Thus far, SRS has been shown to have the most clinical utility for small, recurrent GB (194).  

Despite standard of care treatment and many other experimental therapies, GB 

inevitably recurs which raises the issue of trying to identify the best recurrent treatment 

strategy.  While there is not a consensus for best recurrent therapy regimen, and indeed such 

regimens may need to be individualized based on tumour volume, tumour location, patient 

performance status, and other factors, several institutions are testing reirradiation protocols to 

control tumour growth (clinicaltrails.gov).  Early reports signal that fractionated reirradiation 

protocols may be a safe and effective tool for increasing PFS and OS for recurrent GB, but 

randomised controlled trials are needed to establish a clear clinical benefit (195-197).  In 

addition to the utility of SRS for small, recurrent lesions, pulse-reduced dose rate RT may also 

be a beneficial way to provide reirradiation therapy while potentially reducing the risks of 

radiation retreatment (198).      

An attractive method for improving a tumour’s response to radiation both in the primary 

and recurrent setting, is the use of radiosensitisers (199).  Historically, hypoxic cell sensitisers 

and halogenated pyrimidines were utilised to selectively isolate and sensitize hypoxic and 

rapidly proliferating tumours cells to RT, but these methods proved ineffective.  More recently, 

targeted approaches which seek to exploit intracellular signaling pathways, particularly DNA 

repair mechanisms, have been developed.  A few methods of improving radiosensitivity of 

GSCs (thought to be more radioresistant than other tumour cells) include, inhibition of HDAC 

(200), inhibition of mTORC1/mTORC2 (201), inhibition of ATM kinase (202), PARP 

inhibition (203,204), and inhibition of a combination of cell cycle checkpoint and DNA repair 

targets (205,206).  A targeted, multimodal approach is also being explored through the use of 

cisplatin-infused gold nanoparticles in conjunction with RT (207).  While there are many 

potential radiosensitisers available (208), selecting appropriate radiosensitisers based on a 
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more thorough understanding of radiation-induced GB evolution and underlying GB biology 

will no doubt lead to better sensitisation and response to radiotherapy. 

 

 

1.3 Glioblastoma Evolution 

 

The intratumoral heterogeneity of glioblastoma yields brain tumours with such a variety 

of genotypic and phenotypic cell populations that a given tumour may harbour subclones that 

are resistant to standard of care or experimental treatments even prior to undergoing such 

treatments.  Yet the process of GB evolution becomes even more difficult and dynamic as we 

know that GB can also evolve not only in response to therapeutic challenge, but also in response 

to other selective pressures.  The investigation of GB evolution after exposure to various 

selection pressures is important for understanding underlying GB biology and resistance 

mechanisms which have implications for developing more effective, better targeted 

therapeutics for recurrent disease.             

 

1.3.1 Primary versus Recurrent Tumours 

 

A common approach to examining cancer evolution is to compare genomic 

architectures between primary and recurrent tumours.  By examining changes in genetic 

alterations, scientists can speculate on the relative effects of time, microenvironment, and 

treatment.  Several studies have provided relatively large cohort analyses of whole -exome 

(WES) and whole-genome (WGS) sequencing of primary and recurrent patient-matched 

samples.  Kim et al. found through TCGA genomic analysis and WES of matched tumours that 

TP53 mutations were strongly associated with an increase in subclonal mutations, including an 

increase in prevalence of G-CIMP methylation phenotype (209).  Thus, the detected TP53 

mutations could suggest a susceptibility to apoptosis suppression or increased DNA damage 

tolerance after treatment.  Furthermore, WGS of 10 matched patient samples demonstrated two 

patterns of evolution: linear and divergent.  Linear evolution, or clonal evolution, occurs when 

dominant clones present in primary tumours directly lead to regrowth of recurrent tumours 
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such that there are many shared mutations in addition to newly accumulated variants.  

Divergent evolution, or ancestral origin evolution, occurs when the recurrent tumour regrows 

from an “ancestral” clone that split early from the primary tumour’s more dominant clones.  

When the dominant clones are removed by treatment, the ancestral clone which has 

accumulated many new mutations over time repopulates the tumour such that the primary and 

recurrent mutation patterns are quite different.  Genomic analyses including WES, RNA-Seq, 

and array-comparative genomic hybridisation of 38 GB patients reveal that tumours that 

recurred distally were more likely to exhibit a branched (divergent) evolutionary pattern, with 

divergence in GB driver genes between paired tumours (210).  This study also demonstrated 

that TMZ-induced hypermutation was rarely associated with IDH-wildtype primary tumours, 

suggesting that a GB’s evolutionary history is affected by the complex interplay of baseline 

mutational architecture, early behaviour of heterogenous tumour cells, interaction with the 

microenvironment, and therapeutic selection pressures.   

Similar results were found by Lee et al. through interrogation of  multisector and 

longitudinal samples from 52 GB patients.  Tumour fragments that were spatially proximal 

demonstrated more similarities in mutation and expression signatures, while distal foci and 

recurrences separated by longer periods of time were thought to have been seeded by distinct 

early  clones reflecting a divergent pattern (115).  The genomic similarity amongst spatially 

local fragments also corresponded to similar drug responses as cell lines derived from local 

samples exhibited similar responses to screened compounds while distant and longitudinal 

samples exhibited more diverse responses.  These results from relatively large matched cohorts 

suggest that spatial and temporal proximity may have a correlation with genomic similarity, 

especially relative to distally and longitudinally separated recurrences.  However, as previously 

discussed, fragments from the same tumour and even cells within the same fragment can 

display a large amount of ITH.  Indeed, slightly conflicting results were found through the 

analysis of genetic alterations and COSMIC mutational signatures (211,212) of 10 presumably 

local recurrences (213).  In this study, differences in genetic alterations were found between all 

paired samples, even in one case in which no intervention occurred between surgeries for the 

two recurrences, suggesting that both treatment and time (including interactions with the 

microenvironment) can lead to changes in genetic alteration patterns in locally recurrent 

tumours.  It was also noted that even among the genetic similarities between paired tumours, 

the percent reads for given mutations varied widely, suggesting subclonal/clonal expansion and 

contraction.   
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Studies of paired primary and recurrent tumours demonstrate both the extensive ITH of 

GB and the evolutionary dynamics at work during disease progression.  Therefore, longitudinal 

analysis of GB evolution must become a common feature of GB research, clinical evaluation, 

and treatment decisions.  This priority is evidenced by the ongoing work of the Glioma 

Longitudinal Analysis Consortium (GLASS) which seeks to better understand the cellular and 

molecular changes involved in GB evolution in an effort to improve treatments and outcomes 

(214).  While such longitudinal studies provide better insight into GB evolution and represent 

an improvement in GB genomic investigation from initial TCGA studies (based mostly on 

single biopsies of primary tumours), they still represent single snapshots in time of primary and 

recurrent tumours.  Recent advances in liquid biopsies for GB provide the potential to 

incorporate more frequent disease interrogation for improved, up-to-date monitoring of patient 

response to targeted treatments (215-218).  Therefore, liquid biopsies may provide an avenue 

for treatment improvements based on a better understanding of GB evolution and the selective 

pressures which drive that evolution for individual patients.  Liquid biopsies provide an easier 

method for more frequent, longitudinal monitoring of tumour burden, treatment response, and 

clonal evolution.  It provides the opportunity to examine whether treatments have led to 

resistance or even whether new susceptibilities may have arisen after a given treatment 

regimen.  Liquid biopsies would prevent the risks associated with multiple surgical biopsies 

and could potentially capture more holistic genomic and transcriptomic profiles of the tumour 

than a focal biopsy.  Furthermore, the ease and relative safety of longitudinal tumour response 

monitoring will allow for easier testing of targeted therapeutics in clinical trials.  While more 

studies will need to be completed to optimize liquid biopsy protocols to make them more 

reproducible across studies, to pinpoint potentially useful biomarkers to correlate with response 

and prognosis, and to detect important evolutionary branch points to suggest initiation of 

matched target therapies, it seems clear that liquid biopsies could prove to be a very valuable 

tool for expanding personalized medicine options for GB patients.           

 

1.3.2 Microenvironment as a Source of Selective Pressure 

 

There are many potential sources of selective pressure that may contribute to GB 

evolution.  The tumour microenvironment (TME) represents a complex source of non-tumour 

cells which interact with glioma cells and can influence glioma growth and evolution.  Immune 
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cells, particularly microglia and macrophages (TAMs), are recruited to tumour sites and have 

been shown to influence GB growth and invasion (219).  Reduction in the number of microglia 

has been shown to reduce in vivo glioma growth (220,221), which could be a function of the 

loss of supportive factors released from microglia such as EGF, STI1, IL-6, and TGF-β which 

stimulate proliferation, migration, and invasion (222-225).  TAMs have also been implicated 

in glioma growth through their involvement in promoting angiogenesis via RAGE (receptor 

for advanced glycation end product) and VEGF signalling (226).  An increased amount of TAM 

infiltration has been correlated with the mesenchymal transcriptional subtype and the transition 

from proneural to mesenchymal subtype has been correlated with activation of the NF-κB 

pathway (227).  Such enrichment of immune cells in mesenchymal subtype GBs was 

corroborated through in silico cell sorting (CIBERSORT) experiments of TCGA data (228), 

further supporting the close interaction and mutual influence of GB expression and supportive 

TAMs in the microenvironment. 

In addition to immune cells, GB is also influenced by resident astrocytes in the TME.  

In vitro experiments proved that astrocytes can enhance invasion and reduce radiosensitivity 

of GSCs (229,230).  Activation of the JAK/STAT pathway of reactive astrocytes can lead to 

release of anti-inflammatory cytokines which promote unhindered GB growth through 

immunosuppression (231).  Endothelial cells and other stromal cells may also play a role in the 

microenvironmental regulation of GB.  Tumour cell niches have been described in the TME as 

locations in which cancer stem cells can directly contact, interact and communicate with non-

neoplastic cells to promote tumour growth and survival.  The perivascular niche, vascular-

invasive niche, and hypoxic niche have been described and associated with angiogenesis, 

migration, and necrosis, respectively (232).  The complex interactions of GB cells with the 

TME are important to assess, not only because of their direct impact on evolution, but also 

because the TME provides the in-situ context in which residual GB cells undergo treatment.      

 

1.3.3 Therapy-induced Evolution 

 

Therapeutic selection pressures are potentially some of the strongest drivers of 

evolution.  A landmark study by Johnson et al. demonstrated chemotherapy-induced evolution 

as 6 out of 10 low-grade glioma that underwent alkylating chemotherapy with TMZ were found 

to be hypermutated when they recurred as high-grade glioma.  The recurrent tumours displayed 
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acquisition of driver mutations in core GB pathways as a result of the hypermutator phenotype 

and its associated susceptibility to acquiring new mutations.  Not only are low-grade glioma at 

risk of hypermutation after alkylating chemotherapy, but GB itself is susceptible to such 

evolution.  It is estimated that around 50% of low-grade glioma that undergo malignant 

transformation and up to 20% of recurrent GBs express the hypermutator phenotype (233,234).  

Recurrent GBs have been shown to express the hypermutator phenotype in the context of 

MGMT promoter methylation and MSH2/6 mutation which increase susceptibility to DNA 

damage by TMZ and decrease a cell’s ability to properly respond to such damage, respectively  

(Figure 1.4) (90,91).  Such studies imply that chemotherapy drives evolution leading to the 

emergence of resistant clones.  Consistent with studies of clinical specimens, temozolomide 

treatment of mice bearing brain tumour xenografts initiated from GB primary cultures also 

suggested the expansion of drug resistant clones (235). 

 

Figure 1.4 TMZ-induced evolution. Temozolomide alkylates tumour cell DNA.  MGMT 
can remove alkyl groups from DNA and allow tumour cells to evade cell death.  If MGMT 

promoter methylation is present, then MGMT does not function properly.  In this case, the 
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DNA Mismatch repair complex MSH6-MSH2 can detect incorrect base pairing caused by 
replication after alkylation damage.  Ultimately, DSBs are induced and cells undergo 
apoptosis after futile cycles of replication.  However, if loss of function mutations in MMR 

genes are coupled with nonfunctional MGMT, then alkylation and C>T and G>A transitions 
will accumulate.  This leads to survival of cancer cells with unchecked mutation 
accumulation resulting in the hypermutator phenotype.  

 

While TMZ-induced hypermutator phenotype GBs can acquire a high number of new 

mutations following treatment, therapy can also lead to reduction of clonal diversity and 

selection of pre-existent clones.  Targeted deep sequencing of 21 patients revealed that clonal 

diversity (variant burden) was reduced in non-hypermutated recurrent tumours, suggesting the 

selection of variants after treatment (236).  Similar results were found by examining the 

branched evolutionary patterns of 114 patients after recurrence (237).  Evolutionary rate 

models predicted that many recurrences emerged through the growth of clones that were 

present many years before diagnosis.  These early clones had convergently gained “clonal 

replacement” mutations in key driver genes.  Such results further support the removal of clonal 

populations prevalent in primary disease after treatment and subsequent selection and 

proliferation of early branching subclones to repopulate recurrent disease. 

Treatment-induced evolution has implications not just for the therapeutic modalities 

which potentially induced the evolution but can also impact sensitivities to other targets.  

Longitudinal analysis of  GB samples demonstrated a discordance between primary and 

recurrent tumours in 90% of the druggable targets tested after standard chemoradiotherapy 

(238), further supporting the concept that molecular analysis at initial diagnosis is not enough 

to capture the ITH of GB, particularly after treatment driven evolution.  Indeed, while a study 

of the impact of standard of care treatment on 186 pairs of primary-recurrent GB found that 

approximately 80% of cancer gene mutations were stable at recurrence, many variants did 

demonstrate a change in status in subsets of patients (239).  EGFR, a commonly targeted RTK, 

was one of the least stable mutations.  In particular, 37% of patients with EGFRvIII in the 

primary tumour lost expression at recurrence, similar to a previous study (240), which implies 

that certain recurrent tumours need to be re-resected/re-biopsied in order to confirm mutation 

status of relevant variants with implications for precision medicine clinical trial inclusion.   

Several of the above studies have investigated the role of chemotherapy in GB evolution.  

However, despite the inclusion of radiotherapy in virtually all GB treatment regimens, little 

consideration has been given to the contribution of radiotherapy alone to GB evolution.  In 
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order to assess the potential of radiation to drive evolution, a clinically and biologically relevant 

model is needed. 

 

 

1.4 A Model for Studying Radiation-induced Evolution 

 

Because glioblastoma is an evolutionary dynamic, genotypically diverse, and 

phenotypically heterogenous tumour, it presents a difficult challenge for researchers.  Accurate 

models of this disease must be able to not only capture the underlying heterogeneity of the 

cancer, but also be able to recapitulate many of its histological, phenotypic, and clinical 

features.  In the context of evolution, a cancer model is arguably most useful when it 

demonstrates a measured degree of treatment response (non-curative) followed by eventual 

progression and recurrence.  Such a GB model would not only mimic the clinical course of the 

disease but would provide the opportunity to compare primary and recurrent tumours and the 

evolutionary processes that connect them.  Glioblastoma stem-like cells (GSC) provide such a 

model.       

 

1.4.1 Glioblastoma Stem-like Cells 

 

Glioblastoma-stem like cells isolated from human GB surgical samples either through 

derivation and propagation in serum free, EGF/FGF-containing media (241) or through 

isolation of CD133+ cells (242) were found to exhibit many of the same properties as adult 

somatic stem cells (243).  Specifically, GSCs are undifferentiated cells with the ability to 

generate a heterogeneous population of fate-restricted cells, GSCs have the ability to self -

renew, and perhaps most importantly, GSCs (sometimes called tumour-initiating cells) have 

the ability to initiate tumours (244).  GSCs have also been implicated in treatment response, 

both chemoresistance and radioresistance (245,246), which may have implications for GB 

evolution and recurrence and also suggests their potential application for initial radiotherapy 

and drug response screening (247).   
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CD133 is thought to be one of several potential stem cell markers which can enrich for 

a clonogenic subpopulation of GSCs (244).  Definitive markers of GB and GSCs are 

controversial because marker expression is known to fluctuate and some studies have 

demonstrated that cell populations lacking marker expression (CD133 or NG2) can sometimes 

still initiate proliferative tumours (248,249).  Such results could indicate that self -renewal and 

tumour initiation capabilities may not be restricted to specific GSC populations.  However, 

while CD133 sorting may not fully capture the genotypic and phenotypic heterogeneity of 

GSCs (136,250,251), it does provide a more uniform population of clonogenic cells with which 

to perform in vivo studies.   

 

1.4.2 GSC-initiated in vivo Models of Glioblastoma  
 

One of the shared, defining features of GSCs is the ability to produce tumours upon 

orthotopic implantation.  Importantly, GSC-initiated orthotopic xenografts have been shown to 

replicate the genotype, phenotype and in vivo growth patterns of GB (252).  While some GSCs 

are diffusely invasive and may serve as better models for glioma infiltration, others form 

discrete nodular and vascular masses and may serve as better models of tumour-associated 

angiogenesis (253).  With respect to GB evolution, we have previously shown that after the 

initial implant of 100% CD133+ GSCs, xenografts at the time of morbidity are comprised of a 

variety of cell subpopulations including those expressing GFAP or βIII tubulin  (254).  This is 

consistent with tumour cells that have differentiated, at least partially, along astrocytic and 

neuronal pathways, respectively.  In addition, there continued to be a small subpopulation 

(approximately 10%) of tumour cells expressing CD133, suggesting the enduring presence of 

GSCs. 

GSCs isolated from paired surgical samples provide evidence for both linear and 

branched evolutionary patterns.  GSCs were found to both accumulate mutations as a result of 

TMZ or to undergo positive selection in which a primary subclone (TP53 at low frequency 

prior to treatment) was positively selected and expanded to populate the recurrent tumour 

(255).  Furthermore, GSCs isolated from a patient’s tumour prior to and after EGFR-targeted 

therapy led to xenografts which recapitulated the disease genotype and phenotype (256).  In 

particular, EGFR amplification seen in the initial tumour/xenografts was lost in the recurrent 

tumour/xenograft.  In addition to demonstrating similar cell populations, the GSCs from the 
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initial tumour were found to be more proliferative in vivo and more sensitive to EGFR 

inhibition in vitro.  A potential next step would be to treat the initial tumour-derived xenograft 

with EGFR inhibitor to determine if a recurrent tumour would regrow in vivo which mirrors 

the clinical outcomes and genotype/phenotype seen in the recurrent tumour-derived xenografts.  

In this regard, GSC-initiated orthotopic xenografts have already demonstrated efficacy as 

models of therapy-driven evolution.  In a study by Chen et al., a Nestin-RTK-GFP transgene 

was utilised to label a subset of endogenous, quiescent GSCs.  This labelled subset was found 

to regrow the tumour in a hierarchical fashion after treatment with TMZ initially caused arrest 

of proliferation (257).  Chronic ganciclovir treatment, used to target GFP+ cells, led to tumour 

growth arrest, suggesting that the labelled glioma stem cell-like population was involved with 

treatment resistance, tumour cell proliferation and growth of recurrent tumours (257).   

 

1.4.3 The Brain Tumour Microenvironment and Response to Radiation 

 

Another reason that GSC-initiated xenografts closely replicate GB in situ is the 

interaction of GSCs with the brain tumour microenvironment.  Many adult neural stem cells 

reside in neurogenic parts of the brain, including the subventricular zone of the lateral ventricles 

and the subgranular zone within the hippocampal dentate gyrus (258).  Glioma stem-like cells 

have also been found to reside in such niches leading to the question of whether GSCs invade 

into or out of these areas during early tumourigenesis (259,260).  In addition, integrin α6 has 

been identified as a possible GSC marker and its role as a receptor for the extracellular matrix 

protein laminin highlights the importance of microenvironmental interactions for GSC function 

and development (261).  GSCs are not only influenced by the microenvironment but can also 

shape the microenvironment in return.  This influence has been particularly evident regarding 

tumour vasculature.  For example, GSCs have been shown to secrete high levels of VEGF 

which may induce angiogenesis (262).  Further evidence suggests that GSCs may even 

transdifferentiate into vascular endothelial cells (263,264) as CD31+ endothelial cells were 

found to harbour GB-specific mutations (265).  While such findings are controversial and 

warrant corroboration, they do present an interesting example of GSC-induced changes in the 

microenvironment.        

To study the possible responses to radiotherapy in terms of evolution and therapeutic 

consequences, the GSC-derived xenograft model must also display ITH with respect to cellular 
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phenotype and radioresponse.  Such ITH was demonstrated through  analysis of ɣH2AX and 

53BP1 foci induction and dispersal in GSC xenografts.  Even though CD133+ stems cells and 

CD133- differentiated cells have similar radiosensitivity in vitro, when irradiated as orthotopic 

xenografts CD133+ cells were less radiosensitive than CD133 - tumour cells (266).  In vivo 

GSCs were less susceptible to foci induction, showed an increase in expression of genes related 

to reactive oxygen species, and experienced an increase in relative cell percentage after 

radiation (266).  The microenvironment has also been shown to play a significant role in this 

radioresponse as tumour cells grown as orthotopic xenografts were able to more quickly 

disperse ɣH2AX foci following radiation therapy compared to cells grown in vitro (254).  GSC-

initiated xenografts exhibit the intratumour heterogeneity, microenvironmental interactions, 

and evolutionary dynamics necessary to simulate that of a GB in situ, thus providing a useful 

model for the study of radiation-induced GB evolution. 
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Chapter 2. Aims and Hypotheses 
 

2.1 Aims 
 

The extensive intratumoral heterogeneity of glioblastoma renders it susceptible to 

evolution when exposed to selective pressures.  Such pressures as imposed by the tumour 

microenvironment and therapeutic regimens can lead to the expansion or contraction of various 

subclones depending on the relative fitness of each subclone as determined by its sensitivity to 

a given challenge.  For example, a certain drug could remove all sensitive clones and thus 

provide the opportunity for resistant clones to expand quickly to grow a recurrent tumour due 

to competitive release.  In this way, selective pressures drive evolution and contribute to tumour 

recurrence, progression, and treatment failure.  While the role of chemotherapy in treatment-

induced evolution has been studied, the impact of radiotherapy alone on glioblastoma evolution 

has not been determined.   

As outlined in this thesis, I will endeavor to describe the effect of ITH on intrinsic 

radiosensitivity to determine whether spatially distinct regions of the same tumour may have 

different sensitivities.  Then I will discuss whether radiation alone can drive the evolution of 

GSC-initiated orthotopic xenografts and whether it leads to the emergence of resistant 

subclones.  In this context, the GSC-initiated xenograft model will also be proposed as a 

potential model system for studying recurrent GB and reirradiation protocols.   Finally, I will 

report on biocompatibility and efficacy studies for a new hydrogel delivery system, which 

could provide immediate and local delivery of targeted combinatorial therapeutics, including 

radiosensitisers.  Ultimately, by better characterizing the impact of radiation on glioblastoma 

evolution and by studying recurrent GB and retreatment strategies, we can harness insights 

related to recurrent glioblastoma biology and radiation biology for the production of more 

effective systemic and local therapies to improve outcomes for glioblastoma patients.  With 

this thesis, I would like to answer the following questions: (1) Does ITH translate into 

differences in intrinsic radiosensitivities between patient-derived cell lines derived from 

distinct tumour fragments?  (2) Does radiation alone drive glioblastoma evolution?  (3) If 

radiation drives glioblastoma evolution, does it lead to the emergence of radioresistant clones?  

(4) Can the GSC-initiated xenograft model be used to study recurrent GB treatment strategies?  

(5) Are hyaluronic acid-based hydrogels biocompatible and effective at local drug delivery?  
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2.2 Hypotheses 
 

(1) Does ITH translate into differences in intrinsic radiosensitivities between patient-derived 

cell lines derived from distinct tumour fragments?   

 

Hypothesis:  I hypothesised that patient-derived cell lines derived from spatially distinct 

tumour fragments would display intratumoral heterogeneity.  Furthermore, I hypothesised that 

the heterogeneity between cell lines would extend to radioresponse such that different cell lines 

from the same tumour would display different intrinsic radiosensitivities.   

 

After deriving cell lines from multiple spatially distinct tumour fragments from several 

patients, we examined differences in radioresponse through standard radiation biology 

techniques.  Similarities or differences in radioresponse and extent of ITH were further 

interrogated through genomic analysis of these patient-derived cell lines and their 

corresponding tumour samples.  If there are major differences in radioresponse and genetic 

alterations between cell lines derived from distinct regions of the same tumour, then it would 

suggest that multiple therapeutic targets are needed for holistic treatment of GB. 

 

(2) Does radiation alone drive glioblastoma evolution? 

   

Hypothesis:  I hypothesised that, similar to other therapeutic modalities, radiation is capable of 

providing selective pressure sufficient to drive glioblastoma evolution.   

 

GSC-initiated orthotopic xenograft models treated with fractionated radiotherapy were 

utilised to examine the survival, phenotypic, and genomic consequences of radiation.   Due to 

the variability in tumour growth patterns and inconsistency in growth rates of the patient-

derived cell lines utilised for Aim 1, those lines were deemed inappropriate for examining the 

effects of a therapeutic challenge.  Therefore, GSC lines which have previously been shown to 

provide reproducible in vivo tumours with consistent radioresponse were selected for the study 

of radiation-induced evolution.  Morphologic and histological analysis characterised potential 
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changes in recurrent GB biology.  Viral integration site analysis (VISA) examined the impact 

of radiation on clonal diversity, while WES highlighted any changes in mutation patterns of 

GSC-initiated tumours before and after treatment with radiation.  These measures were 

employed to provide evidence for radiation-driven GB evolution. 

 

(3) If radiation drives glioblastoma evolution, does it lead to the emergence of radioresistant 

clones?   

 

Hypothesis:  As mentioned above, I predicted that radiation drives glioblastoma evolution.  

Furthermore, I hypothesised that such radiation-induced evolution would lead to the emergence 

of resistant clones which would contribute to the regrowth of a radioresistant recurrent tumour. 

 

GSC-initiated orthotopic xenograft models were again applied to study the functional 

implications of possible radiation-induced evolution.  Tumour cells were isolated from morbid 

control and irradiated tumours and were put back into culture.  These xenograft-derived cell 

lines were subsequently tested for evidence of differential radioresponse through clonogenic 

survival assays and a reimplantation survival study.  Such studies may provide valuable 

information on the potential functional implications of radiation-induced GB evolution.   

 

(4) Can the GSC-initiated xenograft model be used to study recurrent GB treatment strategies?   

 

Hypothesis:  I predicted that through regular in vivo tumour growth monitoring, GSC-initiated 

xenografts could serve as models of recurrent tumour growth and could be successfully 

reirradiated to provide a clinically relevant model of recurrence and retreatment.   

 

GSC-initiated xenografts underwent a first course of fractionated radiation.  After 

treatment, the irradiated mice were followed by serial imaging to monitor for tumour regrowth.  

Once regrowth was noted, the same fractionated radiation protocol was reapplied.  Survival 

analysis was performed to determine the in vivo radioresponse of recurrent tumours after 
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reirradiation.  Such studies may not only demonstrate whether such models would be useful 

for studying recurrent treatment regimens, but may also serve as a more clinically relevant 

approach for determining functional implications of radiation-induced evolution.     
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Chapter 3. Materials and Methods 
 

 The following represent general methodologies employed throughout the work 

included in this thesis.  Study-specific methods are described in Chapters 4-6 and Appendix A.  

  

3.1 Human glioblastoma sample collection 
 

 Human glioblastoma tissue was collected from patients that underwent 5-ALA 

fluorescence-guided surgical resection at Addenbrooke’s Hospital at the University of 

Cambridge.  Fluorescent tumour tissue was collected for diagnosis, storage as fresh frozen 

tissue by the Addenbrooke’s tissue bank, and  derivation of patient-derived cell lines.  Matched 

whole blood samples were also collected.  Informed consent for tissue and corresponding 

clinical data to be used for research purposes was obtained from all patients prior to surgery.  

Tissue collection protocols were compliant with the UK Human Tissue Act 2004 and approved 

by the Local Regional Ethics Committee (LREC ref. 04/Q0108/60). 

 

 

3.2 Cell culture of glioblastoma cells 
 

3.2.1 Derivation and propagation of patient-derived cell lines 
 

Primary tumour samples were placed in specimen tubes and immediately placed on ice 

for transport to the human tissue fume hood.  Under the fume hood, tumour fragments were 

minced with scalpels separately, transferred to a 50mL Falcon tube, and incubated at 37.5oC 

and 5% CO2 for 45-90 minutes with 2-5 mL of Accutase (Gibco), depending on the size of the 

tumour sample, to degrade extracellular material.  After incubation, HBSS (without Calcium 

and Magnesium, Gibco) was added to the suspension for dilution.  The single cell suspension 

was then filtered through a 40 µm cell strainer to remove debris, endothelial/vascular cells, and 

extracellular material.  The resulting single cell suspension was spun down at 1200 g for 5 

minutes.  The supernatant was carefully discarded and 1-3.5 mL red blood cell lysis buffer was 

added to resuspend the pellet depending on the size and suspected level of blood content of the 
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pellet.  After 10 minutes of incubation at room temperature, cells were spun down again at 

1200 g for 5 minutes.  The supernatant was carefully discarded and then 10 mL of HBSS was 

added to resuspend and wash the pellet.  Washing occurred 1-3 more times depending on the 

size of the pellet.  After a final wash and spin, the supernatant was discarded and the pellet was 

resuspended in serum free medium (SFM; Neurobasal A (Invitrogen, UK) with 20 mM L-

glutamine, 1% PSF solution, 20 ng/ml hEGF (Sigma, UK), 20 ng/ml hFGF (R&D systems, 

UK), 2% B27 (Invitrogen, UK) and 1% N2 (Invitrogen, UK)).  Cells were counted with a 

hemocytometer and then plated with SFM at a density of approximately 100,000 cells per mL 

in 25 or 75 cm2 cell culture flasks and placed in a 37.5oC, 5% CO2 incubator. 

After 7-10 days, cells began to form floating neurospheres.  Once there were enough 

neurospheres of sufficient size to be viable, neurospheres were removed from flasks, spun 

down at 1200 g for 5 minutes, washed with HBSS, resuspended in SFM, and added to cell 

culture flasks that had been pre-coated with extracellular matrix (ECM; Sigma).  Neurospheres 

then plated down forming an adherent monolayer of glioma cells that were maintained and 

utilised for future experiments.  To passage adherent monolayer cultures, media was removed 

from flask and 2-4 mL of Accutase was added for 10 minutes in 37.5o C incubator.  Around 4 

mL of SFM was added to floating cells and suspension transferred to 15 ml Falcon tube.  If 

needed, Accutase step was repeated to remove remaining cells from flask.  Cells were then 

spun at 1200 g for 5 minutes, resuspended in HBSS and spun again.  The supernatant was 

discarded and SFM was added.  Cells could then be counted, re-plated, frozen down, or utilised 

as needed.    

 

3.2.2 Freezing and thawing patient-derived cell lines 
 

Depending on the growth rate of individual, patient-derived cell lines, lines were 

passaged every one to two weeks.  Typically, with each passage, cells were counted using a 

hemocytometer and 500,000-1 million cells in SFM were added to freezing media (SFM with 

10% DMSO) to a total volume of 1 mL.  Lines were then frozen down in isopropanol freezing 

containers at -80oC before being transferred to liquid nitrogen for permanent storage.   

Individual patient-derived cell lines were thawed and re-established when necessary.  

Cells were removed from -80oC freezer or liquid nitrogen storage and placed on dry ice.  15 

mL Falcon tubes with 10 mL of SFM were prepared.  Then, cryovials were thawed by holding 
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in gloved hands.  Once thawed, cells were quickly transferred to SFM and spun down.  

Supernatant was discarded and cells were washed with SFM or HBSS 1-3 more times, 

depending on the size of the initial pellet.  Finally, 10 mL of SFM was added to pellet and 

solution was placed in a 75 cm2 culture flask and placed in a 37.5oC, 5% CO2 incubator.  A few 

days later, cells were transferred to ECM-coated flasks.           

 

3.2.3 Glioblastoma stem-like cells and other glioblastoma lines 
 

GSC lines NSC11, NSC20, and NSC23 were isolated from three human GB surgical 

specimens and were kindly provided by Dr. Frederick Lang (MD Anderson Cancer Center).  

They were maintained as neurospheres in stem cell medium composed of DMEM/F-12 

(Invitrogen), B27 supplement (Invitrogen), and human recombinant bFGF and EGF (50ng/ml 

each, R&D Systems) at 37oC, 5% CO2, and 5% O2, as previously reported (267,268).  FACS 

was utilised to sort for CD133+ cells from each culture.  To prepare cells, TrypLe Express 

(Sigma) was utilised to generate single cell suspensions from neurospheres.  After 30 seconds 

of exposure, defined trypsin inhibitor (Sigma) was added and neurospheres were disaggregated.  

After washing, single cell suspensions were labelled with anti-CD133 antibody (PE-

conjugated, Miltenyi) and FACS sorted under sterile conditions.  CD133+ GSCs were 

expanded and utilised for all experiments.   The U251 human GB cell line was obtained from 

the Division of Cancer Treatment and Diagnosis Tumour Repository (DCTD), National Cancer 

Institute (NCI), grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

10% FBS (Invitrogen), and maintained as adherent cultures at 37oC, 5% CO2.   

GSC lines and U251 cells were cultured less than 2 months after resuscitation.  Cell 

lines tested negative for mycoplasma contamination by PCR analysis (Idexx BioAnalytics).  

All lines were transduced with lentivirus (LVpFUGQ-UbC-ffLuc2-eGFP2, provided by Viral 

Technology Laboratory, NCI Frederick) as single cells at a MOI of 1 to express both GFP and 

luciferase.  GFP expression was monitored in vitro and, in some cases, cells were sorted for 

GFP positivity by FACS prior to in vivo implantation.  For use in an in vitro experiment, GSC 

neurospheres were disaggregated into single cells, as described above, and seeded onto poly-

L-ornithine (PO, Invitrogen)/laminin (Sigma-Aldrich) coated tissue culture dishes in stem cell 

media.  Under these conditions, single-cell GSCs attach and grow as an adherent monolayer 

maintaining their CD133 expression and stem-like characteristics (269). Radiation was 
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delivered to in vitro cultures using a 320 kV Xray machine (Precision X-Ray Inc.) at a dose 

rate of 2.3Gy/min. 

 

 

3.3 In vivo protocols 
 

3.3.1 Orthotopic implantation of glioblastoma cell lines 
 

 CD133+ GSCs (1.0 x 105) or U251 (2.5 x 105) transduced to express luciferase and 

GFP were orthotopically implanted into the right striatum of 6-week-old athymic female nude 

mice (Ncr nu/nu; NCI Animal Production Program).  A single cell suspension of the cells to be 

implanted were collected and then counted on a Coulter counter.  Cells were then spun down 

and resuspended in sterile PBS such that the required number of cells could be implanted in 

5µL per mouse.  Mice were anaesthetized using isoflurane gas and transferred to a stereotactic 

surgical frame with continued isoflurane exposure and heat pads.  Mice were secured with ear 

clamps.  Meloxicam was provided subcutaneously prior to surgery initiation and Marcaine was 

provided topically after surgical incisions for post-operative pain relief.  Scalps were scrubbed 

with iodine and 70% surgical grade ethanol three times prior to making a 1 cm sagittal incision 

to the right of midline with a sterile scalpel.  The bregma was identified and a burr hole created 

with a 22-gauge needle 1 mm anterior and 2 mm lateral to the bregma.  Once a hole was made 

in the skull, a Hamilton syringe pre-loaded with glioma cells was lowered to a depth of 3.5mm 

inferior to the skull surface and then raised 0.5mm.  After a delay of two minutes, glioma cells 

were slowly injected over 4 minutes.  Once all cells were injected, two minutes were waited 

prior to slowly removing Hamilton syringe.  Mouse was removed from stereotactic frame and 

incision was closed with veterinary glue.  Each mouse was monitored in a heated plastic 

chamber until fully recovered.     

 

3.3.2 Bioluminescent imaging for monitoring tumour growth 

 

On day 6 (U251) or day 21 (NSC11, NSC20, NSC23) after implantation, mice were 

randomised according to bioluminescent imaging (BLI) signal into two groups: control and 

radiation (RT).  BLI was performed by injecting mice intraperitoneally with D-luciferin 
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(0.01ml/g body weight; 15mg/ml sterile PBS; GoldBiotechnology).  After a period of 

approximately 15 minutes, mice were briefly anaesthetized with isoflurane and imaged with a 

Xenogen IVIS 200 imaging system (Caliper Life Sciences).  BLI was performed weekly after 

irradiation until the first mouse of a given treatment group died.  Subsequent BLI total 

fluorescence values were compared to the initial, pre-treatment total fluorescence value of a 

given mouse’s tumour to provide BLI ratios.  Tumour growth rate curves were generated in 

SigmaPlot by charting changes in BLI ratios for each treatment group as a function of time 

after irradiation. 

 

3.3.3 Irradiation for treating in vivo tumours 

 

After confirmation of tumour growth, mice randomised to receive irradiation were 

anaesthetized with an intraperitoneal injection of a ketamine/xylazine cocktail and placed in a 

well-ventilated Plexi glass jig with lead shielding of critical normal structures (e.g. torso, neck, 

ears).  For GSC tumours, 5Gy was delivered for 3 consecutive days.  For U251 tumours, 3Gy 

was delivered on 3 consecutive days.  Radiation was delivered using an X-Rad 320 X-irradiator 

(Precision X-Rays, Inc.) at a dose rate of 2.9 Gy/minute.  Immediately after receiving 

irradiation, mice were intraperitoneally injected with AntiSedan to reverse the effects of 

ketamine.  Mice were placed on a warmer and monitored until fully recovered.       

 

3.3.4 Subcutaneous injection of glioblastoma cells 
 

To generate leg tumours 1.0 x 106 U251 cells per 100µl sterile PBS were 

subcutaneously (SC) injected into the right hind legs of 6-week-old athymic female nude mice 

while awake.  Tumour size was monitored biweekly with digital calipers.  Once the average 

tumour size of a cohort reached 150-200 mm3, mice were randomised into control and radiation 

(3x3Gy) groups.  Fractionated radiation was delivered locally with awake animals restrained 

in a custom designed lead jig which shielded all structures except for the tumour-bearing leg.  

Radiation (3Gy) was provided over three consecutive days utilising the same X-Rad 320 X-

irradiator mentioned above.  SC tumours were monitored biweekly with digital caliper 

measurements.  Once an individual tumour reached a volume of  1500 mm3 or 2 cm in any 

dimension, mice were humanely euthanised and SC tumours were collected for analysis.   
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3.3.5 Survival analysis 
 

All mice were observed daily to monitor for onset of neurologic symptoms.  Once mice 

reached morbidity, they were humanely euthanised utilising an approved schedule 1 method.  

Overall survival for each mouse was recorded and GraphPad Prism 7 (GraphPad Software) was 

used to generate Kaplan–Meier survival curves.  The number of mice utilised for each study, 

based on previous work using established glioma cell lines, were estimated by a On e-Way 

ANOVA analysis to allow 80% power to detect a 25% increase in growth delay/survival when 

the differences between the mean tumour volumes/survival times is 1.25 standard deviations 

different than controls.  All in vivo experiments were performed as approved by the NIH Guide 

for Care and Use of Animals and conducted in accordance with the Institutional Animal Care 

and Use Committee.  Additionally, all in vivo experiments performed in the UK were 

performed according to Home Office UK guidelines. 

 

 

3.4 DNA and RNA extraction 
 

3.4.1 Xenograft tumour collection 
 

 After humanely euthanising mice by cervical dislocation, cardiac perfusion was 

performed with chilled PBS.  Briefly, the rib cage was removed, the right atrium was cut, a 

butterfly needle was inserted and clamped in the left ventricle, and the inferior vena cava was 

clamped shut.  PBS was injected into the left ventricle into the blood stream to perfuse the brain 

to remove blood.  If the brain was needed for histology, then 10% Formalin was perfused after 

the PBS.  After cardiac perfusion, the scalp was cut and the skull opened to expose the brain.  

The entire brain was carefully removed and transferred to a PBS-filled petri dish for tumour 

removal or a container containing 10% Formalin for further fixation prior to histology 

preparation.  GFP+ tumour tissue was visualised and dissected under a fluorescent stereoscope 

(Leica).  Tumour tissue was transferred to a cryovial and snap frozen in liquid nitrogen prior 

to storing in a -80oC freezer.  When the fresh frozen tumour tissue was needed for DNA 

extraction, it was thawed on ice and then homogenised in the cryovial with a plastic pestle.  A 

small amount of tissue was transferred to RLT buffer for initiation of the extraction p rocess.  

Remaining tissue was returned to the -80oC freezer for possible future experiments.   
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3.4.2 Homogenisation of patient tumour samples 
 

 Human glioblastoma fresh frozen tumour samples were requested and collected from 

the Addenbrooke’s tissue bank.  Small amounts of tissue (approximately 30mg) were 

transferred into Lysing Matrix D tubes containing ceramic spheres.  600µL of RLT buffer 

containing 10% β-mercaptoethanol was added and tubes run for two 15 second cycles on a 

FastPrep-24 homogeniser (MP Biomedicals).  Once tissue was homogenised, samples were 

transferred into separate tubes and centrifuged for 3 minutes at top speed to remove tissue 

debris.  Lysate was transferred to an AllPrep DNA spin column for further extraction.   

 

3.4.3 DNA isolation 
 

 DNA isolation was performed with AllPrep DNA/RNA Mini kits (Qiagen) when both 

DNA and RNA were needed from a given sample.  When only DNA was needed or when DNA 

was extracted from blood samples, DNeasy Blood and Tissue kits (Qiagen) with a similar 

protocol were utilised.  To isolate DNA, tumour tissue or cell lysate was transferred to an 

AllPrep DNA spin column and centrifuged for 30 seconds at 8000g.  The flow-through was 

utilised for RNA isolation as discussed below.  The spin column itself was transferred to a new 

collection tube and 500µl Buffer AW1 was added prior to centrifuging for 15s at 8000g.  Flow-

through was discarded and 500µl Buffer AW2 was added and centrifuged for 2 minutes at full 

speed.  The spin column was then placed in a new 1.5mL collection tube and 100µl EB Buffer 

was added directly to the membrane.  The spin column was incubated at room temperature for 

1 minute and then centrifuged for 1 min at 8000g for DNA elution.  DNA was quantified with 

Nanodrop and stored in a freezer prior to use for downstream applications.  

 

 

3.5 Histology and Immunohistochemistry 
 

3.5.1 Histology preparation and H&E 
 

Mice were euthanised and perfused with chilled PBS then formalin via cardiac 

puncture, as described.  Brains were then removed and placed in 10% buffered formalin for at 

least 24 hours.  After fixation, brains were transferred to cryowells and covered with 3% 

agarose gel.  Once gel hardened, brains were removed from cryowell, attached to a plastic disc, 
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and transferred to a tissue chopper table (McIlwain).  Brains were cut into 1 mm thick sagittal 

or coronal slices.  Right hemisphere sagittal slices (medial slices containing right olfactory bulb 

and more lateral slices) and anterior coronal slices were then embedded in paraffin.  Tissue 

slices were further cut into 6 µm thick slices and attached to positively charged histology slides.  

At least one slide per brain underwent hematoxylin and eosin staining.  Unstained slides were 

also prepared for each brain for subsequent immunohistochemical staining.    

 

3.5.2 DAB staining 
 

FFPE right hemisphere sections of control and irradiated tumour-bearing brains were 

deparaffinized with Xylene and rehydrated in a descending concentration ethanol series.  Heat-

induced epitope retrieval was achieved using Citrate Buffer (pH=6) in a steamer for 1 hour. 

Slides were washed in TBS and once in 3% H2O2/TBS.  Tissue was blocked at room 

temperature with Immpress 2.5% Horse Serum Blocking Buffer (Vector Labs).  Human SOX2 

primary antibody (Cell signaling, 1:250) was applied and incubated overnight at 4oC. Immpress 

HRP secondary (anti-rabbit, Vector Labs) was applied and incubated at room temperature for 

30 minutes. Slides were washed in TBS and DI water. Four drops of ImmPACT DAB reagent 

were added to 4 ml of ImmPACT diluent (Vector Labs) and applied until visible colour change 

occurred (no more than 5 minutes). Slides were washed in tap water, counterstained with 

hematoxylin for 30 seconds, dehydrated with ascending alcohol series, dried, cleared in xylene, 

mounted with permount, dried overnight, and visualised with an AxioScan automated imager 

(Zeiss). 

 

 

3.6 Whole exome sequencing 
 

3.6.1 Library preparation and sequencing 
 

Genomic DNA was subjected to WES, which was performed by the Center for Cancer 

Research Genomics Technology Laboratory.  Extracted DNA underwent library prep 

according to the Agilent SureSelect XT (All Exon V5 +UTR) protocol and sequenced on an 

Illumina HiSeq4000 device using paired-end sequencing to an average sequencing depth of > 

180x.   
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3.6.2 Variant calling 
 

Mouse reads were removed as previously described (270).  Alignment and tumour-only 

variant calling was performed with the Center for Cancer Research Collaborative 

Bioinformatics Resource (CCBR) pipeline (https://github.com/CCBR/Pipeliner).  Read data 

was trimmed for the presence of adaptors and low quality using Trimmomatic v0.33 and the 

following parameter settings: Leading:10; Trailing:10; Sliding window:4:20; Minlen:20 (271).  

Reads were mapped to the hs37d5 reference genome using BWA-mem v0.7.17 with default 

parameter settings (272).  Following alignment, BAM files were processed using SAMtools 

and PCR duplicates were marked using Picard v2.1.1 (273).  Indel realignment and base 

recalibration were performed using the Genome Analysis Toolkit v.3.8 (GATK, Broad 

Institute, Cambridge, MA), following the GATK Best Practices (274,275).  MultiQC v1.4 was 

used to aggregate QC metrics from FastQC, FastQ Screen, Picard, BamTools and Trimmomatic 

(276,277).  Variant calling was performed using MuTect2 (278).  Germline variants were 

excluded using a panel of normals (279).  Only protein-altering variants were retained (280).   

https://github.com/CCBR/Pipeliner
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Chapter 4. Intratumoral Heterogeneity and 

Radiosensitivity 
 

 

 Glioblastoma is an extremely heterogeneous tumour type.  Not only has heterogeneity 

been shown between individual tumours (50,98,102), but heterogeneity within individual 

tumours has been demonstrated, adding to the genomic and phenotypic complexity.  As 

described previously, intratumoral heterogeneity has been established through multi-sampling 

surgical techniques, single cell RNA-seq analysis, and interrogation of DNA methylation 

patterns (112,113,281).  Indeed, spatially distinct tumour fragments from a single tumour can 

harbour different genomic alteration and gene expression patterns, even corresponding to 

different GB subtypes (110).  Because ITH is considered a requirement for cancer to undergo 

evolution, the functional implication of GB ITH is that selection due to external pressures may 

be a major cause of GB treatment resistance and recurrence (116,118,119). 

 Therapeutic selection pressures have the potential of causing the contraction or even 

elimination of treatment sensitive clones.  After this contraction, treatment-resistant clones, or 

clones that were protected from the treatment due to a protective niche or temporary quiescent 

state, are then free to expand and repopulate a recurrent tumour.  Such competitive release 

could lead to a more aggressive tumour with genotypic and phenotypic profiles different from 

the primary tumour.  For example, coamplification of different types of receptor tyrosine 

kinases within different cells from the same tumour has been demonstrated in multiple studies 

(120,121).  Such ITH could have potential implications for targeted treatments centered around 

RTK inhibition, such as EGFR inhibitors, as coamplification could provide a clear path to 

resistance.  Thus, potentially effective treatments may only produce a response in a subset of 

glioma cells as targets may be inconsistently expressed within heterogeneous tumours (112).  

Some studies suggest that distal samples (and more longitudinally separated samples) may 

exhibit larger differences in treatment response compared to proximal samples (115).  

However, other studies demonstrate that locally recurrent tumours can display many genetic 

alterations and even variations in shared mutation prevalence, suggesting subclonal expansion 

and contraction (213).  Because radiotherapy is a standard component of GB treatment, the 

ability of radiation to produce a consistent therapeutic response across spatially distinct regions 

of the tumour should be explored.   
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 In this study, we sought to investigate the potential impact of ITH on intrinsic 

radiosensitivity by examining differences in in vitro radiosensitivity between cell lines derived 

from spatially distinct tumour fragments.  Multiple cell lines from spatially distinct fragments 

from three different tumours were derived following 5-ALA fluorescence guided surgical 

sampling (136).  Whole-exome sequencing of matched cell lines and tumour specimens 

demonstrated that the cell lines were good models of their tumour of origin, while still 

displaying heterogeneity between cell lines from the same tumour.  DNA double-strand break 

foci analysis and limiting dilution assays demonstrate that while there were minor differences 

between some of the lines, there do not seem to be consistent differences in radiosensitivity 

between cell lines derived from spatially distinct tumour fragments.  These results suggest that 

glioblastoma ITH does not lead to differential radiosensitivity of spatially (and genetically) 

distinct tumour regions.  If this is true, then the heterogeneous tumour may have a relatively 

homogeneous response to irradiation.   

   

 

4.1 Methods for studying radiosensitivity of patient-derived cell 

lines 
 

Methods for deriving and maintaining patient-derived cell lines, extracting DNA, and 

performing whole exome sequencing can be found in Chapter 3.  Methods described below 

were specifically utilised for the study of radiosensitivity of patient-derived cell lines. 

 

4.1.1 γH2AX foci analysis 
 

 Poly-L-ornithine (PO) was added to each chamber of 2-chambered slides and slides 

were incubated overnight in 37oC incubator.  PO was removed and washed twice with sterile 

PBS and then Laminin (Sigma-Aldrich) in PBS (1:500) was added to each chamber and 

incubated for at least 4 hours to overnight at 37oC.  A single cell glioma cell suspension was 

created by adding Accutase (Gibco) to culture flasks or neurospheres.  After incubation of up 

to 10 minutes, PBS was added, cells were disaggregated by pipetting, and cell suspension was 

filtered through a sterile 40µm cell strainer.  Cells were spun down at 1000 rpm for 5 minutes, 
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resuspended in 5 mL sterile PBS, and counted with a Coulter counter.  Cells were spun down 

for a final time and then plated at a density of around 50,000 cells per chamber in SFM.  Cells 

were incubated on chamber slides at 37oC/5% CO2/5% O2 until cells reached 70% confluency.  

Slides were then irradiated at 2 Gy with a 320 kV Xray machine (Precision X-Ray Inc.) at a 

dose rate of 2.3Gy/min.  After irradiation, slides were fixed at 1, 6, and 24 hours post-irradiation 

with 10% formalin for 10 minutes at room temperature.  Cells were then washed three times 

with PBS and stored in PBS at 4oC for up to ten day prior to staining.  For staining, cell 

membranes were permeabilised with 0.2% Triton/PBS for 10 minutes at room temperature and 

then rinsed with PBS-T.  Blocking buffer (PBS-T, 5% Goat serum, 1% BSA) was added for 1 

hour at room temperature with gentle rocking.  Primary antibody to anti-phospho-histone 

H2AX Ser 129 (1:1000, Millipore) was then added in blocking buffer and incubated overnight 

at 4oC with gentle rocking.  Next, cells were washed three times with PBS-T for 5 minutes per 

wash at room temperature.  Secondary antibody (Alexa Fluor 488 or 555 goat anti-mouse IgG, 

1:1000, Invitrogen) in blocking buffer was added and incubated for 2 hours at room 

temperature in the dark with gentle shaking.  Cells were again washed three times with PBS-T 

and chambers were removed from slide.  One drop of ProLong Gold/Diamond Antifade with 

DAPI was added to each chamber area and a glass coverslip was added.  Weight was applied 

to remove bubbles and slides were allowed to dry overnight.  Slides were stored at 4 oC prior to 

imaging on a fluorescent microscope at 40x magnification.  ImageJ was utilised to analyse TIF 

files and manually count the number of foci per nuclei.  Twenty-five nuclei per condition and 

time point were counted. 

 

4.1.2 Limiting dilution assay 
 

 For limiting dilution assays a single cell suspension was obtained as described above.  

Once cells were counted, serial dilutions were performed to obtain a suspension with 100 -1000 

cells per 100µl.  Every well of a 96-well plate was first filled with 100µl SFM without bubbles.  

Then 100µl of the cell dilution made above was added to all wells in row A for a final volume 

of 200µl.  With a multichannel pipette, solutions in row A were thoroughly mixed before 

removing 100µl from row A to transfer to row B.  Next, row B wells were thoroughly mixed 

and 100µl of solutions were transferred to row C.  This pattern was continued through row H.  

An example range would be: Row A (100 cells), B (50), C (25), D (12), E (6), F (3), G (1), H 

(0).  A light microscope was used to visually verify that wells A-G contained single cell 
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solutions.  Plates were then incubated at 37oC, 5% CO2, 5% O2.  Twenty-four hours later, 

individual plates were irradiated with a range of radiation doses (1-3Gy) using a 320 kV Xray 

machine (Precision X-Ray Inc.) at a dose rate of 2.3Gy/min and then returned to the incubator.  

At 14 to 21 days post-irradiation, plates were removed from incubator and examined under a 

light microscope.  The number of positive wells were determined and recorded.  Wells were 

positive if they contained one or more spheres of approximately 30 cells.  Number of spheres 

per well was also recorded.  Finally, ELDA: Extreme Limiting Dilution Analysis online 

software was utilised to calculate the cancer cell initiating frequency and significance 

(http://bioinf.wehi.edu.au/software/elda/) (282).   

 

4.1.3 Whole exome sequencing analysis: Correlation and superFreq 
 

 After sequencing, filtering, and variant calling, variant allele frequencies (VAF) were 

utilised to calculate Pearson’s correlation coefficients for all combinations of samples.  Next, 

the superFreq software was utilised to identify single nucleotide variants (SNV) and copy 

number alterations (CNA) and to predict and compare the number of clones in the samples 

(283)(https://github.com/ChristofferFlensburg/superFreq/).  In brief, once SNVs and CNs are 

called in superFreq, genes with similar differential coverage and VAFs in a sample are 

clustered.  SNV frequencies are converted to clonalities which are based in part on CN clonality 

estimates.  SNV and CN clonalities are then tracked across samples from the same individual 

and mutations with similar clonalities are clustered into clones.  Clones are then sorted based 

on the size of the predicted clone/subpopulation.  Finally, SNVs are annotated with VEP and 

compared to COSMIC data (COSMIC will be further discussed in Chapter 5).  All WES 

analysis done in collaboration with bioinformaticians within the Radiation Oncology Branch, 

National Cancer Institute, National Institutes of Health (Kristin Valdez and Dr. Uma 

Shankavaram). 

 

 

  

http://bioinf.wehi.edu.au/software/elda/
https://github.com/ChristofferFlensburg/superFreq/
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4.2 Results 
 

4.2.1 Glioblastoma surgical samples and patient-derived cell lines 
 

 After presentation and preoperative imaging suggestive of glioblastoma, patients 

underwent 5-ALA fluorescence-guided surgical resection at Addenbrooke’s Hospital.  Surgical 

specimens were both frozen for tissue bank storage and processed, as described in Chapter 3, 

to derive and establish GB cell lines.  Tissue and patient-derived cell lines from three patients 

were chosen for inclusion in this study due to matching tissue availability and the successful 

derivation of multiple self-renewing cell lines from each tumour.  While the inclusion of patient 

tumour samples able to generate multiple cell lines could potentially have selected for more 

proliferative, aggressive phenotypes, or at least tumours with phenotypes/genotypes more 

amenable to in vitro propagation, the need for multiple cell lines from the same tumour for in 

vitro radiosensitivity testing made this potential bias unavoidable.  The clinical course of each 

patient and histopathological features of each neoplasm (Fig. 4.1D) are described below. 

J3:  A 54-year-old male presented with a two-month history of symptoms ranging from 

loss of confidence at work, short term memory loss, worsening of bipolar symptoms, and severe 

headaches to left-sided motor impairment and swallowing/speech difficulty.  MRI showed a 

large right frontal heterogeneously enhancing glioma (7cm) with oedema and mass effect (Fig. 

4.1A).  Surgical resection was complicated as the tumour was very necrotic and vascularised.  

After tumour and clots were removed, haemostasis was difficult to achieve due to residual 

disease, resulting in the need to reoperate later in the day to remove an intracavitary 

haematoma.  While histopathological analysis revealed a minor oligodendroglial component, 

1p19q codeletion was not detected, thus providing a diagnosis of a WHO Grade 4 GB.  The 

tumour was IDH1 mutation negative, MGMT promoter methylation negative, and had a MIB-

1 of 40%.  The patient was deemed too unwell to tolerate further treatments and palliative 

treatment was recommended.  Unfortunately, he passed away 14 days later. 

J7:  A 73-year-old female who presented after a grand mal seizure had been 

experiencing a few weeks of headaches and 1 week of difficulty with memory prior to the 

seizure.  Preoperative MRI showed a left frontal lobe tumour (4.2cm) with heterogeneous 

contrast enhancement involving cortex and white matter in  the middle frontal gyrus with 

extension into the inferior frontal gyrus (Fig. 4.1B).  Patient underwent 5-ALA fluorescence-
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guided subtotal surgical resection with no postoperative complications.  Histopathological 

analysis revealed a WHO Grade 4 GB.  The tumour was IDH1 mutation negative, MGMT 

promoter methylation positive (46%), and had a MIB-1 of 15%.  Patient received the Stupp 

protocol and completed radiotherapy and concomitant chemotherapy.  Patient did not receive 

final adjuvant cycle of TMZ due to admission for siezures and sepsis.  At last EMR review, 

patient had apparently stable disease, had survived for over a year since surgery, and was on 

conservative management and best supportive care.  

J14:  A 56-year-old male presented with a 12-day history of expressive dysphasia and 

word-finding difficulties and headaches.  MRI showed a heterogeneously enhancing tumour 

(3.6cm) in the middle and posterior left temporal lobe with vasogenic oedema, left uncal 

herniation and minor midline shift consistent with GB (Fig. 4.1C).  Patient underwent an awake 

craniotomy with 5-ALA fluorescence guided gross total surgical resection.  Postoperative 

wound exploration, debridement, and resuturing was done due to CSF leakage from anterior 

part of wound.  Histopathological analysis revealed a WHO Grade 4 GB.  The tumour was 

IDH1 mutation negative, MGMT promoter methylation positive (26%), and had a MIB-1 of 

15%.  Patient received radiotherapy and adjuvant and concomitant TMZ at an outside hospital 

in Ipswich.  At last EMR review, the Cambridge MDT had discussed the patient’s follow-up 

MRI images taken during adjuvant TMZ treatment and found them to be inconsistent with 

recurrence.  The recommendation was for the patient to continue standard adjuvant treatment 

protocol under the local oncology team.   
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Figure 4.1 Glioblastoma samples. Preoperative T1-weighted magnetic resonance images of 
A) J3, B) J7, and C) J14 glioblastomas.  D) Histopathology findings for each tumour.   

 

 

4.2.2 Patient-derived cell lines as models of glioblastoma tumour fragments 
 

 Whole exome sequencing was performed on DNA extracted from spatially distinct 

glioblastoma surgical specimens, corresponding patient-derived cell lines, and matched whole 

blood controls to assess the ability of cell lines to serve as models of ITH between surgical 

samples.  First, Pearson’s correlation coefficients were calculated based on variant allele 

frequencies (VAF) for all samples.  Comparison of correlation coefficients demonstrates that 

surgical specimens and cell lines from the same patients are much more highly correlated with 

each other than with samples from different patients (Fig. 4.2), suggesting that the derived cell 

lines are good models of their tumours of origin.  Patient-specific analysis for J3 reveals that 

J3T1 and J3T4 cell lines are more similar to each other than to their respective tumour 

fragments (Fig. 4.3A).  This similarity is evident by relatively few VAFs that are significantly 

different between the samples (indicated by red x’s) compared to an abundance of shared non 

dbSNPs (likely somatic SNPs; blue dots on the diagonal).  The relative similarity of the cell 
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lines could be the result of discrepancies in tumour tissue handling or biological changes 

imposed by the in vitro culturing environment (discussed further in Sections 7.2 and 7.3).   The 

similarity between cell lines was also reflected in the copy number (CN) profiles of the samples 

(Fig. 4.3B).  It should be noted that in the Super-Freq generated copy number profile, the J3T4 

tumour sample seems to harbour a vastly different profile to the other samples,  which was 

unexpected based on Pearson’s correlation coefficients comparisons.  Therefore, a different 

copy number caller (Sequenza) was utilised in an attempt to corroborate the difference.  As 

shown in Figure 4.3C, the J3T1 and J3T4 tumour sample copy number profiles generated by 

Sequenza are very similar, suggesting that the differences seen in the initial profile may simply 

be a technical artefact.   

The relationships between samples were further supported by superFreq analysis.  

Figure 4.4A displays an SNV heatmap generated by superFreq that compares the SNV 

frequencies for significantly changing somatic SNVs across all samples.  SuperFreq also 

utilises SNV and CN data to group mutations into clones for comparing differences between 

matched samples.  Figure 4.4B demonstrates that while several clones are preserved across all 

samples, there are observed differences between samples, particularly for the J3T1 tumour.  

The distribution of clones for J3 further supports that the cell lines are most similar to each 

other and are more similar to J3T4 tumour than J3T1 tumour.  However, coefficients were still 

above 0.7 when comparing cell lines to their corresponding tumour fragments and all J3 

samples were found to share mutations in specific GB driver genes (TP53 c.584T>C, PTEN 

c.181C>G, MECOM c.301G>A), again suggesting that the cell lines are good models of their 

tumour of origin.  Even though the cell lines may not represent exact models of their 

corresponding tumour fragments, since J3T1 and J3T4 cell lines are not perfectly correlated 

(0.81) it is expected that some degree of heterogeneity is still present between the lines and 

would allow for further examination of ITH impact. 
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Figure 4.2 Pearson’s correlation coefficients. Coefficient calculations are based on variant 

allele frequencies (VAF) of all J3, J7, and J14 samples sequenced.  Germline variants were 
removed from this analysis. 
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Figure 4.3 Comparison of J3 samples. A) VAF scatter plot comparing J3T1 patient-derived 

cell line and J3T4 patient-derived cell line.  Red Xs indicate VAFs that are significantly 
different between two samples.  Blue dots represent non dbSNPs (likely somatic SNPs). B) 
Copy number profiles for each J3 sample generated by SuperFreq (next page).  C) Sequenza-
generated copy number profiles for J3T1 and J3T4 to interrogate technical error observed in 

SuperFreq copy number calling for J3T4 tumour sample (next page). 
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Figure 4.4 J3 superFreq analysis. 
A) Heatmap comparing presence 
and frequencies of SNVs that 
change significantly between J3 

samples.  Genes are assigned 
unique colours if they are 
repeatedly mutated (more than one 
SNV is detected for that gene).  B) 

River plot representing the 
phylogenetic relationship of clones 
and their respective clonalities 
across J3 samples.  Each clone is 

represented by a unique coloured 
shape and is composed of a group 
of mutations with similar 
clonalities (SNVs and CNAs).     
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Comparison of correlation coefficients for J7 samples suggest that, similar to J3, cell 

lines are more similar to each other than to their respective tumour fragments (Fig. 4.5A).  As 

for J3, J7T1 and J7T3 cell lines were both more similar to one tumour fragment (J7T1) than 

the other.  Copy number profiles were similar for all samples (Fig. 4.5B).  The relationships 

between samples were further supported and represented by superFreq-generated SNV 

frequency heatmaps (Fig. 4.6A).  While figure 4.6B indicates a more complicated distribution 

of clones for J7 than J3, it still displays a few highly conserved clones that are shared at high 

clonality between the two J7 cell lines and contribute to their similar makeup.  When comparing 

cell lines to their corresponding tumour fragments, correlation coefficients were around 0.6.  

All J7 samples shared variants in a few GB driver genes (PIK3CB c.2884T>A, PERM1 

c.4681C>T), while J7T1 tumour and J7T1 cell line shared a PTEN c.353A>T variant.  The 

Pearson’s correlation coefficient between cell lines was 0.76, again suggesting that the J7 cell 

lines represent a good model of the tumour of origin and that the cell lines maintain 

heterogeneity between lines. 
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Figure 4.5 Comparison of J7 samples. A) VAF scatter plot comparing J7T1 patient-derived 
cell line and J7T3 patient-derived cell line.  Red Xs indicate VAFs that are significantly 

different between two samples.  Blue dots represent non dbSNPs (likely somatic SNPs). B) 
Copy number profiles for each J7 sample (next page). 
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Figure 4.6 J7 superFreq analysis. 
A) Heatmap comparing presence 

and frequencies of SNVs that 
change significantly between J7 
samples.  Genes are assigned 
unique colours if they are 

repeatedly mutated (more than one 
SNV is detected for that gene).  B) 
River plot representing the 
phylogenetic relationship of clones 

and their respective clonalities 
across J7 samples.  Each clone is 
represented by a unique coloured 
shape and is composed of a group 

of mutations with similar clonalities 
(SNVs and CNAs). 
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In contrast to J3 and J7, J14 analysis demonstrates that J14T6 cell line is most similar 

to the corresponding J14T6 tumour fragment (Fig 4.7A).  In addition, J14T3 cell line is most 

similar to its corresponding J14T3 tumour fragment, although it correlates almost equally well 

with all samples.  CN profiles for J14 samples are displayed in figure 4.7B and demonstrate 

very similar profiles for J14T6 cell line, J14T6 tumour, and J14T3 tumour.  The relationships 

between samples are further supported when comparing SNV frequency and clonal distribution 

(Figs. 4.8A and B, respectively).  Figure 4.8B demonstrates three shared clones between J14T6 

cells and tumour and two shared clones between J14T3 cells and tumour which support the 

similarities between these samples.  Therefore, the patient-derived cell lines from the J14 

tumour seem to be good models not only for the overall tumour of origin, but also for their 

respective tumour fragments.  Taken together, these data suggest that while patient-derived cell 

lines may not be exact models for spatially-distinct tumour fragments in all cases, they do seem 

to be good models of their tumours of origin.  Furthermore, the heterogeneity found to exist 

between cell lines, even when they resemble each other more closely than their respective 

tumour fragments, suggest that they can serve as potential models for studying the impact of 

ITH on radiosensitivity.    
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Figure 4.7 Comparison of J14 samples. A) VAF scatter plot comparing J14T6 tumour 
fragment and J14T6 patient-derived cell line. Red Xs indicate VAFs that are significantly 
different between two samples.  Blue dots represent non dbSNPs (likely somatic SNPs).  B) 
Copy number profiles for each J14 sample (next page). 
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Figure 4.8 J14 superFreq analysis. 
A) Heatmap comparing presence 
and frequencies of SNVs that 
change significantly between J14 

samples.  Genes are assigned unique 
colours if they are repeatedly 
mutated (more than one SNV is 
detected for that gene).  B) River 

plot representing the phylogenetic 
relationship of clones and their 
respective clonalities across J14 
samples.  Each clone is represented 

by a unique coloured shape and is 
composed of a group of mutations 
with similar clonalities (SNVs and 
CNAs). 
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4.2.3 γH2AX foci analysis 
 

 As an initial assessment of DNA repair competence, a component of intrinsic 

radiosensitivity, we analysed γH2AX foci.  H2AX foci correspond to radiation-induced DNA 

double strand breaks (DSBs) and their dispersal correlates with DSB repair (284,285).  Because 

DSBs are the critical lesion in radiation-induced cell death, H2AX foci can serve as a surrogate 

measure of radiosensitivity (286,287).  Figure 4.9A demonstrates the average number of 

γH2AX foci counted for J3T1 and J3T4 cell lines at various time points after 2Gy of radiation 

(RT).  Foci counts were compared to matched cells that received no treatment.  J3T1 and J3T4 

seem to be similar in DNA repair ability, particularly regarding their rates of dispersal (6 hr 

and 24 hr time points).  There were no significant differences when comparing foci counts 

between the two J3 lines.  Likewise, J14T3 and J14T6 display very similar repair competency 

based on similar foci counts between cell lines at each time point assessed (Fig. 4.9C).  Again, 

no significant differences were found between the J14 lines.  Only the two J7 lines exhibited 

differences in γH2AX foci counts (Fig. 4.9B).  In particular, J7T1 harboured significantly more 

foci at the 1-hour post RT time point compared to J7T3 (p=0.017).  In contrast, J7T3 harboured 

significantly more foci at the 24-hour post RT time point compared to J7T1 (p=0.017).  The 

differences may suggest that J7T1 is initially more sensitive to increased DSB induction at 1 

hr, but ultimately is better able to repair its DSBs (increased DSB dispersal at 24 hr).  However, 

since there is discrepancy in the γH2AX foci trends between the two cell lines at early and late 

time points, the data may also suggest that overall, like J3 and J14, there are no clear differences 

between the J7 cell lines.  While DNA repair for most cells is complete at 24 hours, as assessed 

by mean γH2AX foci, it may not be complete for cells with possible DNA repair pathway 

deficiencies or cells with lingering DSBs.  If DSBs are not repaired properly, then the cell is 

likely to die and lose its clonogenicity.  Therefore, a longer-term cellular assay which examines 

clonogenicity, such as a limiting dilution assay, is needed to better assess in vitro 

radiosensitivity.  
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Figure 4.9 γH2AX foci analysis. Mean of γH2AX foci (with SE) for A) J3T1 and J3T4, B) 
J7T1 and J7T3, and C) J14T3 and J14T6.  Foci were measured at various time points after 2Gy 
irradiation and also for untreated control samples. * p < 0.05   

 

4.2.4 Limiting dilution assays 
 

 Limiting dilution assays (LDA) offer an alternative method for assessing in vitro 

radiosensitivity.  Specifically, LDA determines the effects of radiation on clonogenicity, or the 

ability for cells to survive and continuously divide and grow into neurospheres.  This longer 

term cellular assay reflects the two principal mechanisms of radiation-induced cell death: 

apoptosis and mitotic catastrophe (288).  Clonogenic survival assays, the gold standard for in 

vitro radiosensitivity testing, also measure the consequences of radiation on clonogenic 

potential of cells.  However, we found that several of our patient-derived cell lines were not 

amenable to clonogenic assays, thus necessitating the use of LDA.  After adding serial dilutions 

of each cell line to 96-well plates, individual plates were irradiated (0-3Gy) and allowed to 

divide.  After 2-3 weeks, the wells were scored as positive or negative, based on the presence 

of a neurosphere, and survival curves were constructed with ELDA: Extreme Limiting Dilution 

Assay online software (282).  Figure 4.10A, B, and C display the stem cell frequency estimate 

curves generated with ELDA for the second replicates of  J3T1 and J3T4, J7T1 and J7T3, and 

J14T3 and J14T6, respectively, as a function of cell number and radiation dose.  Black, red, 

green, and blue lines correspond to 0, 1, 2, and 3Gy, respectively.  The more parallel an 

individual line is with the y-axis, the higher the stem cell frequency for that condition and the 

lower the number of seeded cells needed to produce a positive, neurosphere-containing well.  

For each cell line, as more radiation was added, the stem cell frequency declined and wells 

with fewer seeded cells became less likely to be positive.  J3T1 and J3T4 seem to have similar 

levels of stem cell frequency and thus clonogenicity after irradiation, as do J7T1 and J7T3.  
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These similarities in radiosensitivity are more easily visualised when the stem cell frequency 

estimates are converted to survival fractions by dividing the inverse of the ELDA-generated 

stem cell frequency estimate by the inverse of the stem cell frequency estimate of the control 

group (Fig. 4.10D).  In contrast to J3 and J7, the survival curves for J14T3 and J14T6 suggests 

that there may be a difference in clonogenicity between the two J14 lines (Fig. 4.10D).  J14T3 

seems to have better survival and a corresponding increase in clonogenicity at each dose, but 

especially at 1Gy and 2Gy as the differences in surviving fractions at these doses are 

statistically significant (p<0.05).      
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Figure 4.10 Limiting dilution assays. Stem cell frequency estimates (with confidence 

intervals) for A) J3T1 and J3T4, B) J7T1 and J7T3, and C) J14T3 and J14T6.  Black, red, 
green, and blue lines correspond to 0, 1, 2, and 3Gy, respectively.  D) Survival fraction as a 
function of radiation dose calculated from stem cell frequency estimates for J3, J7, and J14 cell 
lines. * p<0.05 by 2-way ANOVA.   
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J7 cell lines exhibited some differences by γH2AX foci analysis and J14 cell lines 

exhibited differences by LDA assay.  Minor differences were also noted when comparing 

COSMIC mutational signatures and SNV profiles for these lines (Fig. 4.11).  In addition to 

shared signatures, mutations in J7T1 cells mapped to signature 17 (unspecified aetiology), 

whereas mutations in J7T3 cells mapped to signature 6 (defective DNA mismatch repair) (Fig. 

4.11A).  Similarly, several genetic variants were detected in J7T1 samples (both cells and 

tumour) independent of J7T3 samples, and vice versa (Fig. 4.11B).  While J14T3 and J14T6 

cells had essentially the same COSMIC mutational signature profiles (Fig. 4.11C), they did 

possess variants that were unevenly distributed between sample types (Fig. 4.11D).  The 

differences noted in COSMIC signatures and variant profiles provide further evidence for ITH 

between cell lines, which could contribute to the observed differences in radiosensitivity.  

When combining analysis of all tumours and lines, γH2AX DNA repair competence data was 

remarkably similar between lines (Fig. 4.12A).  Beyond the previously noted differences in 

foci counts between J7T1 and J7T3, the only other statistically significant difference was 

between J3T1 and J7T1 at 1 hour after irradiation (p<0.05, 2-way ANOVA, multiple 

comparisons).  In regards to LDA, all cell lines regardless of tumour of origin had a statistically 

significant difference in survival fraction after 1Gy compared to J14T6 (Fig. 4.12B; p<0.05, 2-

way ANOVA, multiple comparisons).  Additionally, J7T3 and J14T3 had a statistically 

significant difference in survival fraction after 2Gy.  However, when taken together, 

differences in radioresponse between cell lines from the same tumour are not conserved across 

methods (Fig. 4.12A-B), suggesting that all cell lines from the same tumour tested may 

ultimately have relatively similar intrinsic radiosensitivities.  Because of the overall complexity 

of radiosensitivity, there are many factors which could be contributing to the differences 

observed within and between individual assays such as LDA and γH2AX foci analysis, making 

it possible that these complex factors could cancel each other out.  While these results may 

suggest that ITH does not translate to differences in radiosensitivity between different regions 

of the same tumour, future studies will need to interrogate other components of radiosensitivity, 

such as cell death and cell cycling, in order to develop a more holistic picture of the impact of 

ITH on radiosensitivity.  
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Figure 4.11 COSMIC mutational signatures and SNV profiles.  The relative contribution 
of mutations in A) J3 samples or C) J14 samples to pre-defined COSMIC signature profiles.  
Signatures were defined as positive when they had a cumulative normalized contribution over 

signature-specific cutoffs. B) Non-synonymous mutations differentially detected in J7T1 
samples (cells and tumour) or J7T3 samples (cells and tumour). D) Non-synonymous mutations 
differentially detected in J14T3 samples or J14T6 samples. 

 

 

Figure 4.12 Intrinsic radiosensitivity.  Combined radioresponse outcomes for all lines based 
on A) γH2AX foci analysis and B) limiting dilution assays.   
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4.3 Discussion 
 

 The goal of this study was to test the hypothesis that there are differences in intrinsic 

radiosensitivity between cells isolated from spatially distinct regions of human glioblastoma.  

Because ITH is thought to be a critical factor leading to GB resistance and recurrence, we 

utilised multiple cell lines derived from spatially distinct tumour samples as a model of GB 

ITH.  Cell lines were derived from tumour fragments that were resected by 5-ALA 

fluorescence-guided surgery, a technique that has already been shown to capture ITH in both 

tissue samples (110) and patient-derived cell lines (136,247,250).  In addition, patient-derived 

cell lines have been utilised for many types of cancer as effective models of the tumour of 

origin (289,290).  While in vitro culturing can lead to phenotypic and genotypic changes of the 

cell lines over time (291-293), reflecting differences from the parent tumour, they have still 

proven an efficient model for studying cancer.  Our WES results suggest that our patient-

derived GB cell lines are good models of their parent tumours.  In some cases (J14), the lines 

are also good models of the specific tumour fragment from which they were derived.  Other 

cases demonstrated that the cell lines were more similar to each other in genetic alteration 

patterns than to their respective fragments.  However, differences were observed between all 

samples from a given patient suggesting that ITH was preserved in the patient-derived cell 

lines.  Therefore, our GB patient-derived cell lines represent viable models for studying the 

influence of ITH on radiosensitivity. 

 Patient-derived cell lines have been utilised extensively for studying cancer response to 

therapies, particularly chemotherapeutics and other drugs (289).  Many large databases have 

been generated that combine cancer cell line genetic patterns and pharmacologic profiles to 

study response and resistance mechanisms (294,295).  While many studies have centered 

around intertumour heterogeneity, there have also been studies that examine intratumour 

heterogeneity and its potential implications in cell lines (136,296).  For glioblastoma, 

glioblastoma stem-like cells (GSCs) have been suggested as a potential source of ITH both in 

tumours and in cell lines (250,251).  Such models of ITH are invaluable for efficiently studying 

potential heterogeneous responses to therapy.  While the impact of ITH on differential drug 

sensitivity to some anti-GB agents have been performed (235,247,297-299), to our knowledge 

the influence of ITH on intrinsic radiosensitivity has not been previously addressed.  Our results 

seem to indicate that only minor differences or even no differences in radiosensitivity may exist 

between cell lines derived from spatially distinct tumour samples.  While differences were 
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observed in genetic alterations and clonal composition between samples, these differences, 

while reflecting ITH, may not contribute to significant differences in radiosensitivity.     

 If glioblastoma ITH does not have a significant impact on radiosensitivity, then it would 

suggest that spatially distinct tumour regions may have relatively uniform radioresponse.  If 

this finding is applicable to the clinical setting, then the optimisation of radiotherapy, including 

treatment with radiosensitisers, would be expected to improve treatment outcomes for GB 

patients.  It should be noted that this study was performed on treatment-naïve patient derived 

cell lines so the results may only be relevant in the primary disease setting.  Therefore, the 

study of how radiation drives the evolution of GB may provide important insights on treatment 

resistance and recurrent GB biology.  Ultimately, because ITH may not yield differential 

radiosensitivities, insights on treatment-induced evolution may lead to advances in treatment 

that improve radioresponse for the tumour as a whole.    
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Chapter 5. Radiation drives the evolution of 

orthotopic xenografts initiated from glioblastoma 

stem-like cells 
 

 

Despite aggressive, multimodal treatment, glioblastoma inevitably recurs.  Whereas the 

mechanisms mediating this consistent therapeutic resistance have not been defined, the clonal 

diversity and evolutionary dynamics inherent to GB is considered a major obstacle in the 

development of effective treatment (110,115,209,210,281).  As previously mentioned, 

comparison of genomic data generated from glioma tissue obtained at initial surgery and at 

recurrence revealed an altered mutational profile, an effect that was attributed to temozolomide 

treatment (300).  The implication of such studies is that the temozolomide driven evolution 

results in the emergence of resistant clones.  Consistent with studies of clinical specimens, 

temozolomide treatment of mice bearing brain tumour xenografts initiated from GB primary 

cultures suggested the expansion of drug resistant clones (235).  Given that GBs regrow after 

initial treatment, understanding the consequences of treatment-driven evolution may not only 

generate insight into the fundamental biology of recurrent GBs but also suggest novel 

therapeutic strategies. 

While studies to date have focused on temozolomide (90,91,300), a role for 

radiotherapy as an independent driver of GB evolution has not been investigated.    We have 

demonstrated that genetic diversity of cell lines derived from spatially distinct tumour 

fragments does not predict differences in in vitro radiosensitivity.  However, in vitro 

radiosensitivity studies of treatment-naïve tumour-derived cell lines cannot address the ability 

of radiation to drive evolution.  An in vivo model which provides microenvironmental context, 

mimics clinical radioresponse, and can be sampled after receiving either radiation or mock 

treatment is needed.  Towards this end, orthotopic xenografts initiated from CD133+ GB stem-

like cells (GSCs) would appear to provide a model system for testing the potential of radiation 

to influence GB evolution.  As described, GSCs represent a clonogenic subpopulation 

considered to be critical in the development, maintenance and treatment response of GBs 

(241,242,245).  Moreover, orthotopic xenografts grown from GSCs replicate the genotype, 

phenotype and in vivo growth pattern of GB (252).  With respect to GB evolution, we have 

previously shown that CD133+ GSCs implanted into nude mice produce heterogeneous 
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tumours of differentiated cells while retaining a subpopulation of GSCs at morbidity  (254).  

This GSC-initiated xenograft model has been utilised to demonstrate a role for the 

microenvironment in radioresponse (254) and the relative radioresistance of CD133+ GSCs 

(266).  Thus, the GSC xenograft model exhibits the intratumour heterogeneity and evolutionary 

dynamics that may simulate that of a GB in situ. 

To investigate the potential of radiotherapy to influence GB evolution, the study 

described here defines the consequences of a fractionated radiation protocol on the growth 

pattern, clonal diversity and genomic architecture of GSC-initiated orthotopic xenografts.  The 

data presented show that tumours that regrow after irradiation were less invasive and had 

different mutational signatures as compared to untreated tumours.  In addition, based on viral 

integration site analysis (VISA), radiation exposure resulted in a reduction in intra tumour 

heterogeneity (clonal diversity), an effect that was dependent on the brain microenvironment.  

These results indicate that radiation drives the evolution of the GSC-initiated orthotopic 

xenografts. 

 

 

5.1 Methods for studying radiation-induced GB evolution 
 

Methods for maintaining GSC (NSC11 and NSC20) and U251 human GB cell line cultures, 

initiating and irradiating brain tumour xenografts, and immunohistochemistry can be found in 

Chapter 3.  Methods described below were specifically utilised for the study of radiation-

induced GB evolution. 

 

5.1.1 Viral Integration Site Analysis (VISA)  
 

VISA was performed by Center for Cancer Research Genomics Technology Laboratory 

as described (301,302).  Briefly, genomic DNA was sheared to an average size of 400bp and 

subjected to linker-mediated, nested PCR using a combination of long terminal repeat 

(lentivirus) and linker-specific primers.  Illumina sequencing adaptors were added at the same 

time.  The library was sequenced on Illumina MiSeq using 2x150bp PE reads.  Integration site 

junctions were mapped to hg19 human reference genome.  Insertion sites are expressed as a 

percentage of the total reads.  To compare samples within an experiment, integration sites 
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detected in at least 2 of the samples were subjected to unsupervised hierarchical cluster analysis 

using R to visualise relative changes in clonal diversity. 

 

5.1.2 Whole exome sequencing analysis: COSMIC and EXPANDS 
 

Genomic DNA was subjected to WES and variant calling was performed with the 

CCBR pipeline as described in Chapter 3.  COSMIC mutational signature analysis was 

performed with the YAPSA R package (v1.8.0) as described (212,303).  The mutational 

catalogue was corrected to account for differences in triplet motifs between WGS and WES 

capture regions.  Signature-specific cut-offs used can be found with the following R code: 

library(YAPSA), data(cut-offs), cutoffCosmicValid_rel_df[6,] (304).  Tumour subpopulations 

were further defined using EXPANDS algorithm and R package (v2.1.2) with default 

parameters (305).  EXPANDS determines cell-frequency probabilities by using copy number 

variation (CNV) and single nucleotide variant (SNV) allele frequencies to estimate the fraction 

of cells harbouring a SNV (SNVs and CNVs are filtered to remove variants on the X and Y 

chromosomes).  SNVs are clustered and filtered based on cell-frequency probability 

distributions (305).  For COSMIC and EXPANDS analyses variants were included when they 

were protein altering, present in at least 2 out of 3 replicates, and had vaf > 5%.   All WES 

analysis done in collaboration with bioinformaticians within the Radiation  Oncology Branch, 

National Cancer Institute, National Institutes of Health (Kristin Valdez and Dr. Uma 

Shankavaram).  
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5.2 Results 
 

5.2.1 In vivo models of radioresponse 
 

As a model system for investigating the impact of radiotherapy on GB evolution, 

orthotopic xenografts initiated from CD133+ GSC lines were used.  While selection of cell 

populations prior to implant could potentially influence overall tumour heterogeneity or 

treatment response, it was necessary to start with a more homogeneous population with known 

in vivo growth dynamics and reproducible treatment responses.  Since CD133+ GSCs have 

been shown to produce heterogeneous tumours and contribute to radioresistance, as previously 

discussed, this subpopulation of GSCs represent a good model for studying the impact of 

radiation on GB evolution.  CD133+ GSCs were transduced with a lentivirus containing a 

bimodal expression vector fused with the bioluminescent protein ffLuc2 and fluorescent 

protein eGFP2 under UbC promoter control (LVpFUGQ-UbC-ffLuc2-eGFP2) (266).  After in 

vitro expansion and confirmation of successful transduction by fluorescent microscopy and 

flow cytometry, cells were implanted into the right striatum of nude mice.  At 21 days post-

implant, upon reaching a size consistently detectable by BLI, tumour-bearing mice were 

randomised into treatment groups, control (mock) and 3x5Gy.  As shown in figures 5.1A and 

B, this fractionated irradiation protocol resulted in significant survival increases for NSC11 or 

NSC20 tumour-bearing mice.  This survival advantage was consistent with the delay in growth 

rate reflected by BLI as a function of time after irradiation (figures 5.1C-F).  Given that 3x5Gy 

initiated at day 21 post-implant significantly delays tumour growth yet does not achieve 

curative effects, a situation not unlike that typically observed in clinic, this treatment protocol 

was used to test the hypothesis that radiation drives the evolution of GSC-initiated brain tumour 

xenografts. 
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Figure 5.1 Radioresponse of GSC-initiated xenografts.  On day 21 post-implant mice were 

randomised and treatment initiated the following day as described in text (3x5Gy).  Kaplan–
Meier survival curves were generated for A) NSC11 and B) NSC20 tumour-bearing mice (n=10 
mice per group).  Tumour growth defined by BLI ratio as a function of time after irradiation 
for C) NSC11 and D) NSC20.  Representative images of NSC11 tumour-bearing mice two 
weeks after treatment for irradiated (E) and untreated (F) mice. 
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5.2.2 Radiation-induced changes in morphology and histology 
 

 As an initial assessment of the potential for radiation to influence GB evolution, the 

growth patterns of control and irradiated GSC xenografts were compared at morbidity.  GSCs 

engineered to express GFP can be visualised in tumour-bearing brains using a 

stereomicroscope.  Representative images (Fig. 5.2A) of control mice demonstrate GFP signal 

from NSC11 or NSC20 cells extends anteriorly and posteriorly throughout most of the right 

hemisphere, well beyond the right striatum implantation site, reflecting a highly invasive 

tumour.  However, in irradiated mice, GFP fluorescence was more restricted and limited 

primarily to the anterior portion of the hemisphere.  To determine whether these observations 

extended to the histological level, right hemisphere sagittal sections from control and irradiated 

NSC11 and NSC20 bearing brains were evaluated for human SOX2 staining, which is highly 

expressed in both lines.  As shown in Figure 5.2C, GSCs in control mice were diffusely 

distributed with poorly defined margins and grey and white matter infiltration.  In mice that 

received fractionated radiation, tumours were less invasive with more clearly demarcated 

borders and tumour core hypercellularity as compared to controls.  While indicative of a 

reduced invasive propensity, in broader terms these results suggest that the fundamental 

biology of GSC-initiated tumours that regrow after irradiation diverges from that of untreated 

tumours.  As a possible explanation, we hypothesised that morphological/histological 

modifications detected in recurrent xenografts reflected the radiation-induced selection of 

tumour cell subpopulations, i.e., radiation-driven evolution. 
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Figure 5.2 Morphology and histology of NSC11 and NSC20 tumours.  A) Representative 
GFP fluorescence images of control and irradiated (3x5Gy) tumour-bearing brains at 
morbidity.        B) Corresponding bright field images.  Photos were taken on a stereoscope at 

2.5x magnification.  C) Right hemisphere sagittal sections at plane of injection site stained for 
SOX2 (magnification 20x). 
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5.2.3 Viral Integration Site Analysis 
 

To directly address the question as to whether radiation modifies the clonal diversity 

(i.e., intratumoral heterogeneity) of GSC-initiated xenografts, viral integration site analysis 

(VISA) was used (301).  Facilitating the application of VISA, these in vivo studies have 

centered on the use of GSCs transduced with the lentivirus LVpFUGQ-UbC-ffLuc2-eGFP2, 

which, as discussed above, allows for in vivo tumour growth monitoring and ex vivo 

visualisation.  In addition to these attributes, the stable integration of the lentivirus into  the 

genome at essentially random sites provides a unique tag for each cell in the transduced 

population, which is inherited by subsequent daughter cells.  Because the integration site is 

largely within a transcriptional unit, sequencing of PCR amplified genomic DNA surrounding 

the lentiviral sequence allows for assigning each site to a single location/gene or nearest gene.  

Identifying the gene thus merely provides a method for easily cataloguing the integration site.  

The percent reads for a given gene/site corresponds to the size of the clone within the 

transduced population. 

 For this experiment CD133+ NSC11 cells were transduced with the described 

lentivirus; the culture was expanded and used for orthotopic implantation or collected for in 

vitro (IV) VISA.  At 21 days post-implant, as for the survival studies, mice were randomised 

according to BLI into 2 groups: control (ic) and irradiated (icRT, 3x5Gy).  At morbidity, mice 

were euthanised, GFP-expressing brain tissue grossly dissected, and DNA was extracted for 

VISA.  The % reads detected at a given integration site (clonal frequency) were visualised for 

the individual xenografts and in vitro cultures in the heat map shown in figure 5.3A.  As 

compared to NSC11 cells grown in vitro, there was a reduction in the number of clones detected 

(unique integration sites) in each of the 4 untreated xenografts (ic), suggesting a selection for 

clones that preferentially grow under in vivo orthotopic conditions.  Moreover, as compared to 

the untreated tumours (ic) there was a further reduction in the total number of individual clones 

detected in the 4 xenografts that had been irradiated (icRT). 

VISA and unsupervised hierarchical cluster analysis of clonal frequency were also 

performed on NSC20 samples (Fig. 5.3B).  Although there was variability between xenografts 

in the control (ic) and irradiated (icRT) groups, as compared to NSC20 in vitro cultures, there 

was a reduction in clonal diversity in each of the orthotopic xenografts, with a further reduction 

evident in the irradiated tumours, similar to NSC11.  The VISA results were also expressed in 

figures 5.3C-D as the average number of unique integration sites detected in each experimental 
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group.  As shown, the largest number of integration sites was detected under in vitro conditions, 

which was reduced in orthotopic xenografts and further reduced after irradiation of xenografts.  

These results suggest that only a subset of the NSC11 and NSC20 cells proliferating in vitro 

will form a tumour after orthotopic implantation.  Moreover, of those clones that grow 

orthotopically, after irradiation there is an additional reduction in clonal diversity, which is 

consistent with radiation-driven tumour evolution. 

 

 

 

 

Figure 5.3 Viral Integration Site Analysis of NSC11 and NSC20. VISA comparing GSCs 

in vitro to those grown as intracerebral xenografts that had received mock treatment (ic) or 
3x5Gy (icRT).  Treatment protocol is as described in text.  Unsupervised hierarchical cluster 
analysis of integration sites detected in A) NSC11 and B) NSC20.  The absence of colour 
indicates the clone was not detected in a given sample (≤0.001% of total reads).  The number 

of unique integration sites (mean ± standard error) detected by VISA in C) NSC11 and D) 
NSC20 samples.  Because there was overlap of sites within each group, sites shared between 
samples of a given group were counted only once.  * p < 0.05 
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To investigate the role of the microenvironment in the radiation-induced reduction in 

clonal diversity, VISA was performed on NSC11 cells irradiated in vitro.  Twenty-four hours 

after plating, cultures received either mock (control), 4Gy (single dose), or 3x2Gy.  Cells were 

harvested for VISA when they reached 70-80% confluency, which corresponded to 7, 19 and 

21 days for control, 4Gy and 3x2Gy, respectively.  Clonogenic survival analysis showed that 

the surviving fraction of NSC11 cells exposed to 4 Gy and 3 x 2 Gy was 0.008 ± 0.004 and 

0.039 ± 0.031 (mean ± SEM, n = 3), respectively.  As shown in Figure 5.4A, cultures did not 

cluster according to treatment group.  Moreover, there was no significant difference in the 

average number of integration sites among the 3 groups (Fig. 5.4B).  These results suggest that, 

in contrast to the orthotopic model, in vitro irradiation had no detectable effect on clonal 

diversity.  These data suggest that the radiation-induced reduction in clonal diversity is 

dependent on the in vivo microenvironment. 

To determine whether radiation-driven evolution was limited to xenografts initiated 

from GSCs and to further interrogate the role of the brain microenvironment, VISA was applied 

to the established glioma cell line U251.  In this experiment, lentivirus transduced U251 cells 

were grown as intracerebral (ic) xenografts and as subcutaneous (SC) leg tumours.  At 6 days 

after ic (when tumours were detectable by BLI) and 18 days after sc implantation (150-200 

mm3), U251 tumours received 3Gy for 3 consecutive days (3x3Gy), a regimen previously 

demonstrated to give a reproducible survival benefit for U251 xenografts .  Irradiated and 

control ic tumours were collected at morbidity and sc tumours when the volume exceeded 

1500mm3.  Unsupervised hierarchical cluster analysis of the clonal frequency of the tumour 

samples as compared to U251 grown in vitro is shown in figure 5.4C with the average number 

of integration sites in each group shown in 5.4D.  Whereas there was no consistent difference 

between control ic and sc tumours, the number of integration sites were reduced in each 

compared to U251 in vitro, although not to the degree as observed for the GSC ic tumours.  In 

response to irradiation, the number of integration sites in sc tumours is reduced suggesting a 

decrease in clonal diversity.  However, in ic U251 tumours irradiation induced a greater 

reduction in integration sites, suggesting that the radiation-mediated reduction in clonal 

diversity is not limited to xenografts initiated from GSCs.  Moreover, these results suggest that 

the brain microenvironment plays a critical role in radiation-driven evolution of GB xenografts. 
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Figure 5.4 Viral Integration Site Analysis of NSC11 in vitro and U251 . U251 cells were 
grown in vitro (IV) and as subcutaneous (SC) and intracerebral (ic) xenografts.  A) 

Unsupervised hierarchical cluster analysis of integration sites detected in NSC11 cells that 
were untreated (control) or irradiated with a single dose of 4Gy or 3 daily doses of 2Gy (3x2Gy) 
B) Unsupervised hierarchical cluster analysis of U251 cells.  U251 xenografts (sc and ic) 
received 3x3Gy as described in text.  IV samples were initiated from the same pool of cells 

used for sc and ic implantation and collected when 70-80% confluent.  C)   Number of unique 
integration sites (n=3, mean ± standard error) detected in NSC11 in vitro.  D) Number of unique 
integration sites (n=3, mean ± standard error) detected in U251 cells.  * p < 0.05 
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5.2.4 Whole exome sequencing 
 

Because investigations of tumour evolution typically apply WES to describe genetic 

ITH, this approach was used to evaluate the potential for radiation-driven evolution of GSC-

initiated orthotopic xenografts.  Genomic DNA extracted from morbid tumour samples were 

utilised for WES, similar to VISA experiments.  Over 5500 SNVs + indels were detected in 

NSC11 tumours of which the majority were shared between control and irradiated tumours 

(Fig. 5.5A).  Variants unique to control or irradiated tumours (private mutations) were 

consistently detected among the 3 samples in each group (Fig. 5.5B).  The shared and private 

mutations in control and irradiated tumours were classified according to the mutational 

signatures generated from patient characteristics within large cancer cohorts using COSMIC 

mutational signature profiling (211,212,306).  As shown in Figure 5.5C, the shared mutations 

distributed to mutational signatures 1 (Deamination of 5-methylcytosine), 5 (unspecified 

aetiology), 11 (TMZ treatment), 20 (Concurrent POLD1 mutation and mismatch repair 

deficiency) and 26 (Defective DNA mismatch repair).  Mutations unique to control tumours 

associated with similar signature profiles.  However, private mutations found in irradiated 

tumours did not include signatures 1, 5, and 20, but mapped to signatures 3 (Defective HR 

DNA repair: BRCA1/2 mutation), 6 (Defective DNA mismatch repair), and 15 (Defective 

DNA mismatch repair), which were not associated with the unirradiated tumours.  These results 

suggest the emergence of different subpopulations in irradiated samples as compared to control 

NSC11 tumours. 

These analyses were also performed on WES data generated from control and irradiated 

NSC20 tumours (Figure 5.6).  In NSC20 tumours over 6000 SNVs + indels were detected with 

most of the variants shared between control and irradiated tumours with a similar number of 

private mutations detected only in control or irradiated NSC20 tumours (figures 5.6A-B).  

Using the shared mutations between control and irradiated NSC20 tumours the mutational 

signatures identified were similar to those in NSC11 tumours (signature #s 1,5,11,20,26) (Fig. 

5.6C).  In contrast, the signatures defined using the private mutations found in irradiated 

NSC20 tumours corresponded to increases in signatures 5 (unspecified aetiology) and 19 

(unspecified aetiology) and decrease in signature 11 (TMZ treatment).  Whereas these 

signatures were substantially different from those identified for irradiated NSC11 tumours, as 

for NSC11, these analyses suggest that irradiation modified the subpopulations comprising 

NSC20 tumours, consistent with radiation-driven evolution. 



5. Radiation drives GB evolution 

  105 

 

 

 

 

 

 

Figure 5.5 The influence of radiation on mutations detected in NSC11 xenografts .  On day 
21 post-implant, brain tumours (n=3) were exposed to 3x5Gy (RT) or mock irradiated (control) 
and collected for WES at morbidity.  A)  Venn diagram comparing the number of mutations 
between treatment groups.  B)  The relative percentage of shared or private variants for each 

tumour (control and treated).  C)  The relative contribution of shared and private mutations in 
control and irradiated tumours to pre-defined COSMIC signature profiles (211,212).  
Signatures were defined as positive when they had a cumulative normalised contribution over 
signature-specific cutoffs.  In A and C, variants were included if they were protein-altering, 

were present in at least 2 out of 3 replicates, and had vaf > 5%.   
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Figure 5.6 The influence of radiation on mutations detected in NSC20 xenografts.  
Treatment as in Figure 5.5.  A)  Venn diagram comparing the number of mutations between 
treatment groups.  B)  The relative percentage of shared or private variants for each tumour 

(control and treated).  C)  The relative contribution of shared and private mutations for control 
and irradiated tumours to pre-defined COSMIC signature profiles.  Signatures were defined as 
positive when they had a cumulative normalised contribution over signature-specific cutoffs. 
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To investigate the effects of radiation on xenograft subpopulation heterogeneity in more 

detail, the bioinformatics tool EXPANDS was applied to the WES data set.  EXPANDS utilises 

VAFs and copy number data to estimate cell-frequency probabilities (305).  For this analysis, 

variants that were detected in at least 2 of the 3 replicates per group (control and RT) were 

included.  Figure 5.7A depicts the 10 predicted subpopulations found in control and irradiated 

NSC11 tumours with the largest subpopulation (blue) at the bottom of the graph; each black 

dot corresponds to a variant predicted to be in a subpopulation.  The lines indicate whether a 

specific variant in control tumours appeared in a subpopulation of the same ranking in the 

irradiated tumours or whether it had moved to another ranking.  Whereas the majority of 

variants are conserved between the largest subpopulations of control and irradiated tumours (as 

depicted by straight lines), there was also a considerable amount of shifting from control 

tumours to a subpopulation of a different prevalence in irradiated tumours, which is especially 

apparent in comparisons of the smaller subpopulations (top of figure).  Figure  5.7B shows 13 

predicted subpopulations for NSC20 tumours.  Again, the largest, most prevalent 

subpopulation (blue) is at the bottom of the graph.  Similar to NSC11, while the majority of 

variants are conserved within the largest subpopulations, there is still substantial subpopulation 

shifting for variants between control and irradiated tumours. 

 

 

Figure 5.7 Influence of radiation on subpopulation dynamics.  Orthotopic xenografts were 

treated and collected for WES as described in previous figures.  Overall variant shifts within 
defined subpopulations of control and irradiated A) NSC11 and B) NSC20 tumours.  The size 
of the subpopulations corresponds to its position on the y-axis, with the largest subpopulation 
at the bottom.  The black circles correspond to individual variants. 
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These analyses were extended to driver gene mutations previously associated with GB 

(50,74,307,308).  Initially, as shown in figures 5.8A-B, variants in driver genes were identified 

in each of 3 control and 3 irradiated GSC xenografts and classified as clonal (present in largest 

subpopulation), subclonal (present in smaller subpopulation), or both (multiple mutations for a 

given gene were individually found in both clonal and subclonal populations).  In NSC11 

tumours (Fig. 5.8A), multiple driver gene mutations were consistently lost in irradiated 

tumours, including AKAP9, FN1, SOX2, and SPTA1.  There were also mutations that sh ifted 

in clonal status from control to irradiated tumours such as MAP4K3.  Although there was more 

variability between individual tumours within control and irradiated groups, irradiation also 

resulted in changes in driver gene mutations detected in NSC20 tumours (Fig. 5.8B).  Lost 

consistently after irradiation of NSC20 tumours were mutations in PIK3CA and CARM1.  To 

further interrogate the observed GB driver gene mutation patterns, potential correlations 

between mutation changes after RT and survival and tumour growth were explored.  Of the 

tumours that underwent WES, NSC11 RT1 and NSC20 RT1 were found to have the shortest 

survival for their tumour types, while NSC20 RT3 had the longest survival (Fig. 5.9A).   NSC20 

RT1 also had a noticeably faster growth rate compared to the other two irradiated NSC20 

xenografts (Fig. 5.9B).  Loss of TP53 mutation after RT was observed for both the NSC11 

short survival tumour and the NSC20 long survival tumour and thus may not be correlated with 

survival (Fig. 5.9C).  However, the loss of MEN1 and PIK3R1 mutations were observed for 

the NSC20 short survival tumour only which may suggest that these mutations could be 

beneficial for prolonged tumour survival.  These data suggest that irradiation influenced the 

presence and clonality of GB driver mutations. 

The shifts of these GB driver gene mutations between the previously defined 

subpopulations were then assessed (only subpopulations containing a GB driver gene variant 

were included).  As in the overall WES data (Fig. 5.7A), the majority of NSC11 GB driver 

gene mutations were conserved within the largest subpopulations in control and irradiated 

samples (Fig. 5.8C).  However, there were several mutations that became less prevalent after 

irradiation (for example, lines from control subpopulation 1 to RT subpopulations 2 and 4).  

There was also one mutation that become more prevalent after irradiation (line from control 

subpopulation 5 to RT subpopulation 1), suggesting that this particular subclone may have had 

a better survival rate after radiotherapy.  Figure 5.8D displays similar subpopulation dynamics 

for NSC20 tumours, although more variant shifts between subpopulations were noted for 

NSC20 compared to NSC11, including at least 3 variants that increased in prevalence af ter 
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treatment.  Changes in the distribution of mutations as a function of subpopulation size between 

control and irradiated tumours are consistent with subclone expansion and contraction, i.e. 

subpopulation evolution.  Taken together, WES data support the radiation-driven evolution of 

orthotopic xenografts initiated from GSCs. 
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Figure 5.8 Influence of radiation on GB driver gene subpopulation dynamics.  GB driver 
mutations in control and irradiated A) NSC11 and B) NSC20 tumours.  Clonal variants were 

those in the sample’s largest subpopulation; subclonal variants were those in any of a sample’s 
smaller subpopulations.  Gray boxes represent mutations other than autosomal SNVs (indels, 
X or Y chromosome SNVs), which are not included in EXPANDS.  GB driver gene mutation 
shifts within the defined subpopulations of control and irradiated C) NSC11 and D) NSC20 

tumours. 

 



5. Radiation drives GB evolution 

  111 

 

Figure 5.9 Correlation of Mutation Changes with Survival and Tumour Growth.  A) 

Overall survival of mice bearing the irradiated NSC11 and NSC20 tumours which underwent 
WES.  B) Tumour growth defined by BLI ratio as a function of time after implant for sequenced 
NSC20 RT tumours. C) Description of the observed changes in GB driver gene mutations for 
NSC11 RT 1 (short survival), NSC20 RT 1 (short survival), and NSC20 RT3 (long survival).   
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5.3 Discussion 
 

The goal of this study was to test the hypothesis that radiation drives the evolution of 

orthotopic xenografts initiated from GSCs.  Given that ITH is a critical parameter mediating 

tumour evolution, VISA was used to assess the changes in clonal diversity existing in cell lines 

and tumour xenografts.  In these analyses, in the absence of any radiation exposure, comparison 

of the GSC lines grown in vitro and grown as brain tumours showed a significant reduction in 

the clonal diversity with intracerebral growth.  These results imply that, although isolated by 

CD133 expression, the GSC cultures are comprised of a heterogeneous population, which is 

consistent with previous reports (250,251,255,309) and that only selected subpopulations were 

capable of proliferation under orthotopic conditions.  As compared to untreated tumours, there 

was a dramatic additional reduction in clonal diversity in GSC-initiated tumours that had been 

irradiated.  These results are suggestive of radiation-induced selection of subpopulations within 

GSC xenografts with the ultimate consequence of a reduction in ITH.  The radiation-induced 

reduction in clonal diversity was also detected in orthotopic xenografts initiated from the long-

established GB cell line U251 indicating that the process is not unique to the GSC model and 

suggesting that radiation-driven evolution may be applicable to brain tumours in general. 

 Further analyses indicated that the reduction in ITH was dependent on the brain 

microenvironment.  No change was detected in clonal diversity when VISA was performed on 

NSC11 cells irradiated in vitro.  Moreover, comparison of U251 sc and ic xenografts showed 

that while there was a reduction in clonal diversity after irradiation of sc tumours, the effect 

was considerably more pronounced in ic U251 tumours, a reduction comparable to those 

detected in the GSC tumours.  The implication of this reduction in ITH is that the brain 

microenvironment imposes radioresistance on only certain subpopulations of the GSC and 

U251 cells.  Such a subpopulation selective effect could be attributed to  normal tissue influence 

dependent on intrinsic characteristics of the cells implanted (e.g., genotype) or localisation into 

a radioprotective niche independent of tumour cell type.  Whereas the mechanisms remain to 

be determined, the results presented emphasize the need to account for the brain 

microenvironment when investigating GB radioresponse. 

As an alternative approach to evaluating radiation-driven evolution, studies were 

extended to WES, which has been the standard approach to evaluating tumour evolution.  

Comparison of untreated GSC tumours and tumours that had regrown after irradiation revealed 

a consistently different set of mutations as well as mutational signatures.  There also appeared 
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to be a radiation induced shift in the genetic composition of the ranked sub-populations 

comprising the NSC11 and NSC20 xenografts.  In evaluating the driver genes associated with 

GB (50,74,307,308), there was a reduction in the number of mutations in irradiated NSC11 

tumours, which would be consistent with a reduction in ITH.  In NSC20 tumours, although 

there was also a reduction in the number of GB associated gene mutations, the number of losses 

as well as the specific genes affected were different as compared to NSC11.  The different 

mutation spectrums observed for NSC11 and NSC20 tumours with and without RT suggest 

that whereas radiation drives the evolutionary process, the specific events along with the 

functional consequences may be tumour dependent.  For example, a PIK3CA mutation was 

consistently lost after RT in NSC20 tumour samples which may indicate that the gene/mutation 

contributes to radiosensitivity and furthermore may suggest that NSC20 tumours could be 

sensitive to PI3K inhibition.  If future studies corroborate the sequencing findings through 

protein expression, then a PI3K inhibitor could be incorporated into in vivo studies.   Thus, 

whereas WES results are indicative of radiation-driven evolution and may suggest potential 

therapeutic targets on a tumour-dependent basis, they do not provide any clear, generalizable 

insight into the mechanisms involved or the characteristics of the surviving tumour cells.  Of 

note, the reduction in mutations detected in the irradiated xenografts is in contrast to the 

hypermutation reported for tumours treated with temozolomide (92,209,237,300).  Whether 

temozolomide, a component of GB standard of care, influences radiation -driven evolution 

remains to be determined. 

If radiation alters GB evolution, then the fundamental biology of the tumours that recur 

after an initially effective course of radiotherapy should be altered.  An example appears to be 

the morphology/histology of the NSC11 and NSC20 xenografts that regrow after the 

fractionated radiation protocol as compared to untreated tumours.  As shown, each tumour 

became less invasive with a more restricted growth pattern in response to irradiation.  Although 

in conflict with reports showing that radiation increases the invasion propensity of glioma cells 

in vitro (310,311), these results agree with clinical observations indicating that > 80% of GB 

recur in the initial radiation treatment volume (180,182).  The studies described here show that 

radiation alone drives the evolution of GSC orthotopic xenografts affecting their ITH, mutation 

profile and growth pattern.  If a similar process is operative in a clinical setting, then therapeutic 

targets in a primary, untreated GB may differ from those in the recurrent tumour, as previously 

suggested (312).  GSC xenograft tumours that regrow after an initial radiation exposure may 

thus provide a model system for testing therapies for recurrent GB.  This would include re -

irradiation alone as well as in combination with potential radiosensitisers. 
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Chapter 6.  Glioblastoma stem-like cell-initiated 

orthotopic xenografts provide a useful model for 

studying reirradiation 
 

 

 After primary diagnosis and first-line treatment, which includes surgery, radiation, and 

chemotherapy, glioblastoma inevitably recurs, typically within a year of treatment initiation 

(74,122).  The relatively rapid recurrence and progression of post-treatment GB demonstrates 

the ability of GB to evolve in response to harsh conditions (limited resources and therapeutic 

selective pressures) (24,31,35).  Alkylating chemotherapy has been implicated in therapy-

induced evolution by its ability to alter mutational profiles and lead to the emergence of 

temozolomide-resistant clones (235,300).  Because we have shown that radiation has the ability 

to drive evolution of GSC-initiated xenografts, it is possible that radiotherapy may also lead to 

the emergence of resistant clones.  The functional impact of radiation-induced reduction in 

clonal diversity and subpopulation selection must be interrogated due to its potential 

implications for recurrent GB treatment. 

 In particular, reirradiation protocols are a possible treatment option for recurrent 

glioblastoma.  There are several potential risks for re-exposure of the CNS to radiation, 

including the development of symptomatic radionecrosis and damage to sensitive brain areas 

such as the brain stem and optic nerves.  However, improved imaging to better define the 

tumour volume and advanced targeting techniques to more accurately provide radiation to the 

tumour while avoiding normal tissue are just a few of the methods used to mitigate the potential 

risks associated with re-exposure.  Initial studies indicate the potential for clinical benefit after 

various forms of reirradiation (195-197,313-315).  Shorter courses of radiation, which have 

been effectively employed in the elderly population (187,188), and pulse-reduced dose rate 

protocols may limit the additional radiation exposure for recurrent GB compared to standard 

fractionation techniques (198).  Larger clinical trials of reirradiation are currently underway 

(https://clinicaltrials.gov/ct2/results?cond=Recurrent+Glioblastoma&term=radiation&cntry=

&state=&city=&dist=), but the potential utility of reirradiation necessitates the investigation of 

GB models capable of studying retreatment protocols and their potential impact on and 

interaction with recurrent GB biology.  For example, if radiation leads to the emergence of 

resistant clones which repopulate a recurrent tumour, then reirradiation would be expected to 

https://clinicaltrials.gov/ct2/results?cond=Recurrent+Glioblastoma&term=radiation&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=Recurrent+Glioblastoma&term=radiation&cntry=&state=&city=&dist=
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have no clinical survival benefit and would not be recommended for patients.  However, if 

radiation does not lead to the emergence of resistant clones, then patients may benefit from 

reirradiation and a more thorough understanding of radiation’s impact on GB evolution may 

eventually suggest targets which may sensitise both primary and recurrent GB to radiotherapy.     

To investigate the ability of radiation-induced evolution to positively select for 

radioresistant clones, potential functional implications of radiation on GSC-initiated orthotopic 

xenografts were examined through clonogenic survival analysis and in vivo reimplantation of 

xenograft-derived cell lines.  Furthermore, the utility of GSC-initiated orthotopic xenografts 

for studying recurrent GB biology and retreatment protocols was investigated.  Interestingly, 

tumour cells from control and irradiated tumours placed back into culture at morbidity did not 

demonstrate differences in radiosensitivity in vitro or in vivo.  Furthermore, after the addition 

of a reirradiation protocol to GSC-initiated xenografts, recurrent tumours experienced a 

significant increase in overall survival, suggesting retained sensitivity to radiation.  These 

results indicate that radiation-induced evolution of GSC xenografts does not lead to the 

emergence of radioresistant clones, which has positive treatment implications for GB patients.  

In particular, if this model is applicable to the clinical setting, then patients may experience 

further survival benefit with reirradiation protocols. Such reirradiation and recurrent GB 

treatment protocols and underlying recurrent GB biology and treatment response can be 

effectively studied with GSC-initiated xenograft models. 

 

 

6.1 Methods for studying reirradiation and recurrent GB 

radioresponse 
 

6.1.1 Clonogenic Survival Assay 
 

 Poly-L-lysine (PLL; Sigma) was added to each well of 6-well plates and allowed to 

stand 1 hour to overnight in 37oC incubator.  PLL was removed, wells were washed twice with 

sterile PBS, and wells were allowed to dry in 37oC incubator for several hours to overnight.  

GSCs, typically maintained as neurospheres, were spun down at 800 rpm for 3 minutes at room 

temperature.  Supernatant was aspirated and spheres were resuspended in 1 mL TryplE express.  
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After incubation for approximately 30 seconds at room temperature, 2 mL Defined Trypsin 

Inhibitor and 4 mL sterile PBS were added.  After pipetting up and down to disaggregate the 

neurospheres, cell suspension was filtered through a sterile 40 µm cell strainer to ensure a 

single cell suspension.  Cells were spun down at 1000 rpm for 5 minutes, supernatant was 

aspirated, and cells were resuspended in 5 mL sterile PBS.  Cells were then counted with a 

Coulter counter.  Cells were spun down a final time and resuspended in stem cell media at 

1x105 cells/ml in a 50 ml conical tube.  Serial 1:10 dilutions were performed in stem cell media 

until desire dilution was reached.  Appropriate number of cells were added to PLL-coated 

plates.  Cells were incubated overnight at 37oC, 5% CO2, and 5% O2 to allow cells to attach 

prior to radiation treatment.  After allowing time for cell attachment and recovery, plates were 

irradiated (0, 1, 2, or 3Gy) using a 320 kV Xray machine (Precision X-Ray Inc.). After 

irradiation, plates were returned to a 37oC, 5% CO2, and 5% O2 incubator and fresh stem cell 

media was added up to twice per week.  At approximately 21 days post-irradiation, wells were 

stained with 0.5% crystal violet for up to 5 minutes.  Plates were rinsed by immersion in a large 

bowl of water and crystal violet was properly disposed.  After drying, plates were counted for 

number of colonies per well with a stereomicroscope.  Colonies were defined as containing at 

least 25 cells (corresponding to 4-5 divisions).  To generate a radiation survival curve, 

surviving fraction (SF) for each dose of radiation was calculated by determining the plating 

efficiency (PE) (number of colonies divided by the number of cells seeded x 100), which was 

then divided by the PE determined for the untreated control sample.  Survival curves were 

constructed by plotting the surviving fraction versus radiation dose.  The control (0Gy) SF is 

set at 1.0 on the y-axis with the remaining SF data points plotted on a log scale (decreasing 

from 1.0); the x-axis corresponds to the radiation dose and is plotted on a linear scale (a semi-

log plot 

 

6.1.2 Flow cytometry 
 

A single cell suspension of GSCs was prepared as described above.  Cells were 

centrifuged and pellet resuspended in 800µL PBS and 200µL 10% Formalin for 10 minutes at 

room temperature.  Cells were centrifuged and resuspended in 500 µL of fixed cell staining 

buffer (PBS, 0.5% BSA, 0.1% Triton-X-100, 0.05% Tween20, 5% FBS).  Cells were aliquoted 

into Eppendorf tubes for appropriate samples and controls (unstained, Hoechst con trol, 

secondary control, CD133-1 and CD133-2).  To 100µL of cells, 20µL of pure CD133-1 and 
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CD133-2 (Miltenyi; PE-conjugated) were added.  Cells were incubated with antibody for 1-2 

hours at 4oC in the dark.  Stained cells were centrifuged and resuspended in PBS with Hoechst 

33258 (1:50,000).  Samples were filtered through a 40µm nylon mesh into flow tube.  Flow 

cytometry was performed on a BD LSRFortessa and analysis performed with FACSDiva 

software. 

 

6.1.3 Immunocytochemistry 
 

 Poly-L-Ornithine (PO; Sigma) was added to chamber slides and allowed to stand 

overnight in a 37oC incubator.  PO was removed, chambers were washed twice with sterile 

PBS, and PBS with Laminin (Sigma, 1:500) was added.  Chambers were incubated at 37 oC in 

Laminin for 4 hours to overnight.  A single cell suspension of GSCs was prepared and cells 

were counted with a Coulter counter as described above.  50,000 cells per chamber were added 

with 2mL stem cell media.  Cells were checked daily and were utilised for staining once cells 

reached approximately 70% confluency.  Media was removed and slides were washed twice 

with PBS.  Cells were fixed with 10% Formalin for 10 minutes at room temperature.  Formalin 

was removed and cells washed with PBS once prior to incubating in blocking buffer (PBS, 5% 

FBS, 0.5% BSA, 0.1% Triton-x-100) for one hour at room temperature.  Next, the primary 

antibody (CD133, Proteintech, 1:200) in antibody buffer (PBS, 5% FBS, 0.5% BSA, 0.1% 

Triton-X-100, 0.05% Tween20) was added and incubated overnight at 4oC with gentle shaking.  

Cells were washed three times with PBS and gentle shaking for 10 minutes prior to adding 

secondary antibody (Alexa Fluor 555, Invitrogen, 1:1000) in antibody buffer.  Cells were 

incubated for 1 hour at room temperature in the dark.  Cells were washed three times with PBS 

and gentle shaking for 10 minutes and chamber slides were removed.  Anti-fade with DAPI 

was added and slides covered with coverslips.  Slides were dried overnight and images taken 

with a fluorescent microscope (Zeiss).   

 

6.1.4 Xenograft Reirradiation Protocol 
 

 Orthotopic implantation of CD133+ GSCs into the right striatum of female athymic 

nude mice, initial bioluminescent imaging, randomisation, and treatment with fractionated 

radiation (3x5Gy) were completed as described in Chapter 3.  After the first course of treatment 
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(control or 3x5Gy), tumour growth was monitored weekly by BLI.  Once the average BLI ratio 

of irradiated tumours demonstrated an observable increase (approaching 10 on the logarithmic 

scale), the irradiated mice were re-randomised into two groups: control (previously received 

3x5Gy) and reirradiation (3x5Gy-3x5Gy).  Mice in the reirradiation group received three 

consecutive days of 5Gy.  After the second course of treatment, tumour growth was monitored 

by BLI out to morbidity.  Kaplan-Meir survival curves were generated in GraphPad Prism 7. 

 

 

6.2 Results 

 

6.2.1 Clonogenic survival analysis of in vivo tumour cultures 
 

 As an initial test of whether radiation-induced evolution leads to the emergence of 

radioresistant clones, xenograft-derived cell lines were established from in vivo NSC11 control 

and irradiated tumours.  For this experiment, once NSC11 tumour-bearing mice reached 

morbidity, mice were euthanised and GFP-expressing tumour tissue was dissected under a 

microscope.  Tumour tissue was immediately placed in Trypsin-EDTA and mechanically 

dissociated with sterile scalpels.  After inhibiting the trypsin, cells were washed with sterile 

PBS and spun down several times before adding stem cell media containing antibiotics.  Cells 

were monitored, washed, and given fresh media for several days until neurospheres began to 

form and proliferate.  After an antibiotic taper, xenograft-derived cell lines from both control 

and irradiated tumours were plated on PLL-coated plates for clonogenic survival assays to 

assess radioresponse.  Figure 6.1A demonstrates no difference in survival fraction as a function 

of dose between cell lines derived from control xenografts (NSC11ic Control) or irradiated 

xenografts (NSC11ic 3x5Gy).  While the colonies for NSC11 are typically small, there was no 

difference in colony size or morphology between the control and 3x5Gy cell lines (Fig. 6.1B) 

or between untreated cells (pictured) and irradiated cells.  Furthermore, flow cytometry 

analysis for CD133 positivity demonstrated similar levels of CD133 expression for both 

NSC11ic control xenografts and NSC11ic 3x5Gy xenografts (Figs. 6.1 C and D, respectively).  

Flow cytometry results were supported by immunocytochemistry demonstrating fairly uniform 

CD133 expression (green fluorescence) of cultured cells (Figs. 6.1E-F).  While the derivation 

protocol itself could perhaps be expected to generate a high percentage of CD133+ GSCs 
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regardless of xenograft characteristics, the GSCs composing each xenograft-derived cell line 

seem to display relatively similar radioresponses, regardless of treatment history (Fig. 6.1A).  
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Figure 6.1 Clonogenic survival assay and GSC proportion analysis .  A) Clonogenic 
survival curve comparing the survival fraction as a function of radiation dose between cell lines 

derived from control and irradiated (3x5Gy) xenografts. B) Representative images of NSC11ic 
Control and NSC11ic 3x5Gy clonogenic assay colonies (0 Gy).   Flow cytometry dot plot 
demonstrating the percentage of GFP+ (FITC+) tumour cells which express CD133 (PE+) from 
C) control or D) irradiated xenograft-derived cell lines.  Fluorescence images of attached E) 

control or F) irradiated xenograft-derived cells (blue=nuclear DAPI stain) which express 
CD133 (green) and Nestin (pink). 

 

 

6.2.2 Reimplantation Study 
 

 To ensure that the lack of difference in radiosensitivity between xenograft-derived cell 

lines with different treatment histories was not attributable to in vitro culturing, a 

reimplantation study was performed.  NSC11 cell lines were derived from xenograft tumour 

tissue as described for clonogenic assay experiments.  Once clonogenic neurosphere cultures 

were generated and antibiotics tapered, xenograft-derived cell lines from control (icCtrl) or 

irradiated (ic3x5) tumours were reimplanted into the right striatum of nude mice.  The tumour 

take rate for xenograft-derived cell lines was around 95%, similar to standard GSC 

implantation studies.  As in prior in vivo experiments, at day 21 post-implant, after visualisation 

of tumours with BLI, mice from both cohorts were randomised into control and fractionated 

radiotherapy (3x5Gy) groups.  After treatment, mice were followed out to morbidity with BLI 
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and overall survival was recorded.  As shown in figure 6.2A, a statistically significant 

difference in survival based on xenograft-derived cell line treatment history was not observed.  

While the median survival for the control tumour-derived cell line implants was higher than 

irradiated tumour-derived cell line implants (83 days vs. 72 days, respectively), Kaplan-Meir 

survival curve comparison demonstrates a clear lack of significant survival ad vantage 

(p=0.9889).  Similarities in survival between xenograft-derived cell lines were consistent with 

similarities in tumour growth delay for each reimplant type as assessed by BLI as a function of 

time after irradiation (Fig. 6.2B).  These data suggest that radiation-induced evolution does not 

select for radioresistant subclones. 

 

 

Figure 6.2 Radioresponse of reimplanted NSC11 xenograft-derived cell lines.  

Reimplanted xenografts were randomised and treated (3x5Gy) on day 21 post-implant as 
described in text.  A) Kaplan-Meier survival curves were generated for control tumour-derived 
reimplants (icCtrl) and irradiated tumour-derived reimplants (ic3x5) that received no treatment 
(Control) or fractionated radiation (3x5Gy) (n=8-9 mice per group).  B) Tumour growth 

defined by BLI ratio as a function of time after irradiation.  Day 21 represents initial, pre -
treatment BLI baseline imaging prior to randomisation and irradiation.   

 

 

6.2.3 Reirradiation of GSC-initiated orthotopic xenografts 
 

 Because our reimplantation study contained an intervening period of in vitro cell line 

derivation, it is possible that the in vitro environment led to a loss of potential differences in 

radiosensitivity that may have been gained by GSCs after treatment in the brain 

microenvironment.  Therefore, as a final, more clinically relevant assessment of radiation’s 

potential to induce the emergence of radioresistant subclones, we added a reirradiation protocol 
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to our GSC-initiated xenograft model.  Orthotopic implantation of CD133+ GFP+ GSCs, initial 

BLI, and first course of treatment (control or 3x5Gy) were completed as described previously.  

After completion of the initial course of treatment, tumour growth of control and irradiated 

tumours were followed weekly with BLI.  Once the irradiated tumours began to regrow, as 

determined by a consistent increase in BLI ratio as a function of time after irradiation, the mice 

were re-randomised into two groups: control and fractionated radiotherapy (3x5Gy).  After the 

second course of treatment, mice were followed out to morbidity with BLI and overall survival 

recorded.  Figure 6.3A shows that NSC11 tumour-bearing mice that underwent reirradiation 

experienced a significant increase in survival compared to mice that only received one course 

of fractionated irradiation.  Similar survival advantages from the reirradiation protocol were 

also observed in NSC20 and NSC23 tumour-bearing mice (figures 6.3B-C).  Consistent with 

increased survival, tumour growth delay was detected by BLI after both the initial and second 

courses of fractionated irradiation (figures 6.4A-C), suggesting that recurrent tumours that 

regrow after initial treatment remain sensitive to irradiation.  Finally, the fundamental change 

in recurrent GB biology, as evidenced by reduced invasive propensity, which was observed 

after one course of radiation (Fig. 5.2), was similarly observed in reirradiated NSC11 and 

NSC20 tumour-bearing brains at morbidity (figures 6.5A-B).  Taken together, these results 

suggest that radiation-induced evolution does not lead to the emergence of radioresistant clones 

and that GSC-initiated xenografts represent useful models for studying recurrent GB biology 

and retreatment protocols. 
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Figure 6.3 Survival of GSC-initiated xenografts after reirradiation.  After initial 

randomisation and treatment (3x5Gy), mice were followed by BLI weekly to monitor tumour 
growth.  Once the average BLI ratio of irradiated tumours demonstrated an observable increase 
(approaching 10 on the logarithmic scale), the irradiated mice were rerandomised and 
reirradiated (3x5Gy, 3x5Gy).   Kaplan-Meier survival curves were generated for A) NSC11, 

B) NSC20, and C) NSC23 tumour-bearing mice (n=6-10 mice per group).  Log-rank (Mantel-
Cox) test utilised for statistical analysis of survival benefit with GraphPad Prism 7 software.  
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Figure 6.4 Radioresponse of GSC-initiated xenografts after reirradiation. Tumour growth 
defined by BLI ratio as a function of time after irradiation for A) NSC11, B) NSC20, and C) 
NSC23 tumours. 
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Figure 6.5 Morphology and histology of NSC11 and NSC20 tumours . Right hemisphere 
sagittal sections at plane of injection site stained with A) SOX2 or B) H&E (magnification 20x) 
from A) NSC11 or B) NSC20 control, irradiated (3x5Gy), and reirradiated (3x5Gy-3x5Gy) 

tumour-bearing brains at morbidity. 
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6.3 Discussion 
 

 The aim of this study was to test the hypothesis that radiation-induced evolution leads 

to the emergence of radioresistant clones.  In vitro clonogenic survival and reimplantation 

studies of xenograft-derived cell lines were utilised as initial approaches for evaluating the 

functional implications of radiation-induced evolution.  By returning control and irradiated 

xenograft tumour cells back to culture, we were able to test the hypothesis that in vivo 

irradiation leads to the emergence of radioresistance.  The protocol we utilised for GB 

xenograft cell line derivation and subsequent in vitro maintenance potentially biased 

enrichment toward GSCs (241,267).  Utilising serum-containing media may have allowed the 

retention of more diverse and differentiated tumour cell types.  However, we ultimately 

required a population of clonogenic GSCs for successful reimplantation studies.  In addition, 

GSCs cultures have been shown to be heterogeneous by the ability to populate heterogeneous 

tumours (252).  Importantly, CSCs are considered to be an important cell type for mediating 

intrinsic radioresistance (245).  Therefore, if irradiation of GSC-initiated xenografts led to a 

recurrent tumour repopulated with radioresistant GSCs, then the derivation of GSC lines from 

irradiated xenografts would be expected to enrich for more radioresistant GSCs compared to 

control xenograft-derived GSCs.  If this is the case, then our results which showed no difference 

in in vitro clonogenic survival or in vivo survival after reimplantation suggest that radiation-

induced evolution of GSC-initiated orthotopic xenografts does not lead to the emergence of 

radioresistant clones in recurrent GB xenografts.  Instead of selecting for radioresistant clones, 

radiation may contribute to GB evolution by the selection of clones with different predilections 

for invasion versus proliferation and clones better able to benefit from microenvironmental 

interactions (migration to radioresistant niches, for example).   

 Despite aggressive first line treatment, glioblastoma inevitably recurs.  Even though 

progression is expected, a consensus on the best treatment approach for recurrent glioblastoma 

does not currently exist.  Many modalities have been employed with mostly palliative intent 

including re-resection, chemotherapy, and reirradiation.  Certainly, clinicians must weight 

clinical benefits with apparent risks and make decisions based on a given patient’s 

characteristics, but reirradiation seems to be a feasible retreatment strategy that may improve 

outcomes.  However, early studies with reirradiation demonstrated limited survival benefit and 

relatively high side effect profiles with conventional RT (314,316).  Fortunately, advances in 

imaging and radiation targeting, including conformal technology has improved tolerance and 
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survival (317).  Indeed, with new techniques, the incidence of necrosis does not seem to 

increase significantly until a combined dose of at least 100 Gy (317).  In a retrospective cohort 

study, Combs et al. demonstrated that fractionated stereotactic reirradiation with a median dose 

of 36Gy led to an 8-month median OS for reirradiated patients (5-month PFS) and was well 

tolerated with no major short- or long-term side effects (318).  Survival results comparable to 

systemic recurrent treatment strategies (e.g. bevacizumab) have been reported in single 

institution retrospective studies for hypofractionated (319) and pulsed reduced-dose-rate 

protocols (198).  Several retrospective studies have shown potential beneficial results for SRS 

with small volume recurrent tumours, but an increase in radionecrosis with larger volumes 

(320-322).  Many other retrospective series and systematic literature reviews have further 

suggested that reirradiation is well tolerated and seems to yield survival times comparable or 

better than other treatment modalities (195,196,313,315,323-328).  In addition to improved 

survival, studies have also observed the stabilisation and improvement of performance status 

(329,330).  As with other recurrent treatment strategies, patient stratification seems to be 

important, as patients with higher performance status (KPS>60) and smaller lesions (<40mm) 

(325), longer intervals between radiation courses, and gross total reresection prior to 

reirradiation tended to have better outcomes (323).  A few prognostic scoring mechanisms and 

expert survey data have been developed to delineate the patients who would best respond to 

reirradiation (197,331).  While many retrospective observation studies and a few prospective 

studies suggest that reirradiation is well tolerated and may provide comparable or perhaps even 

favorable clinical benefit for recurrent GB, there is clearly a need for more prospective trials 

and randomized control trials to fully establish efficacy, better define optimal patient selection, 

to guide dose/fractionation decisions, to confirm safe dose limits, and to support addition of 

systemic therapies.  While many reirradiation trials are currently ongoing, it seems likely that 

with continued improvements in radiation delivery and with the incorporation of targeted 

radiosensitisers to enhance radioresponse, reirradiation may eventually establish itself as a safe, 

effective recurrent GB treatment strategy.      

 Therefore, as an alternative approach to further assess the functional implications of 

radiation-induced evolution and to establish GSC-initiated xenografts as models for studying 

retreatment strategies, we added a reirradiation protocol to our previously described GSC-

initiated xenograft model which involves a single course of irradiation (266).  In the current 

study, after the initial course of irradiation, average tumour growth of irradiated tumours was 

monitored with bioluminescent imaging.  Once the average tumour size began to increase, as 
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assessed by BLI ratio when compared to pre-treatment BLI values, the mice were re-

randomised and half were reirradiated with the same fractionated radiation protocol (3x5Gy).  

The in vivo observations of initial response to treatment (delayed tumour growth assessed by 

differences in BLI), eventual progression of irradiated tumours (increase in BLI ratios above 

both pre-treatment and early post-treatment values), and response to a second course of 

irradiation (delayed tumour growth) seem to mimic standard GB clinical histories.  After an 

initial response to treatment and a period of progression free survival, GB inevitably recurs.  

Depending on the performance status of the individual, retreatment may be provided which 

often leads to another, shorter treatment response.  Unfortunately, the patient typically 

succumbs to the disease within 2 years of diagnosis.  Because the addition of a reirradiation 

protocol to GSC xenografts mirrors GB clinical histories, allows for the retreatment of 

recurrent tumours that regrow after treatment, and yields the ability to investigate changes in 

tumours at different intervals after one or more courses of treatment, this model represents a 

useful evolutionary tool.  This model of reirradiation and recurrent GB provides an opportunity 

to further interrogate the microenvironment-mediated mechanisms and implications of 

radiation-induced GB evolution, to more effectively study recurrent biology, and to test the 

preclinical efficacy of new retreatment protocols.  A more thorough understanding of 

treatment-induced evolution and possible sensitisation strategies could have potential 

implications toward improving treatment for recurrent glioblastoma. 
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Chapter 7. Discussion 
 

 

 This work was performed to examine the impact of radiation on glioblastoma evolution.  

The intrinsic intratumoral heterogeneity of glioblastoma coupled with selective pressures 

imposed by standard treatment regimens can lead to therapy-induced evolution.  This 

phenomenon has been demonstrated for chemotherapy (235,300).  However, the ability of 

radiation alone to induce glioblastoma evolution has not previously been described.  Therefore, 

this work presents novel findings on radiation-induced glioblastoma evolution and its potential 

implications for retreatment protocols and recurrent biology.  Furthermore, the study of 

radiosensitivity in the context of intratumoral heterogeneity may provide insight on the 

applicability of such findings.  Future work will seek to gain further understanding of the 

process of radiation-induced evolution in an effort to generate more effective treatment 

strategies for improving glioblastoma outcomes. 

 

 

7.1 Summary of Key Findings  
 

7.1.1 Impact of ITH on radiosensitivity 
 

 The hypothesis that there are differences in intrinsic radioresponse of glioblastoma cells 

isolated from spatially distinct regions of human tumours was tested by performing 

radiosensitivity studies and whole exome sequencing on patient-derived cell lines and 

corresponding tumour fragments.  Comparison of Pearson’s correlation coefficients and 

superFreq analysis of SNV and CNA data demonstrated that patient-derived cell lines were 

good models of their tumours of origin.  In addition, the J14 cell lines were also found to be 

good models of their specific corresponding tumour fragments.  SuperFreq-generated river 

plots allowed for the comparison of the presence and relative prevalence of defined clones 

between samples from a given tumour.  These plots revealed that while samples shared clones, 

they also harboured unique clones and combinations of clones which supported the use of cell 

lines derived from spatially distinct tumour fragments as models of intratumoral heterogeneity.  
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Cell lines underwent radiosensitivity testing with γH2AX foci analysis and limiting dilution 

assays.  The J7 cell lines displayed conflicting results in DSB foci induction (1-hour post RT) 

and repair (24 hours post RT).  All other cell lines showed no significant differences in foci 

analysis.  For limiting dilution assays, only the J14 cell lines displayed differences in 

proliferation capacity after irradiation.  Because no cell lines displayed consistent differences 

across radiosensitivity studies, it seems that cell lines derived from spatially distinct tumour 

regions exhibit similar levels of radiosensitivity in spite of observed ITH.  These results suggest 

that ITH does not produce dif ferences in intrinsic radiosensitivity and that GB radioresponse 

may be conserved across heterogeneous clones within a tumour.     

 

7.1.2 Radiation drives evolution of GSC-initiated orthotopic xenografts 
 

 Glioblastoma stem-like cell-initiated orthotopic xenografts were utilised to test whether 

radiation alone can drive the evolution of glioblastoma.  The fractionated radiotherapy protocol 

(3x5Gy) provided a significant survival advantage and caused a tumour growth delay for 

irradiated mice, which mimics the clinical course of treated GB.  Histological analysis revealed 

that control tumour-bearing brains demonstrated different growth patterns when compared to 

irradiated tumour-bearing brains.  In particular, GB cells in control tumours were more 

diffusely scattered throughout the right hemisphere both anteriorly and posteriorly from the 

injection site in the striatum.  In contrast, irradiated tumours demonstrated a clearly demarcated 

tumour border anterior to the right striatum.  Such clear differences in growth patterns point 

towards a fundamental change in recurrent biology after irradiation.   

We investigated the potential role of clonal selection in this process by performing Viral 

integration site analysis.  VISA demonstrated a significant reduction in the number of unique 

integration sites when transitioning from an in vitro to an in vivo environment.  Clonal diversity 

was even further reduced when implanted tumours were irradiated.  This reduction in clonal 

diversity was detected in two different GSC lines, suggesting that radiation has the ability to 

drive evolution.  To test whether radiation alone was sufficient to promote clonal selection, we 

irradiated NSC11 cells in vitro.  However, there was no difference in the number of integration 

sites between control and irradiated cells in vitro.  Furthermore, VISA of U251 xenografts 

demonstrated that while irradiation of subcutaneous xenografts did lead to a reduction in clonal 

diversity, the largest reduction in diversity occurred after irradiation of intracerebral xenografts.  
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This suggests that radiation-induced GB evolution is not specific to GSCs and that the brain 

microenvironment plays an important role in mediating the evolutionary process.   

Whole exome sequencing of morbid control and irradiated tumours further supported 

the observed impact of radiation on GB evolution.  COSMIC mutational signature profiles 

were found to be different between control and irradiated NSC11 and NSC20 tumours.  

Additionally, EXPANDS analysis demonstrated extensive subpopulation dynamics as many 

variants shifted into more or less prevalent subpopulations following irradiation.  Similarly, 

patterns of GB driver genes differed between control and irradiated tumours and GB driver 

gene variants were also found to shift between defined subpopulations after irradiation.  The 

WES results coupled with VISA, histology, and survival support the radiation-driven evolution 

of GSC-initiated orthotopic xenografts.   

 

7.1.3 Glioblastoma reirradiation model 
 

 To test the hypothesis that radiation-driven evolution leads to the emergence of resistant 

clones, clonogenic assays of xenograft-derived cell lines as well as reimplantation studies were 

performed.  Cells from control and irradiated NSC11 morbid tumours were put back into 

culture to establish xenograft-derived cell lines grown as neurospheres.  These lines were 

subjected to clonogenic survival analysis which demonstrated no difference in radiosensitivity 

between the lines.  Next, control and irradiated NSC11 xenograft-derived cell lines were 

reimplanted into the right striatum of nude mice and treated with fractionated irradiation.  No 

differences in survival after irradiation were noted regardless of the prior treatment received 

by the xenograft-derived cell lines.   

An alternative approach for testing the effects of radiation-driven evolution was the 

addition of a reirradiation protocol to the previously described GSC-initiated orthotopic 

xenograft model.  Tumour bearing mice that received fractionated irradiation (3x5Gy) were 

followed by serial BLI imaging to monitor for tumour regrowth.  Once an increase in BLI 

suggested regrowth (recurrence), an additional fractionated irradiation protocol (3x5Gy) was 

applied to half of the mice.  Similar to a single course of irradiation, the second course of 

irradiation led to an observed tumour growth delay by BLI and mice that were reirradiated 

experienced a significant increase in median survival compared to mice that only received one 

course of irradiation.  Because the GSC xenograft reirradiation protocol better mirrors the 
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clinical course of GB by retreating recurrent tumours, this model represents a useful method 

for studying recurrent GB biology and retreatment strategies.  Furthermore, these reirradiation 

results coupled with clonogenic survival analysis and reimplantation results  indicate that 

radiation-induced evolution does not lead to the emergence of radioresistant clones in GSC-

initiated orthotopic xenografts.   

 

 

7.2 Limitations 
 

 When comparing patient-derived cell lines to their tumours of origin, the cell lines were 

found to be good models of their parent tumours.  However, in some cases the cell lines were 

good models of the originating tumour as a whole, but they were more similar to other cell 

lines from the same tumour than they were to their specific corresponding tumour fragments.  

Logistical and biological challenges could have contributed to this result.  Care was taken in 

the operating room to cut a single, small tumour fragment in half to  send one half for tissue 

processing and storage in the Tumour Bank and the other half for cell line derivation.  While 

labelling was done in the operating room in an attempt to numerically define each tumour 

fragment, tissue frozen by the Tumour Bank was processed separately from tissue utilised for 

line derivation, which could have introduced unknown discrepancies in labelling.  This could 

be rectified in the future by having both tasks performed in the same facility by the same 

personnel.  Furthermore, as has been demonstrated with single cell analysis (281), even two 

halves of a small tumour fragment could possibly demonstrate ITH.  While manual 

homogenisation of the entire tissue fragment prior to splitting for separate purposes would 

potentially lessen the amount of ITH present, homogenisation would also diminish tissue 

integrity which could have negative consequences for freezing, thawing, and eventual DNA 

extraction from tissue fragments.  In this case, immediate DNA extraction from homogenized 

tissue would potentially be better than tissue bank storage and later extraction.   In addition to 

improving derivation techniques to improve the accuracy of the models, in vivo radiosensitivity 

studies would provide further information on the impact of ITH on intrinsic radiosensitivity 

(discussed further in section 7.3). 

 As this study represents the first observation of the impact of radiation on glioblastoma 

evolution, WES was employed to examine differences in variant patterns, mutational 
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signatures, and subpopulation dynamics between untreated and irradiated tumours.  WES of 

DNA extracted from bulk tumour samples has been a standard approach for studying cancer 

evolution and ITH.  Despite its extensive use in studying cancer genomics, WES has been 

shown to be susceptible to sequencing artifacts particularly at low coverage and in low-

mappability regions (332).  In our analyses, we sought to improve likelihood of more accurate 

variant calling by only analyzing variants that were detected in 2 out of 3 replicates.  While our 

sequencing had a depth >180x, ultra-deep sequencing could improve reliability of results (333).  

Also, single cell techniques could provide more detailed analysis of ITH and 

genomic/transcriptomic evolution (34,281).  In addition, WGS would provide a more 

comprehensive picture of radiation-induced effects on the genome.  Beyond just examining 

variants in protein-coding genes, WGS would describe the potential effects of radiation on 

genomic instability and the role that such instability may play in the evolutionary process (334-

336).  While many other genomic approaches could potentially be utilised in the future to more 

deeply investigate the impact of radiation on GB genomic evolution, WES is a reasonable first 

approach for studying and describing therapy-induced evolution.           

 The finding that in vitro irradiation of GSCs did not lead to a reduction in clonal 

diversity while irradiation of in vivo brain tumours led to a significant reduction in clonal 

diversity suggests a contributory role for the brain tumour microenvironment in radiation-

induced glioblastoma evolution.  As such, it seems likely that future studies on radiation-

induced GB evolution will also need to be performed in vivo.  Nude mice represent a commonly 

utilised immunocompromised mouse strain for studying glioblastoma orthotopic xenografts.  

Nude mice harbour a few functioning types of immune cells, unlike NOD-SCIDs which are 

even more immunocompromised.  The use of nude mice is necessary when performing 

radioresponse studies due to SCID mice having a Prkdc mutation and deficiency in DNA-PK 

activity resulting in hypersensitivity to ionizing radiation (337).  However, the lack of a 

functioning immune system may limit the ability to fully understand the interactions of the 

microenvironment and glioblastoma cells that result in treatment-induced evolution.  For 

example, radiation-induced cell death is thought to release tumour neoantigens which in turn 

can be taken up by antigen presenting cells (dendritic cells) to generate and activate tumour-

specific T cells.  Radiation also has complex effects on the tumour microenvironment that can 

contribute to immune responses, such as increasing the production of cell adhesion molecules 

in irradiated vascular endothelium resulting in T cell recruitment (338).  Therefore, various 
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trials are underway to enhance anti-tumour immunity by the complementary and potentially 

synergistic actions of targeted immunotherapies and radiation.   

 

 

7.3 Future Work 
 

 To further confirm that ITH does not have a significant impact on radiosensitivity, a 

next step would be to compare in vivo growth patterns and in vivo radiosensitivities of patient-

derived cell lines derived from spatially distinct tumour fragments.  The brain 

microenvironment has been previously shown to influence radioresponse of GSCs and has even 

revealed differences in radiosensitivities of CD133+ and CD133- cell populations in vivo that 

were not found in vitro (254,266).  Therefore, comparison of in vivo tumour growth and 

radiation treatment of multiple cell lines from the same tumour would be expected to provide 

a more clinically relevant picture of ITH.  To date, J3 and J7 cells transduced to express 

GFP/Luciferase have been intracerebrally implanted into athymic nude mice.  While these cells 

do produce tumours, untreated mice survive upwards of 100 days, making their utility for 

radiation-related studies difficult.  The cell lines utilised in Appendix A, A25M and A25C, 

represent an attractive pair of lines to study due to observed differences in tumour growth 

patterns; A25M grows as a nodular tumour whereas A25C grows as a diffuse tumour.  A25M 

has been successfully transduced and has already been incorporated into ongoing reirradiation 

studies.  Unfortunately, while transduced A25C cells do generate tumours, the cells in culture 

and tumours in vivo seem to be growing more slowly than previously observed.  Future studies 

will attempt to boost in vivo growth rates so that the two lines can be compared.  However, 

many patient-derived cell lines are still available for future tumourigenicity studies.  

Ultimately, by generating a few workable models of in vivo ITH, the potential of ITH to yield 

differences in in vivo radiosensitivity could be assessed.  In addition to the study of in vivo 

radiosensitivity, paired cell lines from the same tumour would provide the opportunity to study 

the impact of radiation and other treatments on clonal evolution of mixed cell populations in 

vivo.       

 As our results suggest, the microenvironment may play an important role in radiation-

induced glioblastoma evolution.  Therefore, future studies will seek to better delineate the role 

of the brain microenvironment, a unique and complex system, in guiding the evolutionary 
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process (339,340).  Initial assessments could involve staining histological time course slides 

with various makers expressed in the brain microenvironment such as VEGF (angiogenesis), 

Tenascin C (ECM), and CD11b/CD68 (microglia) to assess potential differences in these 

microenvironmental components after irradiation.  Future in vivo work could examine the 

potential role of protective niches in mediating cell survival and evolution after radiation.  

Additionally, examining the role of resident non-tumour brain cells in radioresponse could 

provide further insights on the ability of the microenvironment to guide evolution.  For 

instance, astrocytes have been shown to both enhance the invasion of GSCs and to reduce their 

in vitro radiosensitivity (reduce DSBs and enhance foci dispersal) (229,230).  Therefore, co-

implantation of human GSCs with human astrocytes could potentially demonstrate the ability 

of an important resident brain cell to affect in vivo radioresponse.  While utilizing in vivo 

methods arguably provide the most physiologically relevant microenvironmental model, such 

models can be difficult to manipulate.  Therefore, new in vitro methods of 3D cell culturing 

including hyaluronic acid and hydrogel-based ECM 3D scaffolds, microfluidic systems, and 

brain and tumour organoids represent potential ways to mimic some of the features of the brain 

microenvironment while assessing the ability of radiation to impact the relationship of GB cells 

to those specific microenvironmental features (341).          

  The studied reirradiation protocol led to an increase in survival suggesting that 

radiation-driven evolution does not select for radioresistant clones.   To further assess the 

functional implications of reirradiation and to study recurrent tumour biology and evolution 

(first recurrence to second recurrence), the studies described in this thesis (VISA, WES) could 

be extended to tumours that were reirradiated.  Sequencing of recurrent tumours could provide 

valuable information on potential genomic divergence of tumours after reirradiation or other 

treatment exposures compared to primary tumours or earlier recurrent tumours.  Many targeted 

therapies are selected based on GB driver mutations, so sequencing of recurrent tumours can 

assess the status of such driver mutations in order to inform whether previously utilized 

targeted therapies should be continued or stopped and whether new targeted therapies may be 

effective.  While clinical tissue specimens are useful for sequencing if re-resection is completed 

as part of recurrent GB treatment regimens, liquid biopsies provide an important alternative 

when resection is not recommended to periodically (and less invasively) assess treatment 

effectiveness and to inform treatment decisions.  In addition to sequencing recurrent tumours, 

histological time course studies could be done after reirradiation to examine differences in 

underlying phenotypes between control, once irradiated, and twice irradiated tumour-bearing 
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brains.  To achieve a more comprehensive understanding of treatment-induced GB evolution, 

other treatment regimens should be assessed to compare to radiation-induced evolution.  While 

it was necessary to study radiation-driven evolution and the subsequent reirradiation protocol 

by treating tumour-bearing mice with fractionated irradiation only, such treatment regimens do 

not mirror those typically utilised in clinic.  First line treatment for most newly diagnosed and 

resected GB patients is the Stupp protocol consisting of radiotherapy with concomitant and 

adjuvant temozolomide (122).  As such, future studies will interrogate the impact of 

combinatorial therapeutics on GSC-initiated xenograft evolution.  In particular, it would be 

interesting to determine whether the addition of TMZ or a potent radiosensitiser to fractionated 

irradiation has any effect on the emergence of radioresistant clones.  Such studies would pair 

well with additional retreatment protocols so that the treatment responses of recurrent tumours 

could be directly tested with various single modality retreatments in an effort to better 

understand resistance mechanisms and recurrent biology. 

  

  

7.4 Conclusion 
 

 Glioblastoma is a heterogeneous, malignant brain tumour.  Despite aggressive 

treatment with surgery, radiotherapy, and chemotherapy, patients have a median survival time 

from diagnosis of 15 months.  Intratumoral heterogeneity and the ability of glioblastoma to 

rapidly evolve in response to selective pressures contribute to inevitable treatment failure and 

disease recurrence.  Radiation is an integral component of most first line treatment regimens 

for glioblastoma.  The results presented in this thesis demonstrate that radiation has the ability 

to drive glioblastoma evolution.  In particular, radiation produced a reduction in clonal 

diversity.  While the selection of subpopulations demonstrated in irradiated tumours may not 

lead to the emergence of radioresistant clones, as demonstrated by reirradiation protocols, the 

results do suggest changes in fundamental biology at tumour recurrence and an important role 

for the microenvironment in guiding the evolutionary process.  Because intratumoral 

heterogeneity was not shown to yield differential radiosensitivities, future insights on radiation-

induced glioblastoma evolution may contribute to improved therapies that enhance 

radioresponse for the entire tumour at both primary and recurrent stages.  
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List of Abbreviations 
  

2-HG 2-hydroxy glutarate 

5-ALA 5-Aminolevulinic acid 

ALT Alternative lengthening of telomeres 

ATRX Alpha thalassemia/mental retardation syndrome X-linked  

BBB Blood brain barrier 

BCNU Bis-chloroethylnitrosourea (carmustine) 

BLI Bioluminescent imaging 

CCBR Cancer Research Collaborative Bioinformatics Resource 

CNA/CNV Copy number alteration/Copy number variation 

COSMIC Catalogue of Somatic Mutations in Cancer 

CSC Cancer stem cell 

DC Dendritic cell 

DCTD Division of Cancer Treatment and Diagnosis Tumour Repository 

DSB Double strand break 

ECM Extracellular matrix 

EGFR Epidermal growth factor receptor 

EMT Epithelial-mesenchymal transition 

EORTC European Organisation for Research and Treatment of Cancer 

GATK Genome Analysis Toolkit 

GB Glioblastoma 

G-CIMP Glioma-CpG island methylator phenotype 

GEM Genetically engineered mouse model 

GFP Green fluorescent protein 

GLASS Glioma Longitudinal Analysis Consortium 

GSC Glioblastoma stem-like cells 

IC Intracranial/intracerebral 

IDH Isocitrate dehydrogenase 

ITH Intratumoral heterogeneity 

LDA Limiting dilution assay 

LOH Loss of heterozygosity 

MGMT Methylguanine DNA methyltransferase 
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NCI National Cancer Institute 

OS Overall survival 

PBS Phosphate-buffered saline 

PE Plating efficiency 

PFS Progression free survival 

PI3K Phosphatidylinositol 3-kinase 

PLL Poly-L-lysine 

PO Poly-L-ornithine 

PTEN Tyrosine phosphatase/tensin homolog protein 

RAGE Receptor for advanced glycation end product 

Rb Retinoblastoma 

RT  Radiotherapy 

RTK Receptor Tyrosine Kinase 

RTOG Radiation Therapy Oncology Group 

SC Subcutaneous 

SF Surviving fraction 

SFM Serum-free media 

SNV Single nucleotide variant 

SRS Stereotactic radiosurgery 

TAM Tumour-associated macrophages 

TCGA The Cancer Genome Atlas 

TERT Telomerase reverse transcriptase  

TET Ten-eleven translocation methylcytosine dioxygenase 

TME Tumour microenvironment 

TMZ Temozolomide 

TP53/P53 Tumour suppressor protein 53 

VAF Variant allele frequency 

VEGF Vascular endothelial growth factor 

VISA Viral integration site analysis 

WES/WGS Whole exome sequencing/Whole genome sequencing 

WHO World Health Organisation 
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