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Abstract
Weexamine the usefulness of applying neural networks as a variational state ansatz formany-body
quantum systems in the context of quantum information-processing tasks. In the neural network
state ansatz, the complex amplitude function of a quantum state is computed by a neural network. The
resultingmultipartite entanglement structure captured by this ansatz has proven rich enough to
describe the ground states and unitary dynamics of various physical systems of interest. In the present
paper, we initiate the study of neural network states in quantum information-processing tasks.We
demonstrate that neural network states are capable of efficiently representing quantum codes for
quantum information transmission and quantum error correction, supplying further evidence for the
usefulness of neural network states to describemultipartite entanglement. In particular, we show the
followingmain results: (a)neural network states yield quantumcodes with a high coherent
information for two important quantum channels, the generalized amplitude damping channel and
the dephrasure channel. These codes outperform all other known codes for these channels, and cannot
be found using a direct parametrization of the quantum state. (b) For the depolarizing channel, the
neural network state ansatz reliablyfinds the best known codes given by repetition codes. (c)Neural
network states can be used to represent absolutelymaximally entangled states, a special type of
quantum error-correcting codes. In all three cases, the neural network state ansatz provides an
efficient and versatilemeans as a variational parametrization of these highly entangled states.

1. Introduction

The exponential growth of theHilbert space dimension in the number of particles is both a blessing and curse for
quantum science: On the one hand, it is crucial to thewidely-believed computational advantage of quantum
computers over classical ones, but on the other hand it rendersmany questions about properties ofmany-body
systems intractable. Yet we know that the ‘physical’ corner of thisHilbert space has to be small: local
Hamiltonianswith highly-entangled ground states only require a polynomial number of parameters to describe,
as do quantum circuits of polynomial depth.

This factmotivates the use of variational representations of quantum states to solve a large class of problems.
At the heart of any variational ansatz is the idea to preserve asmuch information about the quantum state as
possible, while discarding irrelevant features. Quantummechanical properties of a state are fundamentally
dictated by its entanglement, which captures quantum correlations between its subsystems.

For instance, correlation length inmany-body spin systems is tightly linked to the existence of a spectral gap
[Has07, GH16]. For gapped one-dimensional systems (which follow an entanglement entropy area law), one can
usematrix product states (MPS)with polynomial bond dimension to efficiently represent ground states
[FNW92, LVV15, Ara+13]. TheMPS ansatz has further proven useful e.g. in the study of critical systems
[Pir+12] or in the continuum limit [Cue+17]. Other tensor network states includeMERA and higher-
dimensional variants such as PEPS—applied e.g. in the context of renormalization [Vid07, VC04], and proven
similarly successful as part of numerical techniques [Orú14].
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A relatively recent development is the use of neural network states as a variational ansatz, where the network
is used as a function to calculate the state amplitudes [CT17]. There aremany possible neural network
architectures to choose from: one proposedmodel is to use restricted Boltzmannmachines (RBMs) to represent
e.g. the ground states and unitary dynamics of a transverse-field Isingmodel and the antiferromagnetic
Heisenbergmodel [CT17], volume-law entanglement and the ground state of even long-rangeHamiltonians
[DLD17], as well as ground states of various stabilizerHamiltonians, including the surface code [Jia+18].While
there exist localHamiltonians that cannot be represented efficiently with shallowRBMarchitectures, it has been
shown that deep RBMnetworks can in fact representmost physical states, which includes those that can be
created by poly-depth quantum circuits, or ground states of localHamiltonianswith a 1 poly spectral
gap [GD17].

Apart fromdescribing the physics ofmany-body systems, entanglement also plays a crucial role in
information-processing tasks: teleportation [Ben+93], superdense coding [BW92], and entanglement-assisted
classical [Ben+99] and quantum [DHW04] communication all build on bipartite entanglement as a resource. In
contrast, for certain tasks such as quantum information transmission throughmany uses of a quantum channel,
or the encoding of quantum information in quantum error correction codes, the crucial property ismultipartite
entanglement, which encapsulates correlations among all the constituents of the system simultaneously [Has07].

1.1.Main results
Wedemonstrate that neural network states with only polynomiallymany parameters in the system size (which,
in this context, we call efficient) are capable of representing quantum codes for quantum information
transmission and quantum error correction. In particular, we show the following:

• The neural network state ansatzfinds newquantum codeswith a high coherent information (CI) that
outperform all previously known codes for two channelmodels, the generalized amplitude damping channel
(GADC) and the dephrasure channel. For theGADC, the new codes also increase the threshold of the channel,
i.e. the boundary of the interval in the parameter spacewith positive quantum capacity. For both channels, the
new codes cannot be foundwith ‘traditional’numericalmethods, i.e. a direct parametrization of the complex
amplitudes of the quantum state.

• For the depolarizing channel, neural network states can efficiently represent the best known codes.We carry
out a detailed comparison of different network architectures, showing that FF networks converge faster than
RBMswith comparable parameter counts in almost all tested cases. Furthermore, we constructively prove
that the best known codes (repetition codes, and products thereof) can be obtained efficiently with both an
RBMand a FF architecture.

• Neural network states can be used to parametrize so-called ‘absolutelymaximally entangled’ (AME) states.
These AME states, defined on n systems of local dimension d each, are examples of quantum error-correcting
codes with the property that they are completelymixed after tracing out at least half of the systems. Besides
their quantum error correction capabilities, AME states are useful inmulti-user information-theoretic tasks
such as open-destination teleportation, secret sharing or entanglement swapping that requiremaximal
entanglement across different choices of bipartitions [HC13,Hel+12].

The properties of both quantum codeswith high coherent information andAME states are the result of the non-
trivialmultipartite entanglement present in these states. Themainfinding of this paper is that for both high-CI
states andAME states, a neural network state ansatz is able to faithfully represent thismultipartite entanglement,
whichwe demonstrate empirically for small problem instances.We furthermore provide numerical evidence
that the variational ansatz vastly outperforms a full state parametrization for the respective learning tasks.

1.2. Structure of this paper
This paper is structured as follows. In section 2we introduce the quantum capacity of a channel and state the
corresponding coding theoremwhich expresses the quantum capacity as a regularized formula in terms of an
entropic quantity called the coherent information.We then discuss how lower bounds on the quantum capacity
can be obtained by solving an entropic optimization problem. In section 3we review neural network states based
onRBMs and feed-forward nets.We then present ourmain results about representing quantum codeswith
neural network states. In section 4we discuss theGADCand the dephrasure channel.We show that the neural
network state ansatzfinds new quantum codes providing the strongest lower bounds to date on the quantum
capacities of these channels.Moreover, we demonstrate that these new codes are not found using a ‘direct’
parametrization of quantum states.We then show in section 5 for the depolarizing channel how tensor products
of repetition codes—i.e. the knownoptimal codes for k 9 uses of this channel—can be efficiently represented

2

New J. Phys. 22 (2020) 023005 J Bausch and F Leditzky



using FF andRBMnetworks, and comment on the trainability of our chosen network architectures. Finally, in
section 6we demonstrate howknown examples of AME states can be efficiently represented using neural
networks, andwe comment on the trainability of the network architectures that we used.We conclude in
section 7with a discussion of our results and open problems.

In the appendices, we givemore details about certain aspects of the paper. In appendices A andBwe state
explicit formulas for the coherent information of weighted repetition codes for theGADCand dephrasure
channel, respectively, which serve as benchmarks for our quantum codes fromneural networks.We also supply
additional data obtained in our numerical investigations. In appendix Cwe give an overview of the best known
codes for the depolarizing channel, and provide an analytical construction of these codes for neural networks
with various architectures. In appendixDwe provide some background information onAME states, and prove a
useful bound on a trace distance parameter indicating how close a state is to being AME. In appendix Ewe
discuss possible encodings of d-ary input strings to neural networks. In appendix Fwe comment on the role of
activation functions for quantum codes; furthermore, we propose a novel NNSchmidt decomposition ansatz,
whichwe benchmark against a full NNparametrization for the depolarizing channel. In appendix Gwe give a
high-level explanation of the global derivative-free numerical optimization techniques used in our paper.
Finally, we provide additional numerical data for some of our results in appendixH.

We encourage researchers to adopt ourmethods by providing full access to our code (in C++ and
MATLAB) that was used to obtain the numerical results of this paper. These code files can be found in the
‘Ancillary files’ section of the arXiv post of this paper [Anc]. InMATLAB, wemade use of theMATLABGlobal
Optimization Toolbox, as well as quantinf [Cub05] andQETLAB [Joh16]. In C++, wemade use ofNLopt [Joh]
with theCCSA algorithm [Sva02] as well as PAGMO [BIM18].

2. The quantum capacity of a quantumchannel

Apoint-to-point communication link between quantum systems can bemodeled by a quantum channel. For
quantum systemsA andBwith underlying (finite-dimensional)Hilbert spacesA andB, respectively, a
quantum channel  A B: is a linear, completely positive, trace-preservingmap between the algebras of
linear operators  A( ) and  B( ). A quantum state rA onA is a linear positive semidefinite operatorwith unit
trace. A quantum stateψAwith rank 1 is called pure, and can be identifiedwith a normalized vector yñ Î A A∣
such that y y y= ñáA A∣ ∣ .

The communication capabilities of a quantum channel are characterized by various capacities, depending on
what kind of information one attempts to transmit faithfully through the channel. The quantum capacity Q ( )
of a quantum channel  A B: characterizes the optimal rate of faithful quantum information transmission
through the channel. Q ( ) can be defined in terms of the operational task of entanglement generation as follows.

Suppose Alice, the sender, prepares a pure state yRAn in her laboratory and sends theAn-part to Bob through
n independent uses of the quantum channel  3. Upon receiving the quantum systems fromAlice, Bob applies
some decoding operation  ¢ B R:n

n to the output, yielding thefinal state s y= Ä¢
Ä idRR R n

n
RAn( ◦ )( ).

The goal for Alice and Bob is to obtain afinal state s ¢RR that is close (in a suitable distancemeasure) to a
maximally entangled state F ñ ¢

M
RRn∣ of Schmidt rankMn, i.e. F ñ = å ñ Ä ñ¢

-
= ¢M i iM

RR n i
M

R R
1 2

1
n n∣ ∣ ∣ for some basis

ñi i{∣ } . If there is an entanglement generation protocol such that s ¢RR converges to F ¢RR
Mn with respect to the

chosen distance as  ¥n , then ¥ Mlim logn n n
1 is called an achievable rate. The quantum capacity Q ( ) is

defined as the supremumover all achievable rates.
Q ( ) can be expressed in terms of a regularized formula as [Llo97, Sho02,Dev05]

= =
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where the channel coherent information Q 1 ( )( ) is defined as

y y y= = - Ä
y yñ

   Q Q S Smax , max id , 2RA A R RA
1 1

RA RA

( ) ( ) ( ( )) (( )( )) ( )( )
∣

( )

with the vonNeumann entropy r r r-S tr log( ) ≔ ( ( )).
Formula 1 for the quantum capacity involves the evaluation of the channel coherent information Q 1 (·)( )

over an (in principle) unbounded number of channel copies. If the channel coherent information isweakly
additive, Ä Q nQn1 1( ) ( )( ) ( ) , then the regularization disappears and equation (1) becomes

= Q Q 1( ) ( )( ) .Weak additivity of the channel coherent information is only known to hold for certain
classes of channels such as degradable channels [DS05].Moreover, there are examples of quantum channels for
which the channel coherent information is strictly superadditive, >Ä Q nQn1 1( ) ( )( ) ( ) for some n, rendering

3
That is, Alice uses theAn-part of yRAn as the input to the channel Ä n.
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the regularization over n in the quantum capacity formula 1 necessary in general [DSS98]. However, for so-
called low-noise channels that are close in diamondnorm to a noiseless channel, the effect of superadditivity of
coherent information cannot be too large, and the single-letter coherent information is essentially the right
answer [LLS18b, Sut+17]. In this paper, we are interested in the high-noise regimewhere superadditivity of
channel coherent information typically occurs.

An important part of the quantum capacity theorem in equation (1) is the fact that the channel coherent
information is an achievable rate [Llo97, Sho02,Dev05]:

 Q Q . 31( ) ( ) ( )( )

Using block codes, this can be generalized to Ä Q Q
n

n1 1( ) ( )( ) for all Î n . The rough proof idea of

equation (3) is the following: assume that yñRA∣ is a pure statewith strictly positive coherent information,
y >Q , 01 ( )( ) . Once Alice and Bob share k copies of the state s y= Ä idRB R RA( )( ) (which they can achieve

byAlice sending the Ak part of the state yÄ
RA

k to Bob through Ä k) for a sufficiently large k, there is a protocol
defined in terms of the typical subspaces of sÄ

RB
k that allowsAlice and Bob to generate entanglement between

them at a rate of d-r for arbitrarily small d Î r0,( ), where r is equal to the coherent information of the stateσ,
that is, y= ñ =s r I R B Q ,1( ) ( )( ) [Dev05,Hay+08]. Here, s sñ = -sI R B S SB RB( ) ( ) ( ) is the coherent
information of the bipartite stateσRB.

In this operational picture, we can think ofψRA as the inner code, whereas the (1-LOCC assisted) distillation
protocolmanipulating sÄ

RB
k is the outer code. The rate at which the full protocol generates entanglement is solely

determined by the (strictly positive) coherent information of the inner codeψRA. Hence, in this paperwe refer to
the inner codeψRA simply as a quantum code. Themain objective of this paper is tofind quantum codes yñRAn∣
that achieve high coherent information y >ÄQ , 0

n RA
n1 1 n( )( ) . Tofind such quantum codes, we use the neural

network state ansatz introduced in [CT17]. In the next section, we review different variants of this ansatz.

3.Neural network states

For simplicity we consider in the following a system consisting of n qubits, that is, a collection of n 2-dimensional
quantum systems each described by aHilbert space isomorphic to 2. The state space of the n qubits is described
by the tensor space Ä n2( ) with the ‘computational basis’ ñ ñ Ä0 , 1 n{∣ ∣ } , and a general pure normalized quantum
state yñ Î Ä n∣ can bewritten as

å åy y yñ = ¼ ñ Ä Ä ñ = ñ
¼ = ÎC

i i i i
C

i i
1

, , ...
1

. 4
i i

n n
i

n n

, , 0,1
1 1

0,1n
n n

1

∣ ( )∣ ∣ ( )∣ ( )
{ }

Here,C is a normalization constant ensuring y yá ñ = 1∣ , the set of binary strings of length n is denoted by
0, 1 n{ } , and for a string = ¼ Îi i i, , 0, 1n

n
n

1( ) { } wedefine ñ ñÄ Ä ñi i i...n
n1∣ ≔ ∣ ∣ . Evidently, a full description

of the quantum state yñ∣ consists of a list of the 2n complex amplitudesψ(i n), corresponding to 2·2n−1 real
degrees of freedom.

For a neural network stateψ, the amplitude functionψ(i n) in equation (4) is computed from the input string
i n using a neural network. There are different network architectures that can be used, andwe describe a few
common choices in the following subsections.

3.1. Restricted Boltzmann states
Thefirst architecture—and one of themostwell-studied ones, see e.g. [Gla+18] for an excellent review—are
RBM.They have proven particularly fruitful as a variational ansatz for representing various ground states of local
Hamiltonians [CT17], notably surpassing fidelity as compared to other neural network architectures in some
cases.

A Boltzmannmachine has visible and hidden nodes (see figure 1). A set of complex variables is assigned to
each node; we denote the visible units with i1,K, in, and the hidden units with h1,K, hm. Each link between
nodes corresponds to an Ising-type coupling, which defines an energy function (which one can think of as a
Hamiltonian)

å å å= + +
= = <

a i b h W i hH . 5
l

n

l l
l

m

l l
k l

kl k lRBM
1 1

( )

The two vectors Î a n and Î b m define a bias over the visible and hidden nodes, respectively, while the
matrix Î ´W m n defines the coupling between the two layers. The energy of the system allows us to define a
complex probability distribution over the vectors i and h via - i h i h ZH, exp ,( ) ≔ ( ( )) with partition
function = å Z i h,i k, ( ).

To extract aweightψ(i n)used to assemble a state via equation (4), we simply trace out the hidden nodes of
the RBM,which yields amarginal probability distribution over the input nodes.We obtain
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å åy ñ =
-

ñ
Î Î

i h

Z
i

Hexp ,
. 6

i h

n n
n

RBM
0,1 0,1n n n n

∣ ( ( )) ∣ ( )
{ } { }

If we take all parameters a, b andW to be real-valued, the resulting state will only have real non-negative weights.
In order to retain full generality in theRBMansatz, the networkweights are typically chosen to be
complex [CT17].

3.2.DeepBoltzmann states
While RBMstates struggle to represent e.g. ground states for localHamiltonians with evenmildly-decaying
spectral gap, adding links between the nodeswithin each layer yields amodel with vastly greater representative
power [GD17, Gla+18]—deepBoltzmannmachines (DBMs, see figure 2).

In analogy to equation (5), we can define an energy function for aDBMby introducing additional coupling
matrices Î ´D m m and Î ´C n n for the hidden and visible nodes, respectively. This yields an overall
Hamiltonian

å å= + +
< <

C i i D h hH H . 7
k l

kl k l
k l

kl k lDBM RBM ( )

Theway one obtains a state from aDBM follows the samemethod as for anRBM.

3.3. Feed-forward network states
The third architecture is obtained by using themost prominent neural networkmodel to date, feed-forward
nets, to represent quantum states. This has proven successful in a number of cases [CL18, Sai17].

A feed-forward network consists of a visible layer =v in with input nodes ¼i i, , n1 , afixed numberH of
hidden layers h j( ) ofwidthMj, and an output layer owith two output nodes o1 and o2 (seefigure 1). Each hidden
neuron hk

j( ) for Îj H[ ] and Îk Mj[ ] is assigned a bias bk
j( ). Here, we use the notation n n1, ...,[ ] ≔ { } for

Figure 1. Left: Restricted Boltzmannmachine (RBM)with five input nodes and five hidden nodes. Right: Feed forward neural network
with five input nodes, two (real-valued) output nodes, and three fully-connected hidden layers of size five each. Each line represents
one real value being propagated forward fromnode to node; the fi are nonlinear activation functions (e.g. sigmoid, ReLU, cos, see
appendix F for a discussion) applied to an affine transformation of the node inputs (see equation (8)).

Figure 2.Deep Boltzmannmachine (DBM)withfive input nodes and five hidden nodes. The architecture resembles that of an RBM
(seefigure 1), but where the nodeswithin each layer are cross-linked. [GD17] showed that themodel with connections within a layer is
equivalent to onewithmore than two inter-connected layers but no connections within each layer.
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Î n . The interactions between two hidden layers -h j 1( ) and h j( ) aremediated byweightmatrices Wkl
j

kl( )( )

where Îk Mj[ ] and Î -l Mj 1[ ]. TheweightmatrixW 1( ) mediates between the visible layer and thefirst hidden

layer, and theweightmatrix +W H 1( ) mediates between the last hidden layer h H( ) and the output layer owith bias
+b H 1( ). In each hidden layer h j( ) the state of the neurons is processedwith a nonlinear activation function fj. In

the following, we interpret the visible layer v, the hidden layers h j( ), and the output layer o as column vectors, and
functions are evaluated component-wise. Given the input =v in, the amplitude function y in( ) is computed as
follows:

y
y

= +

= + = ¼

= +
= +
= +

-

+ +

h f W v b

h f W h b j H

o W h b
i o io

i o io

for 2, ,

Cartesian:

Polar: exp . 8

j
j

j j j

H H H

n

n

1
1

1 1

1

1 1

1 2

1 2

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

Anetwork architecture is specified by the data ÎH M f, ,j j j H( { } )[ ] . Common choices for the activation

functions are the sigmoid function s + - -x x1 exp 1( ) ≔ ( ( ) , the hyperbolic tangent tanh, or the rectified linear
unit =x xReLU max 0,( ) { }, which are depicted in figure F1. From a theoretical point of view these choices are
all equivalent, since feed-forward networks as described above are universal:With a single hidden layer, they can
approximate any given function to arbitrary precision provided the activation function is non-constant and the
number of hidden neurons is sufficiently large [Kol61,Hor91]. However, in practice the choice of activation
functions has to be tailored to the problem at hand to achieve good numerical results. In appendix F, we
elaborate on the heuristics of choosing activation functions for neural network states; of particular interest in
this context is that periodic activation functions such as cosine seem to be able to capturemore of the structure of
various quantum states [CL18].We prove analytically in appendix C.2 that periodic activation functions are also
beneficial in representing good quantum codes.

4.Newquantum codes using a neural network state ansatz

4.1. Generalized amplitude damping channel
Thefirst quantum channel for whichwe investigate the neural network state ansatz is theGADC g N, . It is

defined in terms of two parameters g ÎN, 0, 1[ ]and acts on a qubit state ρ as r= åg = A AN i i i, 1
4 †, where

g

g

g

g

= - ñá + - ñá

= - ñá

= - ñá + ñá

= ñá

A N

A N

A N

A N

1 0 0 1 1 1

1 0 1

1 0 0 1 1

1 0 . 9

1

2

3

4

(∣ ∣ ∣ ∣)
( ) ∣ ∣
( ∣ ∣ ∣ ∣)
∣ ∣ ( )

TheGADCmodels the dynamics of a qubit in contact with a thermal bath at temperatureN and transition
probability γ between the ground state ñ0∣ and the excited state ñ1∣ . This quantum channel is a realistic noise
model in various physical processes such as relaxation processes of spin systems, superconducting quantum
computers, and loss processes in linear optical systems [Mya+00, Tur+00, CB08, Zou+17]. Furthermore, for

=N 0 theGADC reduces to thewell-known amplitude damping channelmodeling energy dissipation of a
qubit.

While the quantum capacity of the amplitude damping channel g ,0 is equal to its (additive) single-letter
coherent information for all g Î 0, 1[ ]and can be computed efficiently [GF05], the quantum capacity of the
more general noisemodel g N, with ÎN 0, 1( ) is unknown. Various upper bounds on gQ N,( ) have been
computed in the recent work [KSW19], but so far achievable rates (i.e. lower bounds on gQ N,( )) improving
upon the single-letter coherent information gQ N

1
,( )( ) have not been studied extensively.We prove in this

section that for ÎN 0, 1( ) and particular intervals of γ the channel coherent information gQ N
1

,( )( ) of the
GADC is superadditive. As shown in the discussion below and in figure 3, superadditivity is achieved by, e.g.
weighted repetition codes

f l lñ ñ Ä ñ + - ñ Ä ñl Ä Ä0 0 1 1 1 . 10k R A
k

R A
k∣ ≔ ∣ ∣ ∣ ∣ ( )

A compact formula for the coherent information of this code in terms of an optimization over theweight
l Î 0, 1[ ]and arbitrary blocklength k can easily be derived (see appendix A). Note that the optimal single-letter
coherent information gQ N

1
,( )( ) is achieved by equation (10)with =k 1 and optimizedweight parameter

l Î 0, 1[ ] [GP+09].Wewill show in this section that the neural network state ansatzfinds superadditive codes
for theGADC that substantially outperformweighted repetition codes.
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In the following, we restrict our attention to the interval ÎN 0, 1 2[ ], as g N, and g - N,1 are unitarily
equivalent and hence their channel coherent informations (and quantum capacities) coincide [KSW19]. In the
optimization procedure we consider the values ÎN 0.1, 0.2, 0.3, 0.4, 0.5{ }and identify intervals of γ inwhich

Figure 3.Overview of quantum codes for the generalized amplitude damping channel g N, comparing the neural network codes nk

(solid lines) for =k 3, 4, 5 to theweighted repetition codes fk (dashed lines) for  k1 5 defined in equation (10). For each
ÎN 0.1, 0.2, 0.3, 0.4, 0.5{ }, we plot the interval of γ inwhich superadditivity occurs. In each case, the neural network codes nk

increase the threshold for g N, over theweighted repetition codes. For =N 0.3, 0.4 and =k 5 copies of g N, the neural network
ansatz only found trivial product codes, which are not shown. The neural network codes nk are listed in tables 1, A1, A2, A3, A4 for

=N 0.1, 0.2, 0.3, 0.4, 0.5, respectively.
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weighted repetition codes are superadditive, that is, they yield a higher coherent information than the optimal
single-letter coherent information. For =k 3, 4, 5 copies of g N, , we search for neural network codes using a
feed-forward architecture as described infigure 1with four hidden layers of width k2 each.We choose cos as the
activation function in the first layer, the hyperbolic tangent function tanh as the activation function in the
subsequent layers, and aCartesian output layer (see equation (8)). In contrast to themore common gradient-
based optimization techniques inmachine learning, we choose to optimize the neural network parameters using
stochastic gradient-free techniques. In particular, we use particle swarmoptimization (PSO) algorithm followed
by pattern search.Wemotivate our choice to use these algorithms in appendixG,which also contains high-level
explanations of these techniques.

For all values ÎN 0.1, 0.2, 0.3, 0.4, 0.5{ }we find neural network codes outperforming theweighted
repetition codes equation (10), as shown infigure 3. For each ÎN 0.1, 0.2, 0.3, 0.4, 0.5{ }, the codes infigure 3
are obtained byfirst carrying out our optimization technique for a particular value of γ close to the threshold of
the best weighted repetition code.We then plot the best neural network code found in thismanner for the entire
interval γwhere superadditivity occurs. As a benchmark, we evaluate weighted repetition codes for up to =k 16
channel copies using the formula derived in appendix A; the codes fk for  k1 5 performbest and are shown
infigure 3 for comparison.

We focus here on the neural network codes found for the values g =N, 0.440 35, 0.1( ) ( ) and =k 3, 4, 5
copies of g N, , and note that the neural network codes for the other values of g N,( ) are collected in
appendix A. In table 1we list the best codes (as plotted infigure 3) for each blocklength together with their
coherent information. Infigure 4we plot the convergence of the PSO algorithm for g =N, 0.440 35, 0.1( ) ( )
and =k 3, 4, 5 (FF), and compare its performance to a direct parametrization (RAW) of the 2 k2 complex
amplitudes in the quantum code y ñn∣ , again optimized using PSO. Evidently, using comparable optimization
parameters the raw ansatz is not able tofind even trivial product codes with coherent information equal to zero.
Note also that for g =N, 0.440 35, 0.1( ) ( ) theweighted repetition codes in equation (10) do not yield positive
coherent information up to at least =k 16. Hence, the neural network codes increase the threshold of theGADC
substantially, as seen infigure 3. The threshold of a parametrized family of quantum channels is defined as the
boundary of the region inwhich the channel has positive quantum capacity.

4.2.Dephrasure channel
The neural network ansatz is also able tofind new quantum codes for the dephrasure channel that was introduced
recently in [LLS18a]. It is defined in terms of probabilities Îp q, 0, 1[ ]as

r r r r= - - + + ñá q p pZ Z q e e1 1 tr , 11p q, ( ) ( )(( ) ) ( )∣ ∣ ( )

where = ñá - ñáZ 0 0 1 1∣ ∣ ∣ ∣ is the PauliZ-operator, and ñe∣ is an erasureflag that is orthogonal to the input space.
The name ‘dephrasure’ is derived from the fact that p q, first dephases an input state in theZ-basis with
probability p, and then erases it with probability q. Despite the fact that both dephasing and erasure noise are
well-understood in terms of quantum information transmission, the dephrasure channel—a concatenation of

Table 1.Table of the best neural network codes for theGADC g N, with
g =N, 0.440 35, 0.1( ) ( ) and =k 3, 4, 5 channel copies. Only the non-zero
amplitudes y sn( ) indexed by the basis string s n (with =n k2 ) are shown (see
equation (15)). The architecture used for the neural network codes is a feed-
forward net with four hidden layers of width k2 each, activation functions
cos and ´3 tanh, and aCartesian output layer (see section 4.1).

n ñk∣ s n (A Rk∣ ) y sn( ) n g
ÄQ ,

k k N
k1 1
,( )( )

=k 3 000 000∣ - + i0.3934 0.2231 -5.759 8 10 4·
000 110∣ - + i0.3136 0.2501

001 111∣ - + i0.3956 0.2345

010 111∣ - + i0.3956 0.2346

100 111∣ - + i0.3955 0.2348

=k 4 0101 1110∣ + - i0.3482 0.2537 -1.268 3 10 3·
1010 1110∣ + - i0.335 4 0.272 3

1111 0001∣ + - i0.398 6 0.392 0

1111 1000∣ + - i0.398 0 0.395 9

=k 5 01010 00011∣ + + i0.301 0 0.166 6 -9.153 7 10 4·
10101 00011∣ + + i0.438 9 0.123 3

11111 10110∣ + + i0.566 0 0.081 6

11111 11101∣ + + i0.584 4 0.072 5
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the two—exhibits superadditivity of coherent information for as little as two uses of the channel [LLS18a]. As a
result, the quantum capacity of the dephrasure channel is unknown for a large region in the parameter space.

As for theGADC in the previous section, superadditivity of coherent information for the dephrasure
channel is again achieved byweighted repetition codes fl

k as defined in equation (10). A compact formula for the

coherent information fl ÄQ ,
k k p q

k1 1
,( )( ) of these codes was derived in [LLS18a], andwe state it in appendix B.

Similar to theGADC in section 4.1, we note that the optimal single-letter coherent information Q p q
1

,( )( ) for

the dephrasure channel is achieved by fl
1 for some l Î 0, 1[ ] [LLS18a].We show in this section that the neural

network state ansatzfinds new quantum codes demonstrating even larger superadditivity of coherent
information for the dephrasure channel.

In the following, we focus our attention to the values Îq 0.1, 0.2, 0.3, 0.4{ }of the erasure probability; for
each q, we then investigate values of the dephasing probability p for whichweighted repetition codes achieve
superadditivity. Since the dephrasure channelmaps a qubit to a qutrit, optimizing its coherent information is
computationallymore costly than for theGADC,which forces us to restrict our attention to =k 2, 3, 4 copies
of p q, (we refer to section 7 for a discussion of these numerical limitations).We again use a feed-forward
network as described infigure 1with four hidden layers of width k2 each and cos as the activation function in the
first layer. However, in contrast to section 4.1we use ReLU as the activation function in the remaining layers,
and an exponential output layer corresponding to a polar parametrization instead of a Cartesian one.We found
these choices to perform significantly better for the dephrasure channel. As in section 4.1, the neural network
parameters were optimized using the PSO algorithm followed by pattern search (see appendix G).

For all values Îq 0.1, 0.2, 0.3, 0.4{ }wefind neural network codes outperforming theweighted repetition
codes equation (10), as shown infigure 5. For each Îq 0.1, 0.2, 0.3, 0.4{ }and =k 2, 3, 4, the codes infigure 5
are obtained byfirst carrying out our optimization technique for a particular value of p close to the threshold of
the best weighted repetition code.We then plot the best neural network code (labeled nk for =k 2, 3, 4) found
in thismanner for an interval of pwhere superadditivity occurs.We also individually optimized the coefficients
of the basis strings s nwith non-zeroweight across the shown interval of p, yielding even better codes nk*.
Curiously, such an additional optimization over coefficients gave no improvement for the neural network codes
found for theGADC in section 4.1. In contrast, forfixed q there is an evident interplay between the dephasing
probability p in the dephrasure channel p q, and the coefficients of the neural network codes nk, as evident from
figure 5. As a benchmark, we evaluatedweighted repetition codes fk for up to =k 10 channel copies using the
formula in appendix B; themaximum fmaxk k over these codes for  k1 10 is shown infigure 5 for
comparison, alongwith the optimal single-letter code f1.

We focus in the following on the neural network codes found for the values =p q, 0.08, 0.4( ) ( ) and
=k 2, 3, 4; the other neural network codes are listed in appendix B. In table 2we list the best codes (as plotted in

Figure 4.Training convergence of a particle swarmoptimization algorithmmaximizing theCI of =k 3, 4, 5 copies of the generalized
amplitude damping channel g N, with parameters g =N, 0.440 35, 0.1( ) ( ). The left column plots a feed-forward (FF)net
representationwith four hidden layers of width k2 each (see section 4.1), having 182/306/462 real parameters for =k 3, 4, 5,
respectively. The right column plots a direct parametrization (RAW) of the 2 k2( ) complex amplitudes, resulting in 64/256/1024 real
parameters for =k 3, 4, 5, respectively.
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figure 5) for each blocklength togetherwith their coherent information. Infigure 6we plot the convergence of
the PSO algorithm for =p q, 0.08, 0.4( ) ( ) and =k 2, 3, 4 (FF), and compare its performance to a direct
parametrization (RAW) of the 2 k2 complex amplitudes in the quantum code y ñn∣ , again optimized using PSO.
Similar to theGADC in section 4.1, the raw ansatz is not able tofind codeswith coherent information rates as
high as the neural network codes. However, in contrast to theGADC the raw ansatz is indeed able tofind
superadditive quantum codes. For =k 2, these codes found using the raw ansatz are optimal (as already
observed in [LLS18a]), while for =k 3, 4 they are clearly outperformed by our neural network codes. Another
observation of [LLS18a] is that the dephasing part of p q, suggests a Schmidt ansatz for quantum codes, a neural
network state version of which is discussed in equation (16) in section 5.However, in the high-noise regime
investigated above, this Schmidt ansatz did not yield codes performing as well as the codes nk resp.nk*.

5. Representing the best known codes for the depolarizing channel

The depolarizing channel is used as amodel to describe qubit decoherence in a noisy environment. For a qubit in
a state described by the density operator ρ, and for a real parameter Îp 0, 4 3[ ], the action of the channel is
given by

Figure 5.Overview of quantum codes for the dephrasure channel p q, comparing the neural network codes nk (solid orange,
magenta, and red lines) for =k 2, 3, 4 to the optimal single-letter code f1 (gray dashed line) and themaximumover all weighted
repetition codes fk (black dashed line) for  k2 10 defined in equation (10).We also plot the neural network codes nk*with
optimized parameters over the shown interval (dashed–dotted lines), and the best code c3 on three channel qubits foundwith a direct
parametrization of the quantum state amplitudes (blue line). For each Îq 0.1, 0.2, 0.3, 0.4{ }, we plot the interval of p inwhich
superadditivity occurs. The neural network codes nk are listed in tables 2, B1, B2, B3 for =q 0.4, 0.3, 0.2, 0.1, respectively.
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r r r- + ñá + ñá p p1 tr 0 0 1 1 2, 12p( ) ≔ ( ) ( )(∣ ∣ ∣ ∣) ( )

i.e. the original state ρ is replaced by themaximallymixed state with ‘probability’ p (for p 1); in other words, if
on the Bloch sphere ρ has spin polarization vector x


, the channel p shrinks x


by a factor - p1 .

For the depolarizing channel, the single-letter channel coherent information Q p
1 ( )( ) ismaximized by a Bell

state ñ ñ + ñ ñ0 0 1 1R A R A
1

2
(∣ ∣ ∣ ∣ ), and evaluates to [Wil16]

= + - - +Q
p p p p

1 1
3

4
log 1

3

4

3

4
log

4
. 13p

1 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )( )

Figure 6.Training convergence of a particle swarmoptimization algorithmmaximizing theCI of =k 2, 3, 4 copies of the dephrasure
channel p q, with parameters =p q, 0.08, 0.4( ) ( ). The left column plots a feed-forward (FF)net representationwith four hidden
layers of width k2 each (see section 4.2), having 90/182/306 real parameters for =k 2, 3, 4, respectively. The right columnplots a
direct parametrization (RAW) of the 2 k2( ) complex amplitudes, resulting in 32/128/512 real parameters for =k 2, 3, 4, respectively.
While the two parametrization find equivalent codes for =k 2, the feed-forward net representation finds strictly better codes for
=k 3, 4 than the raw parametrization.

Table 2.Table of the best neural network codes for the dephrasure channel
p q, with =p q, 0.08, 0.4( ) ( ) and =k 2, 3, 4 channel copies. Only the
non-zero amplitudes y sn( ) indexed by the basis string s n (with =n k2 )
are shown (see equation (15)). The architecture used for the neural
network codes is a feed-forward netwith four hidden layers of width k2
each, activation functions cos and ´3 ReLU, and a Polar output layer
(see section 4.2).

n ñk∣ s n (A Rk∣ ) y sn( ) n ÄQ ,
k k p q

k1 1
,( )( )

=k 2 00 00∣ - - i0.250 4 0.435 2 -2.250 2 10 5·
00 01∣ - + i0.694 1 0.514 2

11 01∣ + + i0.037 4 0.017 1

11 11∣ - - i0.000 1 0.000 1

=k 3 000 011∣ - + i0.030 4 0.046 5 -4.788 1 10 5·
001 011∣ - + i0.046 5 0.040 8

111 000∣ - + i0.695 4 0.713 8

=k 4 0101 1000∣ + - i0.002 2 0.003 1 -6.569 9 10 5·
0111 1000∣ - - i0.916 9 0.368 6

0111 1110∣ + + i0.005 4 0.010 2

1000 0111∣ - + i0.093 2 0.004 9

1001 0111∣ + + i0.000 1 0.000 0

1010 0111∣ - - i0.034 1 0.115 6
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Q p
1 ( )( ) remains positive up to the threshold at =p 0.252 38 (the threshold is defined as the highest p for which

>Q 0p
1 ( )( ) ). The next highest thresholds are achieved for =k 3 and 5 channel copies and a k-repetition code

f ñ = ñ ñ + ñ ñÄ Ä1

2
0 0 1 1 , 14k R A

k
R A

k∣ (∣ ∣ ∣ ∣ ) ( )

for which the channel coherent information f ÄQ ,k p
k1 ( )( ) reaches zero at =p 0.253 50 and =p 0.253 80,

respectively. Both in terms of the rate and the threshold, these repetition codes are the best known codes up to 9
channel copies, which is discussed inmore detail in appendix C.1.

We show in the following that a variational neural network ansatz achieves these codes for the depolarizing
channel.We also contrast the various architectures (RBM, feed-forward, and their Schmidt variants) on an
empirical level. To compute the amplitude function y in( ) in the tensor basis expansion

åy yñ = ñ Î
Î

Ä
C

i i
1

, 15n
i

n n n

0,1

2

n n

∣ ( )∣ ( ) ( )
{ }

weuse both anRBMarchitecture as well as an FF architecture with a cos activation function in thefirst hidden
layer, and ReLU in two subsequent hidden layers. This setup, which has been shown to performwell in the
context of representing quantum states of localHamiltonians [CL18], clearly outperformed a ReLU-only
architecture in our numerical investigations of theGADCand the dephrasure channel in section 4.

Furthermore, we propose a Schmidt-Ansatz similar to equation (15) given for l2 qubits by

åy yñ = ñ ñ
ÎC

i i i
1

. 16l
i

l l
R

l
A2

0,1l l

∣ ( )∣ ∣ ( )
{ }

This approach greatly reduces the number of degrees of freedom required to parametrize y ñl2∣ , but enforces the
environmentR to have the same dimension as the systemA. Note that thismay introduce redundancy, as e.g. a
repetition code ordinarily only requires a single purifying qubit. The ansatz in equation (16) furthermore
introduces a choice of basis for the channel input qubits, rendering it less general than the ansatz in
equation (15).

Using an explicit construction, we show that both FF andRBMarchitectures can efficiently represent
products of repetition codes (which are discussed in appendix C.2): given k repetition codes on ¼n n, , k1 qubits,
respectively, anRBMwith ni i visible units and k hidden nodes can represent the corresponding state
amplitudes, and a FF netwith first cos and second ReLU hidden layer width k, and a singlefinal ReLU node
suffices.

Empirically, we contrast FF, RBMand their corresponding Schmidt variants as a variational ansatz yn (with
=n k2 ) tomaximize y ÄQ , ;n p

k1 ( )( ) the FF architecture consists of three hidden layers of width =n k2 with
cos-ReLU-ReLU for the activation functions and aCartesian output layer. In comparisonwith a full state vector
on n qubits with ´2 2n real parameters, we can see a significant improvement in convergence speed (see
figure 7), both in the case that the best-known code is a single repetition code for three channel uses, or a three
times one product repetition code (see appendix C.1 for an explanation of this terminology). For both FF and
RBMarchitectures, the Schmidt ansatz equation (16) surpasses the standard parametrization equation (15),
which is likely due to the significantly-reduced parameter count. FF networks further outperformRBM
architectures with comparable parameter counts on three and four channel uses of a depolarizing channel,
whichwe verifiedwith various global derivative-free optimization techniques (see appendixG for an overview)
to reduce the likelihood of a systematic bias in our numerical findings. The numerical data for thesefindings is
collected in appendixH.We also note that aDBMansatz as described in section 3.2 offered no advantage over an
RBMansatz, neither in terms of representability nor convergence speed.

6. RepresentingAME states

AME states are n-partite states havingmaximal correlation across any bipartition of the n parties into equal
halves. These states are certain examples of quantum error-correcting codes, whose intricatemultipartite
entanglement structuremediates correlations between different subsets of the constituent systems.

AME states can be used as a resource formulti-user information-theoretic tasks such as open-destination
teleporation, secret sharing or entanglement swapping that requiremaximal entanglement across different
choices of bipartitions [HC13,Hel+12]. In a holographic context, where AME states are referred to as perfect
tensors, they provide examples of holographic error-correcting codes [LS15, Pas+15, Li+17].More generally, an

arbitrary AME state on n qudits of local dimension d can be interpreted as a +n, 1, 1n

d2
⎢⎣ ⎥⎦( )( ) quantum

error-correcting code, i.e. a code of distance + 1n

2
⎢⎣ ⎥⎦ encoding a 1-dimensional subspace in n physical qudits

[Sco04].
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TodefineAME states in a precise way, we consider a pure state y ñ Î Än d
d n

,∣ ( ) on n qudits of local
dimension d. For a subset Ì ¼ n n1, ,[ ] ≔ { }of the n qudits we denote by r y= tr n d,c themarginal of yn d,

on  . Then yn d, is AME if r =  I
1

∣ ∣ for every Ì n[ ]with = n

2
⎢⎣ ⎥⎦∣ ∣ .We use the notation n dAME ,( ) for an

AME state on n qudits of local dimension d.
Since anAME state ismaximally entangled across all possible bipartitions into equal halves,monogamy of

entanglement [CKW00] puts an obstruction on their existence. Furthermore, the fact that AME states are
particular quantum error-correcting codes yields additional constraints via weight enumerator theory
[SL97, Rai98]. Consequently, AME states do not exist for all n d,( ) appendixD. For example, it is known that
there is no AME 4, 2( ) state [HS00]. On the other hand, an example of an AME 4, 3( ) state is
W ñ = å ñ ñ + ñ + ñ= i j i j i j3 2 3 ,i j4,3

1

3 , 0,1,2∣ ∣ ∣ ∣ ( ) ∣ ( ) where ºk d k dmod( ) .

The property of yn d, beingAME is related to the linear entropy r r= -
- S 1 trL

d

d 1
2m

m( ) ( ( )) of themarginals

r for Ì n[ ]with = n

2
⎢⎣ ⎥⎦∣ ∣ . Defining for = ¼m 1, , n

2
⎢⎣ ⎥⎦ the average linear entropy

åy r
-

Ì = 

Q
n

m
S , 17m n d

n m
L S,

1

:

⎜ ⎟⎛
⎝

⎞
⎠( ) ≔ ( ) ( )

[ ] ∣ ∣

a pure state yn d, is AME if and only if y =Q 1n d,n
2

⎢⎣ ⎥⎦ ( ) [Sco04]. Hence, to search for n dAME ,( )-states yn d, , we

can use equation (17)with =m n

2
⎢⎣ ⎥⎦ as the objective function and optimize the parameters in an ansatz for yn d,

such that y »Q 1n d,n
2

⎢⎣ ⎥⎦ ( ) . As before, we use a neural network state ansatz for yn d, based on the following

Figure 7.Training convergence of a particle swarm algorithmmaximizing theCI of three resp. four copies of the depolarizing channel
p, with noise parameter p = 0.2523. Plotted are the best candidates of 80 threads à 100 particles for every training step from0 to 500.
The final candidate distribution, and the outcome of other optimization algorithms can be seen in appendixH. For three channel
copies, a three-repetition codemaximizes the coherent information, whereas for four channel copies a product code of a three-
repetition and single-repetition code is optimal. Plotted are FF (feed-forward net, 140 resp. 234 real parameters; see section 5 for the
FF architecture), FF/Schmidt (Schmidt representation obtained from a feed-forward net, 40 resp. 65 real parameters), RBM (with
hidden layer width 9, 138 resp. 232 real parameters), RBM/Schmidt (Schmidt representation obtained from anRBMwith hidden
layer width 9, 39 resp. 64 real parameters), and raw (parametrizing the full state vector, 128 resp. 512 real parameters); note that the FF
andRBM representations are in fact overspecified for three channel uses.
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decompositionwith respect to a given basis ñ =
-i i

d
0
1{∣ } :

åy yñ = ñ
ÎC

i i
1

, 18n d
i d

n n
,

n n
0

∣ ( )∣ ( )
[ ]

where as beforeC is a normalization constant, andwe use the notation = ¼ -d d0, , 10[ ] { }. The amplitude
function y in( ) is again computed by a neural network; since this is now a function from the set of all d-ary strings
of length n into , there aremultiple options how to encode i n as the input to a neural network.We discuss these
options in detail in appendix E.

We demonstrate infigure 8 that parametrizing yn d, with a neural network state ansatz yields
n dAME ,( )-states for the pairs =n d, 3, 6( ) ( ), 4, 4( ), 4, 7( ), and 5, 6( ). For the numerical optimization, we use

the artificial bee colonization (ABC) algorithm, followed by pattern search and afinal round of gradient search
(see appendix G). These choices of parameters are only exemplary, and the neural network state ansatz is capable
of representing n dAME ,( )-states also for other pairs n d,( ) such as 3, 3( ), 4, 3( ), and 4, 5( ). In the last three
cases, the convergence is remarkably fast and only takes a few iterations in optimization algorithms such as ABC
or PSO to reach a value of Q n

2
⎢⎣ ⎥⎦ sufficiently close to 1.

To assess our numerical results, we introduce an ‘average trace distance’ parameter

åy r p-
-

Ì = 
D

n

m
, 19m n d

n m
S,

1

:
1⎜ ⎟⎛

⎝
⎞
⎠( ) ≔ ( )

[ ] ∣ ∣
 

where p  I
1≔

∣ ∣ denotes the completelymixed state, and =X X Xtr1
†  is the trace normof an operatorX.

The parameter yDm n d,( )measures the average trace distance of themarginals of a state yn d, onm subsystems to
the completelymixed state. Clearly, y =D 0n d,n

2
⎢⎣ ⎥⎦ ( ) if and only if yn d, is AME.We prove in appendixD that

y y- -D d d Q2 log 1 . 20m n d
m m

m n d, ,( ) [ ( ) ( )] ( )

This bound allows us to relate a value ofQm to how close (on average) in trace distance a state is to being AME
(see figure 8).

7.Discussion

In thiswork,wehave shown that quantumcodes fornoisy quantumcommunication and certainquantumerror-
correcting codes canbemodeled efficientlywith variousneural network representations. Inparticular,we investigated

Figure 8.Training convergence for representing n dAME ,( )-states for the cases În d, 3, 6 , 4, 4 , 4, 7 , 5, 6( ) {( ) ( ) ( ) ( )}using
consecutive steps of artifical bee colonization (black), direct search (blue), and gradient search (red). On the left y-axis we plot the
quantity - Qln 1 m( ), and on the right y-axis we plot the bound in equation (20) on the average trace distance parameterDm defined in
equation (19). The encodings used to represent the d-ary input strings, as well as the network architectures for the FF andRBMnets
are listed in table 3.
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quantumcodes that yieldhigh coherent information for theGADC, thedephrasure channel, and thedepolarizing
channel. For theGADCand thedephrasure channel, theneural network ansatzfinds codes thatoutperformthebest
knowncodes foundwith traditional numericalmethods. For k 6 of thedepolarizing channel,we analyzed the
representativepowerofneural network stateswith regards to thebest knowncodes, repetition codes, and
benchmarkedhowwell they canbe trainedusing a variety of global optimization algorithms. Finally,wedemonstrated
howneuralnetwork states can representAMEstates onnqudits of local dimensiond for an arrayof pairs n d,( ).

An interesting question is, of course, whether a neural network state ansatz can be used tofind better
quantum codes for the depolarizing channel in the high noise regime: either in terms of a higher rate than, say,
the 5-repetition code right below the noise threshold, or in terms of increasing the noise threshold itself. Our
results indicate that in order tofind such codes outperforming the repetition codes (or products thereof), one
ought to increase the number of channel copies beyond 5, resulting in code states on 10 ormore input qubits.
While the (polynomial) scaling of the neural network ansatz in the number of input qubits is favorable, the
calculation of the coherent information is the bottleneck here: The computation for a code on k qubits requires
diagonalizing a dense ´4 4k k matrix, which scales exponentially in runtimewith the number of qubits. Due to
these computational limitations, evaluating the coherent information for k 7 channel uses is thus an
infeasible undertaking, andwewould need tofind an alternative approach—e.g. by exploiting symmetry
considerations, or an approximate cost function that is faster to compute (see e.g. [WBS14], with the added
difficulty that the coherent information is the difference between two entropies).

Furthermore, it couldbepossible that better quantumcodes lie inmaximaofmeasure almost zero, while the
repetition codemaximadominate thepotential landscape,making it difficult tofind codes that surpass repetition
codes. In fact, in all our simulations for k 6 copies of the depolarizing channel, the variationalNNansatz
converges to product repetition codes.Our resultsmight be seen as indication that, among the states that can be
represented using a neural network, repetition codes are in fact optimal for k 6 copies of thedepolarizing
channel.Wenote that our techniques offinding quantumcodes using neural network states can also be applied to
other channels such as generalized Pauli channels, which includes the depolarizing channel. A thorough
investigationof other channels in this class, such as theBB84 channel [BB84], is the subject of ongoingwork.

We also applied our ansatz to search for n dAME ,( )-states for values of n d,( ) for which it is unknown yet
whether these states exist. The smallest-dimensional instances of these cases are 4, 6( ) and 7, 4( ) (see
appendixD). For =n d, 4, 6( ) ( ) the best valuewe obtainedwas y »Q 0.995 62 4,6( ) , which translates via
equation (20) to a bound on the average trace distance parameter of y D 0.642 92 4,6( ) . The state yn d, achieving
these values is anRBMstate with binary encoding and a hidden layer width of =M 12. For =n d, 7, 4( ) ( ), we
obtained y »Q 0.996 23 7,4( ) , corresponding to y D 0.787 03 7,4( ) , achieved by an FF statewith binary
encoding and hidden layers 14, 14, 14( )with activation functions cos-ReLU-ReLU. These results suggest that,
assumingAME states do exist in these cases, one has to tweak the neural network ansatz or the numerical
methods, or both, in order to obtain numerical instances of AME states.
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5 6 FF binary 15, 15, 15, 15( )
RBM binary 20
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AppendixA. Codes for theGADC

In this sectionwe provide an overview of the quantum codes for theGADCdefined in equation (9) found using
the neural network state ansatz. To benchmark these neural network quantum codeswe useweighted repetition
codes

f l lñ ñ Ä ñ + - ñ Ä ñl Ä Ä0 0 1 1 1 , 21k R A
k

R A
k∣ ≔ ∣ ∣ ∣ ∣ ( )

whose simple structure allows for an efficient computation of the coherent information fl
g
ÄQ ,k N

k1
,( )( ) . In the

following, wefirst carry out this calculation, and then present the optimal neural network codes that we found
for theGADC.

A.1. Formula for the coherent information of repetition codes
Wefirst determine the action of theGADC r= åg = A AN i i i, 1

4 † withAi as defined in equation (9) on a single
qubit:

g g
g g g g

g

g

ñá = - ñá + ñá
ñá = - ñá + - + ñá

ñá = - ñá

ñá = - ñá

g

g

g

g









N N

N N

0 0 1 0 0 1 1

1 1 0 0 1 1 1

0 1 1 0 1

1 0 1 1 0 . 22

N

N

N

N

,

,

,

,

(∣ ∣) ( )∣ ∣ ∣ ∣
(∣ ∣) ( )∣ ∣ ( )∣ ∣
(∣ ∣) ∣ ∣
(∣ ∣) ∣ ∣ ( )

Setting s f= Ä g
lÄidRB R N

k
k,k ( )( ), we have

s l l= ñá + - ñág g
Ä Ä 0 0 1 1 1 , 23B N

k
N

k
, ,k (∣ ∣) ( ) (∣ ∣) ( )

which is a diagonal operatorwith eigenvalues

l g g l g g g g- + - - - +- -r N N N N1 1 1 24m
k m m k m m≔ ( ) ( ) ( )( ) ( ) ( )

withmultiplicity
k

m
⎜ ⎟⎛
⎝

⎞
⎠ for = ¼m k0, , . Hence,

å= -s
=

S B
k

m
r rlog . 25k

m

k

m m
0

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

For the state on the joint system, we have

s l l= ñá Ä ñá + - ñá Ä ñág g
Ä Ä 0 0 0 0 1 1 1 1 1 26RB R N

k
R N

k
, ,k ∣ ∣ (∣ ∣) ( )∣ ∣ (∣ ∣) ( )

l l+ - ñá Ä ñá + ñá Ä ñág g
Ä Ä 1 0 1 0 1 1 0 1 0 27R N

k
R N

k
, ,( ) [∣ ∣ (∣ ∣) ∣ ∣ (∣ ∣) ] ( )

l g g= ñá Ä - ñá + ñá ÄN N0 0 1 0 0 1 1 28R
k∣ ∣ [( )∣ ∣ ∣ ∣] ( )

l g g g g+ - ñá Ä - ñá + - + ñá ÄN N1 1 1 0 0 1 1 1 29R
k( )∣ ∣ [( )∣ ∣ ( )∣ ∣] ( )

l l g+ - - ñá Ä ñá Ä1 1 0 1 0 1 30k
R

k2( ) ( ) ∣ ∣ ∣ ∣ ( )

l l g+ - - ñá Ä ñá Ä1 1 1 0 1 0 . 31k
R

k2( ) ( ) ∣ ∣ ∣ ∣ ( )

This operator can bewritten as

å ås m s m m= + ñá + ñá
Î

¹ ¼
Î

¹ ¼

s s s s0 0 1 1 , 32RB
s

s

s
k k

s

s

s
k k

0
0

0,1 :

0, , 0

0

0,1 :

1, , 1

1
k

k k

k

k
k k

k

k∣ ∣ ∣ ∣ ( )( )

{ }
( )

( )

{ }
( )

( )

where m l g l g g= - + - - +N N1 1 1k k
0 ( ) ( )( ) ,

s
m

l g l l g

l l g l g g
=

- - -

- - - - +

N

N

1 1 1 1

1 1 1 1
33

k k

k k
0

0

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( ) ( )
( ) ( ) ( )( )

( )( )

in the basis ñ ñ ñ ñÄ Ä0 0 , 1 1R B
k

R B
k{∣ ∣ ∣ ∣ }, and

m l g g= - -N N1 34
s

k s s0
k

k k( ) ( ) ( )( ) ∣ ∣ ∣ ∣

m l g g g g= - - - +-N N1 1 . 35
s

k s s1
k

k k( )( ) ( ) ( )( ) ∣ ∣ ∣ ∣
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Let r denote one of the eigenvalues of the state s 0( ) in equation (33), let

l g g- -s N N1 36m
k m m≔ ( ) ( ) ( )

l g g g g- - - +-t N N1 1 37m
k m m≔ ( )( ) ( ) ( )

for = ¼ -m k1, , 1, and

l g g= = - -s t N0 1 38k
0 0 ( )( ) ( )

l g= =s N t 0. 39k
k

k( ) ( )

Then the entropy of sRBk equals

åm m m= - - +s
=

S RB h r
k

m
s s t tlog log log . 40k

m

k

m m m m0 0 0
0

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

The coherent information f = -l
g s s
ÄQ S B S RB,k N

k k k1
,( ) ( ) ( )( ) can nowbe efficiently computed using

equations (25) and (40) for blocklengths up to =k 20.

A.2. Neural network codes for theGADC
We list the best neural network codes found for theGADC g N, in the following tables:

• Table 1: g =N, 0.440 35, 0.1( ) ( )

• Table A1: g =N, 0.414 88, 0.2( ) ( )

• Table A2: g =N, 0.401 02, 0.3( ) ( )

• Table A3: g =N, 0.393 92, 0.4( ) ( )

• Table A4: g =N, 0.391 69, 0.5 .( ) ( )

A comparison of these codes toweighted repetition codes is plotted infigure 3 in themain text.

Appendix B. Codes for the dephrasure channel

In the following, we give a summary of the results about the coherent information of the dephrasure channel
p q, (defined in equation (11)) that were obtained in [LLS18a]. These results are concernedwith the one-way
quantum capacity, as defined in section 2; for a discussion of two-way capacities, see [PLB19].

TableA1.Table of the best neural network codes for theGADC g N, with
g =N, 0.414 88, 0.2( ) ( ) and =k 3, 4, 5 channel copies. Only the non-zero
amplitudes y sn( ) indexed by the basis string s n (with =n k2 ) are shown (see
equation (15)). The architecture used for the neural network codes is a feed-
forward net with four hidden layers of width k2 each, activation functions
cos and ´3 tanh, and aCartesian output layer (see section 4.1).

g =N, 0.414 88, 0.2( ) ( )

n ñk∣ s n (A Rk∣ ) y sn( ) n g
ÄQ ,

k k N
k1 1
,( )( )

=k 3 000 110∣ - - i0.486 1 0.399 4 -1.692 3 10 3·
001 011∣ - - i0.339 4 0.293 8

010 011∣ - - i0.339 2 0.293 7

100 011∣ - - i0.339 3 0.293 8

=k 4 0110 1111∣ + + i0.391 8 0.006 1 -1.413 2 10 3·
1011 1111∣ + + i0.388 1 0.124 8

1101 1111∣ + + i0.401 4 0.119 0

1111 1000∣ + - i0.701 8 0.109 6

=k 5 00110 01011∣ + + i0.404 3 0.201 0 -9.802 5 10 4·
10001 01011∣ + + i0.448 5 0.029 8

10111 11101∣ + + i0.754 2 0.159 1
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Table A3.Table of the best neural network codes for theGADC g N, with
g =N, 0.393 92, 0.4( ) ( ) and =k 3, 4, 5 channel copies. For details, see
table A1.

g =N, 0.393 92, 0.4( ) ( )

n ñk∣ s n (A Rk∣ ) y sn( ) n g
ÄQ ,

k k N
k1 1
,( )( )

=k 3 000 000∣ + - i0.365 3 0.332 8 -2.345 6 10 3·
000 010∣ + - i0.351 7 0.235 6

001 110∣ + - i0.349 8 0.264 2

010 110∣ + - i0.349 9 0.266 1

100 110∣ + - i0.355 8 0.254 1

=k 4 0100 1100∣ - + i0.609 1 0.227 8 -1.759 2 10 3·
0101 0010∣ - + i0.188 1 0.396 4

0110 0010∣ - + i0.187 7 0.396 3

1100 0010∣ - + i0.187 7 0.396 3

Table A4.Table of the best neural network codes for theGADC g N, with
g =N, 0.391 69, 0.5( ) ( ) and =k 3, 4, 5 channel copies. For details, see
table A1.

g =N, 0.391 69, 0.5( ) ( )

n ñk∣ s n (A Rk∣ ) y sn( ) n g
ÄQ ,

k k N
k1 1
,( )( )

=k 3 010 101∣ + + i0.189 4 0.390 9 -2.394 8 10 3·
100 101∣ + + i1.894 3 0.390 9

110 011∣ + + i0.173 5 0.432 2

110 100∣ + + i0.173 5 0.432 3

111 101∣ + + i0.189 5 0.390 9

=k 4 0100 0111∣ - - i0.262 9 0.412 0 -1.791 3 10 3·
0100 1101∣ - - i0.228 7 0.377 2

0101 0110∣ - - i0.224 8 0.372 1

0110 0110∣ - - i0.225 8 0.373 8

1100 0110∣ - - i0.222 5 0.370 8

=k 5 01100 01010∣ - + i0.331 1 0.269 4 -1.339 3 10 3·
10100 01010∣ - + i0.333 7 0.320 9

11000 01010∣ - + i0.333 6 0.320 8

11100 10110∣ - + i0.291 1 0.300 9

11100 11001∣ - + i0.333 5 0.320 8

Table A2.Table of the best neural network codes for theGADC g N, with
g =N, 0.401 02, 0.3( ) ( ) and =k 3, 4 channel copies. For details, see
table A1. For =k 5 copies of theGADC g N, with
g =N, 0.401 02, 0.3( ) ( ) the neural network ansatz did not find any codes
with positive coherent information.

g =N, 0.401 02, 0.3( ) ( )

n ñk∣ s n (A Rk∣ ) y sn( ) n g
ÄQ ,

k k N
k1 1
,( )( )

=k 3 000 010∣ + - i0.256 6 0.360 1 -2.188 9 10 3·
000 011∣ + - i0.280 2 0.370 4

001 100∣ + - i0.257 2 0.360 7

010 100∣ + - i0.257 2 0.360 7

100 100∣ + - i0.257 3 0.360 7

=k 4 0101 1110∣ + - i0.162 4 0.362 9 -7.363 5 10 4·
1010 1110∣ + - i0.064 1 0.574 8

1111 0001∣ + - i0.058 2 0.581 9

1111 1000∣ + - i0.185 8 0.361 8
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B.1. Formula for the coherent information of repetition codes
Superadditivity of the channel coherent information of the dephrasure channel can be achieved using a simple
weighted repetition code

f l lñ ñ Ä ñ + - ñ Ä ñl 0 0 1 1 1 , 41k R
k

A R
k

Ak k∣ ≔ ∣ ∣ ∣ ∣ ( )

where l Î 0, 1[ ]. In [LLS18a], the following formula is derived for its channel coherent information:

f l= - - - - - - -l ÄQ q q h q u u u, 1 1 1 artanh
1

2
log 1 , 42k p q

k k k k1
,

2⎜ ⎟⎛
⎝

⎞
⎠( ) (( ) ) ( ) ( ) ( ) ( )( )

where l l l l l= - - - -h log 1 log 1( ) ( ) ( ) is the binary entropy (in terms of the binary logarithm),
+
-

xartanh log x

x

1

2

1

1
( ) ≔ , and

l l l= = - - - -u u p k p, , 1 4 1 1 1 2 . 43k2( ) ( )( ( ) ) ( )

Moreover, it is shown in [LLS18a] that for =k 1 the formula in equation (42)maximized over l Î 0, 1[ ] is in
fact the optimal single-letter channel coherent information. That is, Q p q

1
,( )( ) is optimized by states whose

marginal on the systemqubits is diagonal in the computational basis. Hence, the formula equation (42) can be
used tofind quantum codes that surpass the optimal code for a single copy of p q, , demonstrating
superadditivity of coherent information.

For Îq 0.1, 0.2, 0.3, 0.4{ }and the relevant intervals of p, the rates of theweighted repetition code fl
k

(optimized over l Î 0, 1[ ]) for  k1 5 are plotted infigure 5. The lines corresponding to f1 represent the
codes achieving the optimal single-letter coherent information Q p q

1
,( )( ) .

B.2.Neural network codes for the dephrasure channel
We list the best neural network codes found for the dephrasure channel p q, in the following tables:

• Table 2: =p q, 0.08, 0.4( ) ( )

• Table B1: =p q, 0.16, 0.3( ) ( )

• Table B2: =p q, 0.24, 0.2( ) ( )

• Table B3: =p q, 0.32, 0.1 .( ) ( )

A comparison of these codes toweighted repetition codes is plotted infigure 5 in themain text.

AppendixC. Codes for the depolarizing channel

C.1. Product repetition codes for the depolarizing channel
In this appendix, we discuss the known optimal codes for the depolarizing channel, which are given by repetition
codes

Table B1.Table of the best neural network codes for the dephrasure
channel p q, with =p q, 0.16, 0.3( ) ( ) and =k 2, 3, 4 channel copies.
Only the non-zero amplitudes y sn( ) indexed by the basis string s n (with
=n k2 ) are shown (see equation (15)). The architecture used for the

neural network codes is a feed-forward net with four hidden layers of
width k2 each, activation functions cos and ´3 ReLU, and a Polar
output layer (see section 4.2).

n ñk∣ s n (A Rk∣ ) y sn( ) n ÄQ ,
k k p q

k1 1
,( )( )

=k 2 00 11∣ + - i0.129 8 0.990 5 -2.146 5 10 5·
11 00∣ + - i0.025 5 0.038 6

=k 3 000 011∣ + + i0.000 8 0.000 0 -3.968 6 10 5·
001 100∣ - - i0.692 2 0.711 4

011 010∣ - + i0.000 5 0.000 4

101 011∣ - + i0.000 7 0.000 3

110 001∣ + + i0.075 4 0.094 8

110 101∣ - - i0.000 5 0.001 4

=k 4 0000 1000∣ + - i0.094 1 0.105 9 -4.792 2 10 5·
0010 1000∣ + + i0.049 5 0.101 7

1101 0000∣ + + i0.936 2 0.301 2
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f ñ = ñ ñ + ñ ñÄ Ä1

2
0 0 1 1 . 44k R A

k
R A

k∣ (∣ ∣ ∣ ∣ ) ( )

For p 0.251 9, the single-letter coherent information equation (13) is optimal. For  p0.251 9 0.253 3,
the 3-repetition code f3 (defined in equation (44)) is optimal, while for  p0.253 3 0.253 8 the 5-repetition
code f5 is optimal. The point p 0.253 8 marks the highest threshold for a single repetition code. This

Table B3.Table of the best neural network codes for the dephrasure
channel p q, with =p q, 0.32, 0.1( ) ( ) and =k 2, 3, 4 channel copies.
For details, see table B1.

n ñk∣ s n (A Rk∣ ) y sn( ) n ÄQ ,
k k p q

k1 1
,( )( )

=k 2 00 11∣ + - i0.242 5 0.031 8 -9.920 4 10 5·
01 00∣ - - i0.003 8 0.007 4

10 00∣ - - i0.003 8 0.007 4

11 00∣ + - i0.000 0 0.000 1

11 01∣ - - i0.321 5 0.914 7

=k 3 000 111∣ - - i0.486 3 0.820 8 -1.117 2 10 4·
010 101∣ + - i0.000 0 0.000 1

011 000∣ + - i0.036 7 0.162 4

100 000∣ - + i0.000 8 0.000 9

101 000∣ + - i0.033 2 0.162 8

110 000∣ + - i0.024 6 0.164 3

111 000∣ - - i0.032 8 0.076 2

=k 4 0000 1101∣ - - i0.139 7 0.056 4 -1.180 2 10 4·
0100 0010∣ - - i0.000 1 0.000 4

0101 1010∣ - - i0.017 1 0.087 9

0110 0110∣ - + i0.584 3 0.357 6

0111 1010∣ + + i0.000 2 0.000 0

1001 0000∣ + - i0.093 3 0.678 7

1010 0011∣ - + i0.000 1 0.000 1

1010 0111∣ - - i0.019 6 0.087 4

1011 0100∣ + - i0.000 4 0.000 1

1111 0011∣ - - i0.098 5 0.114 0

Table B2.Table of the best neural network codes for the dephrasure
channel p q, with =p q, 0.24, 0.2( ) ( ) and =k 2, 3, 4 channel copies.
For details, see table B1.

n ñk∣ s n (A Rk∣ ) y sn( ) n ÄQ ,
k k p q

k1 1
,( )( )

=k 2 01 00∣ - + i0.007 1 0.000 5 -6.844 7 10 6·
01 01∣ - + i0.082 0 0.995 9

10 10∣ - + i0.032 5 0.020 2

=k 3 000 100∣ - - i0.000 4 0.000 9 -1.138 2 10 5·
001 000∣ - + i0.002 2 0.004 8

001 001∣ + + i0.023 5 0.001 1

001 010∣ + - i0.025 7 0.001 9

001 101∣ + + i0.160 0 0.979 5

001 110∣ + + i0.010 0 0.009 4

011 110∣ - - i0.000 6 0.000 9

101 110∣ + - i0.001 0 0.000 5

110 011∣ - - i0.054 8 0.103 1

=k 4 0110 1110∣ - + i0.104 7 0.072 7 -1.156 1 10 5·
0111 1110∣ - + i0.053 1 0.086 3

1000 0010∣ + - i0.140 5 0.976 6

1001 1100∣ + + i0.000 1 0.000 0

1001 1101∣ + - i0.000 3 0.003 1
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threshold can be further extended using the concatenated codes of [SS07, FW08]4.We summarize this infigure
C1, wherewe compare the repetition codes and their rates and thresholds.

The above codes are the best known information-theoretic codes, yielding the best lower bounds on the
quantum capacity of the depolarizing channel by equation (3). However, in numerical investigations we are
facing a slightly different problemofmaximizing the k-coherent information y ÄQ ,

k p
k1 1 ( )( ) over quantum

codesψ for fixed k, that is, solving

y
y

Ä
k

Qargmax
1

, . 45p
k1 ( ) ( )( )

For k 9 channel uses, the optimization problem equation (45) is solved by products of repetition codes,

fF ñ = ñ
=

. 46
i

l

kk
1

i
∣ ⨂∣ ( )

Here, = ¼k kk , , l1( ), and the resulting code F ñk∣ is a quantum code onå = ki
l

i1 channel input qubits and l
purifying qubits.

To illustrate this, consider 4 channel uses of the depolarizing channel, and recall that the single-letter
coherent information equation (13) vanishes around p 0.252 4 . The respective thresholds for the
4-repetition code f4 and the 3-repetition code f3 on three input qubits are p 0.253 2 and p 0.253 5 ,
respectively (seefigureC1 and thefilerep-codes-tabular.txt in [Anc]). Hence, for

 p0.253 2 0.253 5 it is clearly advantageous to ‘freeze’ one input qubit to some fixed pure state, and use a
3-repetition code on the remaining 3 input qubits. Since pure input states can never establish coherent
information betweenAlice and Bob, the frozen input does not contribute to the overall coherent information,
and the resulting code incurs a penalty in the rate.However, this code inherits the same threshold as the
3-repetition code on three input qubits, thus outperforming the plain 4-repetition code. Similarly, onefinds that
for Îp 0.251 9, 0.252 4[ ] the quantity ÄQ p

1

4
1 4( )( ) ismaximized by a 3-repetition code tensoredwith a

1-repetition code (i.e. using three of the four input qubits with one purifying qubit for a repetition code, and
maximally entangling the remaining input qubit with another purifying qubit). InfigureC2 and table C1, we
provide an overview of the thresholds and rates of the optimal such combinations of repetition codes for k 10
uses of the depolarizing channel. For k 10 uses of the depolarizing channel, concatenated codes can surpass
the best known repetition code thresholds [SS07, FW08].

FigureC1.Rates and thresholds for the coherent information of repetition codes fk for the depolarizing channel
Ä p

k with
Îp 0.251 6, 0.253 9[ ] and =k 1, 3, 4, 5. The enveloping thick linemarks the known optimal coherent information for the

depolarizing channel (up to the concatenated codes of [SS07, FW08], which are not shownhere).

4
Note that these concatenated codes require at least 10 channel uses of the depolarizing channel, and thus their rate is far lower than the rates

of the codes just described. Furthermore, investigating n 10 channel uses of the depolarizing channel is at themoment out of reach for
our numericalmethods. For these reasons, we focus on the regime p 0.253 8within the threshold of f5.

21

New J. Phys. 22 (2020) 023005 J Bausch and F Leditzky



C.2. Products of repetition codes as benchmark for depolarizing noise
As a benchmark for finding quantum codes, we demand that themodels we propose can at least achieve the
product repetition codes described above; either because they can represent products of repetition codes
directly, or because they achieve the target rates by some othermeans. In particular, this should serve as a sanity
check for themodels we propose, indicatingwhetherwe need to increase thewidth of a hidden layer, or the
depth of themodel. The relevant question for us is whether a state F ñn∣ as defined in equation (46) can always be
represented accurately by theweights obtained from anRBMor an FF net.

FigureC2. For = ¼k 1, , 10 channel uses, the dashed red line is the coherent information rate of the k-repetition code. The solid
black line is the best achievable rate when only using product codes, e.g. for =k 3 and below »p 0.252, a product of three single-
channel repetition codes ( ´ ´1 1 1) is superior to one 3-repetition code. It is noteworthy that the segmentation of the best achievable
rates is not clear a priori: For =k 4, the segments are ´ ´ ´1 1 1 1 and then ´3 1, where the extra kink at »p 0.252 4 signifies
that the single-letter CI has nowdropped to zero; for =k 6, the segments are ´¼´1 1, ´3 3, and ´5 1—the latter one ofwhich is
just a single segment, as the single-letter CI is already zero.
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C.2.1. RBM states. First observe how theHamiltonian HRBM describes a linear single-layer FF classifier (i.e. a
linear function on the inputs ik). Seen as a linear function on bit strings, theHamiltonian can therefore represent
a target state yñ∣ as well as a linearmodel allows. For the simple case of products of repetition codes, wherewe
subdivide the set of basis states into those of weight 0 and 1, respectively, this question is well-studied in the
context of linear classifiers.

A single k-repetition code has the form ñ + ñ ñ + ña b0 0 1 1∣ ∣ ≕ ∣ ∣  . Since theRBMuses a scaled
encoding (see table C2), the bit strings correspond to real entries in a k-dimensional vector, and thus ñ = ñb a0 ;∣ ∣
a linear function L therefore necessarily satisfies ñ = ñ =L b L a 0(∣ ) (∣ ) . If we let ñb∣ be a basis state (unnormalized)
and complete the basis with -k 1 arbitrary orthogonal vectors, it therefore suffices to define L in such away to
have = ñL bker span{∣ }.

Products of repetition codes always have the form f ñ
=

;
i

k

n
1

i
⨂∣ since basis states are bit strings for the RBM

classifier, the corresponding code is a direct sumof the individual repetition codes.We can thus construct a
classifier for the overall code bywriting Å ¼Å =L L Lk1 , which is still linear.

Since HRBM appears in an exponential in equation (6), we can use the spectral gap of HRBM to obtain a lower
bound on how close to zero an entry in the code can be set. For instance, if wewere to represent a 3-repetition
code ñ + ñ000 111∣ ∣ , we can require that ñ111∣ is the eigenvector corresponding to the smallest eigenvalue of
H ;RBM all other binary strings should have an energy that is as large as possible, such that the exponential function

suppresses the corresponding weight. Consider the binary state ñ011∣ , which has overlap 2 3 with ñ111∣
(assuming normalization). IfΔ is the spectral gap of HRBM—i.e. the difference between the ground state energy
and the second lowest eigenvalue—then á ñ = DH001 001 2 3RBM∣ ∣ , yielding a lower bound between largest code
weight and smallest codeweight of -Dexp( ). To get an empirical estimate, assumeweflip a single bit—e.g.
i1—in equation (5). How large can the energy difference be? If all parameters are chosen (inmagnitude)within a
range -M M,[ ], then a simple estimatewould beD + M M ;2 this is, of course, an upper bound to a lower
bound. In practice we found that =M 10 is sufficient for our purposes.

C.2.2. DBM states. Equation (7) introduces a quadratic term in the input. Since one can easily embed a 1-IN-
3SAT instance into a quadratic polynomial (for three Boolean variables v v v, ,1 2 3 where TRUE=1and FALSE=0
enforced by terms - =v v 0i i

2 , the equation + + - =v v v 1 01 2 3
2( ) if and only if exactly one of the vi is TRUE;

the existence or nonexistence of a root for the sumof all constraints thus answers the instance), it is clear that the
discriminative power ofDBM states should vastly outperform that of RBM states, albeit at a higher

Table C1. Intermediate product repetition code thresholds; before thefirst column at 0.251 86 the best
code is given by the single-letter coherent information.

p

k 0.251 86 0.252 38 0.253 01 0.253 29 0.253 37 0.253 50

4 ´1 3

5 ´ ´1 1 3 ´2 3 ´5 0

6 ´3 3 ´1 5

7 ´ ´1 3 3 ´2 5

8 ´ ´ ´1 1 3 3 ´ ´2 3 3 ´3 5

9 ´ ´3 3 3 ´ ´1 3 5 ´4 5

10 ´ ´ ´1 3 3 3 ´5 5

Table C2. Summary of the possible encodings of a
symbol Îi d 0[ ] in a d-ary string i n of length n.We
denote by mbink( ) the binary representation ofm of
length k (with leading zeros if necessary), and by ei a
vector with a 1 in the ith component and 0s elsewhere.

encoding ( Îi d 0[ ] ) # input nodes

Scaled -i i d 1( ) n

Binary i ibin dlog ( )⌈ ⌉ d nlog⌈ ⌉
One-hot i ei dn
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computational cost. As discussed in the introduction, for various ground states of localHamiltonians this
intuition has empirically been shown to be correct.

C.2.3. Feed forward network states. It is easy to explicitly construct weights for an FF net that can represent
any product repetition code. As a first step, consider a single repetition code f ñn∣ .We set up a three-layer
neural network from n inputs, one hidden layer of width 1, and a single output node (for simplicity we
disregard the imaginary part for the state output in equation (8)). The weights and activation functions to be
chosen are

åp p
p+

- +
- +=

+

=

+

x y
n

x z
y n

n
cos

2

1
ReLU

cos 2 1

1 cos 2 1
, 47i i

n

i

n

i1
1

1

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟{ } ⟼ ≔ ⟼ ≔ ( )

( )
( )

and one can verify that the output is one on the all 1s and 0s input, and zero otherwise.We refer to appendix F for
amore detailed discussion.

For a product code given by some = ¼n nn , , k1( ), we simply partition the input nodes into k subsets and
dovetail thosewith a network given in equation (47); we obtain k outputs ¼z z, , k1 . Sincewe know that a logic
ANDgate corresponds to all the =z 1i , we can use afinal å - += z kReLU 1i

k
i1( ) layer to enforce that the

weights are 1 if all individual segments are valid repetition codes, and 0 otherwise—ormerge all already existing
ReLU nodes into one. Observe that we could always implement a single cos node in this functionwith two ReLU
nodes, followed by another ReLU node to combine the outputs (as in appendix F). This would increase the
hidden layer width by a factor of two; we can incorporate addition of the individual outputs into the last existing
ReLU layer, so the depth should remain constant.

One immediate consequence is that any product code of k repetition codes can always be represented by a
network architecture where the first hidden layer has width k; andwe in fact empirically found that the trained
weights of thefirst layer are similar to those in equation (47).

Afinal note on the parameter range necessary for the argument: the largest coefficients in absolute value in
equation (47) and itsfinal ANDnode are p- -n imax 1 cos 2i

1( ( ( )) , or -k 1, whichever is larger. Restricting
the networkʼs parameter range artificially below this threshold could result inworse representability of product
repetition codes.

C.2.4. Schmidt network states. The argument is similar as for feed-forward network states. Note that, in general,
Schmidt codes will be redundant, since for e.g. four channel uses we are forced to usingmore than just a single
purifying qubit. The fact that the neural net calculates Schmidt coefficientsmeans that the repetition codes
always uses asmany purifying dimensions as systemdimensions.

AppendixD. AME states

An n dAME ,( )-state is a pure state y ñ Î Än d
d n

,∣ ( ) on n qudits with local dimension d 2 satisfying

r y= =
  Itr
1

48n d,c

∣ ∣
( )

for every Ì n[ ]with = n

2
⎢⎣ ⎥⎦∣ ∣ . Asmentioned in themain text, whether or not an n dAME ,( )-state exists

depends on n and d. Usingweight enumerator theory [SL97, Rai98], Scott proved that an n dAME ,( )-state can
only exist if -n d2 12( ) for even n, and + -n d d2 1 1( ) for odd n [Sco04]. This techniquewas recently
extended byHuber et al [Hub+18] to give further constraints on the existence of n dAME ,( )-states. Forfixed n
an n dAME ,( )-state always exists for sufficiently large local dimension d [HC13]. For example,

n dAME ,( )-states exist for d a prime power and n d [GBR04]. Recently, it was proved in [HGS17] that an
AME state on seven qubits cannot exist. This result completely settled the case of qubit AME states: they exist for
=n 2, 3, 5, 6, and only for these n. Furthermore, there are constructions for certain combinations of

parameters n d,( ) [GBR04,HC13,Hel13, Goy+15, Goy+17].We refer tofigure 2 in [Hub+18] as well as
Problem35 on the IQOQIViennaOpenQuantumProblems list [Opq] for amore complete overview of the
known results about existence of n dAME ,( )-states. Here, wemerelymention that it is unknownwhether

n dAME ,( )-states exist for =n d, 4, 6( ) ( ) and =n d, 7, 4 , 7, 6( ) ( ) ( ).
Scott [Sco04] proved that amultipartite state y ñ Î Än d

d n
,∣ ( ) is AME if and only if the average linear entropy

y =Q 1m n d,( ) , where Qm(·) is defined in equation (17). Sincewe are searching for AME states bymaximizing
Qm(·), we need tomake sure that a state yn d, with y »Q 1m n d,( ) is also approximately AME.We determine the
latter by introducing the average trace distance parameterDm defined in equation (19) thatmeasures the average
trace distance between themarginals of yn d, onm subsystems and the completelymixed state. The average trace
distance parameter Dm(·) can be bounded from above in terms of Qm(·), as stated in equation (20).We restate
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this bound here for the readerʼs convenience:

y y- -D d d Q2 log 1 . 49m n d
m m

m n d, ,( ) [ ( ) ( )] ( )

Toprove equation (49), we use the quantum version of Pinskerʼs inequality, r s r s-D ,1

2 1
2( )   where

r s r r r s= -D tr log tr log( ) ( ) ( ) is the quantum relative entropy.We also use the 2-relative Rényi entropy
r s r s= -D logtr2

2 1( ) ( ) [Pet86], and thewell-known fact that r s r sD D2( ) ( )  .

Observe first that, for p = I
d

1 , we have r p r= +D dlogtr log2
2( ) ( ) , and hence
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Abbreviating p =  I
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∣ ∣ , we then bound
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where the last inequality follows from concavity of the function -x exp x

2

2( ) . Rearranging equation (54)

yields equation (49).
Since AME states are defined on tensor products of d-dimensionalHilbert spaces, the input string i n to the

neural network computing the amplitude y in( ) in the ansatz equation (15) is a d-ary string. Depending on the
local dimension, we use different encodings of this d-ary input string, as explained in appendix E below.

Appendix E. Input encoding of d-ary strings for neural networks

In order to parametrize quantum states on n qubits, it is rather straightforward to use the neural network ansatz
described in section 3. In the case of n dAME ,( )-states with local dimension >d 2, we slightly tweak the neural
network ansatz. To this end, wefix a basis ñ =

-i i
d

0
1{∣ } for d, and express a general quantum state y Î Än d

d n
, ( ) as

åy yñ = ñ
ÎC

i i
1

, 55n d
i d

n n
,

n n
0

∣ ( )∣ ( )
[ ]

whereC is again a normalization constant ensuring y yá ñ = 1n d n d, ,∣ , andwe use the notation
¼ -d d0, , 10[ ] ≔ { }.We consider three different options of encoding the d-ary input string i n in order to

obtain the amplitudes y in( ) in equation (55) from aneural network:

1. (Scaled) direct encoding: Use the d-ary string i n directly, with a possible scaling of the entries such that
Îi 0, 1k [ ] for Îk n[ ].

2. Binary encoding: Convert each symbol Îi dk 0[ ] into a binary string, requiring dlog⌈ ⌉‘physical’ qubits per
‘logical’ qudit of yn d, , and use the resulting binary string of length d nlog⌈ ⌉ as the input to the neural
network.
Example: For =d 6, the encoding is 0 000 , 1 111 , ..., 5 101 .

3. One-hot encoding: Encode each symbol in a ‘one-hot’ vector of length d and use the resulting binary string
of length dn as the input to the neural network.
Example: For =d 6, the encoding is 0 000001 , 1 000010 , ..., 5 100000 .

We have found that the performance of the specific encoding used in the neural network optimization depends
on the local dimension d. For prime d, the neural network optimization using the scaled encoding converges
quickly to known n dAME ,( )-states such as AME 4, 7( ), as evident from figure 8 in themain text. On the other
hand, for composite d theNNansatz ismore powerful using binary or one-hot encoding. Since binary encoding
has a smaller overhead in terms of the ‘physical’ qubits used in the ansatz ( d nlog⌈ ⌉ versus dn), we use binary
encoding for composite local dimension d.We summarize the different encodings in table C2.
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Appendix F. The role of activation functions for quantumcodes

Inmachine learning, the use of nonlinear activation functions is crucial to a neural networkʼs performance;
otherwise, the network is just a single affine transformation and not useful beyond linear regression. The overall
network can have varying activation functions per neuron (see figure 1). In essentially all cases, the activation
functions are the samewithin a layer. The operation of such a layer is thus to perform an affine transformation
on the input vector and then, element-wise, apply the nonlinearity f. For a single neuron z depending on
= ¼x x x, , n1( ), themathematical operation can thus be visualized as

Commonly used activation functions are e.g. ReLU, sigm or tanh, which are plotted in figure F1; in addition
to some thorough studies [IS15, He+15, KSH17], there seems to be a lot of empirical understanding which
activation functions perform better in various scenarios [Phy]. One example is that e.g. sigm saturates
(meaning the gradient vanishes for large or small values), whereas e.g. ReLU does not have the same problem.
Furthermore, the general consensus seems to be that non-monotonic or periodic activation functions—such
as e.g. sin—weaken the neural networkʼs performance.We found conflicting evidence for this in the
literature ([Sop99, GA16] and [GBC16], section 6.2.2), suggesting that such periodic functions can
indeed be useful for specific tasks—especially in the context of representing ground states for local
Hamiltonians [CL18].

In one example of such a task [CL18], use neural network states to approximate the ground states of
certainHamiltonians. They report good performance of feed-forward network architectures with a cosine
activation function in the first layer for a 1D anti-ferromagnetic Heisenbergmodel, arguing that the cosine
function is capable of handling the ‘sign problem’ typically found in the analysis of Hamiltonians.We found
that using cosine in the first hidden layer also performswell in finding good quantum codes for quantum
channels such as the depolarizing channel defined in equation (12), or the dephrasure channel defined in
equation (11).

In the following, wewant to give an intuitionwhy a periodic activation function such as cos can be useful for
learning quantum codeswith a structure that can be easily derived from the binary signature of its state vector.
To give an example, consider a repetition code onfive qubits, given by ñ + ñ00000 11111∣ ∣ . A function

Ä M: 2 5( ) with ñ = ñ =M M00000 11111 1(∣ ) (∣ ) , and 0 elsewhere, is trivial to construct from elementary
logic gates (i.e. either all bits are zero, or all bits are one).

Figure F1.Various activation functions (bold lines) and their derivatives (thin lines). tanh is an example for a sigmoid function;more
commonly used, however, is = + - -x xsigm 1 exp 1( ) ( ( ) . It is clear that sigmoid functions suffer from a vanishing gradient problem
on both ends of its input. This can be countered either by going to another activation function—such as a rectified linear unit ReLU
(or its ‘leaky’ version, i.e. onewhere the segment for <x 0 has a small but non-vanishing slope), or using techniques such as batch
normalisation [IS15]. Non-monotonic activation functions such as cos are rarely used in practice, but can be useful for certain specific
tasks.
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For a feed-forward neural network, one could imagine adding up all bits within one neuron, and
thresholding this valuewith a ReLU activator:

å= - = = "

=

z x
x i

ReLU 2 9
1 if 1
0 otherwise.i

i
i

1
1

5⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩

A similar gate with flipped signs can activate onlywhen all bits are zero; the two outputs can then be combined
using afinal ReLU node.

We can achieve the same activation using a single cos neuron, dovetailed by a ReLU in the next layer:
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While this looks like amore complicated version of the same calculation, it quickly becomes obvious that one
can easily performmodular arithmetic using this technique—whatwe have in fact calculated is
whether å ºx 0 mod 5i i ( ).

Why is this an advantage? As a slightlymore complicated example, let us consider an (unnormalized)
tensor code built from a 3-repetition code f ñ = ñ + ñ000 000 111 1113∣ ∣ ∣ and a 1-repetition code (or
simplymaximally entangled state) f ñ = ñ + ñ0 0 1 11∣ ∣ ∣ . In both cases, the first block of qubits (3 resp. 1)
is sent through the channel, and the second block form the purifying environment. On 4 qubits, the
tensor code thus looks as follows (for visualization purposes we boldface the single channel repetition
code):

f fñ Ä ñ = ñ + ñ + ñ + ñ0 0 1 1 0 0 1 1000 000 000 000 111 111 111 111 . 563 1∣ ∣ ∣ ∣ ∣ ∣ ( )

Any tensor channel Ä n is naturally covariant5 with respect to permuting tensor factors, i.e. the unitary
representation p pU of the symmetric group Sn on Ä n2( ) defined by

ñ Ä Ä ñ = ñ Ä Ä ñp p p- -U e e e e... ...n n1 11 1∣ ∣ ∣ ∣( ) ( ) . Since the coherent information ñI A B( ) is furthermore invariant
under local unitaries of the form ÄU UA B, codes that are permutations of each other yield the same value for the
coherent information. For example, the code

f fÄ ñ Ä ñ = ñ + ñ + ñ + ñU U 0 0 1 1 0 0 1 1000 0 00 000 0 00 111 1 11 111 1 11 5714 24 3 1( )(∣ ∣ ) ∣ ∣ ∣ ∣ ( )( ) ( )

is obtained from f fñ Ä ñ3 1∣ ∣ by swapping channel qubits 1 and 4 and environment qubits 2 and 4,6 and is thus
equivalent for quantum information transmission7. Hence, within each block of four qubits (either channel or
environment) the code is characterized by theHammingweight of the code vectors (0, 1, 3 and 4 in the example
above), and ideally this is identified by the neural network.Withmodular arithmetic, we can have a cos neuron
identifying 0 and 4 (e.g. all Hammingweightsº0 mod 4( )), and another one identifying 1 and 3 (e.g. all odd
Hammingweights).

While it is conceivable that for simple codes such as equation (56) one canwrite down relatively
simple circuits with non-periodic activation functions, it should be clear that we do save spacewithin
the neural network representation if we can perform calculations such as the ones abovewithin a single
neuron.

AppendixG.Numerical optimization techniques

Inmost applications neural networks are trained using the backpropagationmethod, inwhich each network
parameter is updated using the gradient of a loss or objective functionwith respect to that parameter. In our
main application of neural networks,maximizing the coherent information of a quantum channel, the objective
function is the coherent information itself. In the interesting case of a high-noise quantum channel (such as p

for p 0.252 3), a randomly selected quantum code (e.g. with respect to theHaarmeasure on pure states) has
strictly negative coherent informationwith high probability, whereas a product state y yñ Ä ñR A1 2∣ ∣ always has
vanishing coherent information, y y y y yÄ = - Ä =  I S S, 0c 1 2 2 1 2( ) ( ( )) ( ( )) . Hence, the coherent
information landscape is dominated by localmaxima, and gradient-based optimization techniques are likely to
get stuck in these localmaxima.

5
Aquantum channel  A B: is covariantwith respect to a groupG if there are unitary representations g U gA( ) on A and

g U gB ( ) on B such that = U g U g U g U gA A B B( ( ) · ( ) ) ( ) (·) ( )† † for all Îg G.
6
Note that in equation (57) the two tensor products on the left-hand side are with respect to different tensor factors. For thefirst tensor

product, the two factors correspond to channel input and purifying qubits, respectively.
7
Wedo not claim that optimal codes are in anyway symmetric due to this permutation invariance.
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This intuitionwas confirmed in our numerical search for good quantum codes for the depolarizing channel
and the dephrasure channel. In the search for n dAME ,( ) states, the objective function is the function yQm( )
defined in equation (17). Here, numerical investigations also showed that gradient-based optimizationwas again
likely to get stuck in localminima.

The failure of gradient-based optimizationmethods in both scenarios led us to consider gradient-free,
stochastic global optimization techniques instead. In the following, we give high-level explanations of
four popular such algorithms, PSO, ABC, pattern search (also known as direct search), and genetic
evolution. A numerical comparison regarding their performance can be found infiguresH1–H8.

G.1. Particle swarmoptimization
PSO [KE95] is ameta-heuristic, derivative-free global optimization technique. The idea of PSO is to have
multiple particles explore the landscape on the search for a globalminimum, and communicate their
individual best value to the swarm. At the same time, each particle records its ownhistory and stores the personal
best value. In each iteration, the update of a particle’s velocity vector is determined by the current velocity,
recurrence to the location of the personal best function value, and attraction towards the location of the global
best value.

More precisely, fixmodel parameters a b g >, , 0 and considerN particles with random initial position x i
0( )

and random initial velocity v i
0( ) for Îi N[ ]. For each particle i, the variable pi stores the location of the personal

best function value, while the variable g stores the location of the global best function value among thewhole
swarm. In the kth iteration, the velocity and position of a particle are updated according to

a b g= + - + -b g
- - -r rv v p x g x 58i

k
i
k

i i
k

i
k1 1 1( ) ( ) ( )( ) ( ) ( ) ( )

= +-x x v , 59i
k

i
k

i
k1 ( )( ) ( ) ( )

where Îb gr r, 0, 1[ ]are drawn uniformly at random. The parameterα is called inertia, whileβ and γ are usually
called self-interaction and social interaction, respectively. A commonmodification of the PSO is to limit the social
interaction to neighborhoods of a certain size within the swarm, ensuring amore thorough exploration of the
landscape by the swarm.

TheMATLAB implementation of PSO, available in theGlobal Optimization Toolbox, uses the
neighborhoodmodificationswith variable neighborhood sizes and an adaptive adjustment of the inertia weight.
We refer to the official documentation [Pso] for details of the algorithm, as well as theMATLABfiles in [Anc] for
the algorithm settings used in this paper. Furthermore, we used the ‘inertia weight’ variant of PSO in Pagmo
[Abc], with parameter settings as found in theC++ source files [Anc].

G.2. Artificial bee colonization
ABC [Kar05] is anothermeta-heuristic, derivative-free global optimization technique based on the principle of
swarm intelligence. The algorithmworks as follows: The population consists ofNemployer bees andN
onlooker bees.While the employer bees explore the neighborhood of randomly created ‘food sources’
(i.e. points in the landscapewith a lowobjective function value for aminimization problem), the onlooker bees
evaluate the food sources according to the promise given by the fitness of the food source, and join the
employer bees in exploring the neighborhood of those food sources. If an employer bee cannot find any new
food around its location for a certain number of iterations (i.e. it fails tofind points in the neighborhood of
the food sourcewith a lower objective function value), it is converted into a scout bee and assigned to a new
random food source.

Inmore detail, tominimize a function  f : D , an employer bee at site xi randomly explores the
neighborhood of xi by probing the location ¢xi which differs from xi in exactly one randomly drawn component
Îj D[ ] according to

¢ = + -x x r x x , 60i j i j i j k j( ) ( ) (( ) ( ) ) ( )

where ¹x xk i is another randomly drawn food source, and Î -r 1, 1[ ] is a uniform randomnumber. If
¢ <f x f xi i( ) ( ), the employer bee switches to ¢x i and continues exploring its neighborhood. Thefitness of the

food source xi is defined as + -f xfit 1i i
1≔ ( ( ) , and each onlooker bee reinforces the employer bee group by

selecting a food source according to the probability distribution åfit fiti i i i{ } .
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Weuse the standard implementation of ABC found in theC++ optimization library Pagmo [Abc], as well as
our own implementation of the standard algorithm inMATLAB (see [Anc]).

G.3. Pattern search
The third derivative-free optimization techniquewe use in this paper is called pattern search or direct search. To
minimize a function  f : D , the algorithm takes as input a starting point Î x D

0 together with the
objective function value f x0( ), and creates amesh of probing points around the starting point. In each iteration
or poll, the objective function is evaluated at eachmesh point. If for one of themesh points, say x1, the objective
function value is lower than the current one (at x0), the algorithm centers at x1 and creates a newmesh.

There are different ways in how themesh at a new center point is created. In a popular variant called
generalized pattern search (GPS), the new probing points yi of themesh are defined by afixed set Ì D of
vectors. Common choices are =  = eD i i

D
2 1{ } , where ei denotes the ith standard basis vector, or

È= - + ++ = e e e...D i i
D

D1 1 1{ } { ( )}. In the kth roundwith center point -xk 1, the points of themesh are
defined as = + D-y x vi k i1 , where Î vi , andΔ is themesh constant. In a successful poll (i.e. when a new point
with a lower objective function value is found), themesh constant for the newmesh is doubled. If the poll is
unsuccessful, the center point remains the same andΔ is halved.

Another popular variant is calledmesh adaptive direct search. Here, the set Ì D of vectors for the new
mesh points is randomly created after each successful poll. In analogy to theGPS variant above, common choices
are =  = vD i i

D
2 1{ } and È= - + ++ = v v v...D i i

D
D1 1 1{ } { ( ) }, where in each case the vi are randomvectors.

The above variants of pattern search are available in theGlobal Optimization Toolbox ofMATLAB [Psm].
We refer to theMATLAB files in [Anc] for the algorithm settings used in this paper.

G.4. Simple genetic algorithm
The fourth derivative-free optimization algorithm is a genetic algorithm,which is related to evolutionary
methods such as PSO andABC, butmotivated from the process of gene evolution.

Starting from a random selection ofN so-called ‘chromosomes’ x i
0( )—where each vector component is

called a ‘gene’—a traditional implementation follows four steps.

• Pick random tuples of size s from the chromosome pool, and select the oneswith the best function value
within each tuple; this creates a selected chromosome pool of size less thanN.

• Randomly select a parent tuple (can bemore than two, and up to the entire selected pool).Merge the parents,
e.g. by selecting a random chromosome, and replacing each gene (coordinate of x i

0( ))with some probability p
by genes fromother chromosomes. Continue creating child chromosomes until the newpool reaches sizeN.

• Randomize child geneswithin each chromosome according to some randomness distribution  and
mutation probabilitym; a popular variant of which is called polynomialmutationwhere ~ 1 poly , which
introduces a stronger bias towards creating children close to their parents.

• Merge parent and child chromosome pool and selectN of thefittest candidates.

We use Pagmo’s standard implementation of a simple genetic algorithmwith polynomialmutation (SGE, [Sge]),
with parameters =s 2, =p 0.9 and =m 0.02.

AppendixH. Additional numerical data
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FigureH1.Training convergence of an artificial bee colony (ABC) algorithm implemented in pagmo,maximizing theCI of three
copies of the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones in
figure 7.
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FigureH2.Training convergence of an artificial bee colony (ABC) algorithm implemented in pagmo,maximizing theCI of four
copies of the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones in
figure 7.We remark that ABC seems to have troublesmoving beyond a localminimumaround the three-repetition codewith
CI=0.000 794 8 in all but the FF/Schmidt ansatz.
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FigureH3.Training convergence of a particle swarm (PSO) algorithm implemented in pagmo,maximizing theCI of three copies of
the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones infigure 7.
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FigureH4.Training convergence of a particle swarm (PSO) algorithm implemented in pagmo,maximizing theCI of four copies of
the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones infigure 7.
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FigureH5.Training convergence of a particle swarm (PSO) algorithm implemented inMATLAB,maximizing theCI of three copies
of the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones infigure 7.

FigureH6.Training convergence of a particle swarm (PSO) algorithm implemented inMATLAB,maximizing theCI of four copies of
the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones infigure 7.
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FigureH7.Training convergence of a simple genetic (SGE) algorithm implemented in pagmo,maximizing theCI of three copies of
the depolarizing channel p, with noise parameter =p 0.252 3. The network architectures are identical to the ones infigure 7.
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