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Abstract

Studies have shown that increasing the capacity of Heavy Goods Vehicles is one of the most
effective ways of reducing fuel consumption per tonne-kilometre of freight moved, with
consequent reductions in greenhouse and noxious emissions. Some of the disadvantages of
larger vehicles are more pronounced in urban environments, including safety of other road
users, and reduced manoeuvrability. This thesis discusses technologies for improving safety
of vulnerable road users, and frameworks for assessing the maximum size of urban freight
vehicles.

An overview of the freight industry is provided in Chapter 1, with a focus on maximising
capacity as a method for reducing emissions. Chapter 2 focusses on the safety of vulnerable
road users, through development of a camera-based detection system for cyclists, which
is essential for a predictive collision avoidance system. The proposed system is accurate
to within 10 cm at distances of greater than 1 m from the vehicle, but suffers from loss of
accuracy at close range, and in poor lighting conditions.

The logistics of urban freight operations are analysed in Chapter 3, including a comparison
between two supermarket home delivery operations, and an analysis of refuse collection
schedules. A framework is proposed for selecting an optimum vehicle size for a multi-
drop operation, given reductions in driving distance and time spent on other procedures. A
potential capacity increase of 80% is demonstrated, requiring a 50% reduction in driving
distance, and automation of certain procedures.

Chapters 4 to 6 propose a novel framework for assessing the optimum size of Heavy
Goods Vehicles, according to the limits of their manoeuvrability. This method is based on
simulation of vehicles attempting a library of real-world manoeuvres. Simulation models
are described in Chapter 4, and path planning algorithms in Chapter 5. The framework is
evaluated on three case studies: a 4.25 t grocery delivery vehicle, a 44 t articulated refuse
collection vehicle, and a 44 t general urban vehicle with rear axle steering. A range of
potential higher capacity vehicles are proposed in Chapter 6 for those applications

The impact of rear axle steering on manoeuvrability is also considered in detail in
Chapter 6. It is shown that the use of rear axle steering does not always allow the use of a
longer vehicle, because a rear axle steered vehicle cannot compromise between cut-in and



x

tailswing in the way a conventional vehicle can. However, the use of rear axle steering allows
reduction in both tyre wear and rear axle load limits, which permits greater vehicle fill before
rear axle loads are exceeded.

These results are compared, in Chapter 7, to an alternative method for modelling ma-
noeuvrability (Performance-Based Standards). Finally, Chapter 8 presents some concluding
remarks and recommendations for future work, including investigation of an improved cyclist
detection system fusing cameras and ultrasonic sensors, and increased development of the
manoeuvrability models to more accurately reflect real driving.
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Chapter 1

Introduction

1.1 Project Overview

1.1.1 Overview of the Road Freight Industry

As part of an international effort to tackle climate change, the UK government has committed
to reducing carbon emissions to net-zero by 2050 [6]. This figure is expected to limit
global average temperature increases to less than 1.5 ◦C, which is the predicted threshold for
dangerous levels of climate change. Achieving this ambitious target will require deep and
far-reaching emissions cuts across all sectors.

In the UK, according to 2017 data, the transport sector was responsible for 27% of
emissions, making it the largest emitting sector [1]. Figure 1.1 shows this information in a
graphic from the Department for Business, Energy and Industrial Strategy. Crucially, this
percentage is increasing. This is because other sectors are decarbonising faster. For example,
emissions from the energy sector, which comprised 24% of UK emissions in 2017 have
fallen by 60% relative to 1990 levels, whereas emissions from the freight sector have fallen
by just 2% over the same period. Attempts to decarbonise the sector are also hampered by
increased demand. Under the ‘business as usual’ assumption, international freight volumes
are expected to triple by 2050 [7].

Within the transport sector, 58% of emissions in 2014 came from cars and taxis [2].
However, the road freight system contributes much of the remainder, with 16% from Heavy
Goods Vehicles, and 15% from Vans (although some of these are service vehicles or personal
transport vehicles and therefore do not carry freight). This data is shown in Figure 1.2.

The following sections identify a number of interventions for reducing the emissions of
road freight vehicles.
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Fig. 1.1 Graphic showing contributions to emissions by sector [1]

1.1.2 Interventions for Reducing Road Freight Emissions

1.1.2.1 Alternative Energy Sources

Moving away from diesel powered vehicles is arguably the most efficient way to cut emissions.
However, the barriers to any alternative fuel are high. Several summaries of potential fuel
technologies exist [8, 9].

Gas-fuelled vehicles A variety of gas or dual-fuel (gas and diesel) vehicles are being
trialled. Overviews of gas-fuelled vehicle technology are provided by Khan et al., and Stettler
et al. noting significant barriers [10, 11]. The cost of the infrastructure required to supply
large quantities of gas at low temperatures and high pressures is significant, particularly due
to the inherent safety considerations which must be managed.

A popular option is the use of bio-gas, produced from anaerobic digestion of plant matter
(either specially grown or waste material). Bio-gas vehicles can reduce CO2 emissions
by 60 to 90% compared to the equivalent diesel vehicle, depending on the gas-production
technology used [8]. However, the quantity of bio-gas available in the UK is expected to
be insufficient for it to be the primary fuel source for the transport industry in the future,
due to the quantity of land required to grow source biomass, and the available quantities of
agricultural and food waste [12].
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Fig. 1.2 Breakdown of transport emissions by vehicle type [2]

Finally, although the CO2 emissions are lower than those of diesel vehicles, there are
concerns that gas-fuelled vehicles can suffer from methane-slip due to incomplete combustion
[13]. Additionally, methane, which contributes 30 times more to the greenhouse effect than
CO2 [14], can be vented to the atmosphere to avoid pressure build-up in storage tanks, or can
leak during handling and refuelling [11].

For these reasons, it is expected than gas-fuelled vehicles will provide a ‘bridging
technology’ while other technologies and infrastructures are developed [8].

Electrification A key method for reducing emissions is conversion of freight vehicles to
electricity. The significant argument against this is that generating electricity still produces
CO2 so electric vehicles are no ‘greener’ than those with diesel or petrol engines. However,
decarbonisation of the electricity grid is happening rapidly (in the UK at least) with a 90%
drop in carbon emissions from the electricity sector by 2050 required to meet UK targets
[15]. Nicolaides, Cebon and Miles analysed a number of options for electrification of road
freight and predicted that electric freight vehicles would generate approximately the same
well-to-wheel greenhouse gas emissions as an equivalent diesel vehicle in 2016 [16]. By 2030
however, decarbonisation of the electricity grid will result in a 25% drop in the greenhouse
gas emissions generated by electric vehicles.

In addition, diesel fuel burnt in city centres contributes to lower air quality—Transport
for London reports that London is in breach of legal limits for NO2, attributing 4,300 deaths
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per year in London to poor air quality [17]. The London Ultra Low Emission Zone is a policy
similar to the congestion charge and covering the same area, to charge any vehicles which do
not meet strict noxious and greenhouse gas emissions standards. Electric freight vehicles
would naturally pass these restrictions, saving money for operators. Although the production
of electricity from fossil fuels still generates noxious emissions, this occurs at power stations
outside city centres, thus limiting impact on urban air quality and therefore public health.

The noise reduction due to electrification allows for the possibility of out of hours
operation. During the London 2012 Olympic games, companies were encouraged to move
deliveries outside of normal hours to reduce traffic congestion during the day [18]. Removing
heavy vehicles from the roads during the daytime also reduced accidents as there were fewer
people around which goods vehicles were operating. This policy was considered successful
enough to be continued after the games.

The main technological barrier to electric vehicles is the prohibitive weight of batteries.
Using smaller batteries reduces weight, but limits the range of the vehicles. Attempting
to increase the payload of the vehicle increases the required battery size, which means the
increase in load capacity is small. Electrification is most suited to small vans and trucks
which have a small operating range and an urban drive cycle (low speed, with lots of starts
and stops) [19]. Electrification has the significant added advantages for urban operations of
zero noxious ‘tailpipe’ emissions and very low noise.

Possibilities for the electrification of long-haul, heavy trucks are being investigated [16].
Until battery capacity improves, the most promising solution is a ‘charge-on-the-move’
system, such as overhead cables to draw electricity from, inductive pads under the road for
wireless charging, or an electrified track in the middle of the road [20–23]. Such a system
requires significant investment in infrastructure, and a strong business case to encourage
investment in specialised vehicles by fleet operators.

There have been numerous trials of electric vehicles in city centres [24–27], but none
have used purely electric heavy trucks (10 t or more) for the reasons described above.

1.1.2.2 Vehicle Interventions

At the other end of the scale sit a group of interventions for which the barriers to adoption
are much smaller, but the benefits in terms of carbon savings are correspondingly smaller.

Retro-fit Technologies Many solutions can be retro-fitted to existing vehicles. Examples
include low rolling resistance tyres, aerodynamics packages for the front, rear, side or
underbody of the vehicle, lower viscosity engine lubricants, and light-weighting. Odhams
et al. summarise the fuel consumption benefits of some of these interventions, estimating
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benefits of 6% from low rolling resistance tyres, 8% from aerodynamics at highway speeds,
and 5% from improved transmission efficiency [28]. Galos et al. suggested that reducing
trailer weight by 30% could reduce the mass energy consumption per tonne km by 13% [29].

Driver Training One often overlooked intervention is ‘eco-driver’ training. It is estimated
that improving driver behaviour could reduce fuel use by as much as 6% according to Beusen
et al. [30]. It was acknowledged however, that 40% of participants in this study had already
been working to improve their driving style before taking the course.

This reduction comes at very low cost. Training drivers to spend more time in cruise
control, minimise harsh acceleration and braking, and travel at lower speed where applicable,
if successful, will reduce fuel consumption. However, it is necessary to ensure that training
is effective, and the effects long-lasting. Beusen et al. monitored results for four months after
a training course and found that some drivers had already returned to their original driving
style, despite initial benefits [30]. Research programs are now attempting to understand
driver behaviour and investigating effective training and long-term feedback methods for
drivers [31–33].

Autonomous Vehicles Autonomous vehicles are a popular topic for discussion in the road
transport sector. The benefits in terms of operating costs are substantial, since the driver
can constitute 27-42% of a vehicle’s operating costs (data from Germany, the UK, and
the US) [34]. There are also societal benefits such as the potential for reduced accidents
[35]. The benefit of autonomous driving for emissions is only partly due to the autonomous
functionality. Emissions savings from applying autonomy are comparable to the emissions
savings from encouraging ‘perfect eco-driver’ behaviour, plus the possibility of carrying a
greater payload due to the absence of cab and driver. Additional benefits could arise from
additional logistical flexibility available in autonomous operations, and from the ability to
create connected systems of vehicles (particularly in urban areas) which can collaborate to
reduce congestion, thus reducing emissions [35]. The technical and legislative barriers to this
technology are high, therefore autonomous systems are unlikely to be a practical solution in
the time-frame required to meet emissions objectives.

Platooning Similarly, while platooning—controlling the speed of HGVs to follow each
other closely enough to provide aerodynamic benefits—yields some benefits for fuel economy
(5-7% at 70 kmh−1) [36], the barriers are equally high [37]. In this case, an additional barrier
is the business case for such systems, specifically that the driver is still needed when the
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vehicle leaves the platoon, so the benefits are small compared to the additional costs of
developing and implementing the technology.

1.1.2.3 Logistics Interventions

The goal of the above vehicle interventions is to reduce the fuel consumption per tonne-km
of freight moved, but it is also important to consider means for reducing the total distance
travelled to transport a given amount of freight. These methods are broadly labelled logistics
interventions, and fall loosely into two categories—measures with low barriers to adoption
but relatively limited benefits, and major projects which completely redefine the logistics
network, and could reduce fuel consumption significantly, but require large initial investment
or some form of legislative assistance [38].

Reduce Demand The most effective approach is to reduce demand. However this is
difficult due to current consumer attitudes and the reluctance of operators to risk market
share by upsetting those consumers [39]. For example most online clothing retailers offer
a free returns service, which can encourage consumers to buy in large quantities with the
intention of returning the majority.

Additionally, demand for high-speed delivery from both end-users and manufacturers
forces distributors to compromise on efficiency in favour of service. Vehicles are required to
run half full in order to meet their delivery time slots. If customer service time requirements
could be reduced, fewer vehicles with greater fill could be used instead.

Simple Interventions McKinnon et al. provide an overview of logistics interventions for
reducing carbon emissions and many of the other negative externalities associated with road
freight [38]. Simple interventions include better routing, and increasing vehicle fill. The first
of these is intended to limit unnecessary distance travelled, and the second to make sure that
the fuel cost per tonne-km is minimised.

For urban delivery vehicles, one suggested solution is to increase the size of delivery
windows. It has been shown that even a small relaxation in delivery time can have a large
impact on fuel saving due to increased efficiency of the route (i.e. the number of times the
vehicle has to return to an area it visited previously is reduced). Campbell and Savelsbergh
found that the expansion of one-hour time windows to two hours increases profits by more
than 6% [40]. In the extreme, completely flexible, unattended deliveries could reduce costs
by up to 33% compared to 2-hour delivery windows [41].
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Collaboration Collaboration between carriers can help them keep pace with increasing
demand for variety of product, delivered in a short time frame [42]. Research by Palmer et
al. has shown that collaboration can reduce empty running and reduce carbon emissions per
delivery by as much as 46% [43]. One reason this is not more common is the reluctance of
operators to share data with competitors which would allow them to collaborate. Additionally
the structures required to allow operators to share costs fairly are often not in place [44].

Consolidation Centres A possible solution to the reluctance to collaborate is the idea
of consolidation centres, which are typically used at the edge of urban areas to combine
incoming shipments into as few deliveries as possible. Users can pay a fee giving them
access to inventory space and vehicles. Final delivery into the city centre is provided as a
service by a single operator with optimised vehicles. A more detailed description is given by
Allen et al. [45]. The primary barrier to these centres is the high up-front cost, and making
the business case for users [46]. It has been recommended that city councils or other funding
bodies could provided the initial investment to encourage such projects, which could then
become financially self-sustained [47].

An example is the Bristol-Bath consolidation centre, which was largely funded by EU
grants [48]. Because of the high capital cost of the centre, a high participation rate of locally
operating companies is required—quoted as 70% uptake by Lewis et al. in a report for
the Department for Transport [49]. Ways for local government to incentivise companies
were discussed by Marcucci et al. [50], including fully funding the consolidation centres,
increasing delivery permit costs in the city, and increasing delivery windows offered by the
centre. Marcucci et al. estimate the maximum achievable market share, with incentives, to
be 50%, without direct regulatory intervention.

Two examples of urban consolidation centres can be found in Monaco and London. In
Monaco, large trucks are banned from the city centre, and all goods must pass through the
city consolidation centre [51]. A trial of a consolidation centre in central London used light
electric vehicles for last-mile delivery, reducing CO2 emissions per parcel by up to 50%
[24, 25].

An additional benefit of consolidation centres is to consumers, who can receive all their
deliveries together instead of multiple deliveries from different couriers.

Third-Party Logistics Freight consolidation can be applied in a variety of different ways,
allowing operators to effectively benefit from increased economies of scale. However,
consolidation of a single operator’s freight is often impractical, and consolidation between
multiple operators can be limited by the reluctance of operators to communicate effectively
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with their competitors. A solution to these limitations is the use of third-party logistics
solutions, whereby logistics are provided by an external company to one or more fleet
operators. This solution leads to increased quantities of freight making any given journey,
thus permitting larger vehicles and thus reduced fleet emissions. The use of a third party
eliminates the perceived risk to companies of communicating with their competitors.

This approach is particularly relevant to parcel deliveries, since the quantities of parcels
carried on one vehicle are typically high (sometimes more than 100). This means that in order
to fill a larger vehicle it often requires the parcels of more than one company. Additionally,
current parcel delivery windows are often wide (either a day or half-day) such that less
careful route planning is required.

In contrast, grocery delivery systems rarely use third-party logistics providers. Because
a typical home grocery delivery is much larger in terms of mass and volume than a typical
parcel delivery, the benefits are reduced. Also, grocery delivery services usually offer very
narrow delivery windows (within one hour) which would require a complex route plan to be
implemented by the logistics provider.

Physical Internet An extension of the consolidation concept is the ‘physical internet’,
through which all freight travels in modular containers, allowing almost perfect consolidation
into larger units [52]. Freight travels from its destination to the trunk network in small units,
then is consolidated into larger units for the long-haul portion of the journey and back to
small units for the last mile. This ensures that any given unit of freight makes as much of its
journey as possible in the largest, most efficient vehicle possible. An overview of the concept
of the physical internet is given by Montreuil, including a description of the implications
of this system and the research requirements for future development . In particular, the
difficulties of the transition from conventional logistics systems to the centralised physical
internet are discussed, and suitable intermediate strategies are proposed [52].

Last Mile Solutions A common research focus is the optimum mode of transport for
the ‘last mile’. The use of bicycles to transport goods in urban areas is becoming more
widespread as operators look to reduce costs compared to standard goods vehicles. The
obvious disadvantage of this is the lack of load capacity. This makes them suitable for small
parcel deliveries, but irrelevant for large deliveries such as construction material, and of
limited use for home delivery of groceries. It is estimated that in European cities, around
25% of city centre freight could be transported by bicycle [53]. Gruber et al. analysed the
potential barriers to cargo cyclist use and found that suitable cyclist infrastructure (such as
drop-kerbs) was vital [54].
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Transporting freight by bicycle has the effect of reducing noise and emissions effectively
to zero. However, there are social concerns, including the safety of riders. The effect of
increasing the number of cyclists (often carrying wide cargo boxes) on congestion is unclear.
It is not necessarily the case that this mode shift would reduce congestion (although it seems
likely) and no research has been found in this area. The advantages and disadvantages
of cycle freight are reviewed in more detail by the CycleLogistics consortium [55]. The
CycleLogistics report also includes details of a project intended to persuade consumers to do
their own shopping by bicycle.

An article by Schliwa et al. reviewed a number of studies on the use of cycles (including
some on electric powered cycles) which in general found that cargo cycles could be a ‘viable
solution’ for goods transport in urban centres (provided drop density is high) [56].

Some operators have attempted to combine bicycles and larger vehicles in their fleets,
including ‘Hub and Spoke Models’, where larger vehicles as a ‘micro-hubs’ for cargo bike
deliveries to operate from [57]. A number of successful delivery companies have been
formed based purely around bicycle delivery. A successful case study is Outspoken [58],
operating in Cambridge, a city which has an ‘established cycle culture’ [56]. This may have
contributed to lower entry barriers. Outspoken, along with two other case studies described
by Schliwa et al., services one major client in the parcel delivery sector [56].

Light electric trucks provide a potential means to transport goods too large for bicycle
delivery. However, the cost structure for these vehicles is often poorly understood, since the
initial purchase cost tends to be higher than conventional diesel vehicles, but operating costs
are often lower [59]. Lebeau et al. showed that while electric vehicles can be cost effective
compared to diesel vehicles, the comparison is very sensitive to factors such as future energy
costs and government support [59].

A crossover between light goods vehicles and bicycles is electric cargo bicycles, which
combine the flexibility of bicycles with a slight increase in cargo capacity (and decrease in
driver effort) due to small electric motors [53, 54].

1.1.2.4 Increase Capacity

Research has shown that one of the best methods to reduce emissions from the road freight
sector is to use higher capacity vehicles [28, 60–62]. In general, the payload mass as
a percentage of gross vehicle mass increases as the gross vehicle mass increases [28].
For example, for a 3.5 t van, the payload percentage by mass is typically less than 30%
(approximately 1 t). For a large rigid (26 t gross vehicle mass) the percentage is often 60%,
and for a long combination vehicle can be as high as 70%. Although any given larger vehicle
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consumes more fuel than an equivalent smaller vehicle, the number of vehicles required to
move a given pool of freight is less, thus the fleet fuel economy is better.

There are barriers to higher capacity vehicles, particularly in urban environments. These
are discussed in more detail in Section 1.1.3.3. The biggest barriers to higher capacity
vehicles on the highways are manoeuvrability, braking performance, and legislative barriers
(for example ensuring that the vehicle can still pass the standard UK roundabout test [63]).

1.1.3 Overview of the Urban Freight Sector

1.1.3.1 Global Urbanisation

The proportion of the world’s population living in urban areas is increasing rapidly. The
exact figure depends on the definition of an urban area, which varies significantly between
countries, and thus is very difficult to produce. For example by Swedish census methodology,
200 people is considered an urban settlement, whereas in Mali, the minimum is 40,000 [64]).
It is widely accepted that more than half of the global population is living in towns or cities,
up from 30% in the 1950s [65]. That percentage is expected to rise to 85% by 2050 [66]. In
total this corresponds to 3.9 billion people living in urban areas worldwide today, up from
just 746 million in 1950. By 2050, an additional 2.5 billion people are expected to be living
in towns and cities. This figure is made up of a combination of both population growth and
rural to urban migration.

The gap between the developing and developed countries must also be considered. In the
UK, the urban proportion of the population (which had been steadily just under 80% since the
1950s) is now at 82% and expected to reach nearly 90% by 2050, a pattern which is repeated
across other developed countries [65, 67]. However, despite the lower proportions of urban
residents in developing countries, the absolute numbers are higher. Asia alone contributes
more than 50% of the world’s urban population, whereas Europe contributes just 14%. In
terms of growth, the urbanisation process is happening fastest in Africa and Asia (these two
continents are expected to generate more than 90% of the increase). India, China and Nigeria
alone are predicted to account for 37% of urban population growth by 2050 [65].

An additional distinction is the size of the cities. Of the world’s population, only one
eighth live in so-called ‘mega-cities’, with more than 10 million inhabitants [65] (of which
there are 28 worldwide). By contrast, more than half live in towns or cities with a population
of less than 500,000. Whereas in 1950 the majority of the world’s largest cities were found
in developed countries, most mega-cities now are found in developing countries. The fastest-
growing type of city is mid-sized cities in Africa and Asia, with between 500,000 and 1
million inhabitants [65].
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1.1.3.2 Impacts of Urban Freight

High population density creates a number of challenges for providers of goods and services to
those populations, which will only increase as the world’s population becomes increasingly
urban [68]. Transporting goods into and waste out of city centres must be done by road in
almost every case, which generates a high volume of vehicles on the roads, both personal
and commercial. This usually contributes significantly to congestion, and causes additional
problems such as high noise levels, risks for vulnerable road users and greenhouse and
noxious gas emissions [68].

Managing urban freight activities can be a complex task, as there are many competing
goals to be balanced [69, 70]. These include national authorities seeking to limit Greenhouse
Gas emissions; local authorities looking to manage congestion, noise and air quality emis-
sions; operators attempting to minimise costs; residents avoiding noise (particularly outside
of working hours), and all parties wishing to improve safety.

McKinnon et al. refer to the concept of negative externalities associated with road freight
[38]. These can be considered the ‘non-financial costs’ of moving freight on the roads. For
example the effect on public health of reduced air quality due to freight vehicles in urban
areas is a negative externality. (In this case, there is a financial cost, but it is borne by the
health service, rather than the freight industry.)

The externalities of road freight in urban centres are different to those on long-haul
routes. First, noise pollution becomes a much more significant factor when there are people
around to hear it [71]. Secondly, while greenhouse emissions are a negative externality for
all freight vehicles, noxious emissions are only really a problem in densely populated areas
[72]. Thirdly, congestion is a serious negative impact of increased freight vehicle traffic on
urban routes [28]. Finally, there is the risk of damage to infrastructure, or collisions with
vulnerable road users [73, 74].

One additional difference between long-haul and urban driving is that drive-cycles in
city centres are much lower average speeds, and include a lot more starting and stopping
[75, 28]. This makes them ideal candidates for electrification, but in the short term means
that the fuel economy and therefore emissions statistics are poorer for urban vehicles than
long-haul vehicles.

A simple approach to reducing the negative externalities associated with urban road
use is to reduce the number of vehicles on the roads. As well as reducing emissions and
noise and improving safety, this would also reduce congestion, which has a further effect
on emissions, since vehicles spend less time stationary [28]. Treiber at al. [76] showed that
reducing congestion can inherently reduce vehicle emissions by up to 80% in extreme cases,
simply by reducing the length of time vehicles spend on the road idling.
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1.1.3.3 Barriers to Higher Capacity Urban Vehicles

There are a number of pressures or perceived pressures limiting the size of current urban
vehicles.

Negative public perception Negative public perception of heavy goods vehicles has lead
to strict legislative controls, and reluctance of operators to switch towards larger vehicles.
Larger vehicles are generally seen as being more polluting, and more likely to cause damage
to structures or to cause accidents involving vulnerable road users [77]. In fact, research into
Long Combination Vehicles by Woodroffe showed that larger vehicles are often safer, due to
the fact that fewer of them are required, and that operators tend to use their best drivers for
their biggest vehicles [78].

Woodroffe’s study showed that the crash rate of Long Combination Vehicles operating
under a special permit in Alberta was five times less than standard tractor semi-trailers on
the same roads [78]. This was partly attributed to the special permit required to operate the
vehicles. A report for the Department of Transport in the UK evaluating the trial of longer
semi-trailers showed a 70% drop in accidents on a per-km basis for longer semi-trailers
compared to standard semi-trailers [79]. Similar results have been observed in the RTMS
programme in South Africa [80], and for higher capacity vehicles in Australia [81].

Increasing capacity of freight vehicles will lead to some decrease in traffic congestion
[82]. This can be attributed to the reduced number of vehicles required for a given freight
task, despite a marginal increase in length per vehicle.

Legislative limits An important barrier to higher capacity vehicles for urban delivery
applications is the UK definition of a Light Goods Vehicle (LGV), which must have a Gross
Vehicle Weight (GVW) of less than 3.5 t. Consequently vehicles weighing less than 3.5 t do
not require drivers to hold an HGV license, or follow HGV driver shift length rules, or the
vehicle to be fitted with a tachograph [83]. These would increase operating costs significantly,
making it uneconomical to use a vehicle larger than 3.5 t unless a significantly larger vehicle
was feasible.

As a response to recent consultation with operator associations, the Department for
Transport has relaxed this limit for ‘alternatively-fuelled’ vehicles to 4.25 t [84]. This is
intended to mitigate the payload penalty caused by the increased weight of alternative
power-trains, such as battery weight.

For larger vehicles such as tractor semi-trailers, the maximum dimensions are set by the
standard roundabout test [63]. To pass, the vehicle must be able to turn through 360° without
exceeding an outer radius of 12.5 m, or an inner radius of 5.3 m.
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Manoeuvrability If larger vehicles are required to access the same roads as smaller ve-
hicles, then any given vehicle is more likely to cause damage to infrastructure or accident
involving other road users, due to the manoeuvrability penalty of being larger [5]. Vehicles
with a larger wheelbase have a wider turning circle and so require more space to turn. Ve-
hicles with a longer overall length and therefore longer overhangs from the front and rear
wheels have larger ‘frontswing’ and ‘tailswing’, thus can collide with obstacles. These effects
will be described in more detail in the following chapters.

Vehicle fill and driver workload Since using a single, larger vehicle instead of a single,
smaller one for a given route causes higher fuel consumption, it is clear that unless the larger
vehicle can be filled, the smaller vehicle is the more suitable. In other words, if a larger
vehicle is not carrying more freight than a smaller vehicle, then the smaller vehicle should be
used instead. For some logistics operations a fleet of larger vehicles is less efficient.

Similarly, for operations where increasing capacity means increasing the number of
vehicle stops (such as home delivery) rather than the size of each drop, the length of time
required to make all the deliveries from a larger vehicle could exceed a sensible driver shift
length. This would then incur additional costs of returning to base to swap drivers (in which
case the vehicle could be reloaded anyway) or arranging for drivers to meet out on the route.
Therefore it is necessary to match the size of vehicles to the number of deliveries that can be
completed in a single shift.

1.1.4 Project Motivation

The literature reviewed in the Section 1.1.2.4 sets out supporting evidence for improving
the efficiency of road vehicles by increasing their capacity. However, for any specific
application, there are practical considerations to be addressed before this strategy can be
applied successfully. Possible reasons why this might not be the case fit into two categories:
‘cargo constraints’, and ‘route constraints’, a set of which are presented in Table 1.1. This list
is not exhaustive.

Cargo constraints are concerned with ensuring that the cargo is appropriate for the vehicle.
The vehicle must have sufficient mass and volume capacity to transport the required freight,
and must be able to provide refrigeration for fresh produce, and sufficient suspension cush-
ioning for delicate produce. Additionally, the load space must be of a shape to accommodate
the freight—for example a short vehicle cannot carry long, thin goods. A less-considered
constraint is inefficiency due to under-utilisation of the vehicle—using a vehicle which is too
large for the quantity of freight to be transported generates more emissions than a smaller
vehicle. There are many applications where the freight operator does not have enough freight
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Table 1.1 Constraints on choice of vehicle for freight task

Cargo Constraints Route Constraints

Mass Limit Vehicle Range
Volume Limit Delivery Windows
Under-utilization Manoeuvrability
Cargo Cushioning Driver Shift Length
Cargo Refrigeration Perishable Produce
Cargo Shape Safety of Vulnerable Road Users

making a particular journey at a particular time to fill a bigger vehicle, or where the most
efficient fleet is made up of smaller vehicles rather than larger vehicles running partially full.

Route constraints refer to selection of a vehicle which is able to complete the required
route. The simplest of these is the manoeuvrability constraint, which requires the vehicle to
be able to physically fit through narrow gaps or round tight corners. Other considerations
include the vehicle’s range (which is particularly important for electric vehicles), whether
the vehicle can complete a route timed to achieve all required delivery windows, and whether
the vehicle’s route can be completed within the length of a standard driver shift.

Many of the constraints from Table 1.1 are highly interconnected and require an under-
standing of the full logistics system to analyse. For example, increasing the length of delivery
windows could cause higher utilisation factors for vehicles, since routes will be more efficient
and thus more deliveries can be completed without exceeding the vehicle’s maximum range.
Modelling of the full logistics system was beyond the scope of this work. Two constraints
which could be modelled in isolation were the limit on manoeuvrability, and the limit on
driver shift length. A need was identified for a method for analysing both of these constraints.

Both of these analyses will be applied to each of the three case studies described in
Section 1.2. The first, analysis of driver shift length constraints, will be the focus of Chapter 3.
The second, analysis of manoeuvrability constraints, will be the focus of Chapters 4 to 6.

This work is intended to develop enabling methods and technologies to improve the
viability of higher capacity vehicles in urban environments, covering the topics of safety,
driver workload, and manoeuvrability.

1.2 Case studies

In order to evaluate the methods described in Chapters 3 to 7, three urban freight case studies
were selected. These case studies were home delivery of groceries, domestic refuse collection,
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and urban store delivery vehicles. This section describes the motivation for selection of
these case studies, and an overview of the currently used systems. There were a number of
other plausible case studies, including parcel delivery, construction freight, other municipal
vehicles such as ambulances and fire engines, and buses. The following sections provide
evidence that the greatest benefits to urban emissions can be found from the grocery delivery
and refuse collection sectors. The third case study, urban store delivery, is provided as a
less specific application, intended to demonstrate the wider applicability of the methods
described.

1.2.1 Case Study A: Home Delivery of Groceries

1.2.1.1 Motivation

It is difficult to quantify the contribution of grocery shopping to carbon emissions for several
reasons. First, the majority of grocery shopping is done in personal vehicles, for which no
loading records are kept, thus making it difficult to track metrics such as tonne-kilometres
for the freight being carried. Secondly, much grocery shopping is done as part of journeys
which would have occurred anyway, for example on the way home from work. This is known
as ‘Journey Chaining’. Thirdly, ‘shopping’ is generally considered both by researchers
and consumers to cover both groceries and all other goods, and specific figures for grocery
shopping are rarely kept separately. In addition, the effect of grocery shopping on traffic
congestion can be significant, thus inflating the emissions of each vehicle. Peak hours at
grocery stores typically match morning and evening rush hours on the roads. However, there
are some approaches to estimating the effects of grocery shopping on carbon emissions.

Of all the freight being moved in the UK, the most prevalent is food products, comprising
22% of all goods moved by UK-registered HGVs, totalling 30.3 billion tonne-km [85]. This
was shown by a survey by the UK Department for Transport (DfT), which considered goods
movement by HGVs, although the survey was not limited to cities.

An alternative approach is to consider goods movement from the point of view of
households. This takes into account the last mile emissions by car, which are ignored in
most freight statistics. Movement of goods by car is rarely measured in tonne-kms, making it
difficult to definitively estimate emissions. However, a good approximation can be found by
analysing the components of household spending. The Office for National Statistics (ONS)
reported that 11% of household spending was on food and non-alcoholic drinks – the fourth
largest category behind transport, housing and recreation [86]. When other goods which
might be bought on a grocery shopping trip (such as toiletries and alcohol) are included, the
percentage of spending rises to 17%.
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It has been shown that emissions generated by the last mile are significant compared to
the rest of the distribution chain. Browne et al. considered the movement of jeans, finding
that a short shopping trip by car could generate as much CO2 as the rest of the transportation
chain [87]. These findings were replicated by Browne et al. for the case of the supply chain
of fruit and vegetables [88], by Jespersen for rye bread [89] and by Weber et al. for USB
flash drives [90]. This supports the case for investigating the consumer end of the supply
chain for impacting carbon emissions of the freight system.

A study by Edwards, McKinnon and Cullinane compared ‘last mile’ carbon emissions
between passenger cars and small delivery vans [91]. The focus of the study was small,
non-food items. It found that a ‘home delivery operation is likely to generate less CO2 than
the typical shopping trip’.

None of the approaches described above shows conclusively that grocery items are
the single largest contributor to urban emissions. However, the literature does provide a
compelling argument for focussing on them in order to make a significant impact on urban
emissions. Siikavirta et al. estimate that the potential reduction in emissions associated
with grocery shopping could be as high as 87% compared to consumers going to the store
themselves [92]. Using higher capacity delivery vehicles could reduce the emissions further
by requiring fewer vehicles.

1.2.1.2 Current Systems

Although there are subtle differences between the methods used by different retailers for
home delivery of groceries, informal interviews with management and staff at three different
supermarkets revealed that the underlying methods are similar. Retailers use large outlets,
often on the edges of town, as distribution centres for their home delivery operations. Staff
pick products from the shelves, according to computer controlled order lists (the approach to
assigning products to staff is one of the variations between supermarkets) into small crates
known as ‘totes’. The totes are labelled with barcodes, so that the computer retains a record
of the contents and therefore weight of each tote.

The totes are stacked into 3.5 t home delivery vans by the driver. The supermarkets
have different internal vehicle layouts. For example, some vans are accessed by a side
panel, whereas other vehicles are accessed through the rear (Figures 1.3a and 1.3b). Most
supermarkets use racks to slide the totes to the back, but some have no racking and use
stackable totes in piles of four or five. Once the vehicle is loaded with the deliveries scheduled
for that shift by the central computer, the computer reports the total weight of the vehicle,
alerting the driver to any overloading.
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(a) Side-accessed vehicle (b) Rear-accessed vehicle

Fig. 1.3 Interior layout of home delivery vehicles from two supermarkets (Photo Credit:
Alamy)

All retailers interviewed for this work offer one-hour delivery slots. Usually the route
planning software allows sufficient time to reach the correct destination. There are however a
number of sources of delay such as congestion, or a particularly slow delivery, which could
lead to deliveries arriving outside the target window. Drivers sometimes arrive ahead of
schedule, requiring them to sit and wait, sometimes for up to an hour. In some cases drivers
are permitted to phone ahead to ask for permission to deliver early, but some retailers do not
allow this, and sometimes the customer is not available anyway.

Delivery methods are very similar between retailers. The driver unpacks the totes from
the van, onto a sack-barrow if there are more than two totes, and takes them to the door. Most
supermarkets offer the option for customers to ask drivers to enter the house to unload the
totes in the kitchen, but some customers prefer to unload the totes in the doorway. The driver
then repacks the empty totes and sack-barrow in the vehicle.

All the supermarkets surveyed require the driver to do some form of paperwork at each
delivery. Most require the driver to scan the barcodes on every tote offloaded from the vehicle,
as a check against delivery errors. Additionally, most require the drivers to ‘sign off’ on the
delivery using some form of hand-held device.

1.2.2 Case Study B: Refuse Collection

1.2.2.1 Motivation

Waste generation has risen steadily for the last three decades, both as a consequence of
increasing populations, and a rising waste rate per capita [93]. In the UK, the total Municipal
Solid Waste (MSW) generated is approximately 32 million tonnes per year [94], growing
at a rate of up to 7% per year [95]. The majority of this waste is collected by diesel Refuse
Collection Vehicles, with an average fuel economy of less than 3 miles per gallon [93]. In
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Fig. 1.4 Example Refuse Collection Vehicle (Photo Credit: Veolia)

a case study in Malmo, Sweden, Refuse Collection Vehicles were estimated to account for
10-15% of total freight transportation by volume in the city (but with a higher than average
impact on congestion, noise, and noxious emissions due to the stop-start nature of operations)
[96].

Research into refuse collection tends to focus on one of two things: the choice of power
source for the vehicles, or planning of the most efficient routes. The former has generated
several studies comparing the day-to-day and lifetime emissions of existing diesel vehicles to
alternatively fuelled vehicles, including Compressed Natural Gas [97], hybrid hydraulic [98],
and electric vehicles [99]. Studies on the latter include Bodner [100], Bhat [101], Baptista
et al. [102], and Tung and Pinnoi [103] amongst many others. Most of these investigate a
specific city as a case study.

There is a gap in the literature covering analysis of the optimum size of refuse collection
vehicles.

1.2.2.2 Current Systems

Refuse Collection Vehicles, such as the one shown in Figure 1.4, present an interesting
challenge for vehicle design due to the mass and size of the systems required to lift and
compact the collected waste. Current vehicles in the UK mount this equipment on the back
of the vehicle, behind the rear axle. This leads to high rear axle loads, and also to large
tailswing, which is a risk for other road users and infrastructure (tailswing is defined in more
detail in Chapters 4 to 6).
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The Refuse Collection drive cycle varies according to the specific application. For
example trade waste collection requires fewer stops than domestic waste, but a greater mass
of waste at each collection. The general cycle involves driving from the refuse collection
depot to the urban area, then a large number of accelerations and decelerations, as the vehicle
moves between collections. Finally the vehicle returns to the depot. Some duty cycles involve
more than one such trip.

1.2.3 Case Study C: Convenience Store Restocking

1.2.3.1 Motivation

Section 1.1.3.2 describes the negative impacts of Heavy Goods Vehicles in an urban envi-
ronment. However, HGVs are a necessity in city centres to distribute goods to city centre
stores. The type and dimensions of HGVs used very between operators. Holguin-Veras et al.
commented on the lack of consideration in the literature of the social impacts of different
HGV sizes [62], and no research was found relating to methods for choosing the optimum
vehicle for a given task.

1.2.3.2 Current Systems

Whereas edge-of-town supermarkets generally have lots of available space for large vehicles
arriving from the trunk network to be unloaded, convenience stores and other stores in city
centres have limited space for vehicle parking, and the roads leading to them are often narrow
and congested. A description of stock management for convenience stores was presented by
Smaros [104]. There are two approaches to restocking convenience stores. One option is
to restock the store from an out-of-town distribution centre managed by the same retailer.
This allows the retailer to retain control over the supply chain, and group deliveries in the
most efficient way. The other approach is for suppliers to deliver to the convenience store
directly. This can reduce vehicle kilometres travelled, since one supplier can deliver to
several retailers, but it limits the retailer’s control over timing of deliveries. Most retailers
use a combination of the two approaches, depending on the products.

The second constraint for city centre deliveries is the stock space available at the store.
This means that stock cannot be stored off the shelves, necessitating regular, small deliveries,
timed to arrive when the shelves are empty. For fresh produce this can require several
deliveries per day [104].

Retailers who elect to supply city centre stores directly from distribution centres are
likely to find little benefit from increasing the size of vehicles, since the vehicles used can be
expected to be sized appropriately to the stock requirements of the store. However, operators
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(a) 7.5 t truck
(b) Urban semi-trailer

Fig. 1.5 Two vehicles commonly used for delivery to city centre stores (Photo Credit:
Workhorse)

who supply a number of convenience stores could find fuel and emissions reductions by
using larger vehicles to deliver to an increased number of stores before having to return to
their distribution centre.

A wide range of vehicle configurations are used by different operators for delivery to city
centres, ranging from 7.5 t trucks (Figure 1.5a) to urban semi-trailer units (Figure 1.5b), or
occasionally full semi-trailers.

1.3 Thesis Outline

One of the largest obstacles to widespread use of larger, heavier vehicles is the public
perception of increased safety risks associated with them. Chapter 2 describes technology
intended to reduce the risk of incidents involving vulnerable road users, thus lowering the
barriers to adoption caused by public perception. It presents a camera configuration and
associated algorithm designed to detect and predict the motion of cyclist relative to the side
of heavy goods vehicles. This technology is relevant to vehicles currently in common use, as
well as higher capacity vehicles.

Chapter 3 investigates the number of deliveries performed during an 8 hour shift of 3.5 t
home delivery vans run by two supermarkets. It determines the operational changes needed
for drivers to be able to empty 4.25 t vans in the same time.

Chapters 4 to 6 approach finding the the upper bound on vehicle size from the point of
view of manoeuvrability, since the vehicles will still be required to access the same delivery
locations as the smaller vehicles they replace. The industry approach of specifying the
steady-state turning circle radius was considered insufficient. A method is presented for
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assessing potential capacity improvements without reducing access. Chapter 7 presents a
comparison between this method and the Performance-Based Standards method proposed by
Isted et al. which is based on a number of standardised manoeuvres [5]. The impact of rear
axle steering as an intervention to improve manoeuvrability is also assessed across these four
chapters.

A set of conclusions and some recommendations for further work are presented in
Chapter 8.

1.4 Summary

Higher Capacity Vehicles have been demonstrated to provide reductions in emissions and
fuel consumption. This is because fewer vehicles are required to move a given pool of
freight, although each individual vehicle may generate slightly higher emissions. However,
this assumes that the vehicles can be completely filled, which is not necessarily the case.
This thesis will investigate methods to enable use of higher capacity vehicles in urban
environments, for the purposes of improving fuel efficiency, thereby reducing emissions from
the road freight transport sector and mitigating climate change. This will be approached
from three perspectives: the safety of vulnerable road users, operational limits due to driver
workload, and physical limits due to vehicle manoeuvrability.





Chapter 2

Cyclist Detection

A preliminary version of the work in this chapter was submitted as a thesis towards the degree
of Master of Engineering at the University of Cambridge in 2015 [105], and published as a
journal article in 2019 [106].

2.1 Introduction and Literature Review

2.1.1 Motivation

In Britain in 2013 there were more than 19,000 road accidents involving cyclists, including
more than 100 fatalities [107]. This represents 11% of all road casualties, despite cyclists
only accounting for 1% of total traffic. Heavy Goods Vehicles (HGVs) accounted for 23%
of cyclist deaths, despite representing only 5% of total road traffic. There is a clear need
to address safety issues of cyclist-HGV interactions on UK roads. Figure 2.1 shows a
breakdown of cyclist-HGV accidents by configuration during 2006-2008. 43% of accidents
occurred when the HGV turned left across the path of the cyclist. This can be attributed
to two primary causes: the large blind-spot in this area next to the HGV, and the cut-in
behaviour exhibited by HGVs by virtue of their long wheelbase.

The relevance of this particular scenario is further supported by a detailed analysis of
19 fatal cycling accidents involving left-turning HGVs in the UK by Jia [108]. Two of the
accidents occurred at roundabouts and 17 at road junctions, mostly with traffic lights. In
15 of the 19 accidents the cyclist’s intention was to travel straight ahead, while the vehicle
turned left. Only four of the cyclists intended to turn (left) at the roundabout/junction. All of
these accidents occurred at speeds of less than 15 km/h. Further, 15 of the HGVs were rigid
vehicles (not articulated), and most of these were construction vehicles.
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Fig. 2.1 Breakdown of cyclist-HGV collisions by configuration. Data from Robinson and
Chislett [3], graphic adapted from Jia [4]

The objective of this work is to develop a system that can detect and accurately locate
a cyclist in the left-side blind-spot of an HGV. The system should run in real-time, have
a field-of-view which covers the entire length of the vehicle, and be suitably accurate to
perform relative motion predictions. The focus is on HGVs in low-speed manoeuvres.

2.1.2 Overview of Existing Cyclist Detection Systems

A number of commercial systems exist to detect and warn drivers of potential low-speed
collisions with vulnerable road users. These range from non-discriminating range sensors to
high-end combinations of radar and cameras. Simple ultrasonic proximity systems are low
cost, but do not discriminate between cyclists or pedestrians and inanimate objects such as
roadside furniture. This can cause false alarms giving rise to a risk that drivers may become
desensitized to alerts.

‘Cycle Safety Shield’, developed by Safety Shield Systems and Mobileye [109], is a
camera-based system which warns the driver of the presence of cyclists. Different versions
cover different fields-of-view around the vehicle, however only moving objects trigger an
alert.

Cycle Eye® is a high-end system that uses a combination of image processing and radar
to detect and locate cyclists [110]. The use of radar improves the accuracy in poor light
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conditions but adds cost. The manufacturer claims a 98.5% success rate in detecting cyclists
over three days’ testing in London, including during rush hour.

A system based entirely on an array of ultrasonic sensors was developed by Jia and Cebon
in the Cambridge Vehicle Dynamics Consortium (CVDC) [111]. The system is intended to
predict future cyclist motion and actuate the vehicle brakes to execute an emergency stop
in the event of a predicted collision. This strategy was shown to be effective at preventing
reconstructed accidents in simulation and was successfully proven in low-speed field trials on
a prototype system [111]. A deficiency of this system is its inability to distinguish between
multiple cyclists, items of road furniture, and parked cars.

2.1.3 Vision Technologies for Vehicle and Cyclist Detection

The use of wheel detection techniques has been popular in vehicle and cyclist detection
applications, owing to the ubiquity and consistency of the features. Ardeshiri et al. [112]
investigated the use of ellipse-fitting methods to detect bicycle wheels, using reflective wheel-
rims and dark backgrounds to limit the number of pixels to process. The system used the
Hough transform [113, 114] to detect ellipses (and hence wheels), though it was noted that
this approach is very computationally expensive unless steps are taken to limit the number of
input pixels processed. Variations on the Hough transform, such as the Randomized Hough
Transform [115, 116], or the approach described by Xie and Ji [117], can reduce computation
time, but are error-prone in noisy or partially occluded conditions.

The Hough transform was also used by Lai and Tsai [118] to detect the wheels of passing
cars, using the orientation and centre of the wheel to calculate relative heading and position
of the two vehicles.

More general feature descriptors include Haar Features [119]. These are commonly used
for face detection, using Adaboost to train classifiers [120, 121] and a cascade architecture.
The cascade allows background regions to be quickly ignored by the simplest classifiers,
so that more computation time can be spent by the higher-level classifiers on promising
‘object-like’ regions of the image. An implementation of the Haar Cascade classifier is
available as part of the OpenCV computer vision library [122].

This approach was used effectively by Chavez-Aragon et al. [123] to detect parts of
nearby vehicles. Real-time processing was achieved by using geometric arguments to limit
the region of image searched to a ‘Feasible Search Zone’, drastically reducing computation
time.

More complex methods for image feature detection and classification exist, such as
part-based models [124], often used for pedestrian detection. Although part-based models
can be very accurate, they are generally computationally demanding.
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Fig. 2.2 Camera and ultrasonic setup

In vehicle-based pedestrian detection work by Bertozzi et al. [125], an innovative camera
calibration method was devised, in order to create an efficient mapping of the ground plane
from image to world coordinates. The method avoided the need for full camera calibration
and image distortion correction. Initial images of a calibration grid on the ground captured
by the system allowed the generation of a direct pixel-to-ground coordinate mapping. This
enabled efficient real-time processing.

2.2 System Outline

The aim of this work was to investigate whether a vision-based system could be used to
measure cyclists’ motion relative to an HGV with one or two cameras instead of the 10 or
12 ultrasonic sensors needed by the CVDC ultrasonic system. The primary advantages of a
vision-based system compared to an ultrasonic system are discrimination between different
types of objects, and identification of multiple cyclists. This could reduce false alarms due
to detection of street furniture or walls. Although complex vision-based systems for object
detection exist, it was proposed that simple shape-based detection might be sufficiently
accurate.

The effectiveness of the proposed vision system is dependent on the type of imaging
system used (for example the choice of lens) and the configuration in which it is installed
on the vehicle (location, orientation and number of cameras). In establishing a suitable
combination of these factors, the following criteria were considered:
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Fig. 2.3 Camera configuration and field-of-view, shown approximately to scale with a cyclist
at 1 m from the HGV

(i) The ground area covering the full length of the HGV should be visible, using the
minimum number of cameras possible.

(ii) The field-of-view should cover the region of interest but should minimise the inclusion
of background scenery and other moving objects.

(iii) Potential classification features such as wheels should be visible.

(iv) Occlusion problems should be minimised in instances where more than one cyclist is
present.

The system was mounted on the same rigid construction vehicle used in tests by Jia [111]
(see Figure 2.2). Sample images were obtained from various points on a vehicle to determine
the best location for the camera. The chosen configuration is illustrated in Figure 2.3. The
vehicle is shown to scale and a representative silhouette of a cyclist is included for reference.

The high mounting point of the cameras was a key decision in the design of the system.
An important benefit of the top-down view is that lateral position errors arising from image
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processing are minimised, because a single pixel uncertainty in the measurement in image
coordinates corresponds to a much smaller lateral distance if the cameras are looking almost
straight down compared to if the cameras are mounted at wheel height and looking ‘across’
the ground plane. This vantage point also addresses the fourth criterion above, by minimising
potential occlusion. The visibility of potential classification features (as in the third criterion)
may be slightly reduced, compared to lower mounting points, but this was shown not to be
prohibitive.

To address the first and second criteria, two ultra-compact Point Grey Flea3®. USB 3.0
cameras fitted with Fujinon 2.8 to 8 mm wide-angle lenses with a maximum field-of-view
of 100◦ were selected [126, 127]. The cameras were located high on the side of the vehicle
and spaced longitudinally so as to achieve maximum coverage along the full length of the
vehicle. There was a region of overlap between the two views which was important for the
transition of tracking information between the two cameras. The front camera (camera “B”)
was mounted slightly higher than the rear camera (camera “A”) due to the available height
at that point on the tipper bucket. A small outwards tilt to the cameras extended the lateral
viewing distance.

2.3 Test Program

Tests were carried out on an open area of tarmac at Bourn Airfield, near Cambridge, UK.
Parallel passing manoeuvres between the test vehicle and a cyclist were carried out at various
passing distances.

A straight line was marked on the road as a guide for the driver to follow, such that the line
roughly approximated the left side of the HGV. Parallel to this, lines were marked at distances
of 0.75 m, 1 m and 1.5 m as guidelines for the cyclist. Transverse tick marks at 0.5 m spacing
were included in order to estimate cyclist and vehicle speed during post-processing. The
lines are visible in Figure 2.4.

Three runs of each test were conducted to allow for variations. A total of 18 sets of data
were recorded, six each at 0.75 m, 1 m and 1.5 m spacing (consisting of three repetitions at
HGV speeds of 5 km/h and 8 km/h).

A schematic of the instrumentation layout is shown in Figure 2.5. The cameras were
connected via USB 3.0 to a dedicated computer located inside the driver’s cab. Synchronous
greyscale images were captured from both cameras at 20 frames per second (fps) with a
resolution of 640×480. A slave computer running MATLAB®’s xPC Target toolbox was
used for data-logging, and a laptop computer was used as the primary user interface. CANbus
was used for communication between the camera computer and xPC slave unit.
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(a) Camera A, cyclist at 1.5 m (b) Camera B, cyclist at 1 m

(c) Camera A, cyclist at 0.75 m (d) Camera A, cyclist at 1.5 m, sunny

Fig. 2.4 Sample images at various lateral separations and lighting intensities

2.4 Image Processing

2.4.1 Strategy

The idea behind the image processing system is to locate the points of contact between
bicycle wheels and the ground, and to calibrate the ground plane so that the contact points
can be converted into the (x,y) coordinates of the wheel relative to the HGV.

Although the selected camera system and its particular configuration has a number of
benefits, it also presents some challenges. Firstly, the elevated camera positioning results in
the cyclist’s shape varying with lateral distance. For example, circular wheels are viewed as
thin ellipses from above at close range, and the proportion of head and torso in the cyclist’s
silhouette grows with proximity to the vehicle. Similarly, the cyclist’s shape is variable from
the left to the right of the camera field-of-view, due to camera position and lens distortion.
These effects are highlighted in Figure 2.4a to 2.4c.
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Fig. 2.5 Instrumentation schematic for image acquisition

Secondly, as with any vision-based system, variations in lighting can be problematic.
Figure 2.4d shows the effects of strong light conditions on an image. The shadow covering
the rear wheel makes it more difficult to distinguish from the background.

The overall image processing strategy of the system can be summarised into five parts:

(i) Calibration: generate coordinate map.

(ii) Wheel detection: identify the presence of a cyclist in the image.

(iii) Contact point location: locate the positions of the contact points between wheels and
road.

(iv) Coordinate conversion: map image coordinates to world coordinates.

(v) Cyclist tracking: mitigate spurious or occluded detections and predict trajectories using
a bicycle model and Kalman Filter.

The first stage, calibration, is performed only once, on installation of the cameras. The
final four stages are carried out for every image frame. The five stages are discussed separately
in the following sections.

2.4.2 Calibration

A method was required for converting the detected cyclist’s position into a world coordinate
system. One approach to this would be to rectify the distorted images, and then use known
camera parameters to perform a full 3D calibration. However, this would add a computa-
tionally expensive processing stage. Ground mapping was proposed as a simpler alternative,
which does not require an undistorted image.
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Fig. 2.6 Calibration grid processed to cover the entire image

The aim of the ground mapping process was to convert the coordinates of the points of
contact between the bicycle wheels and the ground from the image coordinate system to
a global coordinate system (relative to the HGV). The point on the ground directly below
the front left corner of the vehicle was chosen for the origin of the HGV coordinate system.
Defining bicycles in the ground plane by their contact points simplified the calibration of the
camera to a planar mapping.

The cameras were calibrated by positioning the vehicle next to a calibration grid (Figure
2.6).

The image coordinates (u,v) of the grid intersection points were extracted manually; the
world coordinates of each grid intersection point (x,y) were already known. The camera
lenses introduced barrel distortion which is approximately quadratic [128]. Therefore, a
quadratic shape-function was used to approximate the transformed shape of the grid in both
dimensions. Shape-function-based interpolation was used to generate a map from image to
world coordinates, as described by Silva et al. [129]. The mapping is described as follows:

u(x,y) = c1 + c2x+ c3y+ c4x2 + c5xy . . .

+c6y2 + c7x2y+ c8xy2
(2.1)

v(x,y) = d1 +d2x+d3y+d4x2 +d5xy . . .

+d6y2 +d7x2y+d8xy2
(2.2)
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Fig. 2.7 General illustration of coordinate mapping

where ci and di are constant coefficients. For an example intersection point (x1,y1) the
mapping to (u1,v1) would be as follows:

u1(x1,y1) = c1 + c2x1 + c3y1 + c4x2
1 . . .

+c5x1y1 + c6y2
1 + c7x2

1y1 + c8x1y2
1

(2.3)

v1(x1,y1) = d1 +d2x1 +d3y1 +d4x2
1 . . .

+d5x1y1 +d6y2
1 +d7x2

1y1 +d8x1y2
1

(2.4)

A one-meter square as shown in Figure 2.7 has intersection coordinates (x1,y1) to (x8,y8),
where (x1,y1) = (0, 0), (x2,y2) = (0.5, 0), (x3,y3) = (1, 0), (x4,y4) = (1, 0.5), (x5,y5) = (1,
1), (x6,y6) = (0.5, 1), (x7,y7) = (0, 1) and (x8,y8) = (0, 0.5). These values of (xi,yi) can be
substituted into Equations 2.1 and 2.2 to yield values of ui and vi for i = 1 to 8. For example:

u2(0.5,0) = c1 +0.5c2 +0.25c4 (2.5)

v2(0.5,0) = d1 +0.5d2 +0.25d4 (2.6)

These expressions for all eight intersection points can be written in matrix form:

u = Ac (2.7)

where
u =

[
u1 u2 u3 u4 u5 u6 u7 u8

]T
(2.8)
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A =



1 0 0 0 0 0 0 0
1 0.5 0 0.25 0 0 0 0
1 1 0 1 0 0 0 0
1 1 0.5 1 0.5 0.25 0.5 0.25
1 1 1 1 1 1 1 1
1 0.5 1 0.5 0.5 1 0.25 0.5
1 0 1 0 0 1 0 0
1 0 0.5 0 0 0.25 0 0


(2.9)

c =
[
c1 c2 c3 c4 c5 c6 c7 c8

]T
(2.10)

Similarly
v = Ad (2.11)

Given a set of known image coordinates (u,v), c can be found by

c = A−1u (2.12)

d = A−1v (2.13)

This process of finding c and d from images of the ground grid constitutes the only
calibration needed for the cameras. Given a world coordinate point (x,y), the coordinates of
the transformed point in the image (u,v) can be found by substituting x = x1, y = y1, c1 to c8

= c and d1 to d8 = d into Equations 2.3 and 2.4.
However, given image coordinates (u,v), the corresponding point (x,y) is not directly

obtainable. To calculate (x,y) an initial guess of the world coordinates is made and mapped
to image coordinates. This is compared to the target point and the guess adjusted according
to the error. This process is repeated until the transformed coordinates converge to the target
point. A separate ground plane calibration map was required for each camera in this case,
owing to their different heights and small variations in pitch and internal parameters.

To speed up the real-time element of the program the conversion was calculated in
advance for every pixel, and stored in a lookup table. The calibration process should only be
required once per vehicle unless the cameras are moved.

From the 40 grid intersection points shown in Figure 2.6, only eight are required for each
2D quadratic approximation. To maximise the accuracy, the calibration image was split into
ten patches, in two rows of five, with overlap between the two rows to ensure continuity
in the more critical lateral direction. Each patch was treated separately. This introduced
small discontinuities between the patches which could be reduced by using a finer calibration
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grid, but this was not considered necessary. All measurements of position and velocity were
transformed into relative measurements between cyclist and vehicle.

The resolution of the images limited the precision of the manual extraction of grid
coordinates to approximately ±3 pixels which can be shown to correspond to an error in
world coordinates of up to 4 cm. This calibration assumes the HGV was perfectly aligned
with the grid while the calibration images were taken, which was not necessarily the case.
This could introduce an additional offset to the final position outputs. In total, errors due to
the coordinate conversion of up to 7 cm are likely, although the uncertainty will vary across
the field-of-view with higher uncertainty corresponding to regions of highest distortion on
the images.

2.4.3 Wheel Detection

Wheel detection was used to detect the presence of a cyclist in the images. Both ellipse-based
and classifier-based methods for wheel detection were explored. Wheels were chosen as
recognisable features since they are common to all bicycles with only minor variations.
Ellipse-fitting methods considered included Edge Following [130, 131], Genetic Algorithm-
based approaches [132], and the Hough transform [117]. The approach to the Hough
Transform described by Xie and Ji [117] was implemented in Python. The calculations
required for each frame took almost 0.1 s, so a maximum frame rate of 10 fps was achieved.
However, the algorithm is not robust to occlusion of one side of the wheel, which was a
common occurrence.

The classifier-based method of Viola and Jones [119] was implemented in Python, using
the OpenCV computer vision library [122]. The output of the classifier is a bounding box
surrounding the detected wheel feature. This method was found to be most suitable, and
yielded an acceptable frame rate of more than 20 fps.

Training data for detection and classification work is available for cyclists, including the
SUN [133] and KITTI [134] databases. However, the cyclist images in these datasets are
largely from a ground level reference and are not suitable for the highly oblique view which
results from our raised camera setup. As a consequence, the data from two of the three runs
of each test were used as training data for the third run. This is of course not suitable for a
generalised system which should be robust to varied cyclists and backgrounds. However, it
was deemed suitable at this proof-of-concept stage. More generalised training data will be
obtained and used to retrain the classifiers in future work.

Due to the relatively small number of training images available (approximately 900
images per camera for each test run), separate classifiers were trained for each lateral distance
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(a) (b) (c)

Fig. 2.8 Examples of positive training images

from the HGV. Positive image regions were marked manually and images without wheels
visible were used as negative training data.

Figure 2.8 shows examples of positive training images. Between 150 and 300 positive
images were used to train each classifier, depending on how many frames the wheels were
visible for. The positive samples were scaled to 24×24 pixels. Only 75 negative images were
used due to lack of variation between the images.

This method was fast enough for real-time implementation. However, the location
accuracy was not sufficiently precise since the detection bounding box could move relative
to the feature it enclosed. Due to the relatively small amount of training data available, the
classifiers were not very robust. In order to guarantee detection of the wheels, the detection
threshold was kept low, which led to a high rate of false positive detections. Figure 2.9 shows
example outputs of the detection step.

It should be noted that this combination of testing and training images is insufficient for
robust implementation. First, the number of negative training images should be significantly
larger than the number of positive training samples, and secondly, both testing and training
were carried out on the same style of bicycle. This is due to the lack of availability of training
data for the oblique camera angles used in this work. Some ad-hoc testing has been carried
out on classifiers trained with multiple different cyclists and bicycles and found to work well
[135].

The current work is intended as a proof-of-concept of the detection-location-tracking-
prediction system as a whole, thus it was considered that a partially-trained classifier would
give sufficiently accurate results. Future work should include training the classifier on a
much larger database of images collected from the elevated camera angle.
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(a) (b)

Fig. 2.9 Examples of (a) correctly and (b) wrongly detected features

2.4.4 Contact Point Location

Once wheels have been detected, the contact point with the road must be determined. Several
methods were considered for finding the ground-wheel contact point within the detected
bounding boxes. The methods considered and their performance are summarised as follows.

(i) The Hough transform [117] was used to fit ellipses inside the feature bounding box.

(ii) Fitzgibbon’s algorithm [136] was used to fit ellipses, combined with RANSAC [137]
to remove outliers.

(iii) A simplified version of the Starburst algorithm [138] was used to limit the number of
pixels in the box.

(iv) The ground point was assumed to be a fixed distance down the centreline of the
bounding box, where the distance varied according to the passing distance between
HGV and cyclist in order to prevent loss of accuracy at close range.

(v) The ground contact point was taken as the lowest point on an edge in the cropped
image (Figure 2.10a). A grey-scale threshold of 50 was first applied to remove bright
patches, such as road markings (Figure 2.10b), then the images were normalised to
maximise the contrast between the tyres and the road (Figure 2.10c), and finally Canny
edge detected [139] with a high threshold to ensure that noise from the road surface
was removed (Figure 2.10d). The cropped image was then searched in columns to find
the lowest edge pixel (Figure 2.10e). The threshold and normalisation steps largely
remove susceptibility to lighting conditions, though more work is needed to ensure
complete robustness.
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(a) (b)

(c) (d) (e)

Fig. 2.10 Stages in the extraction of the ground contact point. (a) Cropping (b) Thresholding
(c) Normalisation (d) Edge Detection (e) Selection of the lowest pixel

For methods (i) to (iii), the cropped images were first pre-processed with a Gaussian blur
and Canny edge detection [139]. The Hough transform (i) was computationally expensive
and unreliable due to noise and occlusion in the images. Combining Fitzgibbon’s algorithm
with RANSAC (ii) was a more reliable method of ellipse fitting, but still took too long to
run. The simplified Starburst algorithm (iii) was inaccurate due to the noise and occlusion
in the images. Using the full Starburst algorithm might be more accurate, but would again
be computationally expensive. Assuming a fixed position within the bounding box (iv) was
accurate when the wheel was near to the centre of the field-of-view but introduced errors of
up to 3 cm at the edges of the image due to the camera distortion. This approach has the
benefit that the contact point can be estimated even when it is occluded by the cyclist. Edge
detection and minimum point selection (v) was fast and accurate but was less accurate if the
contact point was occluded. Therefore this was the method chosen except for close range
tests where the fixed location method was used instead. It is possible for the contact point to
be occluded in the tests at longer range. However method (v) simply returns the location of
the edge point which is closest to the truck, which is likely to be whatever is obscuring the
wheel. This method is therefore still fairly accurate, and so can be used, especially at longer
test distances where accuracy is less critical because the cyclist is further from danger.
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2.4.5 Coordinate Conversion

Once the image coordinates of the wheel-ground contact points were extracted from the
images, they were passed through the coordinate map, and then translated so as to be relative
to the origin under the front left corner of the HGV.

2.4.6 Cyclist Tracking

In order to track the cyclist’s motion using a Kalman Filter, the cyclist was modelled by
converting the coordinates of the contact points of the front and rear wheels to a yaw angle,
wheelbase and position of the centre-of-mass of the cyclist. Due to the relatively high rate of
false positive detections of the wheels, the positions of the front and rear wheels were used
to validate each other: a bicycle detection would not be confirmed unless both wheels were
detected in the correct relative positions. This check was performed in world coordinates and
so the acceptable relative position was governed by an approximate bicycle wheelbase of
1.2 m, and a maximum expected yaw angle of ±5◦ relative to the x-axis.

Any detection with a plausible wheelbase was compared to detections from the previous
frame, and a maximum velocity limit of 25 cm per frame in the direction of travel and 8 cm
per frame laterally was imposed at 20 fps. These values were determined from an assessment
of feasible cyclist motions. The bicycle was then tracked and its future position predicted, so
that in future frames only one wheel needed to be detected, and checked against the expected
position.

A simple Kalman Filter [140] was added to reduce measurement noise. Constant acceler-
ations both parallel and perpendicular to the direction of motion were assumed. This also
had the effect of providing motion estimates even in ranges where detections were missed.
The positions of the front and rear wheels were averaged to output a list of positions of the
approximate centre of the cyclist (mid-wheelbase) in each frame.

The prediction equations of the Kalman Filter were:

X̂ = Xk−1 + Ẋk−1∆t (2.14)

p = P+Q (2.15)

where X is the state vector (lateral and longitudinal displacement and velocity of the center
of the cyclist’s wheelbase), X̂ is the prior estimate of the state vector, P is the error in the
estimate, p the prior estimate of the error, and Q is the process covariance.

The update equations were:
K = p(p+R)−1 (2.16)
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Xk = X̂+K(z− X̂) (2.17)

P = (1−K)p (2.18)

where z is the observed states, R is the model covariance, and K is the Kalman gain.
The prediction equations produce estimates of the system states and their uncertainties.

The update equations take these estimates and the observations from the image processing
and calculate a weighted sum, giving a higher weighting to the more certain predictions. The
model covariance was set to 1 for all states, and the process covariance set to 1.2 for the
position states and 2 for the velocity states. These values were approximated from inspection
of the covariance of the unfiltered states and then adjusted to give suitable results.

A Python implementation of the whole algorithm ran at an average of 7.7 fps on a 3.6 GHz
laptop. Analysis by Jia [111] showed that for effective intervention in the HGV motion, the
system should predict 1.5 seconds ahead. At typical closing speeds, this requires a minimum
of 7.5 fps. The algorithm frame rate was therefore deemed suitable.

2.4.7 Error Analysis

As no ‘ground truth’ position of the cyclist was available, the position of the ground contact
point was manually extracted from each of the images in order to remove the effect of
imperfect following of the nominal position lines by both cyclist and HGV. However, there
are errors associated with this process, both in the mapping itself and due to imperfect
alignment between the vehicle and the calibration grid during the capture of calibration
images.

This manual measurement was designated M, the camera system’s measurement C and the
‘true’ position of the cyclist T . The maximum uncertainty between the manual measurement
and the true position, εMT,max was approximated as the sum of two components—a 3 cm
uncertainty in the drawing of the calibration grid, and a three pixel uncertainty in the accuracy
of manually selecting points from images. This three pixel uncertainty was converted to
world coordinates at different lateral distances from the vehicle, representing increasing
distances at higher separation as anticipated from the angle of the cameras, equalling 2 cm at
0.75 m, 3 cm at 1 m and 4 cm at 1.5 m. Combined with the 3 cm uncertainty from drawing
the grid, this gave εMT,max = 5 cm, 6 cm and 7 cm at 0.75 m, 1 m and 1.5 m respectively.

The standard deviation of the uncertainty, σMT was estimated from the maximum error
between the manually-extracted position and true position. Assuming the errors followed
a Gaussian distribution, 99% of the data lie within three standard deviations of the mean,
leading to σMT ≈ εMT,max/3 giving σMT = 1.67 cm at 0.75 m, 2.00 cm at 1 m, and 2.33 cm at
1.5 m. The mean uncertainty was assumed to be zero. Although a slight bias possibly occurred
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due to the nature of the data extraction task, this was likely to be small and impossible to
quantify.

The error between the camera measurement and the manual measurement (εCM) had a
different mean and standard deviation for each test run. The total error between the camera
measurement and true position εCT was calculated as the sum of εCM and εMT . The mean
(µ) and standard deviation (σ ) were found by assuming that the errors εCM and εMT were
uncorrelated, according to:

εCT = εCM + εMT (2.19)

µCT = µCM +µMT (2.20)

σ
2
CT = σ

2
CM +σ

2
MT (2.21)

The standard deviations were also normalised as a percentage of the nominal passing
distance.

The camera system can continue to make estimates of the cyclist’s position using the
Kalman Filter if a previously-detected wheel becomes occluded, so there is no loss of data at
the edges of the fields-of-view of the cameras. This contrasts with the manually-extracted
position data points, which cannot be extrapolated in the case of an occluded cyclist and
therefore do not cover the same longitudinal range as the camera-measured position. There
are data points missing in the region around X = 5 m and at the highest and lowest values
of X . This corresponds to points close to the edge of either camera’s field-of-view, where
one wheel is occluded, so manual position extraction is impossible. The camera system
can detect a wheel even if the contact point is fully occluded, if the view of the cyclist is
sufficiently similar to training images. Additionally, the camera system can predict from
previous positions, or from detection of a single wheel. This loss of data points is more
significant at d = 0.75 m where the wheels are occluded further from the edges of the camera
field-of-view.

As an initial validation of the wheel detection algorithm, the relative longitudinal velocity
between cyclist and HGV was compared with manual measurements taken from the lateral
tick marks on the ground. The manual extraction was approximate due to discretisation
errors: there may not be an image at the exact moment a wheel passes a tick mark. The
manual speed measurement was smoothed by taking a moving average.
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Fig. 2.11 Comparison of calculated and measured longitudinal velocities

2.5 Results

Figure 2.11 shows the relative and absolute longitudinal velocities of the HGV and cyclist,
for the cyclist nominally at a lateral distance of 1 m from the side of the HGV (d = 1 m). The
results indicate reasonable agreement between the algorithm and the measured speeds.

Figure 2.12 shows the trace of the camera-estimated position for three of the test runs at
different lateral distances. The nominal position is the location of the marked lines on the
road at d = 0.75 m, 1 m and 1.5 m from the HGV, shown in dashed lines on the figure. These
results show reasonable performance in the estimation of the cyclist’s position relative to
the nominal position, although comparison to the nominal position is of limited value as the
cyclist and the HGV may not have followed their respective lines precisely. However, the
estimated position is within a 10 cm window of the nominal line in most cases. Errors are
higher at smaller values of d because the wheels were more often occluded by the cyclist’s
body. This reduced the number of observations, thus reducing the robustness of the Kalman
Filter. The occlusion of the wheels at the edges of the fields-of-view of the separate cameras
also contributed to the large discontinuity in position at the join between the left and right
cameras at X ≈ -4.5 m for d = 0.75 m, as the position estimate there was based on prediction
rather than observations.

In total, 18 sets of testing images were recorded—six each at 0.75 m, 1 m and 1.5 m.
These included a range of passing speeds between the HGV and the cyclist, and a range of
lighting conditions, from overcast to bright sunlight, with combinations of HGV and cyclist
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Fig. 2.12 Output of camera-based detection system over three different lateral distances from
the side of the HGV

shadows in different orientations. The lighting conditions had no noticeable effect on the
accuracy of the detection. Table 2.1 summarises the average results for each of the three test
distances.

Figure 2.13 shows a comparison of the camera-measured position and the manually-
extracted position for one test run at each of the test distances.

At 1.5 m distance (Figure 2.13a), the camera detection matches closely the manually
extracted positions, with a maximum error of 4.1 cm at X = −9.1 m. This is close to the
width of the bicycle tyre and also to the uncertainty introduced by the calibration system at
that distance which had a standard deviation of ±1.67 cm.

Across all six test runs at a nominal spacing of 1.5 m, the camera system performed very
well. The errors between the camera system and the manually extracted coordinates were
very small, with a standard deviation across all six runs of only 3.27 cm—only slightly greater
than the tyre width. The error between the camera measurements and manual measurements



2.5 Results 43

(a)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70

(b)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

(c)

X coordinate (m)

-10 -8 -6 -4 -2 0

Y
 c

o
o
rd

in
a
te

 (
m

)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Nominal Position

Camera Measured Position

Manually Extracted Position

Fig. 2.13 Comparison between camera measurements and manually-extracted data points for
a single run at (a) 1.5 m separation (b) 1 m separation (c) 0.75 m separation
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Table 2.1 Average detection errors across all tests.

Nominal distance (m) 1.5 1.0 0.75

σCM (cm) (measured) 3.27 3.66 4.72
σMT (cm) (estimated) 1.67 2.00 2.33
σCT (cm) (calculated) 3.67 4.17 5.26
Normalised σCT 2.4% 4.2% 7.0%

dominates the error between the manual measurements and true value. This implies that the
calibration process is very accurate and reliable, even at d = 1.5 m.

At 1 m distance (Figure 2.13b), occlusion prevents manual measurements between the
two cameras (X = -6 m to -3 m). The errors relative to the manually extracted position
are slightly larger, but still close to the 3 pixel uncertainty window (corresponding to 3 cm
at d = 1 m), again implying that the image processing system can find the ground contact
point at least as accurately as a human. The maximum error for the displayed test run was
10.9 cm at X = -7.4 m, but the standard deviation across all tests was 3.66 cm. The higher
maximum error suggests that the camera system is slightly less robust at closer range, as the
wheels become more liable to occlusion, but the overall accuracy is similar. As predicted, at
closer range, the uncertainty in the calibration process drops, as the camera ‘looks down’ on
the closer points instead of ‘across’ them, allowing the ground point to be more accurately
defined. This causes the errors due to the detection stage to become even more dominant as
the range reduces.

At 0.75 m distance (Figure 2.13c), the camera system is much less reliable. Occlusion
strongly limits the areas where manual extraction can be performed. The maximum errors
are much larger (15.2 cm at −2.7 m), although the standard deviation is still under 8 cm
across all the test runs. The calibration process is more accurate at the closer distance, so the
errors in the detection stage dominate, leading to a standard deviation in the error between
the camera measurement and the true position of up to 5 cm. This is largely due to significant
occlusion of the wheels at close range by the cyclists body. Since the classifier training
dataset included images of partially occluded wheels the system can still estimate the position
of the wheel, but accuracy is reduced compared to the fully visible case.

The errors at the closest nominal distance were noticeably larger than at further distances.
Inspection of the output of the detection stage for these runs shows significant loss of accuracy
at the gap between the images taken by the two cameras. This often caused the Kalman
Filter to fail for all or part of the test, without enough observations to inform the model. This
loss of detections was most significant at the closest distance because the wheels are more
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easily occluded when the cyclist is close to the camera, leaving only two small patches, one
in the centre of each camera’s field-of-view where the detection system was working well.
This pattern was consistent across all the runs at 0.75 m. Reducing the separation between
the cameras, or increasing the number of cameras would eliminate this blind-spot in the
field-of-view, and improve the accuracy significantly.

2.6 Discussion

Jia [111] quoted the accuracy of the ultrasonic measurement system as a standard deviation
of 3.4 cm at a nominal passing distance of 1 m. This is very similar to 3.92 cm for the camera
system in a similar test. However it should be remembered that a component of this value is
an uncertainty in the manually extracted position (as the true position was unknown, unlike
the ultrasonic tests) and the standard deviation of the camera detection alone was 3.66 cm.
The output of the camera system is the world coordinates of the point midway between the
ground contact points of the bicycle’s wheels, whereas the output of the ultrasonic system
was the distance of the cyclists shoulder from the side of the HGV. The translation from
the ground point to the shoulder would introduce discrepancies between the camera and
ultrasonic systems due to roll motion of the cyclist, and the position and angle of the cyclist’s
torso relative to the bicycle. However, for the purposes of predicting trajectories rather than
merely detecting proximity, the point in the ground plane is the more reliable predictor of
future motion, which is a benefit of the camera system.

A significant disadvantage of the camera system compared to the ultrasonic system is
the loss of accuracy at close range. However, this could be mitigated by smaller separation
between the cameras (possibly increasing the number of cameras required) and also by
lowering the camera, to reduce the angle between the camera and the ground plane, thus
reducing occlusion of the wheels by the cyclist’s torso.

The camera system addresses many of the limitations of the ultrasonic system, including
complexity and cost of installation and the ability to differentiate between multiple cyclists.
A hybrid system using cameras to identify cyclists and a few ultrasonic sensors to accurately
locate them would be a possible enhancement.

2.7 Conclusions

(i) A camera system was developed to measure the motion of cyclists on the nearside
of Heavy Goods Vehicles. The system consisted of two downward-facing cameras
mounted high on the side of the vehicle. A calibration grid marked on the ground
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was used for locating contact points. Cyclist wheels were detected using boosted
classifiers and geometrical arguments. The point of contact between the wheel and the
ground was extracted and converted into world coordinates using a coordinate mapping
generated from the calibration grid.

(ii) The system was evaluated using test data from a number of parallel passing manoeuvres
between a cyclist and HGV. The system was generally able to track the position of the
cyclist to within 10 cm at distances of 1 m or greater from the HGV. The detection
step was accurate to ±4 cm (standard deviation) at most points. The remainder of the
error was introduced by the mapping to world coordinates. At lateral distances of less
than 1 m the system was found to be significantly less accurate due to occlusion and
distortion of the image features. Quantification of the error was hampered by the lack
of a ‘ground truth’ to compare to.

(iii) The system was slightly less accurate than Jia’s ultrasonic system, most significantly
when the cyclist was close to the HGV. The camera-based approach also suffers in
poor lighting or weather conditions, meaning a solely camera-based approach is likely
to be unrealistic.

The primary conclusion from this work was that the system described in this chapter is
promising but not sufficient to provide a robust detection system for all conditions, due to
the loss of accuracy at close range, and the impracticality in low-light conditions. It is likely
that the most suitable solution would be a hybrid system fusing image and ultrasonic data.
This would combine the accuracy and robustness of the ultrasonic system with the ability of
image processing to discern a single cyclist from the background or from a group of cyclists.
It was decided to leave this separate major project to be completed by another researcher in
order to focus on vehicle capacity and manoeuvrability issues.



Chapter 3

Analysis of Urban Delivery Systems

3.1 Introduction

This Chapter presents an analysis of some logistical aspects of urban delivery systems, in
the context of the three case studies described in Chapter 1. First, in-service data from
two grocery delivery providers were presented, allowing a comparison to be made between
the two providers. These data were used to assess a statistical model of shift lengths in
multi-delivery operations, with the intention of ensuring that drivers are not required to work
excessively long shifts due to the use of higher capacity vehicles, which can complete more
deliveries in one shift. Secondly, in-service data from four refuse collection vehicles were
used to analyse shift lengths for domestic waste collection operations, in order to predict the
impact of higher capacity vehicles. Finally the impact of higher capacity vehicles on urban
store restocking was discussed. Analysis of this case study required modelling of an entire
logistics system, and a wide-ranging data collection project to inform the model, which was
considered beyond the scope of this project.

3.2 Case Study A: Grocery Delivery Vehicle

In order to assess the possible effects of using higher capacity vehicles on the home delivey
system, data were collected from grocery delivery vehicles for two supermarkets in Cam-
bridge. These data were used in two ways. First, qualitative and quantitative comparisons
were made between the delivery operations for these two supermarkets. The aim was to
identify target areas where each supermarket could work towards a ‘best practice’ standard.
Secondly, a statistical analysis evaluated the potential impact of increasing size of the delivery
vehicles on the system as a whole. In this application, a key constraint is the length of time
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taken to complete the delivery route, which must not exceed the driver’s 8 hour working day.
Possible methods for reducing delivery times were also considered.

3.2.1 Data Collection Methods

Data were collected by three different methods. First, a qualitative assessment of each of the
supermarkets was performed through informal interviews with consumers. Secondly, one
vehicle from each of the supermarkets was fitted with a logging device, and vehicle data was
collected for four days of typical in-service use. Finally, an observer spent two days with a
driver from each supermarket taking qualitative observations, and completing a simple study
of time taken to complete aspects of the delivery task.

Two supermarket chains were considered for this analysis, designated Supermarket A
and Supermarket B. Both are in the top eight UK supermarkets in terms of market share.

3.2.1.1 Qualitative Analysis

Both supermarkets considered in this analysis were researched, in order to understand the
qualitative differences between them. Informal interviews were conducted with a small
number of consumers, questioning their impressions of the two supermarkets, both in general
and in some specific areas, including value for money, typical customer profile, and quality
of customer service. Although the sample size was small, results were very consistent, and
can be matched to patterns in the quantitative data.

3.2.1.2 Vehicle Data

Data from the vehicles were captured using a bespoke android application. This application,
known as the ‘SRF logger’, captured several data channels, and transmitted the data to a
Cambridge University server. The data channels were captured from three sources: the
android device’s GPS module, the android device’s internal accelerometers and gyroscopes,
and the On-Board Diagnostics (OBD) port of the vehicle (through a bluetooth module). The
data channels recorded are listed in Table 3.1.

Of the parameters listed in Table 3.1, only the GPS-based position and OBD-port vehicle
speed were used in this analysis. Potential uses for the other data channels will be presented in
the final chapter of this thesis. Chowdhury et al. showed that GPS-based speed measurement
can be more accurate than that reported by the OBD port [141]. However, due to the design
of the SRF logger, GPS data were sometimes not available at the start of a journey, and so
the OBD port measurement was used, as it was more reliable. Similarly, the mass air flow
measurement was known to be an unreliable measure of fuel consumption for diesel vehicles,
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Table 3.1 Data channels captured by the SRF logger

GPS On-Board Sensors OBD Port

Position (-) X,Y,Z acceleration (ms−2) Engine speed (rpm)
Speed (ms−1) Yaw, Pitch, Roll rates (rads−1) Vehicle speed (ms−1)

Mass Air Flow (kg)
Throttle position (%)

hence fuel consumption and emissions were instead calculated using a numerical model
described below.

The data collected by the logging device were separated by ‘key-off’ events (i.e. when
the vehicle was switched off). This allowed consideration of the data as a series of ‘legs’.
Each leg was taken to be the journey from one delivery to the next; each day of driving was
made up of a number of legs. This assumption allowed statistics for each leg to be considered,
but there were a few errors.

First, some legs did not start and end at a delivery location. From the information gathered
(as described in section 3.2.1.3), it is believed that some of the legs showed driving from a
delivery to a location where the driver took a break, or from the break location to the next
delivery. These events were omitted from the analysis.

Secondly, it appears that the engine was not always switched off at delivery locations.
Some legs show a long stationary period before continuing to move, indicating that the
period between two key-off events covers two deliveries instead of one. These legs were
also removed from the analysis. Although consideration of these events would be interesting
from the point of view of reducing engine idling time, they would introduce errors into the
driving distance per delivery investigated here.

3.2.1.3 Driver Observations

Researchers were able to spend two days at each supermarket shadowing a driver during
delivery shifts. These were not the same days for which the logging device was fitted to the
vehicle. On these days, the researchers were able to take observations, with the intention
of identifying areas in which to improve the efficiency of the process. Additionally, the
researchers completed a simple study of the time spent completing various tasks during each
delivery. The tasks were divided into:

(i) Completing paperwork.

(ii) Unloading the delivery from the van (usually onto a trolley).
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(iii) Delivery to the customer (including time spent walking between the vehicle and the
customer’s door).

(iv) Repacking the trolley and empty totes into the van.

As well as observations of the drivers, researchers observed the ‘warehouse’ side of the
operation, from product picking to vehicle loading.

3.2.1.4 Fuel consumption modelling

Due to the unreliability of the fuel consumption measurement reported by the vehicle OBD-
port, a numerical model was developed using the Advanced Vehicle Simulator (ADVISOR)
[142]. ADVISOR models have been validated against other simulations, showing total
simulated fuel use and emissions within 5% of measured values [143]. Comparison to test
data for a Hybrid Electric Vehicle showed errors in energy consumption of less than 1%
[144]. This simulation used the speed measured from the OBD-port as an input drive cycle,
and a model of a light delivery vehicle, with an engine appropriately sized to be able to
complete the drive cycle. The mass was kept constant as if the vehicle was fully loaded.
Although in practice the mass of the vehicle decreased throughout the shift as deliveries
were made, the effect was assumed to be small compared to the mass of the vehicle (a single
delivery comprises approximately 1.4% of the mass of the full vehicle), and expected to be
consistent across both supermarkets.

3.2.2 Comparison between Supermarkets

3.2.2.1 Qualitative Analysis

There is a significant perceived difference between the socio-economic profiles of the two
supermarkets. Supermarket A is considered to offer better value for money than Supermarket
B. Products tend to be towards the less expensive end of the spectrum, and in general the
typical customer falls into a lower income bracket compared to Supermarket B. This tends to
be reflected in analysis of customer addresses. The tendency is for Supermarket A customers
to live around the outskirts of Cambridge, whereas Supermarket B customers often live in
the small villages in the surrounding countryside.

These perceptions of the two supermarkets are subjective, and somewhat generalised, but
are supported by multiple informal interviews with consumers, as well as price comparison
reports.
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3.2.2.2 Vehicle Data

The following paragraphs analyse the data collected using the in-service logging application.

GPS-based position Figure 3.1 shows GPS traces captured by the logging device across
both supermarkets for each of the four days of data collected. Data for both supermarkets are
displayed on the same scale. The figure gives a strong impression of the difference between
the areas covered by each vehicle during a typical shift, which are larger for Supermarket
B than for Supermarket A. This supports the statement that customers of Supermarket A
tend to live close to the city, either in the centre or on the outskirts, whereas customers of
Supermarket B often live in the surrounding villages.

The GPS data displays some features of interest. In a number of places, the vehicle
appears to have travelled out and back along the same road, without a delivery marked at
the point when it turned round. In some cases this is due to temporary failure of the logging
device, and in other trips it appears the driver used the closest opportunity to turn round.
However, in some cases no obvious reason was identified. It is believed that these events
occur when the driver is ahead of schedule and needs to find a place to wait until the next
delivery can be made. This hypothesis is supported by observations of the driver, described
in Section 3.2.1.3.

Distance travelled The vehicle position can also be summed to give the total distance
travelled. Figure 3.2a shows a box and whisker plot of the distance travelled for each leg
by each supermarket. The edges of the box show the 25th and 75th percentile, the lines
across the necks indicate the mean value, and the tips of the whiskers represent the extreme
values. Supermarket B clearly has to travel on average further between each delivery than
Supermarket A, evidenced by greater mean, quartile and maximum values. These data are
also expressed as a probability density function in Figure 3.2b. Figures 3.3a and 3.3b present
the histograms of the driving distance data along with the fitted probability distribution. A
Gamma function was chosen to best represent the data, initially by assumption, but which
was then shown to represent the data well [145]. From this point, all the data will be shown
in the form of the fitted distribution rather than the underlying histogram, to enable easier
visualisation of the comparisons.

As Figure 3.2b shows, the mode distance per delivery (the peak of the probability
density function) is similar for both supermarkets: 0.9 km for Supermarket A and 1.0 km for
Supermarket B. However, the tail of the probability density function for Supermarket B is
much longer than the tail for Supermarket A. This supports the findings from the previous
section, suggesting that Supermarket B delivers to customers in the surrounding villages, as
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(a) Supermarket A: Day 1 (b) Supermarket B: Day 1

(c) Supermarket A: Day 2 (d) Supermarket B: Day 2

(e) Supermarket A: Day 3 (f) Supermarket B: Day 3

(g) Supermarket A: Day 4 (h) Supermarket B: Day 4

Fig. 3.1 GPS traces of supermarket vehicles
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(a) (b)

Fig. 3.2 Box and whisker plot and probability density function for distances travelled between
deliveries by each supermarket

(a) Supermarket A (b) Supermarket B

Fig. 3.3 Histograms of distance travelled between deliveries for each supermarket, showing
fitted Gamma probability distributions
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(a) (b)

Fig. 3.4 Box and whisker plots and probability density functions of time spent travelling per
leg for each supermarket

well as to customers in the centre of town, as made by Supermarket A. The mean distance
travelled per leg was 2.2 km for Supermarket A, and 4.4 km for Supermarket B.

The total distance travelled by the vehicle on each of the four recorded days was also
calculated. Supermarket A’s vehicle averaged 44.7 km/day, whereas Supermarket B’s vehicle
travelled on average 95.8 km/day, both within an 8 hour shift.

Driving time The time spent driving for each leg was also computed. The box and
whisker plot and probability density function of the times spent driving for each leg by each
supermarket are presented in Figure 3.4.

Although Figure 3.2b shows that the vehicles of Supermarket B drove further between
deliveries on average than those of Supermarket A, Figure 3.4b shows that the time taken
to complete those journeys was fairly similar, implying that the average speed of vehicles
from Supermarket B was significantly higher. This links to the analysis of locations of
Supermarket B customers. Although customers in the villages surrounding Cambridge are
further away, the speed limits on the roads are higher, and the likelihood of significant traffic
congestion is lower on these routes.

The median driving time was 8.0 minutes for Supermarket A, and 10.4 minutes for
Supermarket B.

OBD-port vehicle speed To verify the conclusions of the previous paragraphs, the average
speeds of the vehicles from the two supermarkets were compared. Figures 3.5a and 3.5b
show the box and whisker plots and probability density functions respectively of the average
speed for each leg (leg length divided by leg driving time) by each supermarket.

The average leg speed for Supermarket A rarely exceeds 30 kmh−1, and the mode average
speed is 11 kmh−1. In contrast, the mode average speed for Supermarket B is 17 kmh−1,
and the tail of the probability density function has average speeds exceeding 30 kmh−1 in
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(a) (b)

Fig. 3.5 Box and whisker plot and probability distribution function for average speed of
travel between deliveries by each supermarket

(a) (b)

Fig. 3.6 Box and whisker plot and probability distribution function for total fuel consumption
per delivery by each supermarket

some cases, supporting the conclusion that vehicles from Supermarket B generally travel at
higher speeds than vehicles from Supermarket A.

Fuel consumption The average fuel consumption per leg and average fuel consumption per
100 km of each vehicle were compared in simulation using ADVISOR, taking the collected
OBD-port vehicle speed as an input drive cycle. Figure 3.6 shows the distribution of fuel
consumption across all the legs for each supermarket. These figures indicate that the total
fuel consumption per leg was very similar for both supermarkets on average.

However, to account for the increased driving distance of Supermarket B, Figure 3.7
gives the comparisons for fuel consumption per 100 km. Four anomalously high data points
(legs with a fuel consumption of more than 200 l/100km) were attributed to legs with long
idling times, and were removed from the figures.

The cost of the increased distances travelled by Supermarket B is offset by the higher
travel speeds and lower congestion compared to the short, urban routes travelled by Supermar-
ket A. An example drive cycle for each supermarket is presented in Figure 3.8, demonstrating
the higher travel speeds and reduced starting and stopping for Supermarket B.
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(a) (b)

Fig. 3.7 Box and whisker plot and probability distribution function for average fuel consump-
tion per 100 km by each supermarket

(a) Supermarket A (b) Supermarket B

Fig. 3.8 Example drive cycles for Supermarkets A and B
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3.2.2.3 Driver Observation Data

The following paragraphs present conclusions drawn from observations of the drivers and
the ‘picking’ and ‘loading’ operations.

Stock picking and vehicle loading Both supermarkets had a similar approach to stock
picking. Goods were picked by employees (not the vehicle drivers) from the supermarket
shelves, and packed into totes which were stacked in a holding area for the drivers to load
into the vehicles. There were subtle differences between the computer systems controlling
how tasks were allocated to pickers, partly necessitated by the different layouts of the two
stores. These differences are beyond the scope of this work and not investigated further.

Both vehicles were loaded by their drivers, in reverse order, i.e. the first delivery was
closest to the rear doors. The two vehicles had significantly different racking strategies. The
strategy of Supermarket A required the driver to climb into the back of the van, whereas the
totes from Supermarket B could be loaded from outside the vehicle (with the aid of a hooked
pole for some of the later deliveries). The loading of both vehicles was observed to take a
comparable length of time, although this was not recorded.

Informal conversations with the drivers revealed some systematic problems with the
loading. First, loading dock space was limited at Supermarket A, meaning that sometimes
drivers had to load from the ground instead of from a dock at the height of the vehicle
floor. This delayed the journey. Secondly, the computer system could not predict over-
weight vehicles until after the loading was complete, occasionally resulting in vehicles
being unloaded and deliveries reallocated. Neither of these problems were observed at
Supermarket B, where vehicles were always loaded from ground level, and the system
allocating deliveries to vehicles could predict overweight vehicles in advance.

In summary, the systems used by both supermarkets were very similar, with only minor
differences in the computer systems controlling allocation of pickers, drivers, and vehicles.

Qualitative observations of drivers The driver activities were also similar between super-
markets. There were, however, two primary differences. First, it was more common for the
driver from Supermarket B to enter the houses and carry deliveries inside than for the driver
from Supermarket A (formally both supermarkets have the same policy of being willing
to carry deliveries inside on request). This is likely to be partly due to the demographic of
the consumers at each supermarket, and also partly due to the reputation for particularly
excellent customer service of Supermarket B. Both of these comments are subjective, but
supported by observation and Section 3.2.1.1.
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Fig. 3.9 Time taken to complete delivery tasks for each supermarket

Secondly, drivers from Supermarket A often had to walk further than those from Super-
market B to the customer’s door. Parking was less readily available in the city centre, hence
drivers regularly had to load totes onto a trolley and walk to the address. While common
with both supermarkets, it was seen more often for Supermarket A.

As with the picking and loading operations, differences between the drivers of the two
supermarkets were minimal, and irregular, such that they are difficult to define, except by
statistical analysis of their impact on the time taken to complete certain tasks.

Task completion-time analysis While observing the drivers, measurements were taken of
the time taken to complete four tasks: (1) completing any required paperwork, (2) unpacking
the correct totes from the van, (3) making the delivery, and (4) repacking the van with empty
totes. These times were measured by stopwatch and rounded to the nearest second. Potential
inaccuracies were introduced into the measurements by the variable nature of the task. For
example, at some deliveries the driver would unpack half of the totes and deliver them to the
door, where the customer would empty them while the driver unpacked the second half of
the totes. In other cases, the driver would unpack all the totes to make the full delivery in one
transfer. This made it difficult in some cases to know which task to attribute periods of time
to. The results presented below represent a close estimate.

Figure 3.9 shows a comparison between the average time taken to complete the four tasks
for each supermarket. Table 3.2 shows the mean times taken to complete each task.
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Table 3.2 Mean time taken to complete delivery tasks

Supermarket A Supermarket B
Time (s) Percentage of total (%) Time (s) Percentage of total (%)

Paperwork 82 16 28 7
Unpacking van 143 28 98 26

Delivery 258 50 221 58
Repacking van 34 6 33 9

Total 517 100 380 100

Several trends are visible in comparison between the supermarkets. First, the spread of
times for Supermarket A is much greater than the spread for Supermarket B. There were
more data points recorded for Supermarket A (38) than for Supermarket B (17), which could
account for some of the difference, but there may be an impact of driver experience, or some
aspect of the systems used by Supermarket B (no such difference was observed). Further
study is required to understand this difference.

Secondly, the most time consuming aspect of the task is the delivery itself. This is
difficult to analyse, as the tasks involved in this varied between deliveries. For example,
some customers unpacked in the doorway, while others carried the totes inside their house.
Supermarket B spent on average 37 s less on the delivery than Supermarket A. One possible
explanation for this is brand loyalty: Supermarket B customers are more likely to be familiar
with the delivery system, and have their own systems in place for quick unpacking of the
totes. Equally this could be attributed to differences between individual drivers.

Thirdly, Table 3.2 shows that unpacking the van of Supermarket A is considerably slower
than for Supermarket B. This may be linked to the loading system, which requires the driver
to get into the back of the vehicle, as opposed to being able to retrieve the totes from outside.

Table 3.2 shows that the Supermarket B stops took an average of 137 seconds less than
those of Supermarket A. Over the course of 20 deliveries in a typical day, this equates to a
time saving of over 45 minutes for Supermarket B. Of this 45 minutes, approximately 15
minutes is accounted for by the unpacking of the van, and a further 12 minutes by the actual
delivery. The final 18 minutes is attributed to the time spent completing paperwork.

Impact of bagged deliveries A brief investigation was conducted into the impact of using
single-use plastic bags to package deliveries, to assess whether the removal of plastic bags
increases the time required to complete the delivery. Since the introduction of a carrier
bag charge in the UK aimed at reducing plastic waste, most supermarkets have asked the
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Table 3.3 Effect of single-use plastic bags on the mean time to complete delivery

Supermarket A Supermarket B

With bags (s) 165 179
Without bags (s) 263 150

Impact of bags (s) -98 +29

customer to ‘opt-in’ to use of plastic bags, for an additional small fee. If plastic bags are not
used, each tote has to be unpacked item-by-item to complete the delivery.

Table 3.3 shows the effect of the use of bags on the mean delivery time (not including
the other three tasks). The results are inconclusive, showing a significant speed increase for
Supermarket A, and a small decrease in speed for Supermarket B. This discrepancy is likely
due to the small sample size.

It is believed that Supermarket A customers usually unpack in the doorway, carrying
products from the doorway to the kitchen individually. The use of plastic bags has a significant
positive effect on the speed in this case. Contrastingly, Supermarket B customers tend to ask
the drivers to carry totes through to the kitchen, reducing the effect on the total delivery time.

3.2.3 Analysis of Shift Length

Due to the small sample size of the collected data, it was difficult to draw any significant
conclusions on the effect of increasing the number of deliveries on the drivers’ shift length.
It was decided instead to use the collected data to inform a model of the driver’s shift, and
perform a Monte Carlo simulation to calculate the statistical likelihood of the shift length
exceeding eight hours.

3.2.3.1 Method

The method was developed as follows:

(i) Generate a ‘target’ probability distribution of driving distance per stop for each super-
market from the measured data, and sample this distribution N times, in order to create
a randomised delivery shift of N deliveries with the target statistics.

(ii) Convert each driving distance into a driving time (see method below).

(iii) Generate a probability distribution of kerb time per stop for each supermarket from the
measured data, and sample this distribution N times.
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Table 3.4 Model parameters for statistical model of driver activities

Supermarket A Supermarket B

Driving distance
k 1.66 1.33
θ 1.31 3.32

Driving time
E 300 307
F 0.85 0.59

Kerb time
k 7.81 14.1
θ 68.4 30.4

(iv) Assess an approximate length of break time taken by the driver.

(v) Sum all the times above to give the total length of shift for this sample day.

(vi) Repeat steps (i) to (v) M times to give a distribution of the probable length of shift for
N deliveries.

(vii) Adjust N, the scale of the probability distribution of driving distances, and the scale of
the probability distribution of kerb times and repeat steps (i) to (vi) to assess the impact
of these parameters on shift length.

3.2.3.2 Driving distance probability distribution

For each of the two supermarkets, the driving distance from every leg collected was plotted,
and a Gamma distribution fitted to the data points (shown in Figure 3.3). A Gamma distribu-
tion was found to fit the measured data well. A Gamma distribution is parameterised by a
shape parameter, k, and a scale parameter, θ , with a probability density function given by:

1
Γ(k)θ k xk−1e−

x
θ (3.1)

where Γ is the Gamma function [145]. Values for the shape and scale parameters for
each supermarket are given in Table 3.4. These parameters were selected using a built-in
distribution-fitting Matlab function.
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Fig. 3.10 Function to convert from driving distance to driving time

3.2.3.3 Conversion from distance to time

There were some legs from the collected data that contained artefacts that needed to be
removed. For example, long stationary periods with the engine switched on while not at a
delivery point were interesting from a qualitative point of view, but skew the driving time
data unrealistically. Therefore, the drive cycle data was clipped to remove any stationary
time of more than five minutes.

Figure 3.10 displays a scatter graph of driving distance, dD, against driving time, tD,
along with a power series model fitted to the data for each supermarket. This allowed quick
conversion from driving distance to driving time. The fitted curve was given by:

tD = E (sD)
F (3.2)

where the parameters E and F are given in Table 3.4 for each supermarket.
The data display a large variance, in some cases up to 45%. However, in the region of the

figure where most deliveries are (less than 5 km) the errors are typically less than 2 minutes,
which was considered acceptable. The fit was not valid for distances greater than 12 km due
to lack of data.

The two curves have a similar gradient for distances less than approximately 2 km, and
then diverge. This seems to reflect the typical driving requirements of the two supermarkets.
Below 2 km, both vehicles are driving in the city centre. Above 2 km, most journeys
for Supermarket B are out of the city on roads with greater average speed. In contrast,
almost all driving for Supermarket A is in the city centre, where congestion reduces the
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Fig. 3.11 Probability density function showing time spent on each delivery for each super-
market

average speed. Therefore, the corresponding time taken to complete legs is greater for
longer distances than for Supermarket B. This trend was not expected to continue to higher
distances, therefore the investigation was limited to 12 km. It could be argued that both
supermarkets should be assessed using the same curve (perhaps a curve fitted to combined
leg data from both supermarkets), to minimise the effect of customer demographic. However,
since the demographic and location of the customers is inherently tied to the brand identity,
and therefore outside the scope of this project, it was decided to keep separate curves for
each supermarket.

3.2.3.4 Create kerb time probability distribution

Figure 3.11 shows the distribution of the total time spent on each delivery for each super-
market. This was calculated by summing the times for each individual task from Table 3.2.
A Gamma probability density function was again used, where the parameters k and θ for
each supermarket are given in Table 3.4. A Gamma distribution was preferred to a Normal
distribution because all values were positive.

As with the driving time, it was decided to use each supermarket’s curve for further
calculations, despite the fact that Supermarket B appears to outperform Supermarket A,
rather than taking an ‘optimum’ kerb time distribution and using it for both supermarkets.
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3.2.3.5 Typical day generation

Each sampled day was composed of three parts: (1) driving between deliveries, (2) time spent
at each delivery, and (3) a rest period for the driver. The rest period was fixed to 90 min per
day, which approximately corresponded to driver observations (there is no legislatively fixed
required break for drivers of light goods vehicles). The other two periods were calculated by
sampling the driving distance and then the kerb time probability density functions N times,
converting the distances to times as described above, and then summing all the times. The
sum of the three periods gave a total time for the shift.

It was assumed that the first and last deliveries of the day were close enough to the
vehicle’s base that the ‘end effects’ at the start and end of the day could be neglected.

Inspection of the preliminary results revealed that a work shift of 8 hours with typical
driving distances allowed for approximately 20 deliveries. This corresponded to observations
of and discussions with drivers about real world activities, and hence was taken as the baseline
value for N. In the simulation N was varied between 10 and 40.

3.2.3.6 Repeat simulation

Due to the statistical nature of the analysis, each sample day was simulated M = 100 times,
yielding a distribution of shift lengths for a given set of parameters for the input distributions.
The output variable extracted from this analysis was the likelihood of any given delivery
shift exceeding eight hours. This allowed more realistic reasoning than simply extracting the
mean shift length, enabling the system to retain a certain percentage (for example 75%) of
shifts below eight hours. 75% was chosen as the percentage which most closely matched the
current operation, found both from qualitative observations, and by analysis of the results
described below.

This analysis did not take into account the degree by which a shift overran. Therefore
solutions where a high percentage of shifts overran by a small amount were less highly
rated than solutions where most shifts were under eight hours, but a small number of shifts
exceeded eight hours by a large margin.

3.2.3.7 Varying the probability distributions

The goal of this work was to assess methods for increasing the number of deliveries, while
keeping the length of the delivery shift below eight hours. The two options considered were
reducing the driving distance between deliveries and reducing the kerb time. In practice,
these options could be achieved in a number of different ways.
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Fig. 3.12 Effect of multiplying the measured data by a factor of 2 or 0.5 before fitting
Probability Density Function

The driving distance for any one vehicle could be reduced by increasing the number of
deliveries in a given area known as the drop density. Methods for achieving this are discussed
in Section 3.2.4.2.

Direct manipulation of the probability density functions by changing the parameters
was considered unhelpful due to the lack of physical interpretation of the shape and scale
parameters of the Gamma distribution. Instead, the probability distribution functions were
found by multiplying the measured data by a scale factor, then fitting a new distribution to
the scaled data (see Figure 3.12).

It was also recognised that the most useful variation might be truncation of any distance
above a set threshold. This would represent having a separate vehicle to do the long distance
drops, leaving the vehicle considered in this work to do only the short stops. Setting excessive
values to the threshold would result in a spike at the threshold, hence for this approach values
above the threshold were removed before fitting the probability distribution. Figure 3.13
shows the effect on the probability density function of removing the high value data.

To reduce the kerb times, three scenarios were considered.

(i) The paperwork component of the delivery task was removed. In practice this involved
subtracting the mean paperwork time, 66 s, from all data.

(ii) A scenario was considered where the unpacking and repacking of the van was auto-
mated, and took no time, thus subtracting 150 s.
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Fig. 3.13 Effect of truncating the measured data above a threshold of 3 km before fitting
Probabiltiy Density Function

(iii) Both of these variations were applied together.

For each scenario, the probability distribution was calculated by modifying the input data
and then refitting the distribution to the modified data. The effect of these reductions on the
kerb time probability density function are shown in Figure 3.14.

3.2.4 Results and analysis

3.2.4.1 Effect of number of deliveries

Figure 3.15 shows the effect of changing the number of deliveries, while keeping the drop
density constant. The figure shows that increasing the number of deliveries per day beyond
20 dramatically increased the likelihood of the shift exceeding 8 hours. Shifts with 25 or
more deliveries were almost guaranteed to take longer than 8 hours. These results were
similar across both supermarkets, and it has been shown in previous sections that the driving
time between deliveries is similar for both supermarkets.

3.2.4.2 Effect of driving distance

Figures 3.16 and 3.17 show how the likelihood of a shift exceeding 8 hours varies with
both the number of stops, N, and the mean distance between stops. The results for both
supermarkets were fairly similar. The baseline case was taken to be at N = 20, and at a
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Fig. 3.14 Effect on probability density function of different kerb time reduction scenarios
compared to the measured data

Fig. 3.15 Likelihood of shift length exceeding eight hours for varying number of deliveries,
assuming no change to drop density
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Fig. 3.16 Likelihood of shift length exceeding eight hours with varying number of stops and
distance between stops for Supermarket A

Driving Distance Scale Factor of 1, marked on the figures, for which both supermarkets
showed a likelihood of the shift length exceeding 8 hours of approximately 25%, which
agrees with observations. This value of 25% for the baseline system was considered the
limiting case, not to be exceeded. For both supermarkets, increasing the number of deliveries
by 50% would require reducing the driving distance by 70% compared to the baseline system,
in order to not increase the likelihood of the shift exceeding 8 hours. This would reduce the
mean driving distance from 2.2 km to 0.7 km for Supermarket A, and 4.4 km to 1.3 km for
Supermarket B.

The approach of multiplying the distances travelled by a scale factor in order to simulate
travelling less distance may not be the most realistic representation of a real world method.
Figures 3.18 and 3.19 show the output of the same method as Figures 3.16 and 3.17, except
that the driving distances were modified by removing all distances above a certain threshold
from the input data.

These results showed more divergence between Supermarket A and Supermarket B, as
predicted, since legs for Supermarket A rarely exceeded 5 km, and thus the impact on the shift
length was very minimal until the threshold was very small. On the other hand, the longer
legs from Supermarket B were affected even with a large threshold. Using this measure,
limiting the maximum leg distance travelled by Supermarket A vehicles to approximately
1.5 km could increase the capacity of the vehicles by 50% without increasing the shift
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Fig. 3.17 Likelihood of shift length exceeding eight hours with varying number of stops and
distance between stops for Supermarket B

Fig. 3.18 Likelihood of shift length exceeding eight hours with varying number of stops and
maximum distance between stops for Supermarket A
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Fig. 3.19 Likelihood of shift length exceeding eight hours with varying number of stops and
maximum distance between stops for Supermarket B

length. Similarly, limiting the distance to 2.5 km for Supermarket B could give the same 50%
increase in capacity, and limiting the distance to 1.5 km could double the vehicle’s capacity.

There are several methods by which this reduction in driving distance could be achieved.
First, increasing the uptake of home delivery services would lead to more customers per
supermarket in any given area. Therefore, the distance between deliveries would decrease.
The number of vehicles required to service all the deliveries might well increase, but the
vehicle efficiency would improve. The assumption that this is a ‘better’ solution than the
current system relies on the assumption that customers not using home delivery services are
currently shopping for groceries in personal vehicles, thus efficiency would be improved
by increasing uptake of home delivery services. Secondly, there is scope for collaboration
between supermarkets. If the areas covered by Supermarkets A and B combined could be
split in half geographically rather than by customer choice of supermarket, the drop density
in each geographical area would increase and the driving distance travelled by all vehicles
from both supermarkets would decrease. However, this would require a level of cooperation
between supermarkets not seen in the current system.

3.2.4.3 Effect of kerb time reduction scenarios

In order to compare the different scenarios for reducing kerb time, a single contour was
extracted from each of the surface plots shown in the previous section. Since the baseline
case corresponds approximately to a 25% chance of the shift taking longer than 8 hours,
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Fig. 3.20 Effect of kerb time reduction scenario 1 (removing paperwork) on the 25% chance
contour of the shift length exceeding 8 hours

the 25% contour was used for comparison. Figures 3.20 to 3.22 show the 25% likelihood
contour for the baseline case and the three kerb time reduction scenarios for each of the two
supermarkets. These scenarios were removing paperwork, automating product handling, and
a combination of the two. These required reducing the kerb times by 66 s, 150 s, and 216 s
respectively as described in Section 3.2.3.7.

Measurements taken from these figures are summarised in Table 3.5. Each Supermarket
was assessed on the percentage increase in the number of deliveries which which could be
completed in under 8 hours (with 25% confidence as described above) under each kerb time
reduction scenario. This percentage was calculated assuming first no change in the driving
distance, and then a 50% reduction in the driving distance. This would involve reducing the
mean driving distance from 2.2 km to 1.1 km for Supermarket A, and from 4.4 km to 2.2 km
for Supermarket B.

Both Supermarkets can achieve 20 deliveries (with 25% success rate) under the current
kerb time assumptions. Removing time spent doing paperwork from the driver workload
permits a 5% increase for both supermarkets (a single additional delivery). Automating
the product handling allows a 15% increase for both supermarkets, and combining the two
scenarios to reduce the kerb time further increases the allowed number of deliveries for both
supermarkets by 25% (5 additional deliveries).

However, greater increases in the number of deliveries can be achieved by simultaneously
reducing the driving distance while reducing the kerb time. For scenario 3, removing
paperwork and automating product handling, if the driving distance could be reduced by
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Fig. 3.21 Effect of kerb time reduction scenario 2 (automating material handling) on the 25%
chance contour of the shift length exceeding 8 hours

Fig. 3.22 Effect of kerb time reduction scenario 3 (removing paperwork and automating
material handling) on the 25% chance contour of the shift length exceeding 8 hours
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Table 3.5 Increase in number of deliveries which can be completed in 8 hours for different
kerb time reduction scenarios, using the baseline driving distance and a reduced driving
distance (50% reduction from the baseline)

Supermarket A Supermarket B
Baseline
driving
distance

(%)

Reduced
driving
distance

(%)

Baseline
driving
distance

(%)

Reduced
driving
distance

(%)

Baseline 0 30 0 30
Paperwork removed 5 45 5 40
Product handling automated 15 60 15 55
Combined 25 80 25 65

50% (reducing the mean driving distance by 1.1 km for Supermarket A, and 2.2 km for
Supermarket B) the number of of deliveries completed in an 8 hour shift could increase by
80% for Supermarket A (from 20 to 36 deliveries) and by 65% for Supermarket B (from 20
to 33 deliveries).

In general, reducing the kerb time by any of the three scenarios presented has a greater
impact proportionally on Supermarket A, compared to Supermarket B. This matches expec-
tations since, as presented earlier, the shift length for Supermarket B is dominated by driving
time over kerb time, as compared to Supermarket A.

3.2.5 Summary

Analysis of the home delivery system used by two supermarkets revealed the potential for
increasing the capacity of the vehicles under certain conditions. The analysis showed that
increasing the number of deliveries would lead to a high likelihood that the time taken to
complete the delivery shift would exceed 8 hours. It was shown that by reducing the distance
between deliveries by 50%, the number of deliveries which could be completed in under
eight hours could be increased by 30% for both supermarkets. It was also shown that if the
kerb time could be reduced by eliminating paperwork and automating the product handling
so as to reduce the time spent packing and unpacking the van, this increase in capacity could
be as much as 80% for Supermarket A, and 65% for Supermarket B, for the same reduction
in driving distance.

Methods of achieving these reductions in driving distance were described. These were
increasing the attractiveness of home delivery systems to consumers, such that the drop den-
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sity increases as more houses in a given area require deliveries, and encouraging cooperation
between supermarkets, such that each supermarket’s vehicles cover a smaller area.

Additionally, comparisons were made between the two supermarkets for which data
were collected. It was shown that the driving distances travelled by each supermarket were
significantly different, and hypothesised that it could be due to the socio-economic profile of
the customers at each supermarket. However, it was also shown that there was a difference
between the length of time spent by each supermarket on certain components of the delivery
task. It was suggested that Supermarket A could reduce the length of time spent at each
delivery by adopting a more streamlined approach to unpacking goods from the back of
the vehicle, and also by reducing the amount of time spent completing paperwork, to bring
Supermarket A’s kerb times into line with Supermarket B.

3.3 Case Study B: Refuse Collection Vehicle

The typical daily cycle of a refuse collection vehicle, as shown by Nicolaides, contains
periods of refuse collection, and periods of more sustained motion as the vehicle travels to
the depot (either a landfill site or recycling centre) to be emptied once full [16]. The impact
on this analysis is that there is only significant advantage in increasing the capacity of the
vehicle if one or more trips to the depot can be eliminated.

Analysis of data collected by Nicolaides in Cambridge showed that collection vehicles for
domestic waste operate on a two-week cycle. Two distinct collection patterns were identified
in the data:

(i) Single Trip: The vehicle completed a single round trip taking on average 5.5 hours,
leaving from and returning to the collection point.

(ii) Two Trips: The vehicle completed two round trips, the first typically taking on average
4.3 hours, and the second taking on average 1.7 hours.

It is believed that the first of these patterns corresponds to a collection route where
collections are widely spaced, and thus it takes longer to fill the vehicle. The second pattern
corresponds to closely-spaced collections where the vehicle is quickly filled and must be
emptied to continue collection. Four refuse collection vehicles were analysed across a single
two week cycle. There were 41 days of data (Monday to Friday for two weeks for each
of four vehicles, and one Saturday for a single vehicle), and a total of 70 trips. 17% of
days were completed in a single trip, while the other 83% required a double trip. A second
collection trip increases costs substantially for two reasons. First, there is a fuel cost (and
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Fig. 3.23 Box and whisker plots showing the duration of refuse collection trip for different
collection patterns

associated emissions) required by driving back to the depot to empty the vehicle between
trips. Secondly, that journey (including the time taken to empty the vehicle) typically takes
60-90 minutes, which represents lost productivity.

Figure 3.23 shows box and whisker plots for the duration of collection trips. On days
where the vehicle completed two trips, separate box plots are plotted for the shorter trip and
the longer trip. There was no pattern to which of these trips was the first.

Without intervention to reduce the time taken for each collection or the time spent driving
to and from the collection point, there is no benefit to increasing the size of vehicle on around
17% of collection routes (Pattern 1). However, for the 83% of days when the vehicle is
following Pattern 2, fuel consumption and emissions could be reduced by completing both
sets of collections in one trip, thus eliminating the cost of returning to the depot between
trips. To increase collections from just the longer of the two trips (on average 4.3 hours)
to both the longer and shorter trips combined (on average 6 hours) requires an increase in
collection duration of 40%. If it is assumed that the vehicle fills at an approximately constant
rate on these days, the percentage increase in required capacity to eliminate the second trip is
the same as the required increase in the time the vehicle can collect for.
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Therefore an increase in capacity of 40% would remove the requirement for the vehicle
to return to the collection point during a shift, which is currently required on 83% of shifts.
There is therefore a case for increasing capacity of Refuse Collection Vehicles in order to
reduce emissions, provided the increase in capacity is at least 40%. The following chapters
will assess whether an increase of vehicle capacity of this magnitude is feasible from the
perspective of vehicle manoeuvrability.

3.4 Case Study C: Urban Store Vehicle

The vehicles used to restock city centre stores typically travel relatively large distances on
the highway network to transport products from a regional or national distribution centre
to the store in question. This means that to deliver to an additional store in the same city
represents only a small proportional increase in driving distance and time, and so it can be
assumed that driver shift length is not a limiting factor in assessing the suitability of higher
capacity vehicles.

The key factor in this case is the relationship between the capacity of the vehicle, and
the required capacity to service a given store. Urban stores tend not to have significant spare
space for stock, thus stock is usually provided on a just-in-time basis. This means that the
stock requirements for the store are effectively set by consumers, beyond the scope of this
project. In practice this means that the vehicle must service a discrete number of stores,
each of which will require a significant proportion of the vehicle’s capacity (as opposed to
home delivery vehicles, where adding an additional delivery requires only a small increase in
capacity).

Analysis of this relationship would require modelling of an entire logistics system, which
was considered beyond the scope of this project.



Chapter 4

Manoeuvrability Modelling:
Methodology

4.1 Introduction

4.1.1 Overview

As argued in Chapter 1, one of the most effective ways to increase the efficiency of HGVs
is to increase the capacity of vehicles. This reduces the number of vehicles on the roads,
thus reducing congestion, noise, and both greenhouse and noxious emissions. The most
significant impediment to increasing the capacity of HGVs is the penalty to manoeuvrability,
and therefore the places that the vehicle can access.

Careful consideration is needed in the design of HGVs to ensure that they can complete the
necessary manoeuvres required to reach their destinations, without damaging infrastructure,
road furniture, or endangering other road users. The conventional approach to HGV design
focuses on ‘steady-state’ manoeuvres, with little consideration for how vehicles manoeuvre in
the real world. An example of this is the Performance-Based Standards approach (described
in Chapter 7), which uses standardised simple manoeuvres to assess vehicles. A method
is presented here to apply real-world context to the design of HGVs. The method can be
generalised to be used for any set of design parameters, for example overall length, wheelbase,
steering lock angle, width or height, but this work will focus on optimising vehicles for
overall length and wheelbase only. All other parameters will be set by making practical
assumptions, as described in this chapter. Throughout this thesis, ‘t’ or ‘tonnes’ will be used
as a unit of mass, despite not being an SI unit, in line with industry standards.

This Chapter presents a method for design of HGVs. The kinematic and mass distribution
models described in the following sections are used as standard in the industry: the most
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significant novel contribution of this work is the graphical visualisation demonstrated in
Section 4.6, which allows direct comparison between different vehicle configurations.

4.1.2 Conventional Approach

4.1.2.1 Rigid Vehicles

The most common approach to designing a two-axle, rigid HGV with unsteered rear axle, is
to consider the steady-state turning circle. A maximum radius of turn can be defined, within
which a vehicle must be able to pass. Figure 4.1 shows the geometry of a rigid vehicle in
a constant radius turn. Given a fixed steering lock angle, δ f , the outer turn radius, ρo, is
governed only by the wheelbase, (a+b), and the front overhang, d. Therefore the allowable
outer turn radius puts an upper limit on the allowable wheelbase. The inside turn radius, ρi,
is governed by the wheelbase, thus minimising the wheelbase is desirable also to minimise
cut-in. Although both ρi and ρo are dictated by the wheelbase, the relationship between their
acceptable values determines which controls the performance.

The remaining parameter, L, can then be set by considering the allowable axle loads. For
a given wheelbase, the greater the value of L, the greater the total mass of the vehicle, and the
greater the proportion of the load carried on the rear axle. Increasing the proportion of the
vehicle mass carried by the rear axle increases the likelihood that the rear axle load limit is
exceeded before the vehicles maximum volumetric capacity is filled, as the vehicle is loaded.

A common addition to this approach is to consider the transient phase of typical ma-
noeuvres, for example a 90° turn. This is governed by the front and rear overhangs. The
front overhang is considered fixed in this work, but the rear overhang, c, is dictated by the
wheelbase and the total length according to

c = L− (a+b)−d (4.1)

Provided c < L
2 , in the steady state, the outer turn radius will always be governed by the

front outside corner (Figure 4.1). However, in the transient part of the manoeuvre, the rear
of the vehicle can swing out (known as tailswing), thus L must be chosen to give a value of
c which limits tailswing to an acceptable value (the Road Vehicles (Construction and Use)
Regulations, 1986 specifies this maximum value as 0.8 m for rigid vehicles [63]).

There is no UK legislation governing the choice of ρi and ρo for rigid vehicles specifically
(although those used for articulated vehicles as described below provide lower and upper
bounds respectively, since rigid vehicles must also conform to these). Suitable values must
be estimated from road geometry.
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Fig. 4.1 Standard turning circle analysis of manoeuvrability for a rigid vehicle

There are no formal limits on the rear axle load for rigid vehicles, as the axle loads are
not expected to exceed those generated by articulated vehicles, which are generally larger.

4.1.2.2 Articulated Vehicles

Figure 4.2 shows the equivalent construction for an articulated vehicle. In this case, ρo is
still governed by the outside front corner, and thus is dictated by the wheelbase of the tractor
unit, (a1 +b1) (assuming d1 and the front steering lock angle are fixed as above). This also
has the effect of defining the path of the fifth wheel (assuming e1 is fixed). With the path of
the fifth wheel defined, the inner turn radius ρi is determined by the effective wheelbase of
the trailer unit, (a2 +b2). As for the rigid vehicle, the relationship between the allowable
values of ρo and ρi determines which controls the performance.

As for the rigid vehicle, the second design parameter, L2 is set by consideration of rear
axle loads, under the caveat that the tailswing must again be limited to an acceptable value.

For articulated vehicles, European Council directive 97/27/EC governs the permitted
values of ρo and ρi [146]. The standard roundabout test requires the vehicle to pass between
an outer radius of 12.5 m and an inner radius of 5.3 m, with a tailswing on entry of less than
0.8 m.

The load limits on axles depend on the configuration of axles used. However, an upper
bound on the design of articulated vehicles is a limit of 24 t across all three axles of a tri-axle
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Fig. 4.2 Standard turning circle analysis of manoeuvrability for an articulated vehicle

group. Additionally, there is a limit of 11.5 t on the drive axle of a tractor unit, provided it
has ‘road-friendly’ (air) suspension.

4.1.3 Alternative Approach

The above method does not take into account the complexity of real-world manoeuvres. An
alternative approach is proposed for designing vehicles with maximised capacity, whereby
vehicles are simulated attempting real-world manoeuvres, and scored according to their
success. The stages of the method are as follows:

(i) Collect route information (e.g. from in-service GPS data) from the class of vehicle to
be considered (such as home delivery vehicles).

(ii) Identify from the route information a library of the most difficult manoeuvres.

(iii) Use satellite images to convert each manoeuvre into a set of constraints on the vehicle
motion. The pavement kerbs should be identified, as well as limits such as lampposts
or street furniture.

(iv) Simulate a vehicle attempting each manoeuvre.
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(v) Vary the two design parameters L and (a+b), select rigid or articulated vehicle and a
rear axle steering strategy, and generate a chart that shows the percentage of manoeuvres
that can be completed by a vehicle of given dimensions in a single pass (i.e. without
reversing in mid-manoeuvre).

(vi) Plot additional constraints on the chart such as axle load limits and infeasible vehicle
configurations.

(vii) Select the vehicle concept as the set of dimensions which maximises capacity without
violating any constraints, and can complete at least the same percentage of manoeuvres
as the existing vehicle.

4.1.3.1 Model Requirements

In order to implement this method, several simulation models are required. The design
space for a freight vehicle is very large, with a wide range of different vehicle configurations
to select from, each with a range of parameters to be optimised. For the scope of this
investigation, several commonly used vehicle configurations were selected to be investigated,
and the parameters to be set were chosen to match existing vehicles as closely as possible. A
fleet operator or vehicle builder using this approach with a more specific end-goal in mind
could use different vehicle configurations and optimisation parameters.

The configurations considered for each of the Case Studies from the previous chapters
are listed in Table 4.1, and described in more detail in the following sections. For each
configuration, a manoeuvrability model, and a mass distribution model are required.

Only rigid vehicles were considered for Case Study A, as the relatively small size of
vehicles for this application made articulated vehicles unnecessary. Both Case Study B and
Case Study C considered both rigid and articulated vehicles—the difference between the
vehicles for the two case studies being the bin lifting and compacting equipment required at
the rear of the vehicle for Case Study B. Different freight densities were used for all three
case studies, as described in Section 4.5.

Existing vehicles matching the larger of these configurations would typically have 2 or
more rear axles (on any of a rigid vehicle, a tractor unit or a trailer unit), but have been
modelled with the rear axles combined into one equivalent axle, which is acceptable for
manoeuvrability calculations.

The parameters to be optimised for the articulated vehicle (length and wheelbase) refer
to the trailer.
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Table 4.1 Vehicle configurations to be considered

(1) Case Study A Rigid

(2) Case Study B Rigid

(3) Case Study B Articulated

(4) Case Study C Rigid

(5) Case Study C Articulated
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4.2 Literature Review

This project will require simulations of vehicles attempting to complete manoeuvres. A brief
review of different approaches to vehicle motion modelling was carried out, followed by
an investigation into different approaches to improving manoeuvrability: rear-axle steering,
torque vectoring, and torque-actuated axle steering.

4.2.1 Vehicle Models

4.2.1.1 Dynamic Modelling

Dynamic vehicle modelling is concerned with the equilibrium of forces acting on a vehicle.
The main forces to consider are the weight, inertial forces, forces generated by the tyres, and
any external forces such as aerodynamic forces [147]. The simplest approach to modelling
yaw-plane motion of vehicles is the single-track or ‘bicycle’ model, by which all wheels
on any one axle are considered as one equivalent wheel located on the centreline of the
vehicle [148–152]. This approximation is particularly effective at low speeds, where roll
characteristics are not important, but can be applicable at higher speeds if roll motion is
expected to be small. Using a bicycle model removes the complexity of modelling steering
linkages and considering Ackerman steering geometry [153], as well as the effects of roll-
motion on high-speed dynamics.

4.2.1.2 Tyre Modelling

A dynamic vehicle model requires a method for modelling tyre forces. A number of different
approaches are commonly used for modelling tyre characteristics for truck tyres. Two of the
more detailed models are the Fancher model [154] which is based on a brush model with
parameters based on physical properties, and the ‘Magic Formula’ [155] which is entirely
empirical. The different models were compared by Eichberger and Schittenhelm [156].
Preliminary work with dynamic models for this project used the Fancher model to allow
validation against work by Morrison [157].

4.2.1.3 Multi-body Modelling

An alternative method is to use a specialist multi-body simulation software package as
described by Cheng [158] and in more detail by Blundell and Harty [159], which considers
the motion of vehicle components such as wheels and chassis separately. This approach
allows precise simulation, since all aspects of the vehicle motion are taken into account, with
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very few simplifying assumptions. However, for low-speed applications where roll motion
and lateral accelerations are small, sufficiently accurate simulations can be achieved with
less complexity.

4.2.1.4 Kinematic Modelling

For low-speed applications, a kinematic vehicle model is often more simple than a dynamic
model. These assume no slip between the wheels and the road, and use simple geometric
arguments, derived in Section 4.3 to calculate the position of the vehicle for each time-step.
A comparison between kinematic and dynamic simulation is provided by Rimmer [160].
Because the simulations in this project were at low speed, it was decided that a kinematic
model would provide sufficient accuracy for very low computational cost.

4.2.2 Manoeuvrability Interventions

The following sections review the literature on possible methods for improving the manoeu-
vrability of vehicles.

4.2.2.1 Rear-axle steering

Steering the rear axle or axles of a vehicle can improve the vehicle’s manoeuvrability, by
shortening the effective wheelbase and therefore moving the turn centre closer to the side of
the vehicle. It can also reduce tyre wear, by eliminating scrubbing from multi-axle groups. A
comprehensive overview of the literature on trailer steering systems is presented by Jujnovich
[161]. His work focussed on articulated vehicles but many of the principles described are
relevant to both rigid and articulated vehicles. Jujnovich divided steering systems into two
groups: passive systems and active systems. This work will focus on one particular strategy
from each group: Command-Steer (for passive systems) and Path-Following steering (from
active systems).

The disadvantage of rear axle steering is the increased cost of the steered rear axle, and
the weight penalty due to the actuation hardware required (either mechanical linkages or
hydraulic pumps, actuators, and accumulators).

4.2.2.2 Command-Steer

The Command-Steer strategy requires steering one or more of the rear vehicle axles in
proportion to some reference angle. For articulated vehicles this is usually the articulation
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angle (using the tractor steering angle was shown to be less effective by Lukowski and Fiedler
[162]). For rigid vehicles the front steering angle is used.

This strategy is designed to minimise Swept Path Width in low-speed steady state
cornering, but exhibits poor transient behaviour [163, 161]. In particular, because the front
of the vehicle enters turns before the rear, the rear steering angle is applied before the rear of
the vehicle reaches the turn. This leads to a phenomenon known as ‘tailswing’. Significant
tailswing can lead to collisions with other road users or infrastructure. The main benefit of
this strategy is that Command-Steer can be achieved with a mechanical linkage between the
front and rear of the vehicle. This minimises cost and complexity [164].

The most common implementation of Command-Steer for rigid vehicles involves steering
only the rear-most axles in a multi-axle group. This causes the effective rear axle position
to move from the centre of the group to level with the front axle of the group. Therefore
the vehicle behaves at low speed like a fixed rear axle vehicle with a shorter wheelbase.
This does not cause such excessive tailswing as the full Command-Steer method, but also
does not reduce the cut-in by as much. This strategy in this work will be known as Partial
Command-Steer.

4.2.2.3 Path-Following Steering

To mitigate the problems with Command-Steer, Jujnovich proposed a Path-Following con-
troller, in which a ‘follow point’ at the rear of the vehicle follows the path of a ‘lead point’
at the front of the vehicle for all manoeuvres and speeds. The control algorithm was based
on matching the heading angle of the follow point to the heading angle of the lead point at
the same distance down the path [165]. The controller was based on a simpler controller
designed by Hata et al. [166]. Hata’s work focussed on rigid vehicles and was extended to
articulated vehicles by Jujnovich. An alternative approach was developed by Cheng [158]
who used a PID controller to guide the rear of the vehicle along the path of the front of the
vehicle.

Some rear-axle steering algorithms can lead to instability at high speed [167]. However,
it is possible to lock axles above a given speed threshold in order to eliminate this problem.
Alternatively, the approaches adopted by Jujnovich and Cheng eliminate this problem by
ensuring accurate path tracking and stability for all speeds.

4.2.2.4 Skid Steering

Skid steering refers to supplying more torque to the drive axles on one side of a vehicle
than the other, thus generating a yaw moment [168]. The most common example is tracked
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vehicles such as tanks. Kinematic models for skid-steered, wheeled robots are presented by
Yi et al. [169], Zhang et al. [170], and Mandow et al. [171]. A similar model for tracked
vehicles is described by Yi et al. [172].

A comparison between skid-steer and conventional Ackerman steering for heavy trucks by
Maclaurin [173] showed that Ackerman-steered vehicles are usually understeered, whereas
skid-steered vehicles are usually neutral or oversteered, and involve high power consumption.
Work by Morales et al. investigates the modelling of frictional losses at low speeds for
skid-steered, wheeled robots [174, 175].

Another consideration is tyre wear. Skid-steer causes the tyres to slip relative to the road,
which causes wear, as well as increasing power consumption. Basic tyre wear characteristics
are described by Grosch and Schallamach [176], and Schallamach and Turner [177].

The differential torque is usually applied by the drive systems, but can also be generated
by braking. Boada et al. proposed a controller for distributing brake forces between the front
wheels [178]. This improved the vehicle handling, although conventional steering was still
required. Pusca et al. proposed the use of four electric motors to control all four wheels
independently [179]. This method offered excellent manoeuvrability at the expense of power
consumption.

Although it was initially proposed that application of skid steering could improve the
manoeuvrability of heavy goods vehicles, review of the literature, and preliminary modelling
work showed that this approach could generate only minor improvements to low-speed
manoeuvrability, and came at the cost of increased tyre wear and energy consumption [180].
This approach was therefore discontinued in favour of rear axle steering.

4.2.2.5 Torque-Actuated Axle Steering

A less common approach to using differential torque to improve manoeuvrability is to fit
a steering axle at the rear of the vehicle without actuation (either mechanical or computer-
controlled hydraulics). The axle is locked at high speeds, but at low speeds the steering angle
is controlled by applying differential torques to the wheels on opposite sides. This generates
a steering moment. This strategy has been used to assist front axle steering in passenger
cars, [181, 182], but control of the rear steering angle was not covered in the literature. In
trailers this could be achieved by applying the brakes more on one side (although this would
require a fast acting and highly controllable brake valve). With new developments in electric
drive vehicles, this could also be achieved by using hub motors and directly controlling drive
torques to the rear wheels.

This strategy has the benefits associated with actuated rear axle steering—improved
manoeuvrability and reduced tyre wear—since the control strategy can be designed to match
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any rear axle control strategy (for example Path-Following), without the weight penalty of
requiring heavy hydraulic actuators to control the steering angle, instead using components
already on the vehicle (hub motors or brake valves).

For the remainder of this thesis, it will be assumed that vehicles described as having
steered rear axles can achieve the required steering angles using low-cost, low-weight
methods such as torque-actuated axle steering, without directly considering the details of
implementation.

4.3 Manoeuvrability Models

In order to simulate the vehicle attempting the library of manoeuvres, vehicle models were
developed for both rigid and articulated vehicles. The rigid vehicle model was used to
simulate vehicles (1), (2) and (4) from Table 4.1, and the articulated vehicle model was
used for vehicles (3) and (5) from Table 4.1. The vehicle speed, U , was assumed to be low
throughout this section of work, and the slip angles of the wheels assumed to be zero, thus
a kinematic vehicle model could be used. The vehicle was treated as a single-track model,
with the wheels located at the centre of their axles.

4.3.1 Rigid Vehicle

4.3.1.1 Model Assumptions

There are many parameters to be considered in the design of an HGV. In order to focus on
the most significant results, the approach was simplified by fixing the values of a number of
parameters and making certain design decisions. The rear axles were assumed to be capable
of steering for the purposes of modelling the vehicles. The steering control strategies are
defined in Section 4.4. The geometry of the rigid vehicle is shown in Figure 4.3, and the
following assumptions were made:

(i) The front overhang, d, was fixed at 1 m.

(ii) The half-width of the vehicle, w, was fixed at 1 m.

(iii) The front steering lock angle, δ f ,max, was fixed at 40°.

(iv) The rear steering lock angle for vehicles with rear steering, δr,max, was fixed at 25°.
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Fig. 4.3 Configuration of a rigid vehicle under certain design assumptions

These assumptions were based on the design of an existing Mercedes Sprinter 3.5 t home
delivery vehicle. The vehicle was always treated as having a single rear axle. Although multi-
axle groups are not uncommon on large, rigid HGVs, it was assumed that any multi-axle
group could be considered as a single equivalent axle, with a load rating equal to the total
load rating of the multi-axle group, and at a wheelbase equal to the effective wheelbase of
the multi-axle group.
The parameters available to vary were:

1. The wheelbase, (a+b).

2. The overall length of the vehicle, L.

3. The steering strategy of the rear axle (including ‘unsteered’).

4.3.1.2 Vehicle Model

At each time step, n, the heading angle, γ , of the lead point (the centre of the front axle) was
determined from the vehicle yaw angle, ψ , and the front steering angle, δ f , according to

γ = ψ +δ f (4.2)

as shown in Figure 4.4, and the position of the lead point, (xn,yn), was updated by moving
a distance ∆s in the direction γ , as shown in Figure 4.5.

xn = xn−1 +∆scosγn−1 (4.3)
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Fig. 4.5 Kinematic model of a rigid vehicle
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yn = yn−1 +∆ssinγn−1 (4.4)

where ∆s was calculated from the speed of the vehicle U and the time step ∆t as

∆s =U∆t. (4.5)

The change in yaw angle of the vehicle, ∆ψ was then calculated as a function of the front
and rear steering angles and the wheelbase, according to

∆ψ = ∆s
sin(δ f −δr)

(a+b)cosδr
. (4.6)

δr was set to zero for the conventional vehicle without rear steering. The yaw angle was
calculated by

ψn = ψn−1 +∆ψ. (4.7)

The state of the vehicle was fully defined by the position of the lead point and the
yaw angle. The positions of the four corners of the vehicle were then calculated using the
dimensions of the vehicle.

4.3.2 Articulated Vehicle

4.3.2.1 Model Assumptions

The assumptions made in the design of the articulated vehicle were similar to those for the
rigid vehicle, as shown in Figure 4.6. The parameters of the tractor unit were set, and the
corresponding parameters to the rigid vehicle design variables were the overall length and
wheelbase of the trailer unit (taken as the distance between the rear axle and the fifth wheel).

1. The front overhang of both tractor and trailer units, d1 and d2, were fixed at 1.5 m.

2. The half-width of both vehicle units, w, was fixed at 1 m.

3. The front steering lock angle, δ f ,max, was fixed at 40°.

4. The steering lock angle on the trailer axle for vehicles with rear steering, δr,max, was
fixed at 25°.

5. The offset between the fifth wheel and the rear axle, e1, was fixed at 0 m.

6. The tractor wheelbase, (a1 +b1), was fixed at 2.65 m.
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Fig. 4.6 Configuration of an articulated vehicle under certain design assumptions

7. The tractor length, L1, was fixed at 4.70 m.

These tractor parameters represent a Mercedes Antos urban tractor unit. As with the rigid
vehicle, multi-axle groups on the trailer were always considered as a single equivalent axle.
The half-width of the existing Mercedes vehicle is greater than 1 m. However, in order to
allow direct comparison with the rigid vehicles, the same half-width was used.

The parameters available to vary were:

1. The trailer wheelbase, (a2 +b2).

2. The overall length of the trailer, L2.

3. The steering strategy of the trailer axle (including ‘unsteered’).

4.3.2.2 Vehicle Model

The articulated vehicle was simulated by treating the tractor unit as a rigid vehicle and
simulating it as described in Section 4.3.1, using the notation shown in Figure 4.6. The
position of the fifth wheel was calculated from the states of the tractor unit and the geometry
as
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xFW = xLP − (a1 +b1 − e1)cosψ1 (4.8)

yFW = yLP − (a1 +b1 − e1)sinψ1. (4.9)

The heading angle of the fifth wheel to reach this new position, and the distance travelled
were given by

γFW,n = tan−1
[

yFW,n − yFW,n−1

xFW,n − xFW,n−1

]
(4.10)

∆sFW,n =

√
(xFW,n − xFW,n−1)

2 +(yFW,n − yFW,n−1)
2). (4.11)

The trailer unit was then treated as a second rigid vehicle, by taking the fifth wheel as the
lead point, and using Equations 4.6 and 4.7 to update the trailer yaw angle, ψ2. The distance
travelled by the lead point was ∆sFW,n, the wheelbase was the distance between the fifth
wheel and the rear trailer axle, (a2 +b2), and the front steering angle was given by

δ f ,2 = γFW,n −ψ2. (4.12)

4.4 Rear-axle Steering Systems

The simplest way to reduce the turning circle of a vehicle is to reduce its wheelbase, e.g.
by moving the rear axle forward. This moves the centre of rotation forwards and closer to
the side of the vehicle, reducing the radius of turn. However, moving the rear axle forward
increases the proportion of the mass of the vehicle which is carried by the rear axles relative
to the front axle, which reduces the load that can be carried without exceeding axle load
limits, and reduces the normal loads on the front tyres, reducing their ability to provide lateral
steering forces. Higher capacity axles are more expensive, and increasing the proportion of
the total load carried by the rear axles increases the likelihood that the rear axle load limit
will be exceeded before the vehicle is full. For these reasons, it is preferable to minimise
increases in rear axle load.

An alternative method to improve manoeuvrability of a vehicle is to steer the rear
axles as well as the front. This moves the effective wheelbase forwards along the vehicle
without moving the real wheelbase. Therefore the load balance between front and rear axles
is unchanged, but the vehicle benefits from the increased manoeuvrability of the shorter
effective wheelbase.
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The kinematic model described in the previous section takes a rear steering angle as one
of its inputs. There are a number of different algorithms which could be used to select the
rear steering angle.

4.4.1 Rear Unsteered

The rear steering angle could be set to zero at all times. This is the case for almost all existing
small rigid commercial vehicles. This steering type will be referred to as ‘Rear Unsteered’
for this work.

4.4.2 Command-Steer

The rear steering angle can be made proportional to the front steering angle for a rigid vehicle,
or to the articulation angle for an articulated vehicle. This approach is commonly used for
large commercial vehicles with rear axle steering. The method is very simple to implement
in articulated vehicles: the rear steering angle can be generated through a mechanical linkage
or electro-hydraulic system, and the cut-in of the vehicle is reduced during steady-state
manoeuvring, as intended. However, because the front of the vehicle turns in before the
rear of the trailer has reached the turn, the rear steering angle is applied too early, causing
increased tailswing. Importantly, the rear of the vehicle swings out into parts of the road
that the front of the vehicle did not pass through that are in the driver’s blind spot, making
manoeuvring through narrow obstacles difficult for drivers.

The Command-Steer gain can be set such that during the steady state, the ‘follow point’
(the centre of the rear bumper) follows the path of the lead point (centre of the front axle).
For the rigid vehicle, this can be achieved by implementing the following:

δ
CS
r = tan−1

(a+b−c
2

)
sinδ f(a+b+c

2

)
cosδ f

. (4.13)

This equations is commonly linearised to the form

δ
CS
r = KCS

δ f (4.14)

by assuming small angles, but this work allows for large steering angles, thus Equa-
tion 4.13 was used.

For the articulated vehicle, the corresponding equation is



94 Manoeuvrability Modelling: Methodology

δ
CS
r = tan−1

(
a2+b2−c2

2

)
sinΓ(

a2+b2+c2
2

)
cosΓ−a

. (4.15)

It should be noted that the rear steering gain for articulated vehicles is calculated using
the fifth wheel as the lead point. If the rear axle of the tractor unit is unsteered, the lead point
will cut-in from the front axles of the tractor unit, but if the wheelbase of the tractor unit is
short, this effect is small [164].

As described above, this steering strategy generates tailswing in the transient part of the
manoeuvre. This can be significant, and is dependent on the position of the rear axle. The
limit in the EU on tailswing is 0.8 m [146]. Therefore the Command-Steer gain for this work
is limited to either the gain that would generate a tailswing at that limit, or the gain given in
Equations 4.13 and 4.15, whichever is the least.

4.4.3 Partial Command-Steer

A variation on the Command-Steer method is commonly seen on large vehicles with a
twin-axle group at the rear. Full Command-Steer as described above is rarely used on rigid
vehicles due to the excessive tailswing it generates. Instead, the rear-most axle in the rear
axle group is steered (in proportion to the front steering angle) while the other axle is left
unsteered. This has the effect of moving the instantaneous centre of the turn forwards, until
it is level with the unsteered axle. (For vehicles with no rear axle steering it is level with
the middle of the axle group). This does not reduce the turning radius as much as the full
Command-Steer method, but is still an improvement from the rear unsteered case, and does
not have such a large effect on the tailswing.

The greatest impact of this method is not on the manoeuvrability of the vehicle, but on
reducing tyre wear, which is high on vehicles with unsteered multi-axle groups as at least
some of the axles in the group experience high slip.

The implementation of this algorithm is very simple, as the vehicle behaves exactly as a
rigid vehicle with a single rear axle at the position of the front-most axle in the axle group of
the original vehicle. Therefore the simulation model is the same as for the unsteered case,
but with the wheelbase shortened.

4.4.4 Path-Following Steering

An alternative to Command-Steer is to steer the rear of the vehicle such that a ‘follow point’
at the rear of the vehicle follows the path of the ‘lead point’ (either the centre of the front
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axle, or the fifth wheel) at all times. This is known as Path-Following steering. In practical
systems this is done by using a vehicle model to calculate the heading of the lead point at
all times, from the vehicle’s speed and steering angle [165]. This is then stored in a buffer
which is used as a lookup table to calculate the required heading angle of the follow point.
The rear axle is steered to achieve this heading angle according to a geometric relationship
between the rear overhang and the current yaw angle of the vehicle.

In the context of this work, the effect of Path-Following steering can be achieved more
simply, by placing the rear of the vehicle on the intersection between the path of the lead
point and an arc centred on the lead point, with length equal to the wheelbase, (a+b). In
some cases achieving this position of the follow point relative to the previous position of the
follow point would imply saturation of the rear steering angle. In these cases, the new yaw
angle of the vehicle is calculated by using the standard vehicle model, with full lock on the
rear steering angle.

4.5 Mass Distribution Models

There is a compromise in the position of the rear axle, between optimising manoeuvrability
and equalising the load distribution between the front and rear axles. Reducing the wheelbase
improves manoeuvrability, as a vehicle with a short wheelbase will exhibit less cut-in.
However, a simple force balance shows that placing the rear axle too far forward, towards
the centre of the vehicle increases its axle load, as opposed to placing the rear axle further
back, where the load is shared more equally. Increasing the rear axle load decreases payload
capacity (because the vehicle is more likely to exceed the rear axle load limit before being
full) and increases the cost of the required axle, hence the compromise.

In order to assess this compromise, simple mass distribution models of the vehicles were
created, and calibrated using the plated axle weights of existing vehicles. This was then
extended to calculate the axle weights for different vehicle dimensions, enabling contours of
constant rear axle load to be plotted, to act as either a constraint or a guideline in the vehicle
design.

Separate model parameters were required for all the vehicle configurations given in
Table 4.1, because rigid and articulated vehicles required different models, and a different
payload density was assumed for each case study. The models were calibrated using three
existing vehicles: the Mercedes Sprinter van used for home delivery; a Refuse Collection
Vehicle consisting of a Mercedes Econic chassis, fitted with a Dennis Eagle Olympus body;
and the Mercedes Antos Urban Tractor unit with a DSV curtain trailer (forming a standard
44 t articulated vehicle).
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4.5.1 Rigid Vehicle

4.5.1.1 Standard Vehicle

The mass distribution model comprised 5 elements—two axles, the chassis, the engine and
gearbox, and the payload. Each element was described by its mass and the position of
its centre of mass, as shown in Figure 4.7. The vehicle mass was assumed to be evenly
distributed through its width, i.e. only the longitudinal direction was considered. The masses
of the 5 elements were denoted as follows: both axles were treated as having the same mass,
ma,1 = ma,2 = ma, the mass of the engine and gearbox was given by me, the mass of the
chassis, mc, was calculated from a fixed mass per unit length, qc, multiplied by the length of
the vehicle, L, and the mass of the payload, mp, was calculated from the payload density, ρp,
multiplied by the payload volume.

The other parameters were the position of the centre of mass of the engine and gearbox
element relative to the front bumper, pe, and the length of the cab, Lcab, from which the length
of the payload section, Lp = L−Lcab, was derived. The payload volume was calculated as
2whLp, where w was the half-width of the vehicle, and h was an estimated height of the
payload. It was assumed that the payload was evenly distributed such that the centre of mass
of the payload was at its geometric centre, and the centre of mass of the chassis was at the
centre of the vehicle. The distance of the front axle from the front bumper, d, was fixed at 1 m
as described in the previous section. This combination of fixed parameters and assumptions
allowed the vehicle to be completely defined by only its wheelbase and overall length.

The total mass of the vehicle was then given by

M = 2ma +mc +me +mp (4.16)

where mc = qcL, and mp = ρp2whLp.
The front axle load was found by taking moments about the rear axle, and the rear axle

load found from the difference between the vehicle weight and the front axle load. Both axle
loads were then divided by the acceleration due to gravity to give the value in kilograms
rather than Newtons.

R f =

[
ma (a+b)+me (a+b+d − pe)+mc

(
a+b+d − L

2

)
+mp

(
a+b+d −Lcab −

Lp
2

)]
g

a+b
(4.17)
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Fig. 4.7 Mass distribution model of a rigid vehicle

Rr = Mg−R f (4.18)

4.5.1.2 Refuse Vehicle

The Refuse Collection Vehicle is configured slightly differently to the standard home delivery
vehicle in that it carries a significant amount of bin-lifting and rubbish-compacting equipment
on the back. A separate load model was defined for this case, presented in Figure 4.8.

The additional parameters considered were the mass and length of the extra equipment,
mequip and Lequip. The length of the payload section in this case was given by Lp = L−
Lcab −Lequip, and the equations for M and R f included additional terms.
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Fig. 4.8 Mass distribution model of a rigid refuse collection vehicle

4.5.2 Articulated Vehicle

4.5.2.1 Standard vehicle

The elements used for the corresponding model of an articulated vehicle are shown in
Figure 4.9. The tractor unit was modelled as a 10 t rigid vehicle for the purposes of calculating
the Gross Vehicle Weight. The loads on the tractor axles were not modelled, as the load on
the trailer axle was assumed to be critical. The trailer was assumed to have a single axle.
For a multi-axle group, both the mass of the axle units and the load carried by them were
summed to be equivalent to a single axle unit positioned at the centre of the group.

Dimensions not shown on Figure 4.9 are as shown in Figure 4.6.
The trailer payload was given by mp = ρp2whL2, and the masses of the chassis and axle

are as defined in the same way as for the rigid vehicle, although different values were used,
which will be set in Section 4.5.3. The load on the trailer axles, R2, was calculated by taking
moments about the fifth wheel, given by the following equation:

R2 =

[
mc

(
L2
2 −d

)
+mp

(
L2
2 −d

)
+mal2

]
g

l2
. (4.19)

The Gross Vehicle Weight, M, was calculated according to
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Fig. 4.9 Multi-body model of an articulated vehicle
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Fig. 4.10 Multi-body model of an articulated refuse vehicle

M = mc +mp +ma +MT (4.20)

where MT is the mass of the tractor unit.

4.5.2.2 Refuse Vehicle

As for the rigid vehicle, an articulated refuse truck model was developed, with the additional
mass of the lifting and compacting equipment taken into account. This vehicle is shown in
Figure 4.10.

4.5.3 Mass Distribution Model Calibration

The models described above were calibrated against three existing vehicles, to overcome the
difficulty of estimating some parameters such as the average density of the chassis. Due to
the simplicity of the models, some parameters do not precisely represent physical values, but
were adjusted to ensure the best fit to known data. In particular the height, h, was used to
represent the effective payload height, rather than the height of the cargo space of the vehicle.
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4.5.3.1 Home Delivery Vehicle

A 3.5 t Mercedes Benz Sprinter van with a wheelbase, (a+b), of 3.66 m, used by several
home delivery operations, was used to validate the model. The following parameters were
estimated:

pe = 1.8m

Lcab = 2.5m

ma = 300kg

me = 600kg

qc = 206kgm−1

h = 1.5m

ρp = 90kgm−3

Additionally, the known wheelbase (a+b) = 3.66 m, and vehicle length L = 6.23 m were
used. The payload density of ρp = 90 kgm−1 was estimated to equate to the known maximum
load capacity of 1000 kg.

Equations 4.16, 4.18, and 4.17 then yielded the following values:

M = 3.49t

Rr = 2.10t

These were required to match the fully loaded GVW of 3.5 t and the rated rear axle
load for the calibration vehicle of 2.25 t. Both values were within 10% thus the model was
considered sufficiently accurate. Differences between the plated values and the modelled
values arise from the simplicity of the model. Using more model elements would increase
accuracy but this was considered unnecessary for this application.

4.5.3.2 Refuse Vehicle

The refuse collection vehicle model was calibrated using a Mercedes Econic chassis, fitted
with a Dennis Eagle Olympus body, with a total gross vehicle weight of 26 t. The following
parameters were used:

pe = 1.8m
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Lcab = 2.5m

ma = 300kg

me = 7000kg

qc = 600kgm−1

h = 1.5m

Lequip = 1.15m

mequip = 200kg

ρp = 540kgm−3

The effective wheelbase of the vehicle was (a+b) = 4.72 m and the total length was L =
10.42 m. A payload density of 540 kgm−3 was used, as defined by Dennis Eagle. This model
yielded a volumetric capacity of 20.3 m3, and a maximum payload of 11.0 t, compared to the
manufacturers values of 21.4 m3 and 11.6 t. The GVW and rear axle loads when fully loaded
were 25.0 t and 18.8 t respectively, compared to the targets of 26 t and 19 t. All of these
metrics were within 6% of the targets, therefore the model was considered to be sufficiently
accurate without requiring more elements.

4.5.3.3 Standard Semi-Trailer

The third vehicle used for calibration was a fully loaded standard UK semi-trailer (a DSV
curtain trailer) pulled by a Mercedes Antos urban tractor unit weighing 10 t. The following
parameters were used:

ma = 300kg

qc = 220kgm−1

h = 1.5m

ρp = 450kgm−3

MT = 10t
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Additionally, the trailer wheelbase for the calibration vehicle was (a2 +b2) = 7.60 m and
the total length was L2 = 13.6 m. A payload density of 450 kgm−3 was used. This model
yielded a maximum payload of 30.6 t, compared to the manufacturers values of 32.8 t. The
GVW and trailer axle loads when fully loaded were 43.9 t and 23.7 t respectively, compared
to the expected GVW of 44 t and the UK limit for load on a tri-axle group for a full loaded
semi-trailer of 24 t.

4.6 Example Plot Construction

In order to validate the approach, a preliminary case was considered, using simple geometric
arguments to assess the success or failure of the vehicle, instead of simulating an entire
library of manoeuvres. The vehicles were assumed to have unsteered rear axles.

The parameter space to be searched was defined for rigid vehicles as wheelbases between
2 m and 14 m, and overall lengths between 3.5 m and 15 m. The legal limit on length for a
rigid vehicle in the UK is 12 m but longer vehicles were considered in case of any future
changes in legislation. Articulated vehicles were considered with trailer effective wheelbases
from 2 m to 14 m, and trailer lengths between 6 m and 16 m. The limit in the UK on tractor
and trailer combined is 16.5 m, which under the design assumptions about tractor size above
corresponds to a limit on trailer length of 13.9 m, but again longer trailers were considered.

Four constraints were applied to the parameter space: a constraint on vehicle ‘feasibility’,
a constraint on manoeuvrability, a constraint on axle loads, and a constraint on the Gross
Vehicle Weight. The optimum design was then the selection of parameters which yields the
highest capacity without violating any of the constraints.

4.6.1 Vehicle Feasibility Constraint

The parameter space was first restricted by discounting any vehicles for which the rear axle
was at a position further aft than the length of the vehicle, as well as any vehicles where the
rear axle was more than half the vehicle length away from the rear. These regions are shown
in red in Figure 4.11.

4.6.2 Manoeuvrability Constraint

The second constraint on the parameter space is related to manoeuvrability. As described
above, for validation of the method, the manoeuvrability constraint was determined by simple
geometric arguments rather than the full simulation approach.
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(a) Rigid vehicle (b) Articulated vehicle

Fig. 4.11 Feasibility constraints

4.6.2.1 Rigid Vehicle

A single critical manoeuvre was determined for rigid vehicles by discussion with operators
of home delivery vehicles for groceries, and the approximate dimensions extracted. The
manoeuvre was a 90° turn, with an outer radius of 8.75 m, and an inner radius of 3 m. To
be considered successful, the vehicle must be able to stay between these two radii in steady
state cornering.

The steady state turn radius of the outside front corner for a rigid vehicle can be calculated
by geometric arguments to be

ρo, f =

√
(a+b+d)2 +

(
(a+b)
tanδ f

+w
)2

(4.21)

and similarly, the steady state turn radius of the outside rear corner is given by

ρo,r =

√
c2 +

(
(a+b)
tanδ f

+w
)2

. (4.22)

The second of these equations will not be significant, because the critical point will
always be the front corner in steady state, provided c < L

2 , which is guaranteed according to
section 4.6.1. Equation 4.21 can be rearranged to solve for the value of δ f required to yield
the maximum outer turning radius of 8.75 m. Any vehicle which required a steering angle
greater than δ f ,lock was considered to have failed.

The inner turn radius, ρi, was then calculated for that wheelbase and steering angle,
according to

ρi =
(a+b)
tanδ f

−w (4.23)



4.6 Example Plot Construction 105

Fig. 4.12 Manoeuvrability constraint by geometric arguments for a rigid vehicle

and vehicles where ρi was less than the minimum value of 3 m were considered to have
failed. All other vehicles, which could therefore achieve the required outer and inner radii
without exceeding the steering lock angle were considered to have passed. Figure 4.12 shows
the outer turn radius constraint separating successful vehicles from unsuccessful ones. The
contour was horizontal, confirming that the vehicles success at the steady-state roundabout
manoeuvre was determined by the wheelbase, and governed by the path of the outside
corners.

For vehicles with a very large total length but a short wheelbase, the rear outside corner
of the vehicle governed, rather than the front, so the overall length (or more specifically
the length of the rear overhang) became important. However, in this region, the rear axle
was forward of halfway along the vehicle, so this region was discounted as described in
section 4.6.1.

4.6.2.2 Articulated Vehicle

For the articulated vehicle, the standard UK roundabout test [63] was used for defining the
limiting radii, instead of the 8.75 m radius turn used for the rigid vehicles. To be considered
successful the vehicle must be able to turn through 360° without exceeding an outer radius
of 12.5 m, or an inner radius of 5.3 m.

The steady state turn radius of the outside front corner can be calculated as if the tractor
unit were a rigid vehicle, thus equation 4.21 can be used, substituting rigid vehicle parameters
for tractor parameters as follows:
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ρo, f =

√
(a1 +b1 +d1)

2 +

(
(a1 +b1)

tanδ f
+w

)2

. (4.24)

The dimensions of the tractor unit were kept constant for this analysis, therefore the steer-
ing angle required to achieve an outside turn radius of 12.5 m will be constant. Equation 4.24
yields δ f = 16.2° when rearranged. The outside rear corner of the tractor unit will not exceed
the turning radius of the front for the reasons described above for rigid vehicles. The outside
corners of the trailer can also be assumed not to exceed the turning radius of the front of the
tractor because the trailer will cut in unless the rear overhang c2 is unacceptably large.

For δ f = 16.2°, the radius of curvature of the path of the fifth wheel is fully defined as

ρFW =

√
e2

1 +

(
(a1 +b1)

tanδ f

)2
(4.25)

which for the tractor unit used for this analysis yields ρFW = 9.9m. As expected, for
the articulated vehicle, the cut in of the tractor unit is small. The smallest radius of turn,
ρi, is traced by the point level with the trailer axle on the inside of the vehicle, and can be
calculated according to

ρi =

√
ρ2

FW − (a2 +b2)
2 −w. (4.26)

Any vehicles where ρi was less than 5.3 m was considered to have failed. Figure 4.13
shows the manoeuvrability constraints for the articulated vehicle. As expected the trailer
wheelbase is the dominant factor, this time due to the cut in of the trailer axle.

The lower part of the constraint is caused by the tailswing of the vehicle causing the rear
of the trailer to exceed the outer turning radius of the front corner of the tractor. As expected,
this only happens when the rear axle of the trailer is forwards of the centre of the trailer, thus
is already discounted.

4.6.3 Axle Load Constraint

4.6.3.1 Rigid Vehicle

The load distribution model described in Section 4.5 was used to calculate the rear axle loads
at each point in the parameter space, assuming a constant load density equivalent to that
typically carried by the home delivery vehicle. Instead of a fixed constraint, indicating an
upper bound on the allowable rear axle load, contours of constant rear axle load were plotted,
and the results shown in Figure 4.14. Contours of 2 t, 3 t, 4 t and 5 t were plotted, as well
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Fig. 4.13 Manoeuvrability constraint by geometric arguments for an articulated vehicle

as 2.25 t, which corresponds to the axle load rating of the baseline home delivery vehicle.
Although the vehicle can be designed for any rear axle load, a higher load rating corresponds
to a higher cost of the axle, and a reduced capacity.

4.6.3.2 Articulated Vehicle

Figures 4.15 shows the output from the load distribution model of the articulated vehicle. In
the UK, the limit on axle load for a triaxle group is 24 t shared equally between the three
axles. Therefore the 24 t contour forms a hard constraint. For smaller vehicles, the axle
load contours are not hard constraints, but a higher axle load relates to higher likelihood
of exceeding rear axle load limits without filling the vehicle, resulting in reduced payload
capacity.

4.6.4 Gross Vehicle Weight Constraint

A final consideration was the Gross Vehicle Weight (GVW) of the vehicle. This was also
calculated from the load distribution model, by summing the masses of all the components
of the mass distribution model.

4.6.4.1 Rigid Vehicle

Contours of constant GVW were plotted, corresponding to common vehicle weights, specifi-
cally the standard 3.5 t home delivery van, the 4.25 t home delivery van, and a larger 7.5 t
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Fig. 4.14 Contours of constant rear axle load for a rigid vehicle with known payload density

Fig. 4.15 Contours of constant trailer axle load for an articulated vehicle with known payload
density
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Fig. 4.16 Contours of constant Gross Vehicle Weight for a rigid vehicle

truck. These contours are shown in Figure 4.16. The UK limit on overall rigid vehicle length,
12 m is also shown.

A theoretical 7.5 t grocery delivery vehicle vehicle is also marked on the figure, at 14.6 m
vehicle length. This is significantly longer than a conventional 7.5 t vehicle (which are
typically less than 9 m long). This is because the density of groceries in the form carried by
home delivery vehicles is low in comparison to the roll cages carried in larger vehicles. This
demonstrates one of the difficulties involved in trying to use a significantly larger vehicle
(such as a 7.5 t) for grocery delivery: a larger vehicle will exceed capacity limits well before
exceeding load limits.

4.6.4.2 Articulated Vehicle

For the articulated vehicle, the GVW is less relevant, as the example HGV carrying groceries
will almost always be volume-limited rather than weight-limited. For higher density freight,
the 44 t limit would become relevant, as shown in the case studies considered in Chapter 6.
A related constraint is the overall length of the vehicle, which varies only with L2 under this
model, as does GVW. Figure 4.17 shows constraints corresponding to a total vehicle length
of 15.5 m and 16.5 m. The former can be broken if the vehicle is capable of completing the
standard roundabout test as described above.
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Fig. 4.17 Contours of constant total combination length for an articulated vehicle

4.6.5 Discussion

4.6.5.1 Rigid Vehicle

The set of constraints on the dimensions of the vehicle are shown all together in Figure 4.18.
The dimensions of the existing home delivery vehicle are shown as a red circle at L = 6.23 m,
(a+b) = 3.67 m. The design aim is to maximise the load capacity of the vehicle. For the
model described in Section 4.5, this is achieved by maximising the length, L, regardless of
the wheelbase. In other words, the operating point should be as far to the right of Figure 4.18
as possible without violating any constraints.

The figure shows that the current design of the vehicle appears to be a good compro-
mise. The 3.5 t limit on the vehicle weight prevents larger vehicles from being used. This
corresponds with anecdotal observations from drivers, who note that the vehicles are almost
always weight-limited, rather than volume-limited.

One potential method for improvement is to raise the GVW. This would ordinarily cause
the vehicle to fall into the category of HGV, requiring stricter and more expensive driver
training and licensing, and tachograph equipment. However, new legislation aims to increase
the definition of HGV from 3.5 t to 4.25 t [183], thus the vehicle length could be increased
up to 7.75 m without requiring the costly switch to HGV licensing.

However, as Figure 4.18 shows, increasing L without changing the wheelbase (a+ b)
causes the rear axle load to increase. In other words, as the rear axle moves forward on the
vehicle, the proportion of the total load it carries compared to the front axle is increased.
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Fig. 4.18 Response of a rigid, unsteered vehicle to a steady-state roundabout manoeuvre,
including load limits

Increasing L to 7.75 m would raise the rear axle load to approximately 3 t, exceeding the
2.25 t rating of the current axle. Heavier axles are more expensive, thus the movement up the
contours of constant axle load is undesirable.

The alternative is to increase the wheelbase as the total length is increased, i.e. following
the 2.25 t contour upwards. This avoids violating any of the load constraints, but would
exceed the limit on manoeuvrability. This highlights the need for interventions to improve
the manoeuvrability of large vehicles, such as rear axle steering, thus changing the shape of
the manoeuvrability constraint. This is considered further in Chapter 6.

4.6.5.2 Articulated Vehicle

Similarly, the full set of constraints for the articulated vehicle are shown in Figure 4.19.
The figure shows that conventional articulated vehicles are close to the optimum di-

mensions for manoeuvrability, and for limiting trailer axle loads to 24 t. Increasing the
capacity of conventional semi-trailers would require both relaxation of the 16.5 m maximum
combination length, and either some intervention to decrease the rear axle loads (or increase
the legal rear axle load limits), or to improve the manoeuvrability of the vehicle, such as
trailer axle steering.
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Fig. 4.19 Response of an articulated, unsteered vehicle to a steady-state roundabout manoeu-
vre, including load limits

4.6.5.3 Applicability of Results

The position of the manoeuvrability constraint in this example is determined by simple
geometric analysis (based on a steady-state turning circle) so as to provide a suitable demon-
stration of the method. The purpose of the following chapter is to determine the position of
the manoeuvrability constraint in a more realistic manner. This will affect the conclusions.
In particular, as well as relating the parameters of the vehicle to the dimensions of its turning
circle, the full approach to assessing manoeuvrability will need to take into account the
transient part of the manoeuvre. In particular, tailswing in the entry to corners is likely to
penalise vehicles with long rear overhang, i.e. those with high L and low (a+ b). This
is expected to provide insight into the question of whether a full analysis of ‘real-world’
manoeuvrability is required, or whether the steady-state analysis is sufficient.

4.7 Conclusions

(i) Kinematic models were developed for a rigid vehicle, allowing the movement of
the vehicle to be simulated under the effect of a steering angle input. Models were
developed for both rigid and articulated vehicles, and for several rear axle steering
strategies, namely unsteered, Partial Command-Steered, Command-Steered, and Path-
Following.



4.7 Conclusions 113

(ii) Simple mass distribution models of both rigid and an articulated vehicles were de-
veloped, allowing estimation of the Gross Vehicle Weight, and rear axle loads, given
an assumption about its payload density, and the vehicle dimensions. These models
were calibrated against three existing vehicles, corresponding to the three case studies
described in previous chapters.

(iii) A parameter space was defined, where the vehicle overall length and vehicle wheelbase
varied. The models described above were used to constrain the space, by limiting the
Gross Vehicle Weight (or overall vehicle length in the case of the articulated vehicle),
the rear axle load limit, and the steady-state turning ability of the vehicle by simple
geometric arguments.

(iv) Under this particular set of constraints, the capacity of an existing home delivery
vehicle was found to be approximately optimised, although applying rear-axle steering
to change the position of the manoeuvrability constraint would allow an increase in
length and therefore capacity.

(v) Increasing the GVW from 3.5 t to 4.25 t is essential for any increase in the capacity, as
confirmed by fleet operators for home delivery of groceries. Increasing the axle load
limits would allow greater capacity, but would require a more expensive axle for the
same level of manoeuvrability.

(vi) The capacity of the standard articulated vehicle cannot be increased without intervention
to remove at least two of the constraints. As for the rigid vehicle, applying trailer
steering would change the position of the manoeuvrability constraint, allowing greater
volumetric capacity without increasing the load on the trailer axles.

(vii) A more detailed investigation of the effect of the manoeuvrability constraint is required,
to be pursued in the following chapter.





Chapter 5

Manoeuvrability Modelling: Algorithm
Selection

5.1 Method and Limitations

The approach to designing HGVs described in the previous chapter requires a method for
simulating the HGV attempting a series of manoeuvres. The simulation models are described
in the previous chapter, but all require a method of route planning to dictate the path of the
lead point. There are many route-planning methods described in the literature. However,
most are intended for open scenarios, where many solutions exist and the search is for
the most suitable. The problem described here is to investigate a very tightly constrained
manoeuvre, and to identify whether or not a solution exists. The four algorithms investigated
were: Rapidly-exploring Random Trees (RRT), Model Predictive Control (MPC), Single-
and Multi-segment splines (SMS), and N Control Point splines (NCPS).

5.1.1 Method Overview

The aim of this Chapter was to locate a performance envelope in (L,a+b) space separating
vehicles which can, and vehicles which cannot complete a specific manoeuvre. Examples
of this envelope are shown in Figure 5.1: the black region marks vehicles which were
unsuccessful at the manoeuvre, while the white regions show vehicles which were successful.
Discovery of the location of this envelope required simulating all vehicles in the parameter
space attempting the manoeuvre using the vehicle models described in the previous chapter,
assigning each a pass or fail result, and drawing an envelope around the successful vehicles.
In order to speed up the search for the performance envelope, the values of L and (a+b) for
each simulation were selected by following particular rules, rather than searching all possible
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(a) Manoeuvre A: 90° corner (b) Manoeuvre B: Chicane

Fig. 5.1 Performance envelopes for the representative manoeuvres

values. It is clear that if a manoeuvre can be completed by a vehicle with a given wheelbase
and length, any vehicle with the same wheelbase, but shorter overall length can complete
the same manoeuvre. This means that for any vehicle which passes, all vehicles with the
same (a+b) but smaller L can also be judged to have passed. For every row of the plot (i.e.
every value of (a+b)) the value of L was increased until the vehicle failed the manoeuvre.
If the vehicle initially failed, the value of L was decreased until it passed. In this manner,
the edge of the performance envelope at that value of (a+b) was located. The edge of the
performance envelope for the next value of (a+b) was assumed to be at a similar value of L
thus this was used as the starting point. Typically this reduced the number of vehicles to be
simulated from several thousand to approximately one hundred (the exact number depended
on the shape of the envelope).

The constraints on vehicle path for each manoeuvre were defined as described in the pre-
vious chapter, by manually drawing boundaries on satellite images. Equations for converting
image coordinates to world coordinates are given in Section 5.3. Additionally, an example
path was defined through each manoeuvre, by manually marking points on the manoeuvre,
and joining them with splines. This was required for several of the simulation methods
described below, but did not represent the optimal path through the manoeuvre, and it was
not guaranteed that any vehicle would be able to follow the path without collisions with the
boundaries.

The vehicles were then simulated attempting the manoeuvre. The path of the lead point
was determined by one of the methods described below, and the path of the follow point was
determined by the vehicle model (and rear steering controller), described in the previous
chapter.



5.1 Method and Limitations 117

5.1.2 Limitations

In contrast to the way drivers would approach difficult manoeuvres in the real world, it was
decided to remove the option of reversing–in other words the vehicle was only considered
successful if it could complete the manoeuvre in one continuous forward motion. In the
real world, drivers presented with an impossible manoeuvre would reverse to draw a cusp.
However, had reversing been permitted, an upper limit on the number of reversing manoeuvres
which were allowed would have been required to prevent vehicles passing by using a very
large number of very small cusps (an option which a driver would not have the patience to
do in the real world). Since this limit would have been arbitrarily decided, it was decided to
set that limit to zero for the sake of limiting the complexity of the simulation.

It should also be noted that the definition of the manoeuvre constraints introduced errors.
First the extraction of the constraints from the satellite images had a finite precision (approx-
imated to be ±3 pixels, corresponding to approximately 0.16 m). Second, the constraints
made no distinction between ‘hard’ and ‘soft’ boundaries. An example of a ‘hard’ boundary
would be a wall, which no part of the vehicle could cross. A ‘soft’ boundary would be
a kerb, which the wheels could not cross, but the front and rear overhangs could. In this
work, all constraints were considered ‘hard’. The lack of distinction in the definition of the
constraints is not a significant issue, since the intended use for the method is to compare
vehicles. Provided both vehicles to be compared are to be judged by the same criteria, the
difference between the two types of constraint is not important.

5.1.3 Algorithm Assessment Criteria

In order to assess the success of the algorithms described below, with the aim of selecting
the most suitable, two representative manoeuvres (A and B) were identified. These were
a 90° corner, and a chicane. These manoeuvres were selected by inspection of a set of
manoeuvres identified as difficult by local drivers. Measurements were taken of road widths
and offsets to match the representative manoeuvres to typical real manoeuvres. However,
the representative manoeuvres were constructed manually from straight lines rather than
using real world manoeuvres, so as to minimise noise in the results and make them more
predictable. The representative manoeuvres are shown in Figure 5.2, including potential
points of collision with the constraints.

The ‘ground truth’ for the performance envelope was not known. Therefore, an approx-
imation was found by manually driving simulated vehicles of different sizes around the
manoeuvres, by directly controlling the steering angle. Although this did not give provably
the exact location of the complete performance envelope, enough attempts were made to
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(a) Manoeuvre A: 90° corner
(b) Manoeuvre B: Chicane

Fig. 5.2 Representative manoeuvres used for assessing path-planning algorithms

allow conviction that the envelope was sufficiently accurate. The score for each simulation
algorithm was then given as the difference in area between the performance envelope output
by the algorithm and the manually approximated performance envelope. The completed
envelopes for the two representative manoeuvres are shown in Figure 5.1. The white region
shows successful vehicles, while the black shows failed vehicles. The red regions represent
infeasible vehicles, as described in Section 4.6.1.

Both plots show a clear maximum wheelbase, across a range of vehicle lengths. This
suggests that for both manoeuvres, the critical performance condition is the cut-in (collision
at point 1 from Figure 5.2), rather than the tailswing (collision at point 2 for manoeuvre A,
or point 2 or 4 for manoeuvre B). This may be a result of the choice of manoeuvres, both of
which consist of sharp corners, with few obstructions on the outside of the turn to penalise
tailswing. For manoeuvre A, for example, an obstruction such as a parked car at point 2
would shift the required balance back towards minimising tailswing.

However, manoeuvre B also shows a clear maximum length, for a range of wheelbases.
The implication is that manoeuvre B also penalises tailswing, although to a lesser extent
than cut-in. This is supported by inspection of Figure 5.2b for which the second part of
the manoeuvre (the left-hand steering after crossing the centre) is obstructed by a second
potential collision at point 4.

This analysis supports the argument for the necessity of this work. Although conclusions
can be drawn from the representative manoeuvres about the feasible dimensions for vehicles
required to complete them, those conclusions can be quickly invalidated by relatively small
changes in the shape of the manoeuvre, for instance the additional obstacle of a parked car,
or street furniture such as bollards.
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The calculations were timed, to ensure that they could generate a full set of results
across all vehicles and all manoeuvres in a reasonable amount of time. In practice, all of the
algorithms could generate a full map of all manoeuvres for a single vehicle type on a standard
desktop computer 1 in under 12 hours of elapsed time, and so were considered acceptable.

5.2 Literature Review

It would be impractical to manually define the optimum path through every manoeuvre for
every vehicle, thus a path-planning strategy is required. An alternative approach would be to
treat route planning as a control problem, and try to optimise the vehicle’s direction at every
step, thus a review of both approaches is presented here.

The problem of finding a path through an environment from a start to a goal configuration
is well researched for a number of applications. Vehicle path planning methods are important
in the field of driverless cars [184], and driver assistance systems such as automatic parking
[185]. Path planning is important for mobile robots, such as factory pickers [186], and also
for applications such as manipulator arms, which are required to move to a goal configuration
efficiently and without collisions [187]. An overview of path-planning concepts is presented
by Rimmer [160].

For this work, it was assumed that the motion planning algorithm had perfect information
about the constraints on the manoeuvre being attempted. This removed the need for any
kind of sensor simulation to imitate detecting the environment. Additionally, there was
no requirement for the vehicle to take the most efficient path through the manoeuvre, so
algorithms which dedicate computation resources to finding the optimum path were not
considered.

The idea of proving the existence of a feasible path is more difficult than finding the
optimum path if one exists. Most path planning algorithms explore the search space but cannot
be proved to have evaluated every possibility. There is little in the literature to document
approaches to proving the existence of a feasible path. Several promising approaches are
listed below, with a brief overview of the relevant literature.

5.2.1 Rapidly-exploring Random Trees

The ‘Rapidly Exploring Random Trees’ approach was presented by LaValle [188]. Points
are randomly sampled from the search space, and added to the tree if a feasible path can be
found from the randomly sampled point to the nearest node of the tree. Once the tree includes

1Windows 8 64-bit, Intel i7-4790 3.6GHz processor, with 8GB of RAM
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the goal configuration, a path is traced along branches of the tree (using an optimisation
algorithm if required). This method can be very fast, but random, so there is no guarantee of
an optimal path without using a second, optimisation stage [160]. Methods for biasing the
random selection of points are described by Urmson et al. [189].

Use of the RRT algorithm for vehicle path planning is widespread, but requires constraints
on the branches of the tree due to the non-holonomic vehicle property [190]. Kuwata et
al. described the alterations to the RRT algorithm required to make it applicable to non-
holonomic wheeled vehicles [191]. A dynamic path planner was presented by Pepy et al.
[192].

5.2.2 Model Predictive Control

Model Predictive Control (MPC) is a control scheme intended to “optimize, over the manip-
ulable inputs, forecasts of process behavior”, according to a tutorial overview provided by
Rawlings [193]. Reviews of MPC technology appear regularly, such as [194, 195]. Model
Predictive Control has been used on vehicles for several applications including stability
control [196], energy management strategies [197], and obstacle avoidance for autonomous
vehicles [198]. The latter paper presents a local path planner for obstacle avoidance.

5.2.3 Spline-Based Methods

Dubins demonstrated the use of straight lines and arcs to make up longer paths [199]. Al-
though Dubins’ work was later extended, the discontinuities in gradient between segments
are a common feature in the output of global path planning algorithms [200]. These disconti-
nuities increase the travel time, because the vehicle has to stop and turn. Lau et al. proposed
a controller designed to minimise the time taken to traverse a route, by generating smooth
spline segments [200]. A similar approach was used by Shiller et al. [201]. Likhachev
and Ferguson used the idea of a motion primitive—a short segment of path which could
be simply defined, such as a straight line, or an arc—to generate longer routes made up of
sets of motion primitives [202]. Lecture notes by Cipolla give an overview of working with
splines [203]. Rimmer combined motion primitives to develop paths for reversing of long
combination vehicles [160].

5.2.4 Geometric Proofs

The ‘Piano Mover’s’ problem is to find a path for a polygon (in two dimensions) from a
starting configuration to a goal configuration [204]. This problem is constrained by the
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presence of obstacles between start and goal configurations, and in the case of a road vehicle,
by the non-holonomic property. An attempt at a general solution was presented by Canny
using Voronnoi diagrams [205].

Basch et al. attempted to disprove the existence of a feasible path [206]. The method
was to look for simple proofs of when the motion planning problem is ‘clearly impossible’.
However, this effectively generates a lower bound on impossible solutions, rather than the
truly critical case. The authors state that the method is unsuitable for borderline cases.

Vasseur et al. used a set of connected, convex polygons to attempt to prove the existence
of a path [207]. At the entry position to each polygon, motion primitives were defined to
show the possible configurations at exit of that polygon, and continuity enforced across
polygons. This was shown to be successful in relatively unconstrained environments, but
was less successful in more complex environments where the number of polygons required
for all polygons to be convex was high, and therefore the size of polygons was low.

No comprehensive proof of the non-existence of a path between two configurations for a
car-like vehicle was found in the literature.

5.3 Coordinate Conversion

The set of constraints extracted from the satellite image were initially in an image-based
coordinate system, (u,v). The scale factor of the image λ , from pixels to meters was extracted
from the image using a scale bar visible in the image and used with the height of the image
in pixels, H, to convert the constraint data into a world-based coordinate system, (x,y),
according to

x = uλ (5.1)

y = (h− v)λ (5.2)

in which all calculations were performed.

5.4 Rapidly-exploring Random Trees (RRT)

The Rapidly-exploring Random Trees (RRT) algorithm is a method for quickly finding a
path from a start to a goal configuration [188]. A ‘tree’ is grown from the start configuration,
expanding into unexplored space until it reaches the goal. Branches of the tree represent
possible motion of the vehicle (Figure 5.3). The algorithm has two significant features. First,
the tree expands preferentially into the largest unexplored regions of space, thus assisting
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Fig. 5.3 Illustration of the RRT algorithm

faster convergence. Second, although the algorithm cannot provide proof that a solution does
not exist, if run for a sufficiently long time, the tree will tend towards covering the entire
search space, thus ensuring that a solution will be found, if one exists.

5.4.1 Method

The aim of the standard RRT algorithm is to construct a tree from a start configuration,
(xs,ys,ψs), to a goal configuration, (xg,yg,ψg), via node configurations, connected by
branches. The algorithm consists of four steps, which are discussed in the following sections,
and illustrated in Figure 5.3:

Select a random configuration, (xrand,yrand,ψrand), from the search space. The stan-
dard RRT algorithm selects a random value for all three states of the vehicle: the position,
(x,y), of the lead point and the yaw angle, ψ , of the vehicle, (xrand,yrand,ψrand).

The tree was biased to grow towards the goal configuration, to improve the convergence
time, by applying a 10% probability that the randomly selected configuration would be the
goal configuration.

Find the closest node of the tree, (xi,yi,ψi), to the random configuration. All nodes,
(xi,yi,ψi), in the current tree were awarded a score, Hi, based on their proximity to the
randomly selected node, according to
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Hi = (xi − xrand)
2 +(yi − yrand)

2 +Kψ |ψi − εi| (5.3)

where Kψ was a gain set empirically to 2, and εi was given by

εi = arctan
(

yi − yrand

xi − xrand

)
(5.4)

as shown in Figure 5.4. The purpose of this term was to favour nodes where the vehicle
is oriented towards the random node, over nodes which might be closer in (x,y) but where
the vehicle is pointing away from the random node.

The node in the tree with the lowest value of Hi was the seed point for the new branch to
grow from.

Extend motion primitives from the closest node towards the random configuration,
and place a new node, (xn,yn,ψn), at the end of the motion primitive which ends closest
to the random node. Growth of the tree branch consisted of generating a set of motion
primitives by sweeping the range of possible steering angles and steering rates, and using
Equations 4.2 to 4.12 to calculate the resulting states of the vehicle. The update equations
forming the vehicle model are given in Chapter 4. Each motion primitive was scored
according to the Euclidean distance from the end of the path to the random node that the tree
was growing towards. The highest scoring motion primitive became the new branch of the
tree, with its endpoint stored as a new node.
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At every step along the branch, the position of the vehicle was checked for collisions
with the manoeuvre constraints. If a collision was detected, the branch was terminated at the
previous step.

Repeat these stages until a node falls sufficiently close to the goal configuration. The
Euclidean distance between any new node and the goal position was calculated, and the tree
growth process was terminated if that distance was below a given threshold of 2 m. The
orientation of the vehicle in the goal configuration was not considered.

Once the tree growth process was terminated, the indices of linked nodes were traced
back from the final node to the start configuration to output the final path.

5.4.2 Results

The comparison between the performance envelope generated by the RRT algorithm (in white)
and the true performance envelope (in grey) is shown in Figure 5.5. The results clearly show
that the RRT algorithm was ineffective at locating successful paths through the manoeuvres
for larger vehicles. The RRT algorithm discovered only 40% of the vehicles which were
shown to be viable by the true performance envelope for representative manoeuvre A, and
33% of vehicles for representative manoeuvre B, based on the areas of the performance
envelopes in Figure 5.5.

Although the algorithm has been shown in general to be a viable method for path planning
in open environments, in the case of the tightly constrained manoeuvres considered here,
which require location of a single viable path with high precision, RRT was unsuitable.

The reason for this is illustrated in Figure 5.6. The first few iterations of the tree growing
process in this example generated nodes 1 and 2 (which are considered close together) from
the start node 0. The next point in the tree which is required for a successful path is in the
vicinity of configuration 3. When a point close to configuration 3 is randomly selected, the
algorithm must select one of the existing nodes to expand the tree from. If nodes 1 and 2
are close together, then any point sufficiently close to configuration 3 to form a successful
path will always make the same selection, no matter what method is used (in this example
closest Euclidean distance will always select node 2, but a different method might always
select node 1). However, the route 0–1–3 yields a successful path whereas the route 0–2–3
intersects with a boundary, therefore it is required that some points close to configuration 3
select node 2 to grow from, while others select node 1.

In open environments this effect is not seen because if nodes 1 and 2 are close enough
together to create the problem then either node generates a successful path. This allows the
algorithm to be successful at finding paths for relatively small vehicles. This problem can be
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Fig. 5.5 Success boundaries as found by RRT algorithm
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Fig. 5.6 Illustration of the challenges associated with the RRT algorithm

removed by increasing the resolution of the entire tree growing process, such that the effective
distance between nodes 1 and 2 grows, however the calculations become prohibitively
expensive. An adaptation to the RRT algorithm used nearest neighbour searching to identify
a set of nodes within a threshold distance to the random configuration, and selected one node
randomly from this sample. However this caused tree growth towards the goal to become
very slow, as the random selection was not biased towards reaching the goal.

The results from the RRT algorithm show several positive features. First, the performance
envelopes for both manoeuvres exhibit the same general shape as the true boundaries, despite
being smaller. This suggests that the algorithm was generating sensible paths, but was not
precise enough to find the exact required path. Secondly, the performance envelopes are very
smooth, compared to the inconsistency generated by some of the other methods. This implies
that the method is reliable and repeatable.

5.5 Model Predictive Control (MPC)

5.5.1 Method

Model Predictive Control (MPC) is a control strategy designed to identify the set of inputs to
a system which generate the most suitable outputs, according to some cost function [193].
The main steps of a standard MPC algorithm are as follows:

(i) Measure the current states of the system.

(ii) Generate a set of input trajectories.
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(iii) Pass each trajectory through a system model, and evaluate a cost function for each.

(iv) Select the trajectory that gives the lowest cost, and take the first step along this trajectory.

(v) Repeat these steps.

In the case of the vehicle system, the states were the (x,y) position of the lead point of
the vehicle, and the yaw angle, ψ . In the case of an articulated vehicle, the articulation angle
formed a fourth state. Initially, the only input to the system was the front steering angle
δ f . The input trajectories were chosen as constant steer angles, thus each input trajectory
formed a ‘motion primitive’. However, it was found that these motion primitives offered no
incentive for the vehicle to ‘counter-steer’ before turning—this is an approach commonly
seen in real-world driving of large vehicles, where the driver steers the lead point in the
‘wrong’ direction first to reduce the effective cut-in later in the manoeuvre. This caused the
vehicle to fail by cutting in, when it still had space on the outside to use. An alternative set of
motion primitives was defined, using the initial steering angle and steering rate as two inputs.
These allowed the vehicle to steer outwards first, without being penalised for the effect of the
‘tail’ of the motion primitive.

For each combination of initial steering angle and steering rate, the vehicle model
described in the previous chapter was used to advance the lead point by one step in the
direction prescribed by the steering angle, and to calculate the new yaw angle of the vehicle.
At each time step, the cost function increment, ∆J, was calculated and added to the total cost
for that steering angle and steering rate, J.

It should be noted that in the case of vehicles with rear axle steering, the system was still
treated as having a single input. The rear steering angle, δr, was considered to be dependent
on the front steering angle, either directly proportionally (through Command-Steer), or
indirectly (through Path-Following steering).

The most significant component in the measure of each motion primitive was the distance
travelled by the vehicle before colliding with a boundary. The greater this distance, the better.
Because the vehicle travelled in discrete steps, using this parameter alone generated a highly
non-linear, ‘stepped’ cost function, without a clearly defined trough. Additional parameters
were therefore used, with a lower weighting, specifically the perpendicular distances from
the front corners to the closest boundaries and the perpendicular distance from the front of
the vehicle to the nearest boundary. Finally, in order to prevent the vehicle finding local
minima, and to ensure it took the right ‘general route’ through the manoeuvre (for example
turning right instead of left at a junction) a target path was defined, and the perpendicular
distance from the lead point to the target path was used as an additional factor in the cost
function. These parameters are illustrated in Figure 5.7.
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Fig. 5.7 Illustration of parameters used to evaluate the MPC cost function

The cost function was given by the following equation:

∆J = e−Kek (KLdL +KRdR +KFdF +KPdP) (5.5)

where KL, KR, KF , and KP are weights on the parameters shown in Figure 5.7, and Ke is
an exponential gain intended to prioritise the part of the path closest to the current position.

The cost, J, for each motion primitive was a function of two variables: initial steering
angle, δ f ,i, and steering rate, δ̇ f . To optimise this, a Genetic Algorithm was used. A Genetic
Algorithm generates a set of starting parameter values, and evaluates the cost function for
these parameters. Sets of parameter values which score highly are passed down with some
mutations and random inclusions to the next ‘generation’ to be evaluated.

5.5.2 Results

The MPC algorithm performed reasonably well, scoring 79% for both of the representative
manoeuvres. Figure 5.8 shows the performance envelopes as found by the MPC algorithm
compared to the true envelopes.

These figures show a clear pattern, specifically that the MPC algorithm is unsuccessful at
locating the viable path through a manoeuvre once the vehicles wheelbase reaches a certain
value relative to the dimensions of the manoeuvre. The algorithm performs well, locating the
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true performance envelope accurately, when the vehicle is at its maximum successful length
for that manoeuvre. This also corresponds to the region of the envelope plot where the rear
overhang of the vehicle is greatest.

This pattern matches expectations of the algorithm. If the rear axle of a vehicle moves
forwards on the vehicle, from the rear bumper towards the centre of the vehicle, the effect on
the swept path of the vehicle is to shift the swept area towards the outside of the corner, as
cut-in reduces and tailswing increases. The algorithm was known to be poor at managing
cut-in, as shown by the initial design of ‘constant steer angle’ motion primitives, which
failed because they could not avoid cutting in. This problem was reduced by the new, more
complex motion primitives, but not completely overcome. At long wheelbases, the wheels
are close to the rear of the vehicle, hence the cut-in is large compared to the size of the
vehicle, and the MPC algorithm fails because it cannot find suitable motion primitives to
cause it to counter-steer prior to the corner. The algorithm could be improved by using a
library of more complex motion primitives, but this would increase the computation time. It
was preferable to restructure the algorithm using the control point-based approach described
below.

This implementation of MPC used a short control horizon and a long preview horizon. An
alternative implementation would be to use a longer control horizon, such that the algorithm
optimises the control inputs at all points along the path, rather than just the first time step. It
was believed that this approach would require the same compromise between resolution and
computation time as the RRT method, and so would not offer an advantage. However, this
was not tested, as other methods were found to be sufficiently accurate.

5.6 Single- and Multi-segment Splines (SMSS)

An alternative to the MPC approach was to use cubic splines to define a path through the
manoeuvre, using a similar cost function to the MPC approach to evaluate the success of the
path. Several different methods for defining the splines were investigated, as described below.
An optimisation method was used to find the combination of parameters which defined the
highest-scoring spline, and the vehicle was considered to have passed if it could reach the end
of that spline without colliding with the manoeuvre constraints. This was performed using the
Matlab Global Optimisation Toolbox. A Genetic Algorithm was chosen as the optimisation
algorithm, because the objective function was expected to be highly non-linear, and the
shape of the function was very unpredictable. It was found that very few ‘generations’ were
required to give reasonable results, so the algorithm was run with a limit of ten generations,
and was modified to exit early if the vehicle could reach the end of a tested spline.
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5.6.1 Single-segment Splines

5.6.1.1 Method

A single Hermite spline segment is described by the positions of two control points, (x1,y1)

and (x2,y2), and the endpoints of tangents to the ends of the path, (x′1,y
′
1) and (x′2,y

′
2) at the

control points, as shown in Figure 5.9. In this work, the control points (the start and end
points of the manoeuvre) were the start and end points of the example path through each
manoeuvre, created when the manoeuvre was defined (as explained in Section 5.1.1), thus
of the eight parameters required to define the spline, four, (x1,y1,x2,y2), were fixed by the
definition of the manoeuvre. In order to provide limits on the upper and lower bounds of
the other four parameters, (x′1,y

′
1,x

′
2,y

′
2), these parameters were redefined as (r1,θ1,r2,θ2)

where

x′1 = r1 cosθ1 (5.6)

y′1 = r1 sinθ1 (5.7)

x′2 = r2 cosθ2 (5.8)

y′2 = r2 sinθ2 (5.9)

To reduce the number of parameters required, the angle at which the spline arrives at the
goal position, θ2, was fixed manually when the manoeuvre was defined. Therefore, three
parameters were required to fully define the spline, (r1,θ1,r2), shown in Figure 5.9.
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The maximum and minimum values of θ1 were taken as ψ1 −δ f ,lock < θ1 < ψ1 +δ f ,lock,
where ψ1 was the yaw angle of the vehicle in the start configuration, so that the vehicle could
not exceed its steering lock angle in the first time step. The radii, r1 and r2, were limited to a
maximum value of 100 m. This value was determined by inspection of plausible splines.

These limits generate a sector of plausible locations for the endpoint of the first control
tangent, and a line of plausible locations for the endpoint of the second. Both areas are
shaded in Figure 5.9.

Any parametric cubic curve can be defined as

x(t) = axt3 +bxt2 + cxt +dx (5.10)

y(t) = ayt3 +byt2 + cyt +dy (5.11)

for 0 ≤ t ≤ 1. In matrix form this is written as

Q(t) = TC (5.12)

where Q(t) is the coordinates of the curve, [x(t),y(t)], T is the parameter matrix[
t3 t2 t 1

]
and C is known as the coefficient matrix, given by

C =


ax ay

bx by

cx cy

dx dy

 (5.13)

Differentiating yields

Q′(t) =
[
3t2 2t 1 0

]
C (5.14)

where Q′(t) =
[
x′(t) y′(t)

]
.

The four control points described above then provide four boundary equations which can
be written as 

x1 y1

x2 y2

x′1 y′1
x′2 y′2

=


T 3

1 T 2
1 T1 1

T 3
2 T 2

2 T2 1
3T 2

1 2T1 1 0
3T 2

2 2T2 1 0

C (5.15)

where T1 = 0 and T2 = 1. From this, C can be found by
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C =


T 3

1 T 2
1 T1 1

T 3
2 T 2

2 T2 1
3T 2

1 2T1 1 0
3T 2

2 2T2 1 0


−1

x1 y1

x2 y2

x′1 y′1
x′2 y′2

 (5.16)

With the coefficients of the matrix C known, the full set of coordinates for the path can
be defined by solving Equation 5.12 for a finely spaced set of values of t between 0 and 1.

5.6.1.2 Results

Figure 5.10 shows the success boundaries generated by the Single-segment Spline algorithm.
The algorithm performed well on the first manoeuvre, scoring 89%, but badly on the second,
scoring 51%.

Inspection of the two manoeuvres shows the cause of the poor performance on the second
manoeuvre. The 90° corner seen in the first manoeuvre requires only one change of direction,
and can be easily defined by a cubic function with four control points. Varying the control
points slightly will yield a range of slightly different splines which can be evaluated. By
contrast, the second manoeuvre requires two changes of direction. Although this can in theory
be represented by a spline defined by four control points, in practice the spline becomes very
sensitive to the position of the control points. This makes it difficult to achieve the fine control
over the spline required to generate a set of similar splines to evaluate. This is a significant
disadvantage to this method, assuming that not all manoeuvres can be completed with a
single change of direction. The following section, on Multi-segment Splines, attempted to
address this problem by providing an intermediate control point, thus reducing the sensitivity
of the spline to the positions of its control points.

Another feature of interest in the figures are the ‘missing rows’ visible at 5.5 m wheelbase
for the first manoeuvre, and 5.75 m for the second. The test programs were repeated, and the
position of these artefacts was not consistent. Their presence suggests that the algorithm is
prone to falling into local minima, rather than finding the global optimum. This is unexpected,
since the spline was optimised using the Genetic Algorithm, which should be able to robustly
find the global minimum for a simple system. As explained above, defining the relatively
complex spline with only four control points causes high sensitivity to the position of those
inputs. It is thought that the global optimiser was not able, or not given sufficient time to
locate the position in the parameter space of the correct solution to a sufficient degree of
precision. Initial tests, allowing more generations of the Genetic Algorithm appeared to
confirm this, however the calculation ran slowly. Consequently reducing the sensitivity to
the control points by adding more spline segments was preferred as a solution.
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5.6.2 Multi-segment Splines

5.6.2.1 Method

Any single spline can be split into multiple segments. Each additional segment requires one
additional control point, (xi,yi), and the endpoint of the tangent to the curve at that point,
(x′i,y

′
i), converted to (ri,θi) as described above, leading to four additional parameters, xi,yi,ri

and θi An initial estimate of the position of the additional control point was taken as the
midpoint of the example path (described in Section 5.1.1), and the algorithm was permitted
to search around this starting point as described below.

Figure 5.11 shows a spline composed of two segments, with three control points, and
three control tangent endpoints, requiring 12 parameters to define. Of those 12 parameters,
the same five were considered fixed for a given manoeuvre, x1,y1,x3,y3 and θ3, leaving seven
parameters to optimise over. The computational complexity could have been reduced by
fixing (x2,y2) at the same time as the start and goal configurations were defined, but this
would have increased the likelihood of missing a valid solution. Instead, the coordinates
(x2,y2) were allowed to vary by a radius of up to 4 m from their initial position (as set at the
definition of the manoeuvre). This maximum radius was defined by inspection of maximum
road widths for the manoeuvres.

The search spaces for the parameters governing the start and goal tangent endpoints were
the same as for the single segment, but for the middle control point, r2 was limited to 25 m
by inspection, and θ2 was allowed to vary between ψ2 −π and ψ2 +π . ψ2 was fixed by the
manoeuvre definition. This could not be limited further by the steering lock angle as for θ1

because it was not known in advance at what angle the vehicle would approach the control
point at.

The coordinates of the different spline segments were calculated separately according
to the method described for the single spline segment. Continuity between the spline
segments in position and gradient was ensured by using the same control point and control
tangent endpoint, for the end of the first segment and the start of the second. There is an
argument to suggest that enforcing continuity between spline segments is not true to the
real world behaviour of a driver attempting a tight manoeuvre. Enforcing continuity in
gradient corresponds to requiring no instantaneous change in the steering angle, which will
not necessarily be the case if the driver finds he cannot complete the manoeuvre without
changing the steering angle while stationary. However, it was decided to limit the search to
manoeuvres which could be completed by a single spline with gradient continuity enforced.

The same analysis gives 11 parameters to optimise over for a three segment spline.
Additional spline segments increases the dimension of the search space significantly, and
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Fig. 5.11 Parameters required to define a spline composed of two segments

risks over-defining the manoeuvres, which were all simple enough to be defined by 4 control
points (3 spine segments), so splines with more than 3 segments were not considered.

5.6.2.2 Results

The results for two-segment and three-segment splines are shown in Figure 5.12 and Fig-
ure 5.13 respectively. Both algorithms show good results for the first manoeuvre, scoring
90% and 94%, and slightly worse performance on the second manoeuvre, scoring 75% and
76%.

As predicted, the subdivision of the spline into multiple segments reduced the sensitivity
to the location of the control points, reducing artefacts such as the local minima problems
present in the results from the Single-segment Spline method. This also reduced some of the
performance deficit for the chicane manoeuvre, although the results are still worse than for
the corner manoeuvre.

These results suggest that the performance of the algorithm can be improved by increasing
the number of control points used to define the splines. However, in the Multi-segment
Spline implementation, every additional control point requires 4 additional parameters to
be optimised, which slows the algorithm. An alternative structure was proposed, in order to
allow investigation of larger numbers of control points.
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(a) 90° corner

(b) Chicane

Fig. 5.12 Success boundaries as found by Two-segment Spline algorithm

Unrealistic Vehicles

True Performance Envelope

SMSS Performance Envelope

Unsuccessful Vehicles
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(a) 90° corner

(b) Chicane

Fig. 5.13 Success boundaries as found by Three-segment Spline algorithm

Unrealistic Vehicles

True Performance Envelope

SMSS Performance Envelope

Unsuccessful Vehicles
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Example Path

Example Control Points

Adjusted Control Points

Adjusted Spline

z1

z2

z3

Fig. 5.14 Definition of a spline with many segments using few parameters

5.7 N Control Point Splines (NCPS)

5.7.1 Method

In order to give a higher degree of control over the spline, without requiring an excessive
number of parameters to optimise over, a further method was investigated. An example path
was generated manually and subdivided into n spline segments, requiring n+1 control points
to define it. The control points were equally spaced along the example path. Perpendicular
lines to the example path were defined at each of the control points, and the optimisation
variable for each control point was the distance along these perpendiculars to the example
spline away from the initial position, zi, ranging from −3m to 3m. The spline was required
to pass through all the control points as shown in Figure 5.14. The method to enforce this
is described below. In this way, only one optimisation parameter was required to define the
position of each control point, and none were needed for the start and end point, so a spline
with n segments was defined by n− 1 parameters. This compares very favourably to the
method used in section 5.6.2 which required 4(n−1)+ 3 parameters. For a ten segment
spline, this corresponds to nine parameters instead of 39. Using as many as ten spline
segments is likely to cause over-fitting, or oscillations in the spline. However, it allows
increased flexibility for the critical, tightly-constrained vehicles.

This type of spline is known as a Catmull-Rom spline [203]. A single spline segment
passing through four control points, C1 −C4, can be defined by



140 Manoeuvrability Modelling: Algorithm Selection

Fig. 5.15 Variation of the algorithm score for each manoeuvre with the number of control
points used to define the spline

Q(t) = TC (5.17)

where Q is the coordinate for that particular spline segment, T is defined as above, and C
is the coefficients matrix that encodes the control points. Following the method used above
to find C from the boundary conditions yields

C =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0




x1 y1

x2 y2

x3 y3

x4 y4

 (5.18)

The outer two control points, C1 and C4, are used to define the gradients at points C2 and
C3, thus the interpolation is only valid between C2 and C3. In other words, at C2, t = 0 and at
C3, t = 1. Continuity between the segments can be ensured by sharing control points.

5.7.2 Results

5.7.2.1 Investigation of the effect of number of control points

In order to assess the effect of the number of control points on the algorithm, success
boundaries were plotted for a range of values of n. Figure 5.15 shows the effect of the number
of control points on the score for the manoeuvre.
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The plots for both manoeuvres show a significant drop in performance at seven control
points, compared to six or eight. Analysis of the example manoeuvres shows that, for these
particular manoeuvres, an odd number of control points leads to one of the control points
being directly in the centre of the manoeuvre, at the critical point. When the number of
control points is even, the critical centre of the manoeuvre is not explicitly defined by a
control point, but instead by the spline joining the control points on either side, which allows
greater freedom. At higher numbers of control points, this effect is less pronounced, since the
distances between the control points are lower, and therefore the positioning of the control
points along the spline is less crucial.

Figure 5.15 suggests that more control points gives better performance, with peaks at 20
control points for the first manoeuvre and 17 control points for the second. Tests with more
than 20 control points were slow to solve because of the increased number of optimisation
variables. In addition, a spline with more than 20 control points can exhibit significant
oscillation. This firstly increases the solution time, and secondly may yield a very unrealistic
path. For this reason, it was decided to generate the results using 20 control points.

5.7.2.2 Results for 20 control points

Figure 5.16 shows the success boundaries for the two representative manoeuvres. The
percentage of successful vehicles discovered was 96% for the first manoeuvre and 89% for
the second manoeuvre. The algorithm was successful at locating the maximum wheelbase for
both manoeuvres. This suggests that the algorithm is capable of planning paths which either
counter-steer or overshoot the corner, unlike some of the other algorithms. The algorithm
performs relatively poorly as the rear overhang increases. This is likely to be an effect of
the oscillations previously described, as vehicles with very long rear overhangs will exhibit
significant tailswing in the transient region of manoeuvres, which for a path with oscillations
is a significant proportion of the path.

One adaptation of the algorithm was considered, where the freedom of movement of each
control point varied. For example control points near the start and end of the manoeuvre
were allowed only a small amount of movement, while control points near the centre could
move much further from their starting position. However it was decided that this restricted
the algorithm on manoeuvres where the most crucial part was not at the centre.
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(a) 90° corner

(b) Chicane

Fig. 5.16 Success boundaries as found by Multiple Control Point Spline algorithm with 20
control points

Unrealistic Vehicles

True Performance Envelope

NCPS Performance Envelope

Unsuccessful Vehicles



5.8 Algorithm Selection 143

Table 5.1 Evaluation of path-planning algorithms

Algorithm Variant Accuracy 1 (%) Accuracy 2 (%) Time(s)

RRT 40 33 13.8
MPC 79 79 46.9

SMSS
Single-segment 89 51 4.8
Two-segment 92 75 46.9

Three-segment 94 76 67.4

NCPS

6 Control Points 87 60 15.4
7 Control Points 51 46 15.5
8 Control Points 86 83 19.0
9 Control Points 78 76 20.4

10 Control Points 89 65 22.1
12 Control Points 89 76 26.9
15 Control Points 96 75 29.5
20 Control Points 96 89 35.8

MPC + NCPS(20) 99 96 82.7

5.8 Algorithm Selection

5.8.1 Quantitative Evaluation

Table 5.1 shows the percentage of successful vehicles discovered by each algorithm for both
manoeuvres. The table also shows the average time taken to simulate each vehicle across both
manoeuvres. All of these times corresponded to a time of less than 90 minutes to generate
the full performance envelope. The time taken to generate the full performance envelope
depends on the number of vehicles which must be simulated, thus varies with the size and
shape of the envelope. It was approximated that a computation time per simulation of less
than 90 s would correspond to a time to generate the full envelope of less than 90 minutes,
which was considered acceptable. The speed of most of the algorithms can be improved,
but at the cost of performance. For example, limiting the number of Genetic Algorithm
generations will reduce the time taken, but could lead to viable paths being missed.
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5.8.2 Qualitative Evaluation

None of the algorithms successfully revealed the true performance envelope accurately. Of
the four possibilities, the RRT algorithm can be discounted, for its poor performance at the
critical points of the map, where the vehicle is large and tightly constrained. Similarly, the
Single-segment Spline method can be discounted, due to its inefficacy on manoeuvres with
more than one change of direction. The Multi-segment Spline approaches were reasonably
accurate but ran slowly relative to their performance.

Analysis of individual tests showed certain characteristics of each algorithm which
penalised different forms of vehicle. The most pronounced of these were the MPC algorithm,
which penalised vehicles with a long wheelbase, and the NCPS algorithm, which penalised
vehicles with a long rear overhang. These two methods complement each other, such that the
sum of the two maps located 99% of the performance envelope for the 90° corner and 96%
of the boundary for the chicane. These envelopes are compared with the true performance
envelope in Figure 5.17.

The combined time for these two algorithms was 82.7 s per simulation, which corresponds
to approximately 72 minutes per full map. Although more than any individual algorithm,
this was considered acceptable. It would also be possible to increase the speed by using the
very fast Single-segment Spline method for the smaller vehicles which are more likely to
pass, and switch to the other methods close to the boundary.

5.9 Conclusions

(i) A method was required to locate the boundary in (L,a+b) space separating vehicles
which can, and vehicles which cannot complete a specific manoeuvre. This required a
path-planning algorithm so that large numbers of vehicles could be simulated attempting
many manoeuvres.

(ii) A number of simplifications and assumptions were required. First, reversing was not
considered, and secondly all obstacles were considered ‘hard’ obstructions to any part
of the vehicle (whereas in reality, some ‘soft’ obstacles such as kerbs will constrain the
wheels but not the front or rear overhangs).

(iii) Four path-planning algorithms were designed and written. These were Rapidly-
exploring Random Trees (RRT), Model Predictive Control (MPC), Single- and Multi-
segment Splines (SMS) and N Control Point Splines (NCPS).
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(a) 90° corner

(b) Chicane

Fig. 5.17 Success boundaries found by the combination of the MPC and NCPS algorithms

Unrealistic Vehicles

True Performance Envelope

MPC and NCPS Combined Performance Envelope

Unsuccessful Vehicles
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(iv) None of the methods could successfully locate the boundary perfectly, but a combination
of the MPC and NCPS algorithms successfully located 99% and 96% of the viable
vehicles for the first and second manoeuvres respectively.



Chapter 6

Manoeuvrability Modelling: Case
Studies

6.1 Introduction

Chapter 4 describes a method for assessing the manoeuvrability of Heavy Goods Vehicles.
This chapter will apply this method to three case studies: Grocery Delivery Vehicles, Refuse
Collection Vehicles, and Urban HGVs such as those used to restock supermarkets and
convenience stores. Two libraries of manoeuvres were collated. First, a set of ‘residential’
manoeuvres, applicable to home delivery vehicles and refuse trucks, and secondly, a set of
‘urban’ manoeuvres, expected to be more suitable for larger vehicles such as those used to
restock stores in city centres. The method consists of the following steps:

(i) Identify a library of manoeuvres, suitable for the application the vehicle will be used
for. These could be identified from GPS data collected from similar vehicles.

(ii) Convert each manoeuvre in the library into a set of boundary constraints, by extracting
the positions of obstacles such as kerbs, walls, or traffic furniture.

(iii) Simulate a set of vehicles with different lengths, L, and wheelbases, (a+b), attempting
the manoeuvre using the path-planning algorithms described in Chapter 5, and display
the results as a set of contours in L and (a+b) space corresponding to the percentage
of manoeuvres from the library which a vehicle of those dimensions could complete.

(iv) Locate an existing vehicle on the plot. The percentage of manoeuvres passed by the
existing vehicle will form the minimum target for any new design. Using the existing
vehicle instead of an arbitrary baseline calibrates against the effects of inaccuracies and
assumptions about the constraints.
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(v) Simulate the same for vehicles utilising interventions to aid manoeuvrability such as
rear axle steering or articulation joints, and plot the resulting contours.

(vi) Apply additional constraints or contours, including:

(a) Maximum Gross Vehicle Weight (or contours of constant Gross Vehicle Weight)

(b) Maximum axle load (or contours of constant axle load)

(c) Remove vehicles where the rear axle is off the back of the vehicle, or in the front
half of the vehicle

(vii) Locate the point on the plot (with or without manoeuvrability interventions such as rear
axle steering) which allows the maximum load capacity without violating any of the
constraints, and can pass at least the same percentage of manoeuvres as the existing
vehicle. For this work, the capacity is a function only of the vehicle length, so the point
of optimum design point is the point with the greatest value of L.

It was expected that the addition of rear axle steering to a vehicle would increase the
percentage of manoeuvres it could complete. This would mean that a longer vehicle could
complete the same percentage of manoeuvres as the unsteered, baseline vehicle. However,
initial simulations showed that the addition of rear axle steering in some cases reduced
the percentage of manoeuvres the vehicle could complete. In order to confirm the validity
of these results, Section 6.2 presents an investigation of the effects on manoeuvrability of
different steering strategies.

6.2 Comparison of Steering Strategies

A number of rear axle steering strategies are defined in Chapter 4, and simulation models
developed for each of them. The aim of this section is to analyse the effect of different
steering strategies for specific manoeuvres. The four strategies used were ‘Rear Unsteered’
(a conventional, fixed rear axle), ‘Command-Steer’, ‘Partial Command-Steer’, and ‘Path-
Following’.

Figure 6.1 shows a subset of manoeuvres from the ‘residential’ library. The performance
envelopes for these manoeuvres for a rigid vehicle with four different rear axle steering
strategies are shown in Figure 6.2.

The results across all the manoeuvres show a fairly consistent pattern, with minor
differences between manoeuvres. These differences can be attributed to the specifics of the
manoeuvre. For example for some of the manoeuvres the entry is narrow compared to the
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(a) Manoeuvre 1 (b) Manoeuvre 2

(c) Manoeuvre 3 (d) Manoeuvre 5

(e) Manoeuvre 10 (f) Manoeuvre 13

Fig. 6.1 Subset of manoeuvres from the ‘residential’ library
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(a) Manoeuvre 1 (b) Manoeuvre 2

(c) Manoeuvre 3 (d) Manoeuvre 5

(e) Manoeuvre 10 (f) Manoeuvre 13

(g) Legend

Fig. 6.2 Comparison between success boundaries for vehicles with and without rear axle
steering for a selection of manoeuvres
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Fig. 6.3 Annotated results for Manoeuvre 2 from the residential library

exit, thus penalising tailswing (the outside rear corner of the vehicle swinging outside the
line of the side of the vehicle). Contrastingly, manoeuvres with a wide entry but narrow exit
penalise cut-in (the side of the vehicle on the inside of the turn moving in towards the centre
of the turn) as the driver cannot ‘overshoot’ the corner. Thus some manoeuvres penalise
vehicles with short wheelbases (and therefore long rear overhang and large tailswing) while
others penalise long wheelbase vehicles (for increased cut-in).

Most manoeuvres show six consistent trends, the causes of which will be explained in
Section 6.2.1. Figure 6.3 highlights key regions of the plot corresponding to these trends for
Manoeuvre 2. (Manoeuvre 2 is shown in Figures 6.1b and 6.2b). The trends are as follows:

(1) There is a limiting wheelbase for the Rear Unsteered vehicle.

(2) The Partial Command-Steer strategy yields an identical success boundary to the Rear
Unsteered case, but at a longer wheelbase.

(3) With a fully Command-Steered rear axle, there is a maximum vehicle length which can
be achieved across most wheelbases.

(4) With a fully Command-Steered rear axle, there is also a limit on the maximum wheelbase.

(5) The maximum successful length across all strategies is often found on the plot without
rear axle steering, at short wheelbases.
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(6) The use of the Path-Following algorithm, as opposed to the Command-Steer algorithm,
to control the rear steering angle generates the same pattern (a maximum achievable
length) but the maximum length is reduced.

6.2.1 Expected Results

From the list above, the first two trends can be explained by considering the steady state
turning circle of the vehicle. The minimum turning radius for a fixed rear axle vehicle is
proportional to the tangent of the front steering lock angle, δ f ,max, (which is considered fixed
for this work) and the wheelbase, (a+b). It is therefore clear that for a vehicle to achieve a
particular turn radius in the steady state there is an upper limit on the wheelbase. The Partial
Command-Steer vehicle is equivalent to a Rear Unsteered vehicle with a shorter wheelbase.

Conversely, with full Command-Steer, the effective wheelbase can be moved to any
position on the vehicle (subject to the limit on the rear steering lock angle). Chapter 4
describes this process. Since the effective wheelbase can always be as far forward as it needs
to be, the real wheelbase has no impact. Therefore with a steered rear axle the limit is instead
on vehicle length, which can be achieved at any wheelbase (Trend (iii), Figure 6.3).

Not every effective wheelbase can be achieved for a given real wheelbase, because the
rear steering angle is limited by the clearance available outside the frame rails of the vehicle
chassis. Based on previous implementations, the maximum rear axle steering angle was set
to δr,max = 25°. This creates a saturation region in the graph (Trend (iv) on Figure 6.3). In
this region the effective wheelbase is still forward of the real wheelbase, but cannot reach
the centre of the vehicle (where the Command-Steer algorithm aims to place it) because
the rear steering angle saturates. Thus in this region the wheelbase is the limiting variable.
This hypothesis was confirmed by running the simulation without a limit on the rear steering
angle.

The fifth and sixth trends from the previous section are counter-intuitive. Figure 6.3
shows a region where the vehicle with fixed rear axle is successful whereas the addition of
rear axle steering causes it to fail. A thorough analysis of this phenomenon was carried out
and is described in the following section.

6.2.2 Command Steer: Analysis

The basic operating principle behind the Command-Steer algorithm for a rigid vehicle is that
the steering angle of the axle to be steered should be proportional to the front axle steering
angle. The choice of gain between the front and rear steering angles controls the effective
wheelbase. The best gain for steady-state turning causes a follow point at the rear of the
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vehicle to follow the path of a lead point at centre of the front axle during the steady-state
region of a manoeuvre. This is equivalent to placing the effective rear axle almost in the
middle of the vehicle (halfway between lead and follow points). However, in the transient
part of the manoeuvre this causes extreme tailswing, and thus longer effective wheelbases
may be more appropriate for real-world applications.

In the region of Figure 6.3 labelled ‘5’, the vehicle represented is long, with a very short
wheelbase (like a bus). The bottom of that region (shaded red) marks the boundary where
the rear axle of the vehicle is halfway between the front axle at the rear bumper (i.e. at the
point the Command-Steer algorithm aims to position the effective rear axle). Two vehicles,
both with rear axles in the centre of the vehicle, one Rear Unsteered and the other Command-
Steered, might be assumed to be identical if the Command-Steer gain is chosen such that
the effective rear axle is also in the centre of the vehicle. However, this is only the case in
steady-state turning. The effective axle position of the Command-Steered vehicle moves
backwards and forwards along the vehicle as the vehicle moves through the manoeuvre, in
proportion to the changing front steering angle. This accounts for the difference between the
fixed and steered rear axle vehicles, which might have been assumed to be identical.

6.2.2.1 General Manoeuvre Analysis

This effect was investigated by simulating a long vehicle with a short wheelbase (i.e. a vehicle
from the region of Figure 6.3 labelled ‘5’) completing a 90° left turn with a 12.5 m radius.
Figures 6.4 and 6.5 show the tailswing and cut-in, and the Swept Path Width respectively, for
vehicles with fixed rear axle and Command-Steered rear axle. The tailswing was measured
as the perpendicular distance of the outside rear corner of the vehicle from the path of the
centre of the front axle. The cut-in was measured as the maximum perpendicular distance of
any point on the inside of the vehicle from the path of the lead point. The Swept Path Width
was the sum of the absolute values of tailswing and cut-in.

The differences between the two vehicles are small, as expected since in region 5 of
Figure 6.3 the rear axle position is close to the Command-Steer target effective axle position
(near the centre of the vehicle), thus the Command-Steer angles are small. However, there
is a clear increase in tailswing of 0.08 m at step 185, caused by the application of rear axle
steering. For the level of precision required by this method, that is enough to cause one
vehicle to fail and the other to pass.

The counterpoint to this is that the cut-in at this step is very similar between the two
vehicles, giving an increase in Swept Path Width of 0.07 m. Therefore the vehicle is unable
to enter the manoeuvre further to the inside of the corner to compensate for the increased
tailswing, because this will cause a collision on the inside of the vehicle.
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Fig. 6.4 Comparison of tailswing (positive values) and cut-in (negative values) between
different steering strategies for an example manoeuvre. The vehicle had L = 10.40 m and
(a+b) = 4.72 m

Fig. 6.5 Comparison of Swept Path Width between different steering strategies for an example
manoeuvre. The vehicle had L = 10.40 m and (a+b) = 4.72 m
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Through the steady-state region of the manoeuvre, between approximately step 260 and
step 340, the cut-in (and therefore Swept Path Width) is reduced by the addition of rear axle
steering, although this vehicle only gains a small improvement of 0.09 m, because the rear
axle is so far forward. It is therefore shown that although the use of the Command-Steer
algorithm reduces Swept Path Width through the apex of the turn (once the vehicle reaches
steady-state) it has a negative effect on the Swept Path Width through the transient part of
the manoeuvre. Therefore, vehicles are less likely to succeed on manoeuvres with a narrow
entry, even if the exit is wide.

This highlights one of the effects that the shape of the manoeuvre has on the ability of
vehicles of certain lengths and wheelbases to complete it.

6.2.2.2 Specific Manoeuvre Analysis

The effect of this behaviour on the success envelopes was investigated by simulating Ma-
noeuvre 1 from the library (Figures 6.1a and 6.2a). A vehicle was chosen (L = 9.75 m,
(a+b) = 4.70 m) which was just small enough to pass in both Command-Steer and Rear
Unsteered configurations, and the separations to the most relevant obstacles measured at
various points through the manoeuvre. Figure 6.6 shows the simulated position for the
Command-Steered vehicle, annotated with the minimum clearances for both vehicles at
the key points. Since the real rear axle position was close to the target position for the
Command-Steer effective axle (halfway between the front axle and the rear bumper), the
rear steering angles were small and therefore the paths were similar, but the difference in
minimum clearances was significant.

Three areas of potential contact were obvious from the figure. First, a traffic island on the
outside of the entry to the corner was a potential point of contact with the tail of the vehicle
as it swung out. Secondly, the cut-in around the apex of the corner came very close to the
inside pavement. Thirdly, on the exit of the corner, the front outside corner of the vehicle
narrowly avoided a parked car.

As the two vehicles (Rear Unsteered and Command-Steered) enter the manoeuvre, they
behave very similarly. Since the rear axle is close to the middle of the vehicle, both exhibit
some tailswing. Although the Command-Steer angles are small because the rear axle is so
far forward, they do cause a difference between the two vehicles, in the form of a slight
increase in tailswing for the steered vehicle. This is shown in Figure 6.6 by the clearances in
area 1, which are less than half as large for the Command-Steered vehicle. This is despite the
fact that the clearances in area 2 are also significantly lower, so the vehicle cannot steer any
further left to increase the clearance in area 1. This supports the reasoning that the Swept
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Fig. 6.6 Measurements of clearances around critical obstacles for example manoeuvre. The
vehicle had L = 9.75 m and (a+b) = 4.70 m

Path Width in the early part of the manoeuvre is greater for the steered vehicle. This means
that as the vehicle size is increased, the Command-Steered vehicle is the first to fail.

The benefit of the rear-steering algorithm comes in the second part of the manoeuvre,
given that the clearance in area 3 is significantly greater for the Command-Steered vehicle.
This is because the rear axle steering allows the vehicle to achieve higher yaw rates, so the
vehicle is fully rotated by this point, as opposed to still swinging round as it is for the fixed
rear axle vehicle. The Swept Path Width through this part of the manoeuvre is decreased
by the addition of rear axle steering. It should be noted that there are other benefits of rear
axle steering, such as improved load distribution, but this section is only concerned with
investigating the apparent reduction in manoeuvrability at very low wheelbases.

This behaviour can be further confirmed by comparison between Manoeuvres 1 and 10
from the library. It can be seen from Figure 6.1a that early tailswing is likely to be penalised
in this manoeuvre by the traffic island at the entry. Therefore, reducing the wheelbase (which
therefore increases rear overhang and tailswing) will reduce performance (i.e. reduce the
maximum length which can pass the manoeuvre). Figure 6.2a confirms that for a Command-
Steered vehicle, reducing the wheelbase (e.g. from 7 m to 4 m) reduces the maximum length
of vehicle which can complete the manoeuvre.
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Fig. 6.7 Comparison of tailswing (positive values) and cut-in (negative values) between
different steering strategies for an example manoeuvre. The vehicle had L = 10.40 m and
(a+b) = 4.72 m

No such obstruction exists in Figure 6.1e and the road at the entry to the manoeuvre is
wide, whereas the apex and exit are narrow, penalising cut-in instead. Therefore vehicles
with a short wheelbase (and large tailswing) will not perform poorly. Figure 6.2e indicates
that reducing the wheelbase has a much smaller impact on the maximum length which can
pass Manoeuvre 10 than it does on Manoeuvre 1. This confirms that a vehicle which is likely
to exhibit tailswing is not penalised as heavily on Manoeuvre 10 than on Manoeuvre 1.

Other manoeuvres were shown to exhibit similar behaviour, thus the contours representing
the sum of all the manoeuvres also exhibits this behaviour at many points on the graph.

6.2.3 Path Following: Analysis

The Path-Following vehicle was assessed in the same way as the Command-Steered vehicle,
in order to understand the reason for the reduction in maximum length compared to the
Command-Steered case.

6.2.3.1 General Manoeuvre Analysis

The previous section demonstrated that an increase in the Swept Path Width can lead to
a reduction in maximum length of a vehicle that can pass a manoeuvre with a particular
characteristic (such as a narrow entry). If many manoeuvres in the library share the same
characteristic then this trend will be visible in the sum of all the manoeuvre results.
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Fig. 6.8 Comparison of Swept Path Width between different steering strategies for an example
manoeuvre. The vehicle had L = 10.40 m and (a+b) = 4.72 m

Figures 6.7 and 6.8 show the tailswing and cut-in, and Swept Path Width respectively for
the vehicle with fixed rear axle and one using the Path-Following algorithm attempting the
12.5 m radius, 90° left turn. Figure 6.8 clearly shows a region in which the Swept Path Width
is greater for the Path-Following vehicle than the Rear Unsteered vehicle (between step 200
and step 275). The reason for this is obvious from Figure 6.7 which shows that although the
tailswing early in the manoeuvre is removed by the Path-Following algorithm, this has the
effect of increasing cut-in in the next part of the manoeuvre, approaching the apex. Although
on average the Swept Path Width of the Path-Following vehicle is lower across the whole
manoeuvre, the presence of the region of higher Swept Path Width may cause failure if the
manoeuvre exhibits obstacles at that particular point.

6.2.3.2 Specific Manoeuvre Analysis

Figure 6.9 shows the minimum clearances to the most restrictive constraints for the Path-
Following and Rear Unsteered vehicles attempting Manoeuvre 1. A smaller vehicle was
used than those from Section 6.2.2 to ensure that the Path-Following vehicle could complete
the manoeuvre (L = 9.50 m, (a+b) = 4.70 m). The reduced clearance around the second
potential collision point for the Path-Following vehicle compared to the Rear Unsteered
vehicle corresponds to the part of Figure 6.8 where the Swept Path Width is higher for the
Path-Following vehicle. The Path-Following vehicle does have room to move further to the
right in the entry to the manoeuvre (the first potential collision point) but the vehicle needs
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Fig. 6.9 Measurements of clearances around critical obstacles for example manoeuvre. The
vehicle had L = 9.50 m and (a+b) = 4.70 m

to stay left, or it will not be able to achieve a high enough yaw rate to avoid colliding with
the third potential collision point, where the clearance is lower than for the fixed rear axle
vehicle.

6.2.4 Summary

The use of rear axle steering can, in certain cases, reduce the maximum length of vehicle
which can complete a manoeuvre. For the Command-Steer strategy this is because the
strategy can cause increased tailswing which can cause a vehicle to fail if the manoeuvre
is narrow around the entry. For the Path-Following strategy, the tailswing is reduced to
zero, but this is achieved by increasing cut-in later in the manoeuvre, which can cause the
vehicle to fail if the manoeuvre is narrow between the entry and apex of the manoeuvre. In
the real-world, this behaviour is not noticed because human drivers leave sufficient margin
for error that the difference in Swept Path Width between steered and unsteered rear axles
at entry and exit does not cause collision. This means that the much larger difference in
Swept Path Width between steered and unsteered rear axles in the steady-state part of the
manoeuvre is the main differentiator between rear axle steering strategies, thus the steered
rear axle apparently performs better.
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The intention of this investigation was to confirm that the shape of the results shown in
Figure 6.2 is correct. Some aspects of the shape of these graphs were as expected, while
others were not. The above investigation confirmed that the aspects of those results which
were unexpected were due to true phenomena and not errors in the simulation. It was
therefore considered appropriate to use this method to analyse the case studies described
below.

6.3 Case Study A: Grocery Delivery Vehicle

The first Case Study to be investigated was home delivery of groceries. Personal vehicles
are a highly inefficient method for transporting groceries, because each vehicle only carries
deliveries for one household. Existing home delivery systems can fit the deliveries for up
to approximately 25 households into a 3.5 t, 6.3 m-long van, which takes up a comparable
amount of space on the road to the average (in the UK) 4.8 m-long personal vehicle. This
suggests that home delivery of groceries, as opposed to collection in personal vehicles,
could save a significant number of vehicle journeys, thus reducing congestion, as well as
greenhouse and noxious emissions.

In order to maximise the benefits of using home delivery, one way to improve the
efficiency of the system would be to increase the capacity of the vehicles used. If the vehicle
can make additional deliveries in a single journey before returning to its collection point,
fewer kilometres are spent travelling to and from its ‘base’. Additionally, increasing capacity
requires fewer vehicles on the roads (assuming demand remains constant), thus further
reducing congestion and emissions. The impacts of maximising capacity of freight vehicles
are discussed in Chapter 1.

However, the higher capacity vehicle is required to have comparable manoeuvrability
to standard personal vehicles, as it must be able to access the same areas. The framework
described in the previous section would therefore be applicable, to attempt to quantify the
potential for increasing the size of the current vehicles, without limiting their access to the
required areas.

6.3.1 Current Vehicle

6.3.1.1 Description

For this case study, the baseline vehicle used is a Mercedes Sprinter van, with a 3.7 m
wheelbase and an overall length of 6.3 m. The Gross Vehicle Weight (GVW) is 3.5 t, with a
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payload capacity of 1 t. The vehicle has a fixed rear axle. This is representative of the vehicle
used by a number of major supermarkets in the UK.

The vehicle payload is carried in plastic trays known as ‘totes’. The layout of the totes
in the baseline vehicle is shown, approximately to scale, in Figure 6.10. The totes used
by the supermarket operating the baseline vehicle are 0.6 m long, 0.4 m wide, and 0.24 m
high, which is comparable to those used by other supermarkets. This has an impact on
the minimum sensible increase in dimensions of the vehicle. For this investigation, it was
assumed that no change to the size and shape of the totes was possible.

Different operators take different approaches to the layout of the totes in the vehicle, so in
order to provide fair comparison the same layout as the baseline vehicle was used. The layouts
of existing home delivery vehicles are not necessarily optimised for maximum volumetric
capacity, which is why the maximum number of totes does not match the maximum that might
be predicted from the external dimensions. It was recognised that more radical solutions
such as rearranging the layout of totes in the vehicle, or eliminating totes entirely might have
a positive impact on capacity, but these design decisions are typically made for operational
or cost reasons (for example the use of totes simplifies the picking operation at the store),
and so were considered beyond the scope of this project.

The baseline vehicle carries a maximum of 95 totes, as shown in Figure 6.10. The first
row of 15 totes are stacked perpendicular to the vehicle, in three stacks of five, and used for
frozen goods. Behind this are four rows of totes stacked parallel to the vehicle, each row
comprising four stacks of five. These are divided into two compartments, one chilled and
one at ambient temperature. A small amount of space is left at the rear of the load space
for a trolley and to provide a surface to assist the driver with loading. Given the limits of
95 totes and 1 t of payload, the maximum expected tote mass was calculated to be 10.5 kg,
when averaged across the whole vehicle.

Since the majority of the totes are stacked parallel to the vehicle, any increase in length
must be added in multiples of 0.6 m to match discrete numbers of totes. With the current
loading pattern, every additional 0.6 m allows space for an additional 20 totes. Additional
totes could be arranged perpendicular to the vehicle instead of parallel, such that an additional
row only requires an additional 0.4 m of length (although the row only consists of 15 totes).
Two scenarios will be considered: adding totes parallel (which fits with the current design)
or perpendicular (which would require some redesign of the interior).

6.3.1.2 Manoeuvrability Performance

A library of 20 manoeuvres applicable to this operation was identified by a combination
of interviews with drivers of home delivery vehicles, and analysing in-service GPS data
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Fig. 6.10 Arrangement of totes in the baseline vehicle

from the existing vehicles. The manoeuvres were all in residential areas of Cambridge,
UK. Figure 6.11 shows contours of constant success rate for vehicles attempting the library
of manoeuvres. The location of the baseline vehicle is marked, as is the contour for 90%
success rate, which corresponds to the success rate of the baseline vehicle.The use of only
20 manoeuvres generated some artefacts in the results. For example the distance between
the 90% and 95% contours was much greater than between the 95% and 100% contours.
This could be improved by using more manoeuvres, and was not considered detrimental to
the conclusions drawn. Additionally, some of the contours displayed jagged edge effects
due to the path optimisation algorithm hitting a local minimum. These were corrected by
attempting the manoeuvres manually (by directly controlling steering angle).

Figure 6.11 shows that the baseline vehicle has some scope for improvement in the length
and therefore capacity, without reducing the percentage of manoeuvres passed. However,
Figure 6.12 shows additional constraints on the design of the vehicle which limit the options.
These constraints are the UK limit on Gross Vehicle Weight without requiring a higher
category license, and the rear axle load.

First, the UK limit on Gross Vehicle Weight (without requiring additional licensing) is
3.5 t. This was related to vehicle length, L, by the load model described in Chapter 4, and the
contour shown on the graph as a vertical line at L = 6.3 m. While this is not a hard constraint,
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Fig. 6.11 Baseline grocery delivery vehicle. Contours show constant success rate across all
residential manoeuvres for a rigid vehicle with fixed rear axle

Fig. 6.12 Axle load and GVW constraints for a home grocery delivery vehicle. Contours
show constant success rate across all residential manoeuvres for a rigid vehicle with fixed
rear axle
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the expense of paying a more highly trained driver and fitting the vehicle with the required
additional monitoring equipment (tachograph) makes it desirable to remain below the limit.
Also shown is the contour corresponding to a Gross Vehicle Weight of 4.25 t, which is set to
become the new limit under forthcoming legislation [84]. The figure shows that the baseline
vehicle is well optimised towards the current limit of 3.5 t, with little scope for improvement.
However, the increase to 4.25 t would allow a significant addition to the length of up to 1.5 m
(although only some of this is available without moving to a lower manoeuvrability contour).

Secondly, Figure 6.12 shows contours of constant rear axle load. The load on the rear
axle increases whenever the vehicle either increases in length (and therefore total mass)
or decreases in wheelbase (thereby moving the balance point further back). As with the
GVW limit, this is not a hard constraint, since axles can be designed to bear more or less
load. However, a higher rear axle load increases the likelihood of exceeding the rear axle
load limit before the vehicle reaches full capacity, therefore the rear axle rated load would
ideally be kept below 2.25 t, which is the designed maximum axle load for the baseline
vehicle (although this is not a legal limit). The combination of this constraint and the 90%
manoeuvrability contour limits the design almost exactly to the baseline vehicle, even with
the relaxation of the GVW constraint.

6.3.2 Rear Axle Steering: Command Steer

A potential method for realising the available length benefits without violating the axle
load constraint, is to steer the rear axle of the vehicle. Given an appropriate strategy, this
allows the real wheelbase of the vehicle to move, without having any impact on the effective
wheelbase, as described in Chapter 4. This has the effect of allowing the rear axle to be
placed close to the rear of the vehicle (thus keeping the load balance between axles in the
centre and minimising the rear axle load) while keeping the effective wheelbase close to the
centre of the vehicle, thus providing the manoeuvrability of a shorter vehicle.

6.3.2.1 Manoeuvrability Performance

Figure 6.2 confirms the description in the previous paragraph, showing that the vehicle with
a fixed rear axle typically has a maximum wheelbase for a given length, whereas the vehicle
with a steered rear axle can usually achieve its maximum length at almost any wheelbase.
Similar patterns are seen across the majority of the other manoeuvres.

Figure 6.13 shows the contours of constant manoeuvre success rate for the vehicle if fitted
with a Command-Steered rear axle. Unlike the Rear Unsteered vehicle from Figure 6.11, the
maximum length can now be achieved at almost any wheelbase. This effectively allows the
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Fig. 6.13 Proposed Command-Steered alternative to the baseline grocery delivery vehicle.
Contours show constant success rate across all residential manoeuvres for a rigid vehicle
with Command-Steer strategy

design to follow the contours of constant rear axle load upwards along the 2.25 t contour, to
greater wheelbases, but without violating the 90% manoeuvrability success rate. The figure
shows the design point for a suggested vehicle, equipped with a Command-Steered rear axle,
with a length of 7.45 m and a wheelbase of 5.25 m.

6.3.2.2 Gross Vehicle Weight and Rear Axle Loads

This Command-Steered vehicle remains under the 4.25 t GVW limit and the 2.25 t rear axle
load guideline, maintains the baseline vehicle’s manoeuvre success rate of 90%, and increases
the length of the vehicle by 1.2 m. This corresponds to 40 additional totes in two rows of 20
totes.

Analysis of the baseline vehicle suggested an expected maximum tote mass of 10.5 kg,
which across 40 additional totes corresponds to a total payload increase of 0.42 t. The vehicle
mass distribution model described in Chapter 4 assumes a chassis mass of 208 kgm−1. Over
the 1.2 m vehicle length increase, this equals an increase in mass of 0.25 t. Thus the total
increase in mass of the vehicle would be 0.67 t. This leads to a GVW of 4.17 t which does
not violate the new 4.25 t limit, permitting the vehicle to be operated without HGV licensing
(provided the rear axle steering technology can be provided with minimal weight increase).
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Fig. 6.14 Contours of constant tailswing for different rear axle steering strategies. Solid blue
contours represent an unsteered vehicle, dashed black contours represent a Command-Steered
vehicle

6.3.2.3 Tailswing

It is commonly accepted that the Command-Steer algorithm increases the tailswing of a
vehicle compared to the case of the unsteered rear axle. This effect was quantified for
different values of L and (a+b) by evaluating the maximum possible tailswing by simulating
the vehicle applying full front steering lock, and measuring the deviation of the rear outside
corner from the straight line during the transient part of the manoeuvre. This allowed contours
of constant tailswing to be plotted, as shown in Figure 6.14. This figure shows the design
points for the Rear Unsteered, Command-Steered and Path-Following vehicles (presented
below). The Rear Unsteered vehicle generates 0.22 m of tailswing, compared to 0.88 m for
the Command-Steered vehicle.

In the absence of steering saturation, the Command-Steer contours would be purely
vertical. This is because the effective wheelbase is always in the same position, so the real
wheelbase has no effect on the tailswing. The diagonal region of the contour plot is the
region where the rear steering angle demand is higher than the rear steering lock angle, thus
the steering saturates. This pattern is also seen in the contours of constant manoeuvre success
rate.

The selection of an acceptable limit for tailswing is difficult. For design of articulated
Heavy Goods Vehicles the UK limit is 0.8 m. However, this assumes the standard roundabout
test which would generate less tailswing than the maximum steering lock approach used here,
since these vehicles are much smaller than those usually tested using the standard roundabout.
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Fig. 6.15 Proposed Path-Following alternative to the baseline home delivery vehicle. Contours
show constant success rate across all residential manoeuvres for a rigid vehicle with Path-
Following strategy

This being the case, 0.8 m could be considered a generous upper bound on the tailswing limit.
Alternatively, the vehicle could be designed to match the maximum tailswing of the baseline
vehicle. It is clear from Figure 6.14 that either of these limits would be difficult to achieve
using the Command-Steer strategy.

6.3.3 Rear Axle Steering: Path Following

The analysis above assumed the Command-Steer strategy commonly used in industry for the
rear axle control strategy. Figure 6.15 shows the potential improvement available through
implementing a Path-Following rear axle, compared to the Rear Unsteered vehicle. The
increase in length is enough to allow a single additional row of 20 totes if the current
tote layout is maintained, or an additional total of 30 totes if the totes can be rotated to
accommodate two smaller rows. The Path-Following strategy is believed to provide greater
drive-ability than Command-Steer, since it eliminates tailswing during the transient part of
the manoeuvre (unlike Command-Steer which exaggerates it) and is easily predictable, as
the rear of the vehicle follows the front. However, it is not as optimised for minimisation of
Swept Path Width as the Command-Steer strategy. This means that Path-Following steering
has less of a positive impact on the 90% success rate contour than Command-Steer, as can be
seen from the optimised Path-Following and Command-Steer vehicles on Figure 6.16.
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Fig. 6.16 Proposed design options for increasing capacity of a home grocery delivery vehicle

6.3.4 Comparison of Potential Designs

There is a need for consideration of steering strategy when designing vehicles with rear axle
steering. Fixed strategies such as Command-Steer and Path-Following may be less optimal
than a hybrid strategy, where the driver (or the vehicle) can select the optimal strategy. For
example, turning from a small street into a main road requires minimisation of tailswing,
thus Path-Following would be optimal. Conversely turning from a main road into a narrow
street requires minimisation of cut-in, whereas there is plenty of room for tailswing, hence
Command-Steer would be preferable. More complex options, such as the driver steering the
front and the rear having an independent obstacle avoidance strategy could be considered.
This work will be carried out as part of a future project.

It should be noted that these simulations assume ‘perfect knowledge’ of the road—
i.e. driver blindspots are not considered. This assumption benefits the Command-Steer
algorithm, because it overlooks the fact that tailswing can cause the rear of the vehicle to
move dangerously in the driver’s blind spot. Conversely, the Path-Following algorithm does
not cause tailswing and the rear of the vehicle always follows the path traversed by the front,
which is much easier for the driver to understand.

The analysis presented here yields two potential alternatives to the baseline vehicle, if the
GVW limit is increased to 4.25 t. These designs are shown in Figure 6.16 and summarised
in Tables 6.1. The rear axle steering strategies have been abbreviated to CS (Command-
Steer) and PF(Path-Following). All designs were volume limited, according to the average
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Table 6.1 Comparison between potential designs of Grocery Delivery Vehicle

Baseline Design 1 Design 2

Rear Axle Steering Strategy Fixed CS PF
Length, L (m) 6.23 7.45 7.10
Length Increase from Baseline (m) 0 1.22 0.87
Wheelbase, a+b (m) 3.67 5.25 4.8
Manoeuvre Percentage Success Rate 90 90 90
Gross Vehicle Weight (t) ≤ 3.5 ≤4.25 ≤4.25
Rear Axle Load (t) ≤ 2.25 ≤2.25 ≤2.25
Maximum Tailswing (m) 0.22 0.88 0
Volumetric Capacity Increase (m3) 0 4.88 3.48
Load Capacity Increase (t) 0 0.50 0.57
Additional Tote Capacity (stacked parallel) 0 40 20
Percentage Increase in Totes 0 42 21
Additional Tote Capacity (stacked perpendicular) 0 45 30
Percentage Increase in Totes 0 47 32

maximum tote mass described above, although this does not take into account any additional
mass of a steered rear axle.

A typical day for the baseline vehicle when fully loaded consists of between 20 and 25
deliveries, suggesting an average delivery size of three to four totes. By this measure the
Path-Following vehicle described above could complete up to an additional 8 deliveries per
day, and the Command-Steered vehicle an additional 12 deliveries.

6.3.5 Summary

i The home delivery vehicle used as a baseline is well optimised for a GVW limit of 3.5 t.

ii Increasing the allowable GVW from 3.5 t to 4.25 t allows an increase of up to 1.5 m in the
length of the vehicle without reducing the locations accessible to the vehicle. However
without rear axle steering this requires shorter wheelbases, and thus increased rear axle
loads.

iii Rear axle steering removes this limitation and allows up to a 1.2 m increase in the length
of the vehicle, without violating any constraints. Current technology for steering of rear
axles either cannot be used with a single rear axle (in the case of mechanical Command-
Steer) or is heavy and expensive. This would increase the mass of the vehicle beyond
4.25 t if fitted, so an alternative method of steering the rear axle would be required.
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iv The rear axle can be controlled by the Command-Steer algorithm. This leads to the maxi-
mum possible increase in tote capacity of 47%, but does this by generating unacceptably
high tailswing.

v An alternative steering strategy is the Path-Following algorithm, which removes the
tailswing, at the expense of some additional cut-in, slightly reducing the possible length
increase. However this still yields a potential 32% increase in tote carrying capacity.

6.4 Case Study B: Refuse Collection Vehicle

The role of a refuse collection vehicle is to collect domestic waste from residences and
transport that waste to landfill sites (or recycling centres). The challenge in the design of
these vehicles is that the sites to which the refuse is delivered are usually located far from
towns and cities. This means that the vehicle must travel a significant distance every time it
is full, in order to be emptied. The fuel and time cost of this distance makes it desirable to
limit the amount of times the vehicle has to be emptied, and therefore to increase the capacity
of the vehicle. While increasing the capacity of the vehicle would reduce the number of
journeys to and from landfill sites or recycling centres, it would also limit the residential
areas the vehicle can access, which would require bins to be walked to the vehicle, slowing
down the process and increasing costs and driver workload.

An additional challenge is the weight of the bin lifting equipment, which is typically
mounted at the back (although side-loading refuse vehicles do exist). This increases rear axle
loads relative to the front axle.

6.4.1 Current Vehicle

The baseline vehicle used for this analysis was based on a Mercedes Econic 26 t 6x2 chassis,
fitted with a Dennis Eagle Olympus body. The tandem rear axles of the Mercedes vehicle
were combined in the simulation into a single heavier rear axle, at the position of the effective
wheelbase of the original group. The performance of this vehicle is shown in Figure 6.17,
on the plot showing manoeuvrability contours for a rigid vehicle on the same library of
‘residential’ manoeuvres as was used for Case Study A.

The success rate of the baseline vehicle was 30%. Note that this does not mean the vehicle
can only access 30% of houses. There are several reasons why the percentage is so low. First,
human error in extraction of the boundary constraints from the satellite imagery may have
made them more difficult to complete. Second, it was assumed that all constraints were hard
constraints, thus no part of the vehicle could cross them. In practise, a constraint such as a
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Fig. 6.17 Baseline refuse collection vehicle. Contours show constant success rate across all
residential manoeuvres for a rigid vehicle with fixed rear axle

kerb will be crossed by the front and rear overhangs, and will only limit the positions of the
wheels. Differentiating between these types of constraint would increase the apparent success
rate. Third, several of the manoeuvres were chosen by inspection of satellite imagery, thus
there is no guarantee that they are used by refuse vehicles. Although all manoeuvres were
from residential areas, some may be bypassed by taking longer routes in practice. Finally, in
service, the vehicle may be reversed one or more times for particularly difficult manoeuvres,
which was not allowed by the simulation. None of these sources of error was considered
critical, provided all vehicles were considered relative to the baseline vehicle.

The capacity of the baseline vehicle was 21.4 m3, and the vehicle was analysed using a
standard density of compacted household refuse of 540 kgm−3, for a total payload of 11.6 t.
These values were taken from the vehicle specification sheet. The height and width were
assumed constant along the length of the cargo section at 2 m each. This gives a volumetric
capacity of 4 m3 m−1, or 2.16 tm−1. The length of the cargo section of the vehicle, without
the bin lift was 5.2 m. The total length of the bin lift and compacting equipment was 3 m.

Several potential manoeuvrability interventions were considered for improving the ca-
pacity of the baseline vehicle: applying the three rear axle steering strategies described in
Chapter 4; use of an articulated vehicle instead of a rigid vehicle; and use of an articulated
vehicle with the Path-Following steering strategy.
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Fig. 6.18 Proposed Command-Steered alternative to the baseline refuse collection vehicle.
Contours show constant success rate across all residential manoeuvres for a rigid vehicle
with Command-Steer strategy

6.4.2 Rear Axle Steering: Command-Steer

The Command-Steer algorithm was used to generate a set of success rate contours, shown in
Figure 6.18. The figure clearly shows that a rear axle steering vehicle cannot improve on the
overall length of the baseline vehicle without reducing the manoeuvre success rate below
30%. The reasons for this are discussed in Section 6.2. The figure also shows the constant
GVW contour at 26 t. This is the legal limit for a three-axle rigid vehicle (assuming certain
axle specifications are met). This was considered a ‘soft’ constraint, as it could be exceeded
by changing the configuration of the vehicle, or in the case of legislative changes.

The use of rear axle steering permits the wheelbase to be increased significantly for only a
small penalty in length, to the operating point shown at 6.2 m wheelbase. Figure 6.18 shows
that this would reduce the load on the rear axle group from 19 t to just 14 t. Alternatively,
this would enable a higher density of payload without increasing the rear axle load. This
could be achieved by using a stronger compactor.

Although there are equally manoeuvrable designs at even higher wheelbases, above the
proposed design point indicated on Figure 6.18 the load on the front axle exceeds that on
the rear. This design point reduces the vehicle length compared to the baseline vehicle by
0.25 m leading to a reduction in payload of 0.54 t.

The contours from Figure 6.14 can also be used to show that the tailswing for this vehicle
is almost 1.5 m which is unacceptably large. In order to reduce the tailswing below the legal
limit of 0.8 m, the vehicle must be reduced in length by approximately 2 m, thus reducing



6.4 Case Study B 173

Fig. 6.19 Proposed Partial Command-Steered alternative to the baseline refuse collection
vehicle. Contours show constant success rate across all residential manoeuvres for a rigid
vehicle with fixed rear axle, and the 30% success rate contour for a rigid vehicle with Partial
Command-Steer strategy

capacity significantly. Therefore, Partial Command-Steer was investigated as an alternative
rear axle steering strategy to reduce tailswing.

6.4.3 Rear Axle Steering: Partial Command-Steer

Chapter 4 describes an alternative to the Command-Steer strategy, which is to steer only
the axles of a group which are furthest from the centre of the vehicle. This positions the
effective rear axle at the position of the front axle of the axle group, rather than at the centre
of the group. This causes the vehicle to behave like a vehicle with shorter wheelbase. This
strategy also has the effect of reducing tyre wear, by eliminating the scrubbing generated by
multi-axle groups.

The wheelbase of the rear axle group of the baseline vehicle is 1.35 m. Therefore, moving
the effective rear axle from the centre of the group to the front reduces the wheelbase by
0.675 m. This can be simulated by moving all the success contours upwards by 0.675 m.
However, this analysis is not valid for wheelbases originally shorter than the current limit
of half the vehicle length. Figure 6.19 shows the effect on the 30% success rate contour of
applying this increase in wheelbase. The potential increase in capacity is 0.36 m or 0.78 t.
This does not have any impact on the rear axle load (except a share of the additional 0.78 t
plus the additional mass of the chassis) because the real rear axle position is unchanged.
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Fig. 6.20 Proposed Path-Following alternative to the baseline refuse collection vehicle.
Contours show constant success rate across all residential manoeuvres for a rigid vehicle
with Path-Following strategy

This strategy reduces tailswing compared to the full Command-Steer strategy, but still
increases it relative to the baseline vehicle, above the legal limit of 0.8 m. Therefore,
Path-Following rear axle steering was investigated as a method for eliminating tailswing
completely.

6.4.4 Rear Axle Steering: Path-Following

Using the Path-Following algorithm instead of Command-Steer removes the tailswing entirely,
but reduces the capacity even further. Figure 6.20 shows the contours of success rate for the
Path-Following rigid vehicle.

The loss of length is 0.7 m which corresponds to a reduction in payload of 1.5 t. However,
the wheelbase can be increased as for the Command-Steered vehicle, which reduces the rear
axle loads down to similar levels.

6.4.5 Articulation

Figure 6.21 shows the contours of constant success rate for an articulated refuse vehicle. The
tractor unit was described in Chapter 4. The axes of the figure represent different parameters
for the articulated vehicle compared to the rigid vehicle, so direct comparison of the x-axis is
not relevant, but Figure 6.21 shows that the trailer length, L2 can be set to 11.45 m without
reducing the manoeuvre success rate compared to the baseline vehicle.
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Fig. 6.21 Proposed articulated alternative to the baseline refuse collection vehicle. Contours
show constant success rate across all residential manoeuvres for an articulated vehicle with
fixed rear axle

Assuming the length of bin lift and compacting equipment is the same as for the baseline
vehicle, this gives a cargo length of 8.45 m, thus the volumetric capacity of the articulated
vehicle can be calculated as 33.8 m3 and the payload as 18.3 t, which is an increase of 58%
over the baseline vehicle.

The load models from Chapter 4 can be used to calculate the Gross Vehicle Weight of the
articulated vehicle, and the load on the rear axle (or rear axles combined). These models give
a rear axle load of 25 t. The limit in the UK for a tri-axle group is 25.5 t so this vehicle would
just be acceptable. However, the proposed vehicle does exceed the current UK GVW limit of
44 t for Heavy Goods Vehicles, therefore some legislative change would be required to make
this vehicle feasible. Alternatively, a trailer of this length would enable a 44 t vehicle with a
lower compaction factor for the payload, thus reducing the cost of the vehicle. In the absence
of changes to the 44 t GVW limit for Heavy Goods Vehicles, the optimum design point for
an articulated vehicle would be at L2 = 9.8 m, (a2 +b2) = 6 m.

6.4.6 Articulation and Rear Axle Steering

An articulated vehicle with trailer axle steering was also investigated. For this analysis the
Path-Following algorithm was used, as the Command-Steer algorithm was expected to give
unacceptable tailswing. Figure 6.22 shows the maximum possible trailer length for this
vehicle without reducing the manoeuvre percentage success rate below 30%.
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Fig. 6.22 Proposed Path-Following articulated alternative to the baseline refuse collection
vehicle. Contours show constant success rate across all residential manoeuvres for an
articulated vehicle with Path-Following strategy

The figure shows that the trailer length is more limited than the unsteered trailer. However,
the maximum steered trailer length of 10.45 m still improves capacity from the baseline
vehicle, from 11.6 t to 16.1 t. As for the rigid vehicle, this reduction in length caused by the
addition of trailer steering is small, and is offset by the benefit of being able to increase the
wheelbase, and thus use axles with a lower load rating, or to load the vehicle with a higher
density payload without overloading the rear axles before the vehicle is full.

The contours of constant trailer axle load for the trailer axle group are shown in Fig-
ure 6.22. This figure shows that the axle load for this combination is reduced below 20 t.

6.4.7 Comparison of Potential Designs

The potential designs described above are summarised in the Table 6.2. The rear axle steering
strategies have been abbreviated to CS (Command-Steer), PCS (Partial Command-Steer),
and PF(Path-Following).
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6.4.8 Summary

i The refuse collection vehicle behaves very differently to the home delivery vehicle,
largely due to the very large rear-overhang caused by the bin-lifting and compacting
equipment.

ii This vehicle already exhibits considerable tailswing. The addition of Command-Steer
exacerbates this.

iii The use of the Partial Command-Steer strategy gives a small increase in load capacity,
along with a potentially large reduction in tyre wear.

iv Using the Path-Following algorithm reduces the tailswing to zero, but generates large
cut-in values to do so. Thus the length and therefore load capacity of the Path-Following
vehicle is reduced. As for Case Study A, the use of any rear axle steering strategy permits
the rear axles to be further back and therefore reduces the rear axle load.

v The greatest gain in load carrying capacity can be found by creating an articulated vehicle,
with a small urban tractor unit. However, this vehicle would likely have a Gross Vehicle
Weight above 44 t when fully loaded and therefore could not be completely filled under
current legislation. This vehicle could be suitable for collections with a lighter compactor
and therefore lower payload density, if there was a suitable business case based on the
cost of the compactor.

vi Applying Path-Following steering to the articulated vehicle’s trailer unit reduces the
potential capacity relative to the vehicle with fixed rear axle, but still provides an increase
in load carry capacity compared to the existing vehicle, and at lower rear axle load than
the fixed rear axle vehicle. This vehicle still exceeds the 44 t GVW limit, and so would
in practice need to be shorter, unless current legislation was relaxed.

6.5 Case Study C: Urban Store Vehicle

The third case study was an investigation of the vehicles used for restocking stores in city
centres. Many of these stores are so-called ‘convenience stores’, with relatively low shelf
space, and little storage space for excess stock. This means they have to receive multiple
deliveries per day. Distributors often provide transport for multiple stores in the same city,
so the ability to increase the capacity of the vehicle (and thus restock more stores without
returning to a distribution centre) would be an advantage.
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Table 6.3 Example vehicles typically used in city centres

Vehicle Length (m) Wheelbase (m) Roll cage capacity GVW (t)

10 t Rigid 8 5 18 10
18 t Rigid 11 7 30 18
Urban trailer 8.5 5.8 30 32
Standard trailer 13.6 8.5 51 44

A wide variety of vehicles are used to restock city centre stores. Choice of vehicle
is dependent on a number of factors, including size of store, temperature (chilled, frozen,
ambient) of products stocked, number of stores in the city to be visited by the same operator,
and accessibility of the stores in terms of road dimensions. A logistics provider with a range
of different trucks in its fleet was identified for the study, and four vehicles are summarised in
Table 6.3. The length of the vehicle was given by the operator, the wheelbase was estimated
from images of the vehicles, and the roll cage capacity was calculated using the load models
from Chapter 4.

The load model for this case study was adapted for discrete numbers of roll cages (as
opposed to a load density, which was used for the previous case studies). This generated
‘steps’ in the contours of constant axle load. Roll cages are used by the majority of grocery
providers, and come in a variety of sizes. For this analysis, a roll cage was taken to have a
footprint of 0.8 m by 0.7 m, which could be arranged in rows of three across the width of the
vehicle, and a full laden mass of 450 kg (50 kg empty). Thus for every 0.8 m of additional
length to the vehicle, three additional roll cages could be carried, with an additional payload
of 400 kg each.

All simulated vehicles were considered single-deck vehicles, and it was assumed that any
suitably manoeuvrable single-deck vehicle could also be designed as a double-deck. The
disadvantage of conversion to double-deck is the reduced rollover stability, but this was not
considered as part of this work.

Most stores tend to be on larger roads than the residential manoeuvre library used for the
previous two case studies, thus a second library of ‘urban’ manoeuvres was collected. Obser-
vations in Cambridge were used to identify the most common routes from the surrounding
trunk network into the city centre, and the library contains a combination of manoeuvres
from these routes, and exits from some yards recognised as being particularly constrained.

Case Study C did not define a particular research question as clearly as the previous
case studies, therefore a slightly different approach was used. Because such a wide range of
vehicles are used for very similar tasks, the selection of vehicle is largely driven by operator
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Fig. 6.23 Baseline 10 t and 18 t rigid vehicles. Contours show constant success rate across all
urban manoeuvres for a rigid vehicle with fixed rear axle

preference (partly guided by historical choices). However, some possible alternative vehicles
were defined using the vehicles from Table 6.3 as baseline cases.

6.5.1 Rigid Vehicle

Figure 6.23 shows the contours of constant manoeuvre pass rate for rigid vehicles attempting
manoeuvres from the urban library. The smallest vehicle (10 t) passed 90% of the manoeuvres,
and the larger, 18 t vehicle passed 55%.

Figure 6.24 shows significant potential for increased length of both vehicles (of up to
2.5 m) without use of rear axle steering. This increases the number of roll cages carried by
12 for the smaller vehicle, up to a total of 30 (a 67% increase), and by 9 for the larger vehicle,
up to a total of 39 (a 30% increase). However, this will increase rear axle loads, as described
for the previous case studies, as the wheelbase must be reduced to maintain manoeuvrability.
In some cases this may be acceptable, depending on the particular operation. However,
the red shaded area in the bottom right-hand corner of the plot represents the region where
the rear axle is forward of the centre of the vehicle. The two potential designs shown in
Figure 6.24 are both close to the shaded region. This suggests the majority of the vehicle
mass is carried by the rear axle, and the weight over the steering front axle is dangerously
low for manoeuvrability.

Figure 6.25 shows the effect on the contour plot of applying rear axle steering, with the
Path-Following algorithm. Both vehicles can be increased in size relative to the vehicle with
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(a) 10 t vehicle and higher capacity alternative

(b) 18 t vehicle and higher capacity alternative

Fig. 6.24 Proposed higher capacity alternatives to the 10 t and 18 t rigid vehicles. Contours
show constant success rate across all urban manoeuvres for a rigid vehicle with fixed rear
axle
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fixed rear axle without reducing the percentage pass rate (labelled ‘maximised capacity’).
Alternatively, in applications where the total volume is relatively unimportant, but mass is a
concern, Path-Following can be used to reduce the rear axle loads by increasing the wheelbase,
without affecting the manoeuvrability (labelled ‘minimised axle load’). This gives a more
modest gain in capacity. Both of these possible transformations are shown in Figure 6.25
for each of the rigid vehicle sizes being considered. All four of these design changes allow
between 0.5 and 1.5 additional rows of 3 cages. This is unlikely to be economically viable
given the increased cost of the steering axles in both cases.

6.5.2 Articulated Vehicle

An additional question to answer is whether converting the rigid vehicles to articulated
vehicles would allow increased capacity. The tractor unit from the previous case study was
used to model articulated vehicles attempting the same manoeuvres, and the plots of constant
success rate are shown in Figure 6.26. The maximum sizes of trailer which can achieve the
same percentage success rates as each of the conventional rigid vehicles are shown.

The smaller and larger trailers have rear axle loads of 12.5 t and 24.5 t, giving gross
vehicle weights of 32 t and 43 t, and roll cage capacities of 30 and 51 cages respectively. This
compares to 18 and 30 cages for the original vehicles, increases of 67 and 70%. These two
vehicles are very similar to the baseline articulated vehicles from Table 6.3, in both length
and capacity. The baseline articulated vehicles have slightly longer wheelbases, and thus
lower rear axle loads, but at the expense of reduced manoeuvre pass rates.

Finally, the effect of rear axle steering on the articulated vehicles was considered. Both
the two articulated baseline vehicles, and the two vehicles designed to have equivalent
manoeuvrability to the rigid vehicles were considered. These four vehicles are shown in
Figure 6.27, and the potential new design points in Figure 6.28. The new design points were
chosen so as not to increase the rear axle loads.

The two vehicles designed to have equivalent manoeuvrability to the rigid vehicles have
short wheelbases, and so sit in the region of the graph where applying rear axle steering
has been shown to be have only a small benefit (or negative benefit in the case of the
larger vehicle). No full rows of cages can be gained for the smaller vehicle, and the larger
vehicle requires a loss of 6 cages to provide equivalent manoeuvrability to the articulated
vehicle with unsteered rear axle. However, compared to the existing 10 t rigid vehicle, the
Path-Following articulated vehicle still gains 12 cages (67%), and compared to the 18 t
rigid vehicle, the equivalent Path-Following articulated vehicle gains 15 cages (15%), with
equivalent manoeuvrability.
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(a) 10 t vehicle and Path-Following alternative

(b) 18 t vehicle and Path-Following alternative

Fig. 6.25 Proposed Path-Following alternatives to the 10 t and 18 t rigid vehicles. Con-
tours show constant success rate across all urban manoeuvres for a rigid vehicle with
Path-Following strategy
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Fig. 6.26 Proposed articulated alternatives to the 10 t and 18 t rigid vehicles. Contours show
constant success rate across all urban manoeuvres for an articulated vehicle with fixed rear
axle

Converting the two baseline rigid vehicles to fixed rear axle articulated vehicles increases
the rear axle load, from 8.5 t to 12.5 t for the smaller vehicle and from 13 t to 24.5 t for the
larger vehicle. However, as shown in Figure 6.28, the use of rear axle steering reduces the
rear axle loads to 10 t for the smaller vehicle and 14 t for the larger vehicle.

In other words, in terms of rear axle load required for every additional roll cage, the
conversion from 10 t rigid to articulated vehicle costs 0.3 t/cage (4 t for 12 cages), whereas
with the rear axle steered, the cost is only 0.1 t/cage (1.5 t for 12 cages). For the larger
vehicle, despite the reduction in cages carried caused by the use of rear axle steering, the
added rear axle load is only 0.01 t/cage (1 t for 15 cages) with the steered rear axle, compared
to 0.5 t/cage (11.5 t for 21 cages) without steering.

For the baseline trailer units, the effect of adding rear axle steering was clearer. These
vehicles had lower manoeuvrability percentages than the rigid vehicles, and thus had longer
wheelbases than the articulated vehicles equivalent in manoeuvrability to the rigid vehicles.
Therefore they sat in the region of the graph where application of rear axle steering allows
longer vehicles to be used at the same manoeuvrability. The capacity of the urban trailer
could be increased by 9 roll cages to 39 (30%) by the use of rear axle steering, and the
capacity of the standard trailer could be increased by 3 roll cages to 54 (6%). Although this
figure appears low, the value has been affected by the discrete nature of the roll cages (the
existing vehicle fits 17 rows precisely, and the operating point shown in Figure 6.28 is just
40 cm short of a 19th row). The percentage increase in volume is 17%.
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(a) Articulated alternative to 10 t vehicle and urban semi-trailer

(b) Articulated alternative to 18 t vehicle and standard semi-trailer

Fig. 6.27 Baseline articulated vehicles and proposed articulated alternatives to the baseline
rigid vehicles. Contours show constant success rate across all urban manoeuvres for an
articulated vehicle with fixed rear axle
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(a) Path-Following alternatives to baseline urban trailer and articulated alternative to the 10 t rigid
vehicle

(b) Path-Following alternatives to baseline standard trailer and articulated alternative to the 18 t rigid
vehicle

Fig. 6.28 Path-following alternatives to baseline and proposed articulated vehicles from
Figure 6.27. Contours show constant success rate across all urban manoeuvres for an
articulated vehicle with Path-Following strategy
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6.5.3 Summary

(i) The choice of freight vehicle for use in city centres is dependent on a large number of
variables, and thus many different vehicles are used by different operators.

(ii) Two commonly used rigid vehicles (10 t and 18 t) were identified. These vehicles could
be increased in volumetric capacity by 67% and 30% respectively without penalty to
manoeuvrability, but at the cost of very significantly increased rear axle loads.

(iii) The use of rear axle steering to reduce the rear axle loads was investigated. This allowed
the rear axle loads to be kept constant relative to the baseline vehicles, but allowed only
small increases in capacity.

(iv) Articulated vehicles could be designed with equivalent manoeuvrability to the existing
rigid vehicles, yielding increased volumetric capacity of 67-70%, again resulting in
high rear axle loads.

(v) Rear axle steering for articulated vehicles can reduce those rear axle loads significantly,
but slightly reduces the available volumetric capacity. However, this still gives an
improvement on the existing rigid vehicles of 50-67%.

(vi) Two commonly-used articulated vehicles were considered. A standard urban trailer
could be increased in volume by 30% without penalty to either manoeuvrability or rear
axle load, by the use of rear axle steering. A standard 13.6 m trailer could be increased
in volume by 17%, although because of the discrete nature of the roll cages, according
to the particular model used in this work, this only corresponds to an additional 6% in
terms of roll cages.

6.6 Overview

The motivation for Chapters 4 to 6 was to build a tool which could be used by fleet operators
to select the optimum vehicle configuration for their operations. The operator could select
their own library of manoeuvres, and control parameters such as the width of their vehicles,
steering lock angles, and the density of their freight, in order to increase the applicability.

This information could be used to generate a plot such as Figure 6.29. This figure shows
a set of potential vehicles, and could be used to select alternative options.

As an example, an operator currently using 18 t rigid vehicles for restocking a city centre
store wants to increase their efficiency. Several options are available:
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*

*

*

Fig. 6.29 Summary of all vehicles considered as part of Case Study C (*Some vehicles with
apparently unrealistic axle loads are included as they may be applicable for some specific
load cases)

(i) Any of the 32 t articulated vehicles will increase the manoeuvrability of the vehicle
while maintaining the same roll cage capacity. Although the vehicles are likely to be
more expensive, this increased manoeuvrability could be used to find shorter routes into
the centre, or possibly to apply for subsidies based on improved safety performance.

(ii) The 43 t articulated vehicle increases capacity by 67% relative to the baseline vehicle.
Although the vehicle will be significantly more expensive, the capacity increase is
significant. It might be possible to consolidate multiple trips into one, which would
reduce operating costs.

(iii) The 36 t Path-Following articulated vehicle is an alternative to the conventional 32 t
urban articulated vehicle, using rear axle steering to increase capacity. This vehicle
increases capacity by 25%, and also increases the manoeuvrability. This could be key
for operations with different sized outlets. For example, in addition to the duties of
the original 18 t rigid, this vehicle could carry stock for a smaller store, and have the
manoeuvrability to reach it, in the same trip.
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6.7 Conclusions

A method has been developed for analysing the manoeuvrability of Heavy Goods Vehicles by
simulating the vehicles attempting a library of real-world manoeuvres. The method allows
proposed vehicle designs to be compared to the manoeuvrability of a baseline vehicle, and
for the rear axle load and the GVW to be calculated. The method was used to evaluate three
case studies, and increased capacity vehicles were proposed for each.

It was shown that the use of rear axle steering was sometimes detrimental to the maximum
length of vehicle which could complete a given percentage of the manoeuvre library. This
is because whereas a conventional vehicle compromises between tailswing and cut-in, a
rear-steered vehicle is designed to minimise one of these (the Command-Steer strategy is
designed to minimise cut-in, and the Path-Following algorithm is designed to eliminate
tailswing). The loss of this compromise reduces the ability of certain vehicles to complete
certain manoeuvres.

However, the use of rear axle steering reduces rear axle loads for a given manoeuvrability,
as the rear axle can be placed further back on the vehicle while leaving the effective rear axle
position unchanged. This reduces the likelihood of exceeding rear axle load limits before the
vehicle is completely filled. For higher freight densities, the reduced rear axle loads would
be key for successfully filling the vehicle.





Chapter 7

Performance-Based Standards Approach
to Manoeuvrability

7.1 Introduction

7.1.1 Overview

The aim of the Performance-Based Standards approach to heavy vehicle regulation is to allow
operators to maximise the productivity of HGVs by innovation in vehicle design, subject
to a strict set of standards [81]. In Australia, an operator can apply for PBS certification
of a given vehicle configuration. The vehicle configuration is simulated by a PBS assessor
and awarded a score for each of 20 safety criteria, categorised into 5 groups: powertrain
standards, low-speed performance, stability, high speed performance, and infrastructure
protection. The level of PBS certification (1, 2, 3 or 4) then dictates what roads that vehicle
configuration can be used on. This allows operators to optimise capacity for a given route or
task. The use of simulation instead of direct testing facilitates the use of different or novel
vehicles, as compared to countries without a PBS scheme, where operators must generally
use standardised vehicles, with prescribed maximum weights and dimensions, to conform
with regulations.

Roads are given a certification level which vehicles must meet. For example, the main
trunk network is primarily Level 4. This means that any vehicle with a PBS Level of 4 or
below can use the roads. Smaller roads have lower levels, requiring vehicles to meet more
difficult targets on the assessment criteria to be permitted.

The Australian National Heavy Vehicle Regulator (NHVR) introduced the Performance-
Based Standards (PBS) scheme in October 2007. Nearly 9000 PBS combinations have since
been approved, and more than 1 in 5 new relevant heavy vehicles are PBS approved [208, 81].
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The NHVR claims that PBS vehicles cause 46% fewer serious accidents per kilometre
travelled, increase productivity by up to 30%, and were responsible for saving 173 million
litres of fuel in 2018 [81]. The model has also been implemented in different forms in New
Zealand [209], Canada [210], and South Africa [211]. In Europe, High-Capacity vehicles up
to 25.25 m in length are permitted to operate under the European Modular System (EMS),
but only within a single country, and not across borders [212]. The Freight and Logistics
in a Multimodal Context project (Falcon) has made recommendations for a cross-border
framework similar to a PBS scheme allowing Higher Productivity Vehicles in Europe [213].

7.1.2 Urban Performance-Based Standards

The Australian PBS scheme is not suitable for implementation in the UK in its exact form,
because the largest vehicles used in Australia are impractical anywhere in the more densely
populated UK. There are almost no routes in the UK where the multiply-articulated road
trains seen on rural roads in Australia are considered appropriate. Work is in progress
assessing how best to implement a PBS-style scheme in Europe, including the UK [213].

One potential application of the PBS concept, which would be particularly relevant to the
UK would be the inclusion of a ‘Level 0’ categorisation for urban routes. In the Australian
implementation, any vehicle achieving Level 1 certification can run on any route. In order
to optimise capacity, it would be useful to have a further category for assessment of urban
transport. Work carried out by Isted et al. investigated the potential assessment criteria and
category thresholds which would be most suitable for a set of urban standards [5]. Isted et al.
proposed a suitable set of standard manoeuvres and limits on performance metrics for two
urban PBS levels, labelled in this work as ‘Level 0b’ and ‘Level 0’: Level 0b was intended to
limit vehicle access to typical urban areas. Level 0 was developed to cater for urban areas
with greater constraints, such as historic city centres, or narrow alleys.

7.1.3 Motivation

Chapters 4 to 6 presented a novel method for assessing the maximum size of higher capacity
freight vehicles, based on the assumption that a higher capacity vehicle for a given task
should be able to access the same areas as the lower capacity vehicle currently being used.
This required some measure of the manoeuvrability of the vehicle to be assessed. The aim of
these chapters was to use real-world manoeuvres to create a measurement of manoeuvrability
which is more realistic than standard measurements from ‘idealised’ manoeuvres such as 90°
turns or roundabouts. This method is suitable for any application, but particularly for urban
freight vehicles, where manoeuvrability constraints tend to be more critical. On the other
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Table 7.1 Recommendations for an Urban PBS framework by Isted et al. [5]

Level Manoeuvre Metric Pass level

0 6.5 m Left Turn Tailswing < 0.25m
0 6.5 m Left Turn Front Swing < 0.12m
0 6.5 m Left Turn Swept Path < 5.5m
0 6.5 m U-Turn Required Track Width < 4.5m

0b 9 m Left Turn Tailswing < 0.4m
0b 9 m Left Turn Front Swing < 1.2m
0b 9 m Left Turn Swept Path < 5.75m
0b 9 m U-Turn Required Track Width < 4m

0 and 0b 3.5 m Lane Change at 18 ms−1 High-Speed Transient Off-tracking < 0.6m
0 and 0b 3.5 m Lane Change at 18 ms−1 Rearward Amplification Ratio < 4
0 and 0b Steering Impulse at 18 ms−1 Yaw Damping Coefficient > 0.15

hand, the Performance-Based Standards approach is simpler and requires less computation
time than the method from the previous chapters, but may not lead to capacity of vehicles
being completely maximised.

The primary aim of this chapter is to compare the results in Chapters 4 to 6 to the
results generated by Isted et al. [5]. This is achieved by simulating the vehicles proposed in
Chapter 6 over the set of standard manoeuvres described by Isted et al., and evaluating the
performance metrics. This will assess whether the proposed vehicles would be permitted to
operate in city centres under a PBS scheme as defined by Isted et al., and therefore whether
the two methods agree on the maximum vehicle capacity for the case studies considered. The
second aim of the chapter was to further investigate the effectiveness of rear axle steering on
manoeuvrability.

7.2 Urban PBS Proposal

7.2.1 Proposed Framework

Table 7.1 lists the metrics and pass levels recommended by Isted et al., and the manoeuvres
on which to measure those metrics. Isted et al. demonstrated that the roads of interest could
be represented by turns of radius 6.5 m for Level 0 and turns of radius 9 m for Level 0b [5].
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7.2.2 High Speed Analysis

Existing PBS frameworks for highway vehicles test for stability at high speeds. These
frameworks do not impose any speed limiting on the vehicles being assessed, because all
routes of levels 1 to 4 can involve driving at highway speeds. However, it was proposed by
Isted et al. that vehicles used exclusively on urban roads could be allowed to have lower level
high-speed stability as long as they had their maximum speed limited. This could permit the
use of a group of higher capacity vehicles with excellent low-speed manoeuvrability, but
limited high-speed stability, such as multiply-articulated vehicles with centre-axle trailer
units. Isted et al. proposed that high-speed stability tests for Level 0 should be carried out at
40 mph instead of the 56 mph proposed by De Saxe et al. [213].

This approach would require a small change to the PBS framework. Under the Australian
system, any vehicle that passes a given level automatically passes all higher levels (e.g. a level
1 vehicle is also permitted to operate on level 2, 3, and 4 roads). Under the recommendations
by Isted et al., any vehicle passing Level 0 automatically passes the low speed requirements
for higher levels, but is not guaranteed to pass the high speed tests. Therefore, Level 0
vehicles would either have to be speed limited, or tested separately against higher level high
speed criteria.

The analysis from Chapters 4 to 6 considered only low-speed manoeuvrability, thus the
proposed vehicles were not simulated using the high speed manoeuvres proposed by Isted et
al. It was, however, recognised that vehicles which could achieve Level 0 status were not
necessarily suitable for highway speeds.

7.2.3 Proposed Manoeuvres

At low speed, Isted et al. used two manoeuvres to assess vehicles. These were a 90° left turn,
and a U-Turn. Each test was constructed with two outer radii: the first (6.5 m) to assess Level
0 vehicles, and the second (9 m) to assess Level 0b vehicles. Isted et al. assumed a speed of
0.5 ms−1 for all low-speed manoeuvres, also used for this work. The left turn manoeuvres
were used to measure Tailswing (TS), Front Swing (FS), and Swept Path Width (SPW). The
U-Turn manoeuvres were used to measure Required Track Width (RTW).

7.2.4 Proposed Metrics

This section defines the PBS metrics used by Isted et al. [5]. Some of the definitions are
slightly different to those used earlier in this thesis.
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Fig. 7.1 Measurement of Tail Swing

7.2.4.1 Tail Swing (TS)

Tail Swing is defined as the maximum lateral displacement of the rear of the vehicle during
the entry tangent to the 90° turn [5], shown diagrammatically in Figure 7.1. This can be
measured by taking the maximum ‘y-coordinate’ in the position of the rear corner of the
vehicle.

7.2.4.2 Front Swing (FS)

Front Swing is the maximum displacement between the path travelled by the outside front
corner of a vehicle and the outside front wheel during the 90° turn [5], illustrated in Figure 7.2.
This is measured by calculating the perpendicular to the path of the outside front corner
at every point, and locating the intersection between this perpendicular and the path of the
outside front wheel. The maximum of all distances between these intersections and the points
on the path of the front corner is the Front Swing.

7.2.4.3 Swept Path Width (SPW)

Swept Path Width is described as the maximum perpendicular distance between the outer
and innermost paths traced by the extremities of the vehicle during a 90° turn [5]. The
metric is presented in Figure 7.3. For rigid, two-axle vehicles with only one steered axle this
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Fig. 7.2 Measurement of Front Swing

can be measured by taking the perpendicular distance between the path of the inside rear
wheel and the path of either the outside front or outside rear corner. Which corner to use
depends on whether the front or rear of the vehicle is swinging out more, which is governed
by the relative sizes of the front and rear overhang. However, for vehicles with multiple axle
steering, the innermost extremity of the vehicle changes according to the rear steer angle, and
thus the path of the inside rear wheel cannot be used. Additionally, the outermost extremity
can switch between the front and rear corners. To calculate Swept Path Width in this case, the
paths of every point on the inside edge of the vehicle and every point on the outside edge of
the vehicle must be traced, and the perpendicular distance from every point on every outside
path to every inside path must be calculated. The Swept Path Width is the maximum of all of
these perpendicular distances.

7.2.4.4 Required Track Width (RTW)

Required Track Width is described as the equivalent to Swept Path Width, but considering
only the paths of the tyres rather than the edges of the body of the vehicle [5]. Note that
this is not the same as the width of road required to make a U-Turn. This metric is shown
diagrammatically in Figure 7.4, measured in the same way as Swept Path Width, but instead
the innermost and outermost points are taken as the wheels, as opposed to any point on the
body.



7.2 Urban PBS Proposal 197

Swept Path 
Width

Path of 
outermost 
extremities

Path of outside 
front wheel

y

x

Manoeuvre Radius

Path of 
innermost 
extremities

Fig. 7.3 Measurement of Swept Path Width

Required Track Width

Path of outside 
front wheel

Path of inside 
rear wheel

Manoeuvre Radius

y

x

Fig. 7.4 Measurement of Required Track Width



198 Performance-Based Standards Approach to Manoeuvrability

7.3 Simulation Results and Analysis

The proposed vehicles in Chapter 6 were simulated performing the manoeuvres described.
The metrics from Table 7.1 were calculated and compared to the required pass values for
Level 0 and Level 0b. Some vehicles were unable to complete some manoeuvres, because
the required steer angle to complete the manoeuvre at the given radius exceeded the steering
lock angle. The method from Chapters 4 to 6 will from here on be known as the ‘real-world’
approach, as opposed to the Performance-Based Standards (PBS) approach.

7.3.1 Case Study A: Grocery Delivery Vehicle

Chapter 6 proposed increasing the size of grocery delivery vehicles from 3.5 t to 4.25 t. It
was shown that the 4.25 t vehicle had significantly reduced manoeuvrability compared to the
3.5 t vehicle, and thus was not suitable for grocery delivery. It was shown, however, that the
addition of rear axle steering could sufficiently improve the manoeuvrability to make the
larger vehicle viable for such operations.

This agreed with the results generated using the PBS approach, as given in Table 7.2, with
the performance metrics from Table 7.1. The 3.5 t vehicle (L = 6.23 m, (a+b) = 3.67 m)
successfully met the criteria for all four low-speed metrics on the Level 0 manoeuvres (6.5 m
radius). When the vehicle size was increased to 4.25 t (L = 7.10 m, (a+b) = 4.80 m) the
vehicle failed the PBS tests, by being unable to complete the manoeuvres, due to exceeding
the steering lock angle. However, the addition of Path-Following rear axle steering permitted
the vehicle to complete the manoeuvres, and again all four criteria for achieving Level 0
status were met.

All three of the vehicles simulated (3.5 t, 4.25 t Rear Unsteered, and 4.25 t with Path-
Following steering) achieved the criteria for Level 0b roads (9 m radius manoeuvres). This
matches expectations for the larger set of manoeuvres.

For this case study, the results from the PBS assessment in this chapter, and the results
from the ‘real-world’ method described in previous chapters agree well. Both suggest that
any of the proposed grocery delivery vehicles should be capable of accessing the larger roads
in city centres (Level 0b roads), but that to allow the higher capacity vehicle on the smallest
roads (Level 0) requires the addition of rear axle steering.

7.3.2 Case Study B: Refuse Collection Vehicle

Three alternatives to the 26 t refuse collection vehicle (L = 10.40 m, (a+ b) = 4.72 m)
which were proposed in Chapter 6 were selected. These were 1) the addition of Path-
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Table 7.2 Simulation results for vehicles proposed in Case Study A

Level 0 manoeuvres (6.5 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.50 <1.20 <0.25 <4.50

3.5 No No 3.72 0.57 0.08 3.15 Yes
4.25 No No - - - - No
4.25 No Yes (PF) 3.29 0.53 0.00 2.76 Yes

Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

3.5 No No 3.23 0.44 0.06 2.79 Yes
4.25 No No 3.94 0.53 0.03 0.62 Yes
4.25 No Yes (PF) 2.92 0.39 0.00 2.53 Yes

Table 7.3 Simulation results for vehicles proposed in Case Study B

Level 0 manoeuvres (6.5 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.50 <1.20 <0.25 <4.50

26 No No - - - - No
26 No Yes (PF) - - - - No
44 Yes No 5.33 0.72 0.76 4.62 No
44 Yes Yes (PF) 5.49 0.73 0.02 4.76 No

Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

26 No No 3.88 0.53 0.81 3.35 No
26 No Yes (PF) 3.87 0.56 0.01 3.30 Yes
44 Yes No 4.70 0.55 0.47 4.18 No
44 Yes Yes (PF) 4.60 0.55 0.01 4.00 Yes
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Following steering (L = 9.70 m, (a+b) = 6.20 m), 2) an articulated vehicle (L2 = 11.45 m,
(a2+b2)= 5.80 m), and 3) an articulated vehicle with Path-Following steering (L2 = 10.40 m,
(a2 + b2) = 6.20 m). According to the analysis presented in Chapter 6, all three of these
vehicles have equivalent manoeuvrability, (i.e. all were able to complete the same percentage
of manoeuvres as the standard 26 t vehicle).

Table 7.3 gives the simulation results for these four vehicles attempting the Level 0 and
Level 0b manoeuvres. At Level 0, none of the vehicles passed the criteria. The two rigid
vehicles cannot complete the manoeuvres, and the articulated vehicles fail on Required Track
Width (although by less than 0.3 m). For the Level 0b manoeuvres, both the 26 t rigid and
the 44 t articulated vehicles require Path-Following steering to pass the Tail Swing criterion.

The real-world analysis from Chapter 6 uses the manoeuvrability of the existing vehicle
as a baseline. This explains why the 26 t rigid vehicle passed by that method, but failed
according to the PBS manoeuvres. The PBS analysis suggests that the addition of rear axle
steering to the rigid vehicle is not sufficient to pass (whether it increases manoeuvrability
is unknown, as neither vehicle could complete the manoeuvre). The real-world approach
demonstrated that the use of rear axle steering reduced capacity for the same manoeuvrability
(or conversely reduced manoeuvrability for a given capacity).

The real-world approach suggested that a 44 t articulated vehicle could have equivalent
manoeuvrability to the 26 t rigid vehicle. The PBS approach agrees with this, suggesting that
the manoeuvrability of the articulated vehicle is better than the rigid, since it can complete
the manoeuvres whereas the rigid cannot. However, the articulated vehicle still fails the Level
0 criteria for Tail Swing and Required Track Width. The real-world approach again suggests
that the addition of trailer steering to the articulated vehicle reduces manoeuvrability. This
was supported by the PBS analysis, which showed an increase in both the Required Track
Width and Swept Path Width due to the use of rear axle steering. The primary advantage of
rear axle steering is that it reduces the Tail Swing almost to zero.

On the larger manoeuvres, the existing refuse vehicle’s large rear overhang caused it to
fail the Level 0b criterion for Tail Swing. However, the use of rear axle steering reduced the
Tail Swing sufficiently for the vehicle to pass. The same observations were made for the
articulated vehicle.

The pass values for the PBS Level 0 criteria are set such that all the vehicles fail, whereas
the manoeuvrability of these vehicles was taken as the baseline value using the real-world
method, therefore defining that all the vehicles pass.
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Table 7.4 Simulation results for vehicles proposed in Case Study C

‘Urban’ Library Score: 90% Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

10 No No 4.08 0.55 0.09 3.53 Yes
10 No Yes (PF) 3.34 0.47 0.00 2.87 Yes
32 Yes No 3.87 0.55 0.16 3.32 Yes

‘Urban’ Library Score: 70% Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

32 Yes No 4.55 0.55 0.01 4.00 Yes
36 Yes Yes (PF) 4.26 0.55 0.01 3.70 Yes

‘Urban’ Library Score: 55% Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

18 No No - - - - No
18.5 No Yes (PF) 4.01 0.59 0.00 3.50 Yes
43 Yes No 5.03 0.55 2.60 4.49 No

‘Urban’ Library Score: 35% Level 0b manoeuvres (9 m)
SPW (m) FS (m) TS (m) RTW (m) Pass

GVW (t) Articulated Rear Steering <5.75 <1.20 <0.30 <4.00

43 Yes No 6.13 0.55 0.27 5.58 No
44 Yes Yes (PF) 6.05 0.55 0.03 5.50 No
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7.3.3 Case Study C: Urban Store Vehicle

Whereas the previous two case studies have a particular existing vehicle to use as a baseline,
there are many different vehicles used for urban store delivery. In order to compare the PBS
approach to the real-world approach, a set of the vehicles shown in Figure 6.29 was simulated
attempting the proposed PBS manoeuvres. The results are presented in Table 7.4.

Three vehicles scored a 90% manoeuvre pass rate on the ‘urban’ manoeuvre library using
the real-world approach. These were a standard 10 t truck (L = 8.00 m, (a+b) = 5.00 m),
a lengthened 10 t truck with Path-Following steering (L = 8.75 m, (a+b) = 5.00 m), and
a 32 t tractor semi-trailer (L2 = 8.20 m, (a2 + b2) = 4.00 m) designed to have equivalent
manoeuvrability to the 10 t truck. All three vehicles were able to complete the 9 m proposed
PBS manoeuvres. Similarly, the two vehicles which scored 70% manoeuvre pass rate on the
‘urban’ manoeuvre library were able to pass the 9 m proposed PBS manoeuvres. These were
the baseline Urban Trailer (L2 = 8.50 m, (a2+b2) = 5.80 m) and a lengthened Urban Trailer
with Path-Following steering (L2 = 10.40 m, (a2 +b2) = 7.80 m), designed to increase the
capacity of the baseline Urban Trailer.

The three vehicles which successfully completed 55% of the ‘urban’ manoeuvre library
using the real-world approach were a standard 18 t truck (L = 11.00 m, (a+b) = 7.00 m),
a lengthened 18 t truck with path-following rear axle steering (L = 11.50 m, (a+ b) =
7.00 m), and a 43 t tractor semi-trailer (L2 = 13.70 m, (a2 +b2) = 4.10 m) designed to have
equivalent manoeuvrability to the 18 t truck. The 18 t truck was only able to complete the
PBS manoeuvres with the addition of rear axle steering. The articulated vehicle which
was shown by the real-world approach to have equivalent manoeuvrability also failed the
manoeuvres, because the Tail Swing was too high.

The vehicles which scored 35% on the real-world manoeuvres were a standard semi-
trailer (L2 = 13.60 m, (a2 +b2) = 8.50 m) and a Path-Following semi-trailer (L2 = 14.80 m,
(a2+b2) = 11.00 m). Neither were able to pass the PBS manoeuvres. Both failed because of
Swept Path Width and Required Track Width. Both vehicles achieved similar scores across
all four assessment criteria.

Table 7.4 indicates that the two approaches to modelling manoeuvrability give similar
results. Vehicles achieving a given percentage manoeuvre pass rate for the real-world
simulations consistently passed or failed the PBS manoeuvres, with the exception of the
18.5 t rigid vehicle, which passed while the rest of the vehicles in the 55% category failed.
This suggests that the PBS Level 0b standard is equivalent to a manoeuvre pass percentage
on the ‘urban’ manoeuvre library of between 55-70%.
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7.4 Conclusions

There were two aims to this chapter: to further investigate the effectiveness of rear axle
steering on vehicle manoeuvrability with the goal of increasing capacity, and to compare the
two methods for assessing manoeuvrability.

7.4.1 Effectiveness of Rear Axle Steering

Path-following rear axle steering was shown to be effective at removing Tail Swing and
allowing vehicles which, without rear axle steering could not achieve a high enough yaw
rate for success, to complete the required manoeuvres. However, it increases Swept Path
Width and Required Track Width, and therefore was penalised in a number of cases by both
manoeuvrability modelling methods. This corresponds to conclusions drawn in Chapter 6.

It is apparent that the impact that rear axle steering has on the balance between Tail
Swing and Swept Path Width is highly dependent on the manoeuvre being simulated and the
dimensions of the vehicle. Application of Path-Following rear axle steering always reduces
Tail Swing, but only reduces Swept Path Width in some cases. In cases where it instead
increases Swept Path Width, this is sometimes enough to cause the vehicle to fail the PBS
manoeuvres. This is supported by the real-world analysis which showed that Path-Following
steering sometimes increased the maximum achievable length of the vehicle, but sometimes
decreased it.

One description of this effect, is that a given size of vehicle attempting a given manoeuvre
must sweep an approximately constant area of road through the entire manoeuvre. In the case
of a conventional vehicle, with fixed rear axle, the swept area is comprised of a compromise
between cut-in and tailswing. The application of rear axle steering removes this compromise;
for the case of the Command-Steer strategy, cut-in is converted to tailswing, and for the case
of the Path-Following strategy, tailswing is eliminated, but cut-in is increased. It was shown
in Chapter 6 that different manoeuvres penalise different aspects of the manoeuvrability
(cut-in or tailswing).

This analysis effectively considers tailswing and cut-in to be equally disadvantageous,
which may not be the case. Cut-in is a predictable response, expected by drivers, and generally
occurring in a visible area of the road. Tailswing on the other hand is less predictable, and for
articulated vehicles occurs in an area of the road which is hidden from the driver’s mirrors,
and which the front of the vehicle has not passed through. For this reason, the PBS analysis
measures Tail Swing as a separate metric, and a vehicle can fail due to excessive Tail Swing,
even if other metrics are passed.
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Table 7.5 Approximate equivalence between PBS pass levels and real-world pass levels

Equivalent ‘Residential’ Equivalent ‘Urban’
Library Pass Rate Library Pass Rate

Level 0 90% -
Level 0b 30% 55%

Irrespective of the impact on manoeuvrability, it has been shown that the use of rear
axle steering always reduces rear axle loads by allowing the rear axle to be located further
back on the vehicle. This reduces the likelihood that the rear axle load will be exceeded
before the vehicle is filled, thus allowing a higher load density. Additionally, the high tyre
wear experienced by vehicles with multi-axle groups on small-radius turns will be reduced,
reducing the environmental and financial costs of replacing tyres.

7.4.2 Comparison of Methods

The two approaches used for modelling manoeuvrability cannot be definitively said to have
yielded equivalent results, but have not been shown to contradict each other, for the vehicles
considered in this chapter. Some data points are missing, because some vehicles could not
complete the PBS manoeuvres due to exceeding the steering lock angle.

Table 7.2 suggests that the proposed PBS Level 0 standards are approximately equivalent
to achieving a 90% manoeuvre success rate on the ‘residential’ manoeuvre library (the more
tightly bounded library) since the largest vehicle which can achieve that 90% score can pass
the Level 0 manoeuvres, but requires rear axle steering to do so, implying that any larger
vehicles would be unsuccessful.

Similarly, Table 7.3 indicates that the proposed PBS Level 0b standards are approximately
equivalent to a 30% manoeuvre success rate on the ‘residential’ library, given that both the
26 t rigid vehicle and the 44 t articulated vehicle again require rear axle steering to pass
the manoeuvres. By the same argument, Table 7.4 suggests that the Level 0b standards are
equivalent to a success rate of 55% on the ‘urban’ library. Therefore it can be reasoned that
the 30% ‘residential’ manoeuvre success rate and the 55% ‘urban’ manoeuvre success rate
are approximately equivalent. This is summarised in Table 7.5.

This equivalence negates the requirement for different manoeuvre libraries for different
applications, provided the equivalent success rate can be found, however it presents a stronger
argument to fleet operators for the validity of the results if the simulations are application
specific. Vehicle manufacturers, on the other hand, typically prefer not to design to specific
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applications, since this limits their market. Therefore further work is needed to understand
the business case associated with vehicles designed by the real-world method.

In summary, both methods can provide an assessment of manoeuvrability, and equivalent
pass levels between the two methods can be found. The real-world method has the advantage
of allowing application-specific consideration of the roads which the vehicle will be operating
on, thus finding the absolute maximum achievable capacity. However, it does not penalise
tailswing, which can be dangerous, and over-specifying to a given application is considered
by some to be a disadvantage. Further work is required to investigate the business case, in
order to assess which method is most suitable.





Chapter 8

Conclusions and Further Work

8.1 Introduction (Chapter 1)

Chapter 1 reviewed the literature related to the road freight industry. The challenges as-
sociated with decarbonisation of road freight were discussed, and a number of interven-
tions to help achieve decarbonisation were presented, with their respective advantages and
disadvantages. Increasing vehicle capacity was identified as an important component of
decarbonisation strategy.

Urban road freight was identified as a key target for decarbonisation efforts due to the
increasing urbanisation of the world population. The negative externalities (impacts of road
freight not directly factored into costs to fleet operators) associated with urban freight vehicles
were assessed, with a focus on the context of higher capacity urban vehicles. Some barriers to
increasing capacity were presented, including legislative limits, decreased manoeuvrability,
increased driver workload, and safety of vulnerable road users. It was proposed that this
project investigate methods for enabling higher capacity urban freight vehicles.

Three applications of urban freight vehicles were presented as case studies, to be inves-
tigated using the methods in the following chapters. The applications were home delivery
of groceries, domestic refuse collection, and convenience store stock vehicles. Reviews of
current approaches to these applications were carried out, and the case for selecting these
applications was presented.

8.2 Cyclist Detection (Chapter 2)

A camera system was developed to observe and predict the motion of cyclists close to the
side of Heavy Goods Vehicles, and compared to an ultrasonic system developed by Jia [108].
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The system used two downward-facing cameras mounted high on the side of the vehicle.
Bicycle wheels were detected using boosted classifiers. The point of contact between the
wheel and the ground was converted into world coordinates using a coordinate mapping
generated from a calibration grid.

The system was generally able to track the position of the cyclist to within 10 cm at
distances of 1 m or greater from the HGV. At lateral distances of less than 1 m the system was
found to be significantly less accurate due to occlusion and distortion of the image features.
The system was slightly less accurate than Jia’s ultrasonic system, most significantly when
the cyclist was close to the HGV.

The system described in the chapter is promising but not sufficiently robust for all
conditions, due to the loss of accuracy at close range, and the impracticality in low-light
conditions. It is likely that the most suitable solution would be a hybrid system fusing image
and ultrasonic data. This would combine the accuracy and robustness of the ultrasonic system
with the ability of image processing to discern a single cyclist from the background or from a
group of cyclists. The development of this system will be completed by other researchers.

8.3 Analysis of Urban Delivery Systems (Chapter 3)

In-service data were collected for two home delivery vehicles from different supermarkets,
using the SRF logger. Comparisons between the two sets of data showed differences between
the operations of the two supermarkets. It was shown that Supermarket B’s vehicles regularly
drove further than those of Supermarket A, and it was hypothesised that this was due to the
profiles of the customers of the supermarkets.

A statistical model was constructed of the time spent on tasks by the delivery driver
during a typical shift. The input parameters to this model were varied to investigate the
effect of increasing number of deliveries on the driver’s ability to complete the shift in
under eight hours. It was shown that the number of deliveries could be increased by 30%
without exceeding an eight hour shift, if the distance between deliveries could be decreased
by half. If the time spent doing paperwork and packing and repacking the van could be
eliminated, then the potential increase in the number of deliveries is 80%, assuming the same
reduction in driving distance. These reductions in distance could be achieved by increasing
the attractiveness of home delivery to consumers so that there is greater uptake in a given
area, or by collaboration between supermarkets.

Analysis of in-service data logged for Refuse Collection Vehicles by Nicolaides showed
that in order for the vehicle to always be able to complete its collections in a single round
trip, instead of requiring two trips, the vehicle capacity would need to be increased by 40%.
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Current vehicles in Cambridge can complete all collections in a single trip on only 17% of
days.

It was shown that in order to assess the operational impact of higher capacity vehicles
used to restock city centre stores, modelling of an entire logistics network would be required.
This was considered beyond the scope of this project.

8.4 Manoeuvrability Modelling: Methodology (Chapter 4)

A method was proposed for assessing the manoeuvrability of Heavy Goods Vehicles, taking
into account the complexity of real-world manoeuvres. The steps of the method were as
follows:

1. Collect in-service GPS data from the class of vehicle to be considered.

2. Identify from the GPS data a library of the most difficult manoeuvres.

3. Use satellite images to convert each manoeuvre into a set of boundary constraints on
the vehicle motion.

4. Simulate a vehicle attempting each manoeuvre and determine whether or not it is
physically able to pass.

5. Vary the vehicle design parameters, and generate a chart that shows the percentage of
manoeuvres which can be completed as vehicle dimensions vary.

6. Plot additional constraints on the chart such as axle load limits and infeasible vehicle
configurations.

7. Select the optimum vehicle design: the set of dimensions which maximises capacity
without violating any constraints, and can complete at least the same percentage of
manoeuvres as the existing vehicle.

To support this, kinematic vehicle models were developed for both rigid and articulated
vehicles, and several rear axle steering strategies.

Mass distribution models of both rigid and articulated vehicles were developed and
validated, to allow calculation of axle loads and Gross Vehicle Weight for any given vehicle.

A parameter space was defined, where the vehicle overall length, L, and vehicle wheelbase,
(a+b), varied. The design space was constrained by a GVW limit, the rear axle load limit,
and the manoeuvrability performance envelope of the vehicle, which was calculated by
simple geometric arguments for steady-state turning.
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It was demonstrated that the capacity of existing home delivery vehicles could not be
increased, because of the 3.5 t limit on GVW. Increasing this limit to 4.25 t was shown to be
essential for any increase in capacity.

The vehicles were also constrained by their manoeuvrability, but it was proposed that
applying rear axle steering to change the position of the manoeuvrability envelope would
allow for longer vehicles, without increasing the rear axle loads. Similar results were
presented for a standard articulated vehicle.

8.5 Manoeuvrability Modelling: Algorithm Selection (Chap-
ter 5)

The method proposed in the previous chapter required an accurate calculation of the shape and
position of the manoeuvrability envelope. It was proposed that simulating vehicles attempting
manoeuvres and assigning a pass or fail result would be a suitable way to determine the
envelope, thus a route planning method was required, to allow automatic simulation of many
vehicles.

Four path-planning algorithms were tested. These were: Rapidly-exploring Random
Trees (RRT), Model Predictive Control (MPC), Single- and Multi-segment Splines (SMS)
and N Control Point Splines (NCPS).

The algorithms were tested on two simple manoeuvres. Scores were calculated for each
algorithm, by taking the percentage difference between the area of success discovered by the
algorithm and the ‘true’ area of success, as discovered by all the algorithms combined, with
some manual checks.

None of the algorithms achieved a perfect score on either of the two manoeuvres. How-
ever, a combination of the MPC and NCPS methods discovered at least 96% of the true area
for both of the simple manoeuvres, which was considered sufficient.

8.6 Manoeuvrability Modelling: Case Studies (Chapter 6)

This Chapter applied the results of the vehicle capacity optimisation method described in the
previous chapters, in the context of three case studies: home delivery of groceries, refuse
collection, and convenience store restocking vehicles.

First, an investigation was carried out into the shape of the manoeuvrability envelope,
to understand the effect of rear axle steering on vehicle manoeuvrability. It was shown that
while in some cases rear axle steering can increase the dimensions of the vehicle that can get
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round a given manoeuvre, in other cases it can reduce it. However, the position of the steered
rear axle generally reduces rear axle loads, allowing a heavier payload to be carried without
exceeding the rear axle load limits.

8.6.1 Case Study A: Grocery Delivery Vehicle

The home delivery vehicles typically used by supermarkets usually run very close to the 3.5 t
GVW limit. Therefore, no increase in vehicle length is useful, unless the GVW limit for
Light Goods Vehicles can be increased.

Assuming this increase is permitted, the vehicles could be increased in length by 1.5 m
without penalty to manoeuvrability. This would require either the rear axle to be moved
forwards, thus increasing the rear axle load, or for rear axle steering technology to be used.

Capacity could be increased by nearly 50% by using the Command-Steer algorithm
to control the rear axle steering angle. However, this would generate unacceptably high
tailswing. Using the Path-Following algorithm instead would limit tailswing to near zero,
and would permit a 30% increase in capacity.

8.6.2 Case Study B: Refuse Collection Vehicle

The rear axle or axles of the refuse collection vehicle carry an unusually high proportion
of the load, due to the heavy bin lifting equipment on the rear of the vehicle. This also
leads to a large rear overhang, and high risk of tailswing. Because of the naturally high
tailswing, the use of the Command-Steer algorithm was inappropriate. Using the Partial
Command-Steer algorithm does not add additional tailswing, but has only a small effect on
manoeuvrability (although it might still be economically worthwhile for some business cases
due to the reduction in tyre wear).

The use of the Path-Following steering algorithm removes the tailswing, but requires a
small reduction in capacity due to the increased cut-in.

It was demonstrated that an articulated vehicle provides the best capacity increase for this
application. A 44 t articulated vehicle using steered trailer axles and Path-Following control
was shown to have equivalent manoeuvrability to the existing refuse collection vehicle.

8.6.3 Case Study C: Urban Store Vehicle

Due to the large number of variables involved in operator decision making, a wide variety
of different vehicles are used for urban operations. Four commonly used vehicles were
identified: 10 t and 18 t rigid trucks, an urban semi-trailer, and a standard semi-trailer.



212 Conclusions and Further Work

All four vehicles could be increased in capacity without penalty to manoeuvrability by
increasing the length and reducing the wheelbase slightly. However, this would lead to
increased rear axle loads. These could be reduced by increasing the wheelbase, and applying
rear axle steering to maintain the position of the effective wheelbase.

Replacing the rigid vehicles with articulated vehicles with equivalent manoeuvrability
could increase capacity by more than 50%.

8.7 Performance-Based Standards Approach to Manoeu-
vrability (Chapter 7)

Vehicles proposed as viable alternatives to existing vehicles for the case studies were evaluated
using a PBS approach. It was shown that an approximate equivalent manoeuvre pass rate
could be found for a given PBS standard.

The effectiveness of Path-Following rear axle steering on vehicle manoeuvrability was
investigated further. The PBS simulations revealed that while Path-Following steering reduces
Tail Swing, in some configurations it increases Swept Path Width and Required Track Width.
For some manoeuvres this caused vehicles to fail.

The advantage of the ‘real-world’ method was summarised as allowing application-
specific consideration of the roads which the vehicle will be operating on, which allows the
maximum achievable length and therefore capacity to be found. However, this is seen by
some to be a disadvantage, since it limits the potential market for the vehicle. Further work
is required to understand this business case.

8.8 Further Work

(i) There is a requirement for further development of the camera system proposed in
Chapter 2. This work should investigate possible sensor fusion approaches combining
the differentiation of a camera-based system to distinguish between multiple cyclists
and other entities, and the accuracy of an ultrasonic system.

(ii) The realism of the manoeuvrability modelling should be considered. This work did not
allow for the case where a driver chooses to reverse to complete a manoeuvre, nor for
the case where the driver turns the wheel while stationary, causing a discontinuity in
gradient of path. These were considered necessary simplifications in order to limit the
complexity of the problem, but could be relaxed in further work.
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(iii) This work considered only the length and wheelbase of the vehicle as design parameters.
The vehicle width plays a crucial role in manoeuvrability and could be included in
future analysis. Other parameters may be important, such as the steering lock angle.

(iv) Similarly, the scope of the manoeuvre libraries used in Chapter 6 should be improved.
The limited number of manoeuvres used did not allow for any statistical smoothing
effects, creating artefacts in the resulting contour plots. These could be removed by
using libraries with more manoeuvres.

(v) More work is needed to take forward the various proposals for increasing vehicle
capacity: developing business cases and prototype vehicles to test their benefits in
practice.

(vi) Work by Isted et al. demonstrated the differences between the profiles of required
manoeuvrability for different cities [5]. Further investigation is needed to assess whether
proposed manoeuvrability standards should be tailored to different cities. Similarly,
from the perspective of vehicle design, investigation is needed to determine whether
vehicles in modern cities could be made larger and more productive than those operating
in historic cities.

(vii) Further work is needed to understand the business case associated with the ‘real-world’
method, as compared to the PBS method. It is not yet understood whether the ability to
provide an application specific assessment of how to maximise capacity is considered
an advantage by fleet operators or vehicle manufacturers.
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