
Capability Memory Protection
for Embedded Systems

Hongyan Xia

University of Cambridge
Department of

Computer Science and Technology

Hughes Hall

May 2019

This dissertation is submitted for the degree of Doctor of Philosophy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/288347326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Capability Memory Protection
for Embedded Systems
Hongyan Xia

Abstract:

This dissertation explores the use of capability security hardware and software in real-time and
latency-sensitive embedded systems, to address existing memory safety and task isolation problems
as well as providing new means to design a secure and scalable real-time system. In addition, this
dissertation looks into how practical and high-performance temporal memory safety can be achieved
under a capability architecture.

State-of-the-art memory protection schemes for embedded systems typically present limited and
inflexible solutions to memory protection and isolation, and fail to scale as embedded devices become
more capable and ubiquitous. I investigate whether a capability architecture is able to provide new
angles to address memory safety issues in an embedded scenario. Previous CHERI capability research
focuses on 64-bit architectures in UNIX operating systems, which does not translate to typical 32-
bit embedded processors with low-latency and real-time requirements. I propose and implement the
CHERI CC-64 encoding and the CHERI-64 coprocessor to construct a feasible capability-enabled
32-bit CPU. In addition, I implement a real-time kernel for embedded systems atop CHERI-64. On
this hardware and software platform, I focus on exploring scalable task isolation and fine-grained
memory protection enabled by capabilities in a single flat physical address space, which are otherwise
difficult or impossible to achieve via state-of-the-art approaches. Later, I present the evaluation of
the hardware implementation and the software run-time overhead and real-time performance.

Even with capability support, CHERI-64 as well as other CHERI processors still expose major
attack surfaces through temporal vulnerabilities like use-after-free. A näıve approach that sweeps
memory to invalidate stale capabilities is inefficient and incurs significant cycle overhead and DRAM
traffic. To make sweeping revocation feasible, I introduce new architectural mechanisms and micro-
architectural optimisations to substantially reduce the cost of memory sweeping and capability re-
vocation. Another factor of the cost is the frequency of memory sweeping. I explore tradeoffs of
memory allocator designs that use quarantine buffers and shadow space tags to prevent frequent un-
necessary sweeping. The evaluation shows that the optimisations and new allocator designs reduce
the cost of capability sweeping revocation by orders of magnitude, making it already practical for
most applications to adopt temporal safety under CHERI.

5

Acknowledgements

First, I would like to thank my supervisor, Professor Simon Moore, for his patience,
technical expertise and great guidance throughout my PhD. I never imagined that I
could accomplish what I have actually achieved in the past years. Looking back, I
am sincerely grateful to Simon whose supervision makes the entire process exciting,
rewarding, challenging, and most of all, enjoyable.

I would also like to thank Robert Watson for his insights in software, kernels and
operating systems. With his supervision, I have been exposed to the art of software-
hardware co-design, which successfully transformed some of my work from what I could
only call engineering effort, into comprehensive and more sophisticated research topics.

I am also grateful to Jonathan Woodruff, who shows great wisdom in CPU archi-
tecture and design. He also shows unparalleled patience compared with most human
beings I have seen. I often feel guilty that a lot of his time was spent on sitting beside me
helping me understand CHERI concepts and CPU micro-architecture instead of having
biscuits and tea or on other meaningful activities. Hopefully, I am now repaying his
kindness with my own contributions to the project.

I also need to thank Alexandre Joannou for his knowledge and help on various
fronts and his work style. Particularly, he is an interesting colleague to work with, and
his obsession with high-level abstractions often sparks long and meaningful discussions.
Sometimes his design philosophy is something I would be thankful for several months
later when I see the code evolve into a modular, configurable entity instead of being
filled with ugly hacks and hardcoded values. Working with him in the past years has
always been a pleasure.

I need to thank other members in the team, including David Chisnall, Robert
Norton, Theo Markettos, Robert Kovacsics, Marno van der Maas, Lucian Paul-Trifu,
Nathaniel Filardo, Lawrence Esswood, Peter Rugg and so forth, for all the help and
collaboration in multiple areas and projects. It always reminds me of how wonderful it
is to work within an active, open-minded, innovative and motivated research team.

Outside my research, I have been enjoying my time with Yimai Fang, Fengyuan Shi,
Ruoyu Zhou, Menglin Xia, Dongwei Wang, Jiaming Liang, Meng Zhang, Zheng Yuan...
in countless punting trips, excursions, Nintendo Switch nights, festival celebrations,
formal hall dinners, which gave me some of the best memories I have had.

I thank my parents for their support for my PhD and for everything. Frankly, it
is not possible to express my eternal gratitude here with just words. What I do know
is that whenever I am lost, you are there, strong and steady. Wish you guys health,
sincerely.

Finally, I must thank Xizi Wei for just being in my life. You are a food innovator,
a good listener, a healthy lifestyle enforcer, a cat lover, a Machine Learning expert,
a perfectionist, a bookworm, and above all, a wonderful human being. I hope I can
achieve this many positive labels in your mind, and I will try.

7

Contents

List of Figures 13

List of Tables 15

1 Introduction 17

1.1 Contributions . 18

1.2 Publications . 19

1.3 Dissertation overview . 20

2 Background 21

2.1 Introduction to embedded systems . 21

2.2 The need for memory safety . 23

2.3 State-of-the-art memory protection . 24
2.3.1 Desktop systems . 24
2.3.2 Searching for novel solutions for embedded systems 24

2.4 Case studies . 27
2.4.1 The Broadcom Wi-Fi attack . 27
2.4.2 The QSEE privilege escalation vulnerability 29

2.5 Requirements . 30

2.6 Introduction of capability models and CHERI 32
2.6.1 Historical capability machines 32
2.6.2 Overview of Capability Hardware Enhanced RISC Instructions,

CHERI . 33

2.7 Summary . 40

3 A 64-bit compressed capability scheme for embedded systems 41

9

3.1 CHERI for a 32-bit machine . 41

3.2 Existing capability encodings . 42
3.2.1 CHERI-256 . 43
3.2.2 M-Machine . 43
3.2.3 Low-fat . 45
3.2.4 Project Aries . 47
3.2.5 CHERI-128 Candidate 1 . 48
3.2.6 Summary . 48

3.3 The CHERI Concentrate (CC) and 64-bit capability encoding 49
3.3.1 Balancing between precision and memory fragmentation 49
3.3.2 Improved encoding efficiency . 55
3.3.3 The CHERI semantics . 58
3.3.4 CC-64 . 61

3.4 Summary of compressed capability schemes 62

3.5 A CC-64 hardware implementation . 63
3.5.1 The MPU model . 63
3.5.2 Capability coprocessor vs. MPU 65
3.5.3 Other considerations . 67

3.6 Summary . 67

4 CheriRTOS 69

4.1 A CHERI-based RTOS . 69

4.2 Real-time operating systems . 70

4.3 Prerequisites . 72
4.3.1 The MIPS-n32 ABI . 72
4.3.2 Enabling CHERI-64 in Clang/LLVM 73
4.3.3 A baseline RTOS . 73

4.4 CheriRTOS . 74
4.4.1 Overview . 75
4.4.2 OType space . 76
4.4.3 Non-PIC dynamic task loading 77
4.4.4 Context switch . 77

10

4.4.5 CCallFast . 79
4.4.6 Return and real-time guarantees 83
4.4.7 Secure centralised heap management 85

4.5 Evaluation . 87
4.5.1 The MiBench benchmark suite 87
4.5.2 Non-PIC and compartmentalisation 88
4.5.3 Fast and direct domain crossing 89
4.5.4 Register safety, return and real-time guarantees 91
4.5.5 Overall system performance . 92

4.6 CheriRTOS vs. state-of-the-art . 94

4.7 Summary . 95
4.7.1 The problem of temporal memory safety 96

5 Temporal safety under the CHERI architecture 97

5.1 Background . 97

5.2 Opportunities of CHERI temporal safety 100
5.2.1 Deterministic temporal memory safety 100
5.2.2 Spatial and temporal safety combined 101
5.2.3 Possible but inefficient . 102

5.3 Optimising for efficient sweeping revocation 102

5.4 Architectural/microarchitectural proposals and implementations for fast
sweeping . 103
5.4.1 CLoadTags . 103
5.4.2 Page table cap-dirty bit . 105
5.4.3 Core dump study . 106
5.4.4 Performance of fast sweeping 108
5.4.5 Pointer concentration . 109

5.5 New allocator design for reduced sweeping frequency 110
5.5.1 Brief overview of dlmalloc() . 110
5.5.2 Implementation of dlmalloc nonreuse() 110
5.5.3 Experimental setup . 114
5.5.4 Overall overheads of dlmalloc nonreuse() 117

11

5.5.5 Breakdown of overheads . 118
5.5.6 Tradeoff between space and time 121

5.6 Alternative sweeping schemes and concurrency 122
5.6.1 Subset testing revocation . 122
5.6.2 Concurrent revocation . 123

5.7 Summary . 123

6 Conclusion 125

6.1 Contributions . 125
6.1.1 A capability format for 32-bit cores 126
6.1.2 CheriRTOS . 126
6.1.3 CHERI temporal memory safety 127

6.2 Future work . 128
6.2.1 CHERI-64 . 128
6.2.2 CheriRTOS . 128
6.2.3 CHERI temporal memory safety 128
6.2.4 Adopting capability protection in future embedded devices . . . 129
6.2.5 Extrapolating to non-CHERI systems 130
6.2.6 Adversarial security evaluation 130

A CHERI Concentrate bounds and region arithmetic 131

A.1 Encoding the bounds . 131

A.2 Decoding the bounds . 133

A.3 Fast representable limit checking . 136

References 139

12

List of Figures

2.1 Memory accesses controlled by MPU . 25
2.2 Escalations towards a successful control flow hijack. size (brown) and

pointer to next/unused (green) are allocator metadata fields. data
(blue) is the actual allocated memory. Red indicates contaminated fields. . 27

2.3 The capability coprocessor . 36
2.4 256-bit memory representation of a capability 38
2.5 Memory hierarchy and the tag cache . 39

3.1 M-Machine capability encoding with example values 43
3.2 Low-fat capability encoding with example values 45
3.3 Low-fat bounds decompression . 46
3.4 Aries capability encoding . 48
3.5 Internal vs. external fragmentation . 50
3.6 Heap internal fragmentation . 53
3.7 Percentage increase in peak size of total stack allocations (SPEC CPU

2006 experimental builds) . 53
3.8 Improved Low-fat Encoding with Embedded Exponent and Implied T8 . . 57
3.9 The percentage of allocations that cannot be precisely represented in a

capability. Lower is better. 58
3.10 CHERI Concentrate bounds in an address space. Addresses increase up-

wards. The example shows a 0x600-byte object based at 0x1F00. 60
3.11 64-bit CHERI Concentrate . 62

4.1 Overall structure . 75
4.2 Example of memory access instructions under CHERI. “$” denotes reg-

isters. Loading a word at address $s0 + 8 (relative to the base of the
capability) into $t0, either implicitly or via an explicit capability register. 76

4.3 Increment two variables at 0x800 and 0x900. Binary compiled for 0x0 now
loaded at 0x11000. Red indicates patching. 78

4.4 CCallFast sequence . 79
4.5 Trusted stack and CCallFast round trip. Dark indicates kernel-only ob-

jects. The pointer field of $KR1C points to the top of the trusted stack. . 83

13

4.6 Interrupt routine to check for expired CCalls 84
4.7 Memory allocator structure (gray boxes indicate that the bucket ID is

sealed inside a sealed capability) . 86
4.8 Instruction and cycle counts for a round trip: direct jump vs. capability

jump (fast CCall) vs. exception based CCalls 90
4.9 Overhead of different protection levels . 92
4.10 Overall overhead across benchmarks . 93

5.1 Tags in the CHERI memory hierarchy and the refactoring of caches 103
5.2 CLoadTags. Assuming 128-byte cache lines and 64-bit capabilities. 104
5.3 c and p represent cdirty and pdrity bits. At the end Ck0 and Ck2 are

unlinked from the queue and the newly freed chunk (in the middle) will
be coalesced with Ck0 and Ck2 into Ck3 and inserted at the tail of the
queue. After a revocation, Ck3 is returned to the free lists to be reused. . . 114

5.4 Overheads compared with results reported by other state-of-the-art tech-
niques. CHERIvoke represents the new dlmalloc. 117

5.5 Run-time overhead decomposition for the constituent parts, with the de-
fault 25% heap overhead. 118

5.6 Memory bandwidth achieved for the sweep loop with different optimisa-
tions. The system’s full bandwidth is 19405MiB/s. 120

5.7 Normalised execution time for the two workloads with highest overheads,
at varying heap overhead. Default setup shown by dotted line. 121

A.1 CHERI Concentrate bounds in an address space. Addresses increase up-
wards. To the left are example values for a 0x600-byte object based at
0x1E00. 134

14

List of Tables

2.1 Example CHERI instruction-set extensions 34

3.1 Comparison of capability encodings . 63
3.2 FPGA resource utilization and timing . 65

4.1 MiBench: non-PIC vs. PIC (all numbers in billions) 89
4.2 Spectrum of protection levels and overhead 91

5.1 Sweeping performance of sample applications. The percentages in the
last four columns indicate relative reduction compared with the baseline.
Negative means overhead instead of reduction. Tildes indicate negligible
numbers. 108

15

Chapter 1

Introduction

Today, embedded systems are deployed ubiquitously among various sectors, in-
cluding automotive, medical, robotics and avionics. As these systems become in-
creasingly connected, their attack surfaces increase dramatically to a much more so-
phisticated level, invalidating previous assumptions that such devices are susceptible
only to direct physical attack. Also, the end of Moore’s Law for single core and
the continuing increase in transistor count drive manufacturers to pair large perfor-
mance cores with smaller dedicated embedded cores for I/O and other peripherals
on System-on-Chips (SoCs). As a result, securing the system without securing the
embedded side of the chip still exposes attack vectors. For example, the Broadcom
WiFi stack exploit enables the attacker to hijack the control flow via the Wi-Fi chip
in nearly all iPhones and many Android phones [5]; the CAN bus in self-driving cars
can be updated with malicious firmware to remotely control its motion by an attacker
driving in parallel [14]. Even though many published vulnerabilities are well-known
and well understood, it remains a challenge to build a comprehensive memory security
framework around deeply embedded processors. Such systems with very small CPU
cores typically impose tight constraints on the extra hardware logic, memory overhead
and additional latency of any protection mechanisms deployed. Moreover, the lack of
virtual memory only exacerbates the problem of memory protection, since all tasks
reside within a single physical address space without isolation.

In this thesis, I work on many fronts of Capability Hardware Enhanced RISC
Instructions (CHERI), a capability architecture developed by the University of Cam-
bridge and SRI International. The CHERI Instruction Set Architecture (ISA) provides

17

CHAPTER 1. INTRODUCTION

direct processor support for fine-grained memory protection and scalable compartmen-
talisation on top of paged virtual memory. More importantly, CHERI hardware and
software support for fast domain crossing has been proven to be much more efficient
than conventional process-based isolation [67]. I hypothesise that the CHERI platform
provides a novel angle towards low-overhead and scalable memory security for embed-
ded devices, since the fine-grained memory protection, the scalable domain isolation
and fast domain crossing within a flat address space are the desired properties in an
embedded CPU, none of which is achievable via state-of-the-art solutions. However,
challenges remain since existing CHERI implementations focus on a UNIX-based op-
erating system (FreeBSD) on 64-bit processors and optimise for performance, whereas
embedded processors are typically 32-bit, operate on bare-metal or on a Real-Time
Operating System (RTOS) and optimise for low latency and real-time guarantees.
Therefore, my research investigates how CHERI capabilities can be adapted to 32-bit
embedded CPUs without violating the real-time constraints, and how a capability-
based RTOS offers fine-grained memory protection and efficient, scalable task isola-
tion/communication in a physical address space.

Further, I look into the possibility of practical temporal memory safety (e.g.,
against use-after-free attacks) under CHERI. I hypothesise that the separation be-
tween pointers and data and capability unforgeability fundamentally guarantee full
temporal safety as opposed to probabilistic defenses on conventional architectures.
Even so, the high cost of frequently sweeping memory to invalidate stale capabilities
means that currently CHERI temporal safety is only possible, but not feasible. To
address this, I explore hardware optimisations and new memory allocator designs to
significantly reduce the cycle overhead and DRAM traffic for capability sweeping re-
vocation, making it practical for most applications to adopt CHERI temporal memory
safety.

1.1 Contributions

• Contribution to various capability compression schemes especially the CHERI
Concentrate (CC) format. CC-128 compresses 256-bit capabilities into 128 bits.
It halves the memory footprint of capabilities, improves encoding efficiency,
maintains compatibility with legacy C code and addresses pipelining issues.

18

CHAPTER 1. INTRODUCTION

• Restructuring BERI with 32-bit addressing and implementing CHERI-64, a
compressed 64-bit capability scheme and a 64-bit capability coprocessor for the
32-bit CPU.

• Various fixes and patches to upstream LLVM to enable 32-bit addressing for
MIPS in the compiler. Adding support for CHERI-64 on top of the MIPS 32-
bit compiler in Clang/LLVM.

• A real-time kernel, CheriRTOS, which enforces fine-grained memory protection
and efficient task isolation via capabilities.

• CHERI temporal memory safety study. I introduce new instructions and micro-
architectural optimisations for fast memory sweeping, and implement a non-
reuse memory allocator for reduced memory sweeping.

1.2 Publications

• Xia, H., Woodruff, J., Ainsworth, S., Filardo, N. W., Roe, M., Richardson, A., Rugg,
P., Neumann, P. G., Moore, S. W., Watson, R. N. M. and Jones, T. M. ‘CHERIvoke:
Characterising Pointer Revocation Using CHERI Capabilities for Temporal Memory
Safety’. In: Proceedings of the 52Nd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO ’52. Columbus, OH, USA: ACM, 2019, pp. 545–557.

• Woodruff, J., Joannou, A., Xia, H., Fox, A., Norton, R., Chisnall, D., Davis, B.,
Gudka, K., Filardo, N. W., Markettos, A. T., Roe, M., Neumann, P. G., Watson, R.
N. M. and Moore, S. W. ‘CHERI Concentrate: Practical Compressed Capabilities’.
In: IEEE Transactions on Computers (2019)

• Xia, H., Woodruff, J., Barral, H., Esswood, L., Joannou, A., Kovacsics, R., Chisnall,
D., Roe, M., Davis, B., Napierala, E., Baldwin, J., Gudka, K., Neumann, P. G.,
Richardson, A., Moore, S. W. and Watson, R. N. M. ‘CheriRTOS: A Capability
Model for Embedded Devices’. In: 2018 IEEE 36th International Conference on
Computer Design (ICCD). 2018, pp. 92–99

• Joannou, A., Woodruff, J., Kovacsics, R., Moore, S. W., Bradbury, A., Xia, H., Wat-
son, R. N. M., Chisnall, D., Roe, M., Davis, B., Napierala, E., Baldwin, J., Gudka,
K., Neumann, P. G., Mazzinghi, A., Richardson, A., Son, S. and Markettos, A. T.
‘Efficient Tagged Memory’. In: 2017 IEEE International Conference on Computer
Design (ICCD). Nov. 2017, pp. 641–648

19

CHAPTER 1. INTRODUCTION

1.3 Dissertation overview

In Chapter 2, I present a short survey of the current processors used in embedded
devices. Then, I present the growing problem of security and memory safety in such
systems, accompanied by case studies on the typical attack vectors. The next section
introduces and describes the state-of-the-art memory security schemes and techniques,
followed by comparison and analysis on the effectiveness and shortcomings of said
approaches. From the analysis I extract the fundamental requirements of memory
safety for embedded systems.

Chapter 3 describes the work I have done to investigate a new compressed ca-
pability format for embedded processors. The study consists of the design and im-
plementation of the 64-bit CHERI Concentrate encoding. I evaluate the memory
overhead due to low precision and the hardware implementation complexity com-
pared with other state-of-the-art security components, drawing the conclusion that a
64-bit compressed capability machine for 32-bit embedded devices is feasible.

Chapter 4 presents my work on a proof-of-concept RTOS kernel, CheriRTOS,
using CHERI as the only memory protection and isolation mechanism atop CHERI-
64. The evaluation shows that a capability-aware RTOS can be implemented without
violating the constraints of typical embedded systems.

Chapter 5 visits the topic of enforcing temporal memory safety under the CHERI
architecture. I propose, investigate and implement new ISA and micro-architectural
changes to significantly accelerate sweeping revocation for capabilities. Further, I
implement a non-reuse version of the dlmalloc memory allocator which avoids the
reuse of memory allocations and reduces the rate required for sweeping. Combined, the
proposed changes bring the cost of sweeping revocation down by orders of magnitude,
making it feasible to apply CHERI temporal safety to many applications.

Chapter 6 draws conclusions.

20

Chapter 2

Background

One major focus of this thesis is bringing capability-based protection to the 32-
bit embedded space. I begin by defining what it means to operate in the embedded
space. Next, I describe the situation of memory safety for such systems, presenting
literature review and case studies to illustrate the status quo of memory protection
for embedded devices. Based on the advantages and shortcomings of state-of-the-art
memory safety schemes, I identify and summarise the requirements of a secure design.
Finally, I present background knowledge of CHERI.

2.1 Introduction to embedded systems

Embedded systems and processors are deployed among various sectors, which
typically include devices ranging from tiny chips like in video cables, keyboard con-
trollers and sensors, to small ones like Wi-Fi and security chips in mobile phones, to
even larger systems like routers. They differ vastly from normal desktop and server
systems in that they do not perform general purpose computing, instead they are heav-
ily adapted to domain-specific areas and custom designs, performing only a handful of
dedicated tasks. Moreover, software running on top of it does not commonly involve
general purpose operating systems with a full stack of capabilities (e.g., the abstrac-
tion of files, processes, networking, etc.). Instead, code either runs on bare-metal (no
OS) or under a Real-Time Operating System (RTOS), providing limited abstractions
and interfaces for dedicated computations. In terms of computing instances, an RTOS

21

CHAPTER 2. BACKGROUND

creates and runs lightweight tasks in a shared flat address space, an analogous but
simpler model to processes in UNIX operating systems.

Another major difference are the primary requirements. A PostgreSQL database
server running under Linux, for example, focuses on high processing power, high
throughput and multi-processing to resolve the large number of requests from clients.
On the contrary, the goal of embedded applications is typically low-latency, deter-
minism and deadline guarantees. For example, a self-driving vehicle has to respond
promptly in the steering and brake system when a danger arises. The system ensures
that it responds to real-time events within a pre-determined delay. Failing to guar-
antee real-timeness and determinism may put the user into critical danger, whereas
the raw performance of such processors may not be of primary concern. In addition,
these devices are commonly used in highly constrained scenarios including low-cost
and low-power applications. As a result, they often come with a limited amount of
RAM and ROM and are not clocked at high frequencies, and commonly have a very
simple cache hierarchy or no caches at all. This leads to many important design de-
cisions like minimising code size, the support for low-power programming and deep
sleep modes.

Although the above describes the typical characteristics of embedded systems,
many devices today are labelled “embedded”, covering a wide range of different spec-
ifications. From the very low end, we have a keyboard controller that is an 8-bit
processor operating at only a couple of megahertz, to an Amazon Fire TV stick with
a quad-core Snapdragon 8064 and 2GiB RAM, and an Android-based operating sys-
tem. As the scope may be too broad and some “embedded systems” already deviate
a lot from the requirements above, I would like to narrow down the definition so that
the target of this thesis is unambiguous.

The specifications of the embedded systems discussed throughout this thesis
should be:

• Used in low-cost and low-power scenarios.

• Limited memory (typically under 1MiB), very simple or no cache hierarchy.

• Short in-order processor pipeline.

22

CHAPTER 2. BACKGROUND

• Flat physical address space. No address translation, virtual memory or Memory
Management Unit (MMU).

• Code runs on bare-metal or an RTOS.

• Focuses on determinism and real-time constraints in addition to performance.

• Priority-based or deadline-driven task scheduling for multitasking.

• Connected to other systems, either wired or wireless, i.e., direct physical attacks
are not the only possible vulnerability.

2.2 The need for memory safety

The rapid growth of the market of embedded systems and the increase of connec-
tions across devices pose new threats and challenges. Today, even the smallest em-
bedded products (e.g., smart watches and earphones) are connected to various other
devices via connections like Wi-Fi or bluetooth. The increased connectivity quickly
invalidates our previous assumption that these devices are susceptible primarily to
physical attacks, and exposes a whole new variety of attack surfaces.

Recently, new attack vectors targeting memory safety have been disclosed, ei-
ther exposing a crucial vulnerability for a specific device, or in terms of systematic
surveys of attack surfaces. For instance, the Broadcom Wi-Fi vulnerability disclosed
in 2017 [5] allows arbitrary code execution in the Wi-Fi chip of many mobile phones.
Costin, A. et al. conduct a large-scale survey of a total of 32,356 firmware images of
common embedded devices, extracting RSA keys, password hashes as well as iden-
tifying backdoors. The study concludes that an even broader analysis is necessary
to systematically understand the vulnerabilities in embedded firmware [17]. These
vulnerabilities are only a tip of the iceberg of all the possible attacks discovered in
recent years, and with the rapid growth of Internet of Things (IoTs), we can only
be prepared for further disclosure of even more sophisticated attacks. In fact, papers
and articles from academia and industry (e.g., [65, 42, 24]) have already warned us of
the difficult situation and other challenges of enforcing security in embedded and IoT
devices. With more than 200 billion IoT devices in total to be shipped by 2021 [24],
and several security platforms only starting to emerge now, we do not anticipate the
security aspect to be effectively addressed in the near future.

23

CHAPTER 2. BACKGROUND

2.3 State-of-the-art memory protection

2.3.1 Desktop systems

Memory corruption bugs and attacks have been well studied in past decades
with countless projects and papers on multiple fronts. In summary, we are able to
categorise these bugs into two major categories, that is, spatial or temporal memory
safety violations. The paper Eternal War on Memory offers a good summary and
overview of a wide range of memory bugs, attacks and potential mitigations [62],
which describes how such small bugs can be leveraged and quickly escalate into se-
vere system vulnerabilities, including code injection, control flow hijack, data attacks
and information leak. Besides the exposure of memory corruptions, defense and mit-
igation techniques have been proposed and implemented to counteract the damage,
which include both hardware and software approaches, for example: virtual memory
for address space isolation and page-level protection, AddressSanitizer [56] to de-
tect out-of-bounds, use-after-free, use-after-return access, memory tagging (SPARC
Silicon Secure Memory (SSM) [50] and AArch64 Hardware ASan (HWASAN)) for
temporal safety violation detection, StackGuard [18] to guard against stack overflows
by inserting canaries, Control Flow Integrity (CFI) schemes [12] to defend against
Jump-Oriented-Programming (JOP) and Return-Oriented-Programming (ROP) at-
tacks, fat-pointers [46, 49] to bounds check on a per-pointer level, and so forth.
Many of the defense techniques have already been used in production with reasonable
strength and performance.

2.3.2 Searching for novel solutions for embedded systems

Unfortunately, memory safety for desktop computers mentioned above can ex-
hibit high overhead. AddressSanitizer, for example, incurs more than 2× slowdown
and memory overhead for memory intensive workloads [56]. To make matters worse,
determinism is a common requirement for low-latency use cases which is overlooked
in the aforementioned studies. MMUs, for example, introduce non-determinism due
to Translation Lookaside Buffer (TLB) misses and page table walks, even though
the TLB hardware is not too expensive to incorporate. Therefore, virtual memory is
typically absent from embedded systems.

24

CHAPTER 2. BACKGROUND

Base: 0x100 Len: 0x100 Perm: rw-

Base: 0x250 Len: 0x50

Base: 0x300 Len: 0x100

Base: 0x400 Len: 0x400

1

2

3

4

Perm: r-x

Perm: rw-

Perm: r--

MPU

IFetch @0x260

Memory

Code

RO data
Store @0x700

Figure 2.1: Memory accesses controlled by MPU

These limitations mean well-studied solutions rarely scale down, and novel solu-
tions are developed and specifically tailored to these devices. The Memory Protection
Unit (MPU) is commonly adopted in embedded processors to mark memory regions
with security attributes [2] to prevent arbitrary physical memory access (Figure 2.1).
The intention is to protect crucial code and data from buggy or malicious user space
tasks. Although widely used in industry, MPUs have several inherent drawbacks.
First, an MPU is implemented as a kernel space device and each register takes several
cycles to configure, and some memory mapped implementations have even higher la-
tencies through the memory hierarchy. As a result, they are normally configured only
globally at system start-up, which makes per-task memory access control difficult,
and user space cannot adopt it for intra-task protection. Second, the number of MPU
entries is limited. With only 8 MPU regions in most implementations [2], only secu-
rity critical memory partitions are protected, e.g., the kernel, encryption keys, code
sections, etc., thus any fine-grained memory protection with MPUs is a challenge.
Third, MPU lookups involve associative searches of all entries. Each cycle can poten-
tially require up to 32 (accounting for both instruction fetch and data) comparisons
with 8 MPU entries. This means that MPUs could inherently be inefficient in terms
of power and die area. To compare CHERI with the MPU model in this thesis, I im-
plement the RISC-V Physical Memory Protection (PMP) unit, which is a state-of-the
art MPU component. The RISC-V PMP has an open-source specification [66] that
can be followed easily.

In addition to MPUs which generally provide system-wide memory protection for
critical regions, TrustZone R� partitions memory into secure and non-secure worlds [64]
with constrained control flow. Non-secure code can only jump to valid entry points on
the secure side, and secure code calls non-secure functions after clearing registers and
pushing the return address on the secure stack to prevent data leak and to protect

25

CHAPTER 2. BACKGROUND

the return address. Nevertheless, TrustZone is likely to encounter scalability issues.
For example, further isolation within a world is not possible, still enabling attacks
in the same world. A task from one user is visible (and potentially modifiable) from
another, and buggy drivers in the secure world can have access to secrets and secure
keys which are stored in the secure space as well.

Besides commercial implementations, research projects also tackle the problem
of embedded system memory safety. TrustLite [37] and TyTAN [9] extend the MPU
and kernel to provide data isolation, trusted inter-task communication, secure periph-
erals, run-time configurability, etc. The Execution-Aware MPU (EA-MPU) links data
and code entries and tags them with task identifiers. Therefore, only the entries of
the active task are enabled, providing per-task protection. However, an MPU-based
approach inherits several flaws described above, the most significant being that the
number of protected regions is still severely limited by the number of MPU entries. If
the kernel attempts to support more tasks and regions than MPU entries, then expen-
sive system calls have to be made to swap MPU registers when the desired one is not
present. TrustLite argues that this bottleneck may not be a problem as the number
of simultaneous tasks in embedded systems is low. However, as the market rapidly
grows, I would like to see scalable and future-proof solutions in case this assumption
cannot be safely made in the near future.

For control flow robustness and defense against Return-Oriented Programming
(ROP) attacks, architectures have been developed for embedded systems [20, 21] by
using dedicated instructions for function calls, exposing only valid entry points, hiding
return addresses in protected spaces and so forth in a similar approach to TrustZone.
On the other hand, Sanctus [48, 61] builds tasks into Self-Protecting Modules (SPMs)
to restrict access and enforce control flow with a minimum Trust Computing Base
(TCB). However, it sacrifices software flexibility and incurs a high hardware cost by
implementing SPM loading, measurement and runtime identification in the trusted
CPU.

We have also seen research projects tackle the memory protection problem on
a programming language level for embedded devices. nesCheck [45] modifies the
language and compiler to perform stronger type safety, type validation, static analysis
and run-time checks, carrying additional metadata to remove or detect unsafe memory
access. Others develop new compiler frameworks to address stack, array and pointer

26

CHAPTER 2. BACKGROUND

safety, and implement new heap allocation techniques to address heap safety without
introducing garbage collection [25]. These language- and compiler- based schemes
have shown good results within reasonable overhead and without substantial hardware
changes. However, a software approach protects code written or compiled under
specific language variants or toolchain. If a task is compromised or is itself malicious,
it may directly execute or inject low-level code that circumvents any language level
invariants. Similar to other software schemes for desktop systems, this type of memory
protection is most useful for debugging existing codebase rather than offering system-
wide security guarantees.

2.4 Case studies

2.4.1 The Broadcom Wi-Fi attack

The Broadcom’s Wi-Fi chipset is widely deployed in smartphones including the
Nexus series, Samsung products and all iPhones since iPhone4. A successful ex-
ploit was recently discovered and published in such a system [5]. The Wi-Fi chipset,
BCM4339, is a Cortex-R4 based SoC running firmware from a 640KiB ROM and
processing data from a 768KiB RAM.

size
unused

(0) data size
unused

(0) data size pointer
to next

free
chunk

size
unused

(0) data size size pointer
to next

free
chunk

pointer
to next

free
chunk

In-use chunk #1 In-use chunk #2 Free chunk #3

Overflow chunk #1
and free chunk #2

size pointer
to next

free
chunksize

unused
(0)

real-time
jump table

Hijack the next pointer
of free chunk #3

Figure 2.2: Escalations towards a successful control flow hijack. size (brown) and
pointer to next/unused (green) are allocator metadata fields. data (blue) is the
actual allocated memory. Red indicates contaminated fields.

27

CHAPTER 2. BACKGROUND

Figure 2.2 illustrates how a slight buffer overflow is exploited which escalates to
a complete control flow hijack. To summarise:

1. Reverse engineering reveals a slight overflow in a heap allocation (chunk #1).
which is sufficiently large to overwrite the size field of an adjacent in-use alloca-
tion (#2).

2. Chunk #2 is deallocated when the Wi-Fi connection closes. It is linked into the
free-list before chunk #3 with a hijacked size field.

3. The attacker carefully crafts a request that fits into the hijacked size and is
allocated to chunk #2, which now overlaps with #3.

4. The next-pointer field of #3 is under the control of the attacker. It is overwritten
with a value that points to a kernel allocation storing the real-time jump table.
Now the in-use allocation containing the kernel jump table is exposed in the
free-list.

5. The attacker sends another crafted request that gets allocated to the jump-table
memory chunk and overwrites them with pointers to malicious code.

6. A real-time event fires. The kernel fetches the hijacked pointer in the jump table
and jumps to malicious code.

Again, this is another typical example of a minor buffer overflow leading to
arbitrary code execution. After dissecting the firmware, the reverse-engineered code
shows that the programmer actually has memory safety in mind. For example:

1 // Copying the RSN IE
2 uint8_t * rsn_ie = bcm_parse_tlvs (... , 48);
3 if(rsn_ie [1] + 2 + (pos - buffer) > 0xFF) {
4 ... // Handle overflow
5 }
6 memcpy (pos , rsn_ie , rsn_ie [1] + 2); pos += rsn_ie [1] + 2;

The code checks for an overflow before copying data. Both the difficulty and
the run-time overhead forbid the programmer to add manual bounds checks to every

28

CHAPTER 2. BACKGROUND

potential overflow, leaving several of them still hidden and exploitable. One may
argue that the proper use of MPU could prevent such attacks, and in fact the Cortex-
R4 CPU of the Wi-Fi chip implements it. However, we also imagine the difficulty of
adapting it to this use case. Heap allocations require fine-grained protection on every
memory chunk, which unfortunately cannot be achieved with the coarse-grained MPU
with limited regions. At best, a programmer could segregate the heap into a kernel
and a user pool and dedicate two MPU entries, which still does not stop memory
attacks between users or between the kernel and buggy drivers in the kernel space.

The problem of centralised heap management. The Wi-Fi attack shows
a fundamental problem of memory allocation. In typical embedded systems with a
small flat physical address space, dynamic memory allocations are commonly done
in a centralised heap for all user tasks (or even including the kernel). Although
many dynamic heap allocators actually have low and relatively deterministic latencies
and are widely used among multiple systems including mbedOS, FreeRTOS [4] and
TinyOS [45], the security issues caused by dynamically allocated and shared memory
pool have never been properly addressed. Without bounded access, allocations from
a user can easily overflow into other allocations or even the heap metadata to attack
other users or the heap allocator itself. To hide and protect heap metadata, many
allocators including jemalloc [28] used in FreeBSD organise the metadata in separate
data structures. However, embedded systems still prefer to attach metadata directly
beside each allocated chunk and use “free-lists” like dlmalloc [40] in mbedOS for lower
latency. The organisation of such allocators demands low-latency fine-grained mem-
ory protection for effective isolation, which unfortunately is difficult to achieve with
current software-hardware platforms, and inherently creates the tension between flex-
ibility and security. Many designs simply revert to pre-determined static allocations
for each task to avoid this problem, losing all flexibility of a dynamic heap.

2.4.2 The QSEE privilege escalation vulnerability

The Qualcomm’s Secure Execution Environment (QSEE) uses TrustZone tech-
nology to contain trusted applications (trustlets) in the secure world beside a normal
embedded OS. Trustlets perform privileged operations like key storage and Digital
Rights Management (DRM). Only few applications in the normal world are able to
load and communicate with the trustlets in a controlled manner, and the MPU is set
to protect the regions of trustlets against data attacks and code injection. Recently,

29

CHAPTER 2. BACKGROUND

an attack has been found to exploit one of the trustlets to execute arbitrary code
in the secure domain [6]. The attack starts in a similar way to the Broadcom WiFi
attack by uncovering a crucial buffer overflow. The details are more complex and will
not be listed here.

The author of [6] observes that all trustlets reside in the secure world and Trust-
Zone only offers a uni-directional trust relationship. Two key properties arise from
this observation. One, a successful exploit on a single trustlet can expose all other
trustlets in the secure world. Two, the secure world has strictly higher privileges,
which is able to read, write and execute any memory in the normal world as well. In
this example, part of the gadgets is simply injected to the normal world and is exe-
cuted by the indirected trustlet, which in turn attacks the embedded OS and other
parts of the system.

In addition to memory protection, this attack exposes the insufficient level of
isolation and scalability provided by TrustZone. Having only two worlds forces all
trustlets to live in a single domain, exposing them to possible attacks from one an-
other. Also, TrustZone employs a traditional hierarchical and uni-directional approach
which fails to guarantee mutual distrust. In the attack, it is questionable to run the
embedded OS in the normal world while the trustlets live in the secure world. This
design suggests that trustlets have strictly higher privileges than the OS, which is not
true. The embedded OS can be attacked from the secure side even though it contains
no vulnerabilities itself. A desirable design should allow mutual distrust domains,
where they are parallel instead of being a superset or subset of each other.

2.5 Requirements

Although the case studies are just two data points, most security vulnerabilities
originate from similar memory safety issues. In fact, Microsoft security engineers have
confirmed that around 70% of all the vulnerabilities in Microsoft products addressed
through a security update each year are memory safety issues [63]. From the common
attack surface in security vulnerabilities, the survey of state-of-the-art solutions, the
shortcomings of existing protection schemes and the properties and growth of embed-
ded systems themselves, I identify the following requirements that are essential to a
secure design.

30

CHAPTER 2. BACKGROUND

Task isolation. In a flat physical address space, it is essential to separate
multiple tasks from different users or vendors into different domains. Unconstrained
access means a malicious task can easily compromise other critical components in the
system. In addition, I would like to include mutual distrust as part of the definition,
as the case study demonstrates that a uni-directional trust model is insufficient.

Fine-grained memory protection. So far, memory protection in embedded
systems controls access to large segments of code and data. Protecting finer gran-
ularities often require explicit checks from the compiler or programmer at a cost of
run-time slowdown [25, 45], and can be error-prone or incomplete [5]. An architecture
should provide a generic mechanism for low-cost and fine-grained memory protection.

Fast and secure domain crossing and inter-task communication. A
system with multitasking often requires communication among components, either
in terms of message passing and memory sharing, or in cross-domain function calls.
Strong task isolation should not prohibit efficient and secure domain crossing and
communication.

Secure centralised heap management. As discussed in Section 2.4.1, existing
protection schemes often fail to guarantee that memory management in embedded
systems is both flexible and secure. A system with fine-grained memory protection
enables a secure shared-heap allocator by restricting any user of allocations from
reaching metadata or any other allocations.

Real-time guarantees. No security architecture should violate real-time con-
straints. Cached memory translation (like virtual memory with MMU), for example,
directly violate the low-latency and deterministic properties of embedded systems and
therefore should not be used for protection.

Scalability. We have seen the rapid growth of the embedded market in recent
years and a scalable solution is desirable. MPU-based approaches described above
suffer from scalability issues and may not meet the security needs as these systems
become more capable and dynamic.

A generic solution for security. Embedded chips often implement multiple
components to enforce safety. ARM solutions typically provide an MPU, a Security
Attribution Unit (SAU), TrustZone R� and even an Implementation Defined Attribu-

31

CHAPTER 2. BACKGROUND

tion Unit (IDAU) for security. Together, these components are able to defend against
common attacks if configured correctly. However, orchestrating many security mecha-
nisms is non-trivial, and we have seen in practice that vendors often revert to manual
assertions and explicit checks, leaving these security layers largely unused. An ideal
solution should be generic enough to ease the effort of orchestration and deployment.

2.6 Introduction of capability models and CHERI

2.6.1 Historical capability machines

In 1966, Dennis and Van Horn formally described a memory protection frame-
work in which each process possessed a list of keys (capabilities) that granted access
to objects within the system [23]. A capability is an unforgeable token, which when
presented can be taken as incontestable proof that the presenter is authorized to
have access to the object named in the token [54]. Capability systems are one of the
architectural protection models among segmented memory, MMU protection, access
control lists, etc. Capability systems have been implemented on various machines
including IBM System/38, which created a unique ID for each capability and used
a tagged architecture to avoid malicious capability manipulation [41], and the Cam-
bridge CAP computer, which had a centralised capability table that also facilitated
secure procedure calls [47]. Other than a hardware approach, a software capability
system, Hydra, implemented an object-based OS with internal bit vectors for permis-
sions, in which a set bit indicated a granted permission. AND only operations on bit
vectors ensured that only a subset of permissions could be derived from given capa-
bilities [76]. However, capability schemes in that era were not widely adopted due to
the high overhead which at that time was not justified given the security provided,
and have been overshadowed by coarse-grained yet low-overhead solutions like paged
memory and MMUs.

Due to the rapid growth in available transistor resources and the increasingly
sophisticated attacks on memory safety, capability machines have been revisited re-
cently as a complementary or an alternative approach. Recent software capability
models include Capsicum, which takes an incremental approach and serves as an
extension for UNIX, providing new kernel primitives and userspace sandbox API via

32

CHAPTER 2. BACKGROUND

capabilities [68]. The formally verified seL4 uses capabilities for memory management,
authorisation, etc. [36]. To extend the Trusted Computing Base (TCB) to hardware
and for a better performance, many architectural proposals have emerged, including
the M-Machine [13] and the Low-Fat Pointer scheme [39], which provide hardware
bounds checking and novel domain crossing mechanisms.

2.6.2 Overview of Capability Hardware Enhanced RISC Instruc-
tions, CHERI

CHERI, developed by SRI International and the University of Cambridge, revis-
ited capability systems by extending the Bluespec Extensible RISC Implementation
(BERI) platform and adding security extensions for the 64-bit MIPS Instruction Set
Architecture (ISA) [69, 75]. The CHERI ISA provides direct processor support for
fine-grained memory protection and scalable compartmentalisation on top of paged
memory. Unlike previous capability implementations, CHERI maintains both a mixed
model (traditional code mixed with capabilities) and the purecap-ABI (pure capabil-
ities) to offer fine-grained protection while being backward compatible, therefore it is
able to run a range of software including FreeBSD/CheriBSD and other user-space
applications. BERI/CHERI is written in Bluespec System Verilog (BSV), a high-level
functional HDL language, and the existence of other higher level implementations and
simulation platforms (QEMU, L3) allow further extensions and rapid explorations.

CHERI capabilities

CHERI architecturally distinguishes capabilities from normal data. All memory
accesses (including instruction fetch and data load and store) in CHERI must be done
via capabilities. An access fails if the capability does not allow such an operation,
either due to out of bounds or insufficient permission. To enforce integrity and un-
forgeability, each capability is tagged with a tag bit set, without which a capability
is not valid to be used. In addition to bounded memory access with memory capa-
bilities, sealed capabilities (s bit set) can be used for compartmentalisation and fast
domain crossing. Sealed capabilities are created with another capability as a key.
After the sealing operation, the capability is immutable and non-dereferenceable, and
is given an Object Type (otype) from the key. CHERI restricts that capabilities
can only be unsealed in two ways. First, the original key or another key with suffi-

33

CHAPTER 2. BACKGROUND

Mnemonic Description
CGetBase Move base to a GPR
CGetLen Move length to a GPR
CGetTag Move tag bit to a GPR
CGetPerm Move permissions to a GPR
CSetBounds Set (reduce) bounds on a capability
CClearTag Invalidate a capability register
CAndPerm Restrict permissions
CLC Load capability register
CSC Store capability register
CL[BHWD][U] Load byte, half-word, word or double via capability register,

(zero-extend)
CS[BHWD] Store byte, half-word, word or double via capability register
CToPtr Generate DDC-based integer pointer from a capability
CFromPtr CIncBase with support for NULL casts
CBTU Branch if capability tag is unset
CBTS Branch if capability tag is set
CJR Jump capability register
CJALR Jump and link capability register
CCall Perform a capability call

Table 2.1: Example CHERI instruction-set extensions

cient rights can perform unsealing. Second, the Capability Call (CCall) mechanism
takes a pair of sealed code and data capabilities with matching otypes and sufficient
permissions. Upon a successful CCall, both the code and the data capability are
unsealed and installed, transferring control to the new domain with the callee’s code
and data. CCall is the fundamental method to perform an atomic domain crossing
across compartments under CHERI.

The CHERI ISA

The current CHERI ISA extends MIPS with capability instructions. It in-
cludes capability inspection (CGetBase, CGetTag...), manipulation (CSetBounds,
CClearTag, CAndPerm), control flow (CBTU, CBTS, CJR, CJALR, CCall...) and
memory instructions (CLC, CSC, CL[BHWD]...).

34

CHAPTER 2. BACKGROUND

The example instructions (Table 2.1) demonstrate the important monotonicity
property of CHERI, that is, the ISA only permits capability operations that do not
increase rights. Any capability manipulations only decrease bounds, reduce permis-
sions or clear tags but never vice versa. Also, storing non-capability data to a location
containing a capability will invalidate the tag to forbid overwriting an existing one
to change its interpretation, which combined with monotonicity guarantees unforge-
ability. Such restrictions ensure that a program is never able to fabricate arbitrary
memory references; therefore, its ability to reference memory is strictly limited by
the unforgeable capabilities it receives from the system, and a protection domain is
defined by the transitive closure of memory capabilities reachable from its capability
register set.

In address-space sandboxing and compartmentalisation: The fact that
a domain is defined by its reachable capabilities facilitates CHERI-based compart-
mentalisation. The ISA defines a CCall operation that atomically switches the set
of root capabilities (including code and data), transferring control and reachabil-
ity to the callee. The CCall mechanism allows scalable construction and transition
of compartments within a process. Compared with multi-process sandboxing that
switches between processes and address spaces, CCall is orders of magnitude cheaper
and achieves the same magnitude of overhead as direct function calls. For example,
the CHERI-enabled FreeBSD OS presents at least three mechanisms to transfer data
to another isolated domain: pipe, which transfers to a sandbox process via a UNIX
pipe; shmem, which transfers to a sandbox process through shared memory using
a semaphore for synchronisation; CHERI domain crossing, which transfers to a in-
process sandbox via a CHERI capability and CCall. A round trip on a tiny dataset
(caller prepares data; callee calls memcpy to copy from a shared buffer to its own
domain, which for this dataset takes only 150 cycles in a plain function call) takes
>17,000 cycles under multi-process isolation (pipe, shmem), whereas a CHERI call/re-
turn round trip gives a fixed overhead of around 250 cycles [67]. In this simple case,
CHERI overhead comes from clearing registers as well as preparing and validating
callee capabilities, unlike multi-process isolation which exhibits high overhead from
system calls and OS synchronisation. For large datasets, the fixed overhead of 250
cycles from CHERI becomes negligible, showing the same magnitude of performance
to plain function calls, whereas the cost of cache and TLB flushes still dominates the
data transfer under multi-process isolation. The pipe case performs additional data
copies and converges to about 6 times more expensive than function calls and CHERI.

35

CHAPTER 2. BACKGROUND

In
s
t.

F
e
tc

h Scheduler Decode Execute Writeback

Capability Coprocessor

Memory
Access

Exchange
Operands

Put Capability
Instruction

Get
Address

Commit
Writeback

Offset

Address

Forwarding Register File

Read WriteSpeculative WriteRequest

Figure 2.3: The capability coprocessor

CHERI compartmentalisation enables intra-process isolation, which avoids the
costs incurred from inter-process communication, like kernel synchronisation, data
copying, cache flushes, TLB maintenance, etc..

Hardware implementation

The current CHERI processor is implemented in Bluespec SystemVerilog [7] as
a modularised extension to the MIPS R4000 CPU. As with the MIPS R4000, our
base processor (Bluespec Extensible RISC Implementation (BERI)) is single-issue
and in-order, with a throughput approaching one instruction per cycle. BERI has a
branch predictor and uses limited register renaming for robust forwarding in its 6-
stage pipeline. BERI runs at 100MHz on an Altera Stratix IV FPGA and is capable
of running the stock FreeBSD 10 operating system and associated applications.

The CHERI processor adds capability extensions to BERI and is fully backward
compatible, facilitating side-by-side comparisons. CHERI capability extensions are
implemented as a MIPS coprocessor, CP2. Similar to the MIPS floating-point copro-
cessor, CP1, the capability coprocessor holds a new register file and logic to access
and update it. The MIPS pipeline feeds instructions into the capability coprocessor,
exchange operands with it, and receive exceptions from it (Figure 2.3). The capability
coprocessor also transforms and limits memory requests from instruction fetch and
MIPS load and store instructions. [75]

Although one may choose to understand the capability coprocessor by compar-
ing it to a normal MIPS coprocessor, the former is far more integrated with the main
pipeline and memory hierarchy than the latter. For example, capability bounds and

36

CHAPTER 2. BACKGROUND

permission checks have altered the exception behaviour of jumps and branches; sev-
eral system registers like the Program Counter (PC) have been replaced by bounded
capabilities which affect the execution of the main pipeline; the main CPU and all
cache hierarchies require significant change to natively understand memory tags and
capabilities. In summary, the capability coprocessor affects and cooperates with the
main CPU in ways that a normal MIPS coprocessor cannot, and care is needed to
make direct comparisons.

The current CHERI CPU implementation adds a separate register file for capa-
bilities, similar to a MIPS floating point coprocessor holding floating point registers.
A design space worth exploring is the choice between a split and merged register file.
A merged register file extends existing general purpose registers in the main CPU
to also hold capabilities. The two designs have been discussed extensively in the ar-
chitecture document [70] and are being further investigated. The major distinctions
include:

• The coprocessor interface. A coprocessor design holding a separate register
file fits nicely into the existing CPU structure and is easily configurable as an
extension, whereas a merged register file needs a deep restructure of the CPU
pipeline.

• Context switches. The split design introduces 32 capability registers as well as
extra capability system and control registers, at least doubling the context size
and increasing the latency of context switches. Such a large context is typically
unacceptable in embedded and latency-sensitive systems.

• Opcode space. Dedicated opcodes are required to perform capability operations
in the capability register file. In contrast, a merged design can reuse the same
opcodes for capability manipulations. Whether the opcode is interpreted as
a capability instruction can depend on the mode of the CPU or whether the
register has a valid capability tag.

• Intentionality. It is impossible to misuse a capability register as an integer or vice
versa in the split design, since the instruction explicitly specifies the intended
register file. With integers and capabilities merged, such confusions can happen,
and explicit instructions with dedicated opcodes might still be required when
necessary.

37

CHAPTER 2. BACKGROUND

02431

otype (24 bits)
uperms (20 bits) perms (11 bits) s

cursor (64 bits)

base (64 bits)

length (64 bits)

256 bits

Figure 2.4: 256-bit memory representation of a capability

• Compiler complexity. A merged register file can choose to extend all or part of
the general purpose registers to accommodate capabilities. Since a capability
doubles the size of an integer register, only allowing a subset for capabilities
avoids doubling the register context size. This comes at a cost of additional
compiler register allocation and ABI complexity. Therefore, this design is not
being actively explored.

CHERI-256 encoding. Figure 2.4 shows the encoding of the 256-bit capabil-
ity format. The format quadruples the pointer size by adding otype, perms, base,
length fields. For memory capabilities, each dereference is checked against the bounds
and permissions, and for sealed capabilities, they can only be unsealed by other ca-
pabilities that are able to unseal this otype. The otype field is also checked when
performing a CCall. A CCall takes a pair of code and data capabilities, checking
both otypes match before installing the unsealed capability pair of the new domain.
otype matching guarantees that the new domain does not take an arbitrary sealed
data capability.

The tag cache. To enforce unforgeability, the processor pipeline is modified
so that each capability is extended with a tag bit in the register file and caches.
However, it is much more difficult to manufacture a custom DRAM to accommodate
tags. Instead, the CHERI processor uses existing off-the-shelf DRAM and partitions
it into data and tags. Each memory request that reaches DRAM accesses data and
its tag from the two partitions, which could potentially double the number of DRAM
transactions.

38

CHAPTER 2. BACKGROUND

CPU

L1I$

L1D$
L2$ Tag$ DRAM

Figure 2.5: Memory hierarchy and the tag cache

The current implementation addresses this issue by adding a tag cache before the
DRAM (Figure 2.5). The data request is sent to DRAM while its tag is looked up in
the tag cache in parallel. Upon a hit, the tag response waits for the DRAM response
before being combined and returned to the L2 cache. As the data transaction and
the tag cache lookup happen in parallel, such an operation has the same latency of a
single DRAM transaction.

Introducing a tag cache helps avoid another problem as well, which is the alias-
ing effect in DRAM. Without a tag cache, the two transactions for tags and data
may conflict in DRAM if, for example, they occupy different rows in the same bank.
For a small DRAM array which is capable of opening only a limited number of con-
current rows, such an effect further deteriorates performance. By introducing a tag
cache, most tag operations will hit in the cache and will not require a second DRAM
transaction, significantly alleviating the impact of DRAM aliasing.

Of course, the effectiveness depends on the tag cache hit rate, because a miss or
an evict makes it no better than issuing two transactions to DRAM. Joannou, A. et al.
proposes a design [34] that compresses tags in multiple hierarchies. The compression
increases the effective capacity by exploiting the sparsity of tags in memory. By
exploring the design space, the author chooses an optimised configuration that reduces
the DRAM overhead by up to 99% for many non-pointer-heavy applications. For
the aliasing effect, a DRAM overhead reduction of 99% means only 1 in 100 tagged
memory transactions will actually issue two transactions to DRAM, while 99 hit the
tag cache and therefore issue a single DRAM transaction. This greatly minimises the
chance of aliasing even under limited row concurrency.

39

CHAPTER 2. BACKGROUND

2.7 Summary

This chapter described the embedded systems that are in scope of this disserta-
tion. I explained the different specifications and requirements between desktop and
embedded systems and why this could lead to fundamental difficulties in enforcing
memory safety for the latter. The state-of-the-art and literature review presented so-
lutions from academia and industry towards solving the problem. Nevertheless, they
still face issues including weak security guarantees, inability to scale and the coarse
granularity of protection.

Two case studies demonstrated that said commercial memory safety solutions in
many cases failed to guarantee the desired protection level. We saw that programmers
either did not use them or were forced into a non-optimal design. From the review of
state-of-the-art and the case studies, I extracted the key requirements that should be
satisfied by a secure design.

As this dissertation later explores the possibility of adapting CHERI to embedded
systems, I presented the background, basics and other fundamentals of capability
systems and CHERI. The next chapter will explore the design of efficient compressed
capability encodings and implementations for embedded space.

40

Chapter 3

A 64-bit compressed capability
scheme for embedded systems

To adapt CHERI to the embedded space, an efficient capability processor and
capability encoding must be designed and developed. Clearly, the original CHERI-256
is not a suitable candidate since it quadruples the pointer size and functions with a
64-bit address space. There are obvious opportunities for capability encoding com-
pression, which have been attempted by previous capability machines as well as the
initial versions of CHERI-128 [70]. Unfortunately, many problems still remain unre-
solved including software incompatibility and inability to work under typical 32-bit
flat physical address space. Therefore, this chapter discusses the design and imple-
mentation of a 64-bit compressed capability format for embedded devices.

3.1 CHERI for a 32-bit machine

Current CHERI research ([75, 69, 67]) is mostly based on the MIPS-64 ISA and
64-bit FreeBSD OS. Before I began, I had conducted a quick survey to determine the
typical specifications of embedded devices and to see whether the existing research
artifacts directly apply. The survey was based on the WikiDevi database [72]. I looked
at the Wireless embedded system category which was in the scope of this dissertation,
with a database of 3822 devices. The survey used the custom query language provided
by the database to query for all devices that were FCC approved after 2010. Devices
with incomplete information (no RAM size/power specs provided) were discarded.

41

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

The survey drew the following conclusions:

1. No device had an address space that exceeded the 32-bit limit, 4GiB.

2. Many higher-end systems in this category (Raspberry Pi 3B, TP-Link TGR1900,
The Amazon Fire TV CL1130) already incorporated Cortex-A class CPUs with
fully-fledged operating systems. Such devices were not in scope since they were
not latency and overhead sensitive. Excluding these, few had RAM sizes larger
than a couple of MiBs.

3. No 64-bit processors existed before 2015 in this database. Even though 64-bit
CPUs started to emerge recently (like Raspberry Pi 3B, which already deviated
from the definition of embedded systems of this dissertation), almost 100% of
the surveyed devices ran under a 32-bit OS, an RTOS or no operating system
at all.

In fact, the ARM Cortex-R and Cortex-M series which are used in typical em-
bedded SoCs do not contain any CPU that supports 64-bit address operations. No
roadmaps and projections from ARM show any plan and necessity to introduce 64-bit
processing to low-end devices. The conclusion is, embedded processors show no need
for 64-bit computing at least in the foreseeable future. Therefore, instead of applying
64-bit CHERI-MIPS directly to such platforms, it is desirable to design a compressed
capability format for embedded devices. Specifically, we need a low-overhead capabil-
ity format for 32-bit address spaces. For smaller devices such as 16-bit or even 8-bit
processors, I do not think that a capability model would be useful or practical. They
are deeply embedded without communications to many other devices, thus the only
attack model is still direct physical attacks, or they have extreme resource constraints
that would make any extensions impractical.

3.2 Existing capability encodings

Various capability encoding schemes have been developed as capability machines
and CHERI mature. In this section I review existing capability encodings and describe
their merits and shortcomings to explain why a better encoding is required.

42

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

3.2.1 CHERI-256

Section 2.6.2 gives an overview of the CHERI architecture. The first imple-
mentation quadruples the pointer size by adding full 64-bit base, length fields and
miscellaneous bits (Figure 2.4). The merit of this design is being straightforward in
micro-architecture implementation, while its overhead is its very large pointer size.
For example, Olden micro-benchmarks which exhibit an in-memory pointer density
of nearly 25% (that is, 25% of the resident memory is occupied by pointers) will in-
crease its memory footprint by almost 100%. Other common C and C++ programs
with 5-10% pointer density still see their resident memory inflated by around 50%.
To design the memory hierarchy, the quadrupled pointer size also suggests that the
minimum bus width be 257 bits, which is not practical for small devices. Although we
could get away with smaller buses and transmit a capability in multiple cycles, such
a design introduces other complexities and overhead. As a result, the CHERI project
is switching away from CHERI-256 in favor of new compressed capability encodings.
Maintaining the 256-bit encoding is most useful for fast prototyping of new software
where its simplicity in encoding outweighs the overhead.

3.2.2 M-Machine

The M-Machine is a capability model that introduces guarded pointers, which are
tagged 64-bit pointer objects to implement capability-based addressing [13]. Guarded
pointers contain 4-bit permission, 6-bit segment length and 54-bit pointer fields (p,
slen and pointer respectively in Figure 3.1).

Guarded pointers are effectively a compressed capability encoding in that the
slen field encodes the bounds (the segment) the pointer is in. slen is the number of
bits from the Least Significant Bit (LSB) position that can vary within this segment.
For example, the bottom 8 bits in the pointer field of Figure 3.1 can vary between 0x00

063

t p’4 slen’6 pointer’54

0x8 0x1234

64 bits + tag

Example:

Figure 3.1: M-Machine capability encoding with example values

43

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

and 0xff, making the bounds of this capability 0x1200 and 0x12ff. The hardware
enforces bounded access with correct permissions.

The representability problem. Compressed capability encodings present a
new difficulty that has not been seen in their uncompressed counterparts like CHERI-
256. The compression schemes in this chapter all take advantage of the fact that
bounds revolve around the pointer and usually share common top bits with the pointer
field. These bits need not to be replicated in all the fields, therefore we can save them
to achieve compression. However, this creates the problem that the moment the
pointer does not share the same top bits with the bounds, it is then no longer possible
to encode the original bounds. This usually happens when the pointer goes out of
bounds. The problem can be demonstrated by the example in Figure 3.1. If we
increment the pointer above 0x12ff, it no longer shares the top 0x12 bits with the
bounds and it is impossible to encode them.

Due to its inability to represent out-of-bounds pointers, M-Machine clears the
tag when the pointer field goes out of bounds. As the capability cannot regain its tag
due to monotonicity, it remains invalid forever. Even if the pointer is later brought in
bounds for a valid dereference, the untagged capability remains unusable. In contrast,
representability is never a problem for uncompressed CHERI-256. The base and length
fields preserve full information even when the pointer goes out of bounds, which makes
it still a valid capability (but invalid for dereference, of course). The capability can
still be used for dereference when later the pointer is brought in bounds.

Temporary out-of-bounds pointers. Temporary out-of-bounds pointers is
the behaviour in which performing integer arithmetic on pointers takes them out of
their intended bounds. It is later transformed back in bounds for a valid dereference.
Such behaviour pressures the representability of compressed capabilities, and breaks
when a capability becomes unrepresentable.

We imagine new software stacks written with representability in mind will avoid
arbitrary pointer arithmetic. However, as the CHERI compiler maintains compatibil-
ity with legacy C code, we cannot ignore that a portion of the existing codebase may
exhibit such behaviour. In fact, David Chisnall et al. have investigated common C
idioms which may break under a capability machine. Unfortunately, he finds a large
portion of the C programs contain idioms that may lead to such breakage [15]. ffmpeg,
FreeBSD libc and tcpdump are among the many common C codebases that produce in-

44

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

valid intermediate pointer results, bit-mask pointers, perform arbitrary pointer arith-
metic and so forth, and each manipulation may result in a temporary out-of-bounds
pointer. Without proper support for temporary out-of-bounds pointers, it is rather
difficult to incorporate a large corpus of legacy C code into a compressed capability
machine.

Coarse-grained objects. In addition to representability and out-of-bounds
problems, the M-Machine specifically demonstrates the difficulty to encode arbitrarily-
sized objects. The slen field is only capable of representing power-of-two regions,
which means heap objects, for example, must be rounded up to fit in a capability.
In the worse case, an object slightly larger than the alignment is rounded up to the
next power-of-two, wasting almost 50% of the memory. In fact, this worst case might
not even be rare. Heap allocators with inline metadata will add extra bytes to user
requested sizes, which makes perfect power-of-two allocations always exhibit the worst
case in practice. The amount of wasted memory, memory fragmentation, is studied
later in this chapter.

Other compatibility issues. M-Machine does not support a full 64-bit address
space and argues that 54 bits is sufficient. However, applications frequently rely
on a full pointer field for NaN boxing [10], top-byte metadata [50] and so forth.
Not preserving a full pointer breaks compatibility for these applications. Due to all
the above issues, we have not seen M-Machine run any modern OS or a reasonably
populated userland, and we can expect difficulty in porting existing codebases.

3.2.3 Low-fat

Low-fat is another compressed capability scheme with a similar approach to M-
Machine by using top bits of the pointer to encode bounds and metadata [39].

06371

t’8 B’6 I’6 M ’6 pointer’46

0x1 0x1 0x7 0x7

64 + 8-bit tag

Example:

Figure 3.2: Low-fat capability encoding with example values

45

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

Low-fat improves granularity and precision of bounds by removing the permission
field and some bits of the pointer for bounds. The BIMA encoding gives the block
size shift B, the start index I and end index M, and the address field A. Figure 3.2
indicates a B, I, M, A of 1, 1, 7, 7 respectively. A block size of 2 (1<<B = 2) gives
a region from 0x0 to 0x80, evenly divided into 64 (6-bit I, M fields) 2-byte blocks.
Within this region, the start and end indices further restrict the capability between
0x2 and 0xe, spanning across M-I=6 blocks. Compared with M-Machine, a precision
of 6 bits in the I and M fields reduces the average wasted memory to 1

2(6−1) = 3.125%.

Bounds arithmetic. As the bounds arithmetic of Low-fat forms the basis
of many compressed capability schemes today, it is therefore necessary to introduce
the decompression algorithm to extract the original bounds. Note that the Low-fat
BIMA terminology is rather confusing at times, so we use exponent E, base B and
top T which conceptually correspond to block size, start and end index fields. This
new terminology is used from now on throughout the rest of the thesis.

063

E’6 B’6 T ’6 a’4664 bits
�

045

a[45 : E + 6] + ct T ’6 0’EFull top
�

045

a[45 : E + 6] + cb B’6 0’EFull base
�

T & B shifted left by E
E = exponent

T & B = top & base fields (or end and start index for Low-fat)
a = address

Amid = a[E + 5 : E]
ct = (Amid � T)? 1 : 0
cb = (Amid � B)? 1 : 0

Figure 3.3: Low-fat bounds decompression

Figure 3.3 shows how the full base and top are decompressed. The T and B
bits are left shifted by the amount of E (padded with zeros) before being masked
with the pointer field. We cannot simply take the top bits from the pointer, however,
because a carry bit may occur. If the T bits are smaller than the corresponding
bits in pointer, then there must be a carry bit above the most significant bit in T

46

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

because by definition the full top field must be greater than the pointer. Therefore,
we might need to increment the top bits, a[45 : E + 6], by 1. The same happens with
reconstructing the B field where the top bits might need to decrement by 1.

Shortcomings of Low-fat. Low-fat shares many similarities with M-Machine
as well as its shortcomings. Being unable to represent out-of-bounds pointers, Low-
fat also fails to be compatible with common C idioms and a wide range of existing
C code. It also re-purposes permission bits for additional precision, losing the bene-
fit of hardware permission checking. Like M-Machine, the truncated pointer breaks
applications relying on full pointer fields.

In addition, the Low-fat hardware implementation is not a conventional RISC
architecture and creates pipelining problems. It performs bounds checking on pointer
manipulation but not on dereference. To make sure out-of-bounds does not happen,
it explicitly forbids offset addressing on pointer dereference, which means the ISA
does not have any efficient addressing modes. Low-fat also has a high load-to-use
delay, as the register file holds partially decompressed capabilities and each capability
load requires partial decoding. Worse, each capability pointer manipulation requires
re-computing the distances to the base and top. The re-computed fields then need to
be installed back to the partially-decoded register file.

In the end, we see the same situation as M-Machine where existing codebases
are simply not portable and no major software stack has been specifically written for
this particular architecture.

3.2.4 Project Aries

Another compressed capability scheme by MIT, Project Aries, extends the length
to 128 bits for an untruncated 64-bit address and more flexibility for top and bottom
fields, permission bits, etc [11]. This format enforces fine-grained access control with
16 permission bits and similar precision as the low-fat pointer leaving 32 unused bits
for future extensions.

The encoding is shown in Figure 3.4. It inspires first versions of Low-fat, hence
the similarities. Still, the problem of compatibility with out-of-bounds pointers is
yet to be addressed. What again is lacking is the consideration for existing RISC

47

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

0128

t misc’32 perm’16 I bounds’15 pointer’64128 bits + tag
�

Figure 3.4: Aries capability encoding

architectures and C corpus. Like what we have seen before, this is a theoretical
proposal and a draft implementation at best.

3.2.5 CHERI-128 Candidate 1

Before the research work in this chapter, early prototypes of CHERI-128 have
been implemented by Jonathan Woodruff and Alexandre Joannou [70]. The initial
implementation includes toTop and toBase to encode the distance from the pointer
to the bounds. This idea encounters several problems in practice. For example, each
pointer manipulation must change the distance fields and re-encode the capability
in the register file. Another problem described in detail in [35] is encoding space
wastage. As the size of the object gets larger, the actual top and base fields get
further apart and it becomes increasingly difficult to represent out-of-bounds pointers.
Nevertheless, this attempt is the first implementation of 128-bit capabilities for 64-bit
address space, and raises important questions like pipelining difficulties, representable
buffers and encoding efficiency which guide the design of later improved encodings.

3.2.6 Summary

I have reviewed multiple past capability schemes to this point. Unfortunately,
their shortcomings pose major obstacles towards a practical capability machine. Un-
til now, none of the aforementioned compressed capability schemes have included a
rich and mature software stack that supports the architecture, and it is unsurprising
that they have not seen wide deployment in production. A practical compressed ca-
pability scheme must interact well with modern RISC pipelines, incorporate existing
C codebases, respect common language idioms, and show reasonable and justifiable
overhead. In addition, no previous attempts focus on whether it is feasible to develop
a capability scheme for a 32-bit physical address space in typical embedded proces-
sors. Such scenario, for example, requires much higher compression whose impact
especially on memory is not well understood.

48

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

3.3 The CHERI Concentrate (CC) and 64-bit capability
encoding

Jonathan Woodruff, Alexandre Joannou and myself aim at solving the obstacles
of compressed capability schemes by developing the CHERI Concentrate format. CC
learns from past mistakes, fits in a traditional RISC pipeline, improves precision of
the compressed bounds and is compatible with the majority of legacy codebases. Two
most important products of this research, CC-128 and CC-64, have already been
implemented in hardware. In addition, they have LLVM/Clang compiler support
and run 64-bit CheriBSD (FreeBSD extended with capability support) and 32-bit
CheriRTOS (a capability-aware Real-Time Operating System) respectively. The two
systems have demonstrated the ability to host a large number of C programs compiled
under multiple capability ABIs with reasonable overhead, proving that CC is an
approach towards a practical compressed capability machine. This section focuses
on the design choices, novelties and key ideas of the encoding, including the study of
memory fragmentation under high compression, optimisations for improved encoding
efficiency and the necessary CHERI semantics to support legacy code.

3.3.1 Balancing between precision and memory fragmentation

It is safe for previous CHERI-128 work to largely ignore the memory fragmen-
tation problem, since the number of precision bits (bits in top and base fields) is
sufficiently high. For 20-bit precision in CHERI-128, objects can be precisely repre-
sented up to 1MiB. For objects that are aligned to a page boundary (e.g., mmap, file
system blocks), CHERI-128 can precisely describe up to 4GiB of such large memory
objects, thus the memory fragmentation issue is negligible. However, developing a
64-bit capability format for 32-bit addresses makes this assumption no longer true.
Before the design of the CC-64 encoding, I would like to understand and evaluate
the memory fragmentation problem to see the impact of high compression. This
evaluation helps to make an informed decision in later sections.

49

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

The fragmentation problem

Compressed capabilities cannot precisely represent all bounds. Memory allo-
cators need to ensure that compressed bounds do not improperly allow access to
adjacent objects. This manifests itself as increased memory fragmentation because
memory allocators may need to overallocate space and overalign objects to enforce it.

5 6 70 1 2 3 4 10 11 12 13 14 158 9

requested

malloc’ed 3rd object

2nd object
internal fragmentation

external fragmentation

Figure 3.5: Internal vs. external fragmentation

Figure 3.5 illustrates memory fragmentation caused by the loss of precision, as-
suming a model in which capabilities are only able to represent power-of-two sizes and
power-of-two aligned addresses. The figure demonstrates two typical categories:

• Internal fragmentation, caused by rounding up and padding objects so that a
compressed capability can represent it.

• External fragmentation. Objects have to start from aligned addresses instead
of being tightly packed.

In practice, different forms of allocation can manifest as either internal, external
or both. Two most common allocation patterns in C language are of interest here,
namely stack and heap allocations. The symptom of heap fragmentation is mostly
internal, as the gaps can usually be filled with small allocations later. However, the C
stack differs substantially due to its Last-In-First-Out (LIFO) nature. It is impossible
to reuse externally fragmented space across stack frames, exposing both internal and
external fragmentation problems to memory allocation. These two allocation patterns
best demonstrate how much memory overhead a compressed capability encoding has
under certain precisions, and will be investigated in this study.

50

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

Evaluation methodology

I evaluate fragmentation by collecting memory allocation traces and replaying
them under different precisions. I thank Jonathan Woodruff for kindly providing
these traces. The heap traces are from six real-world applications (Chrome 38.0.2125,
Firefox 31, Apache 2.4, iTunes 12, MPlayer build #127, mySQL 5). Chrome and
Firefox are traced when viewing pre-determined web pages on BBC, Facebook and
Gmail. MPlayer plays Big Buck Bunny in h264@1080p. Application iTunes plays pre-
determined trailers from its video store. Apache and mySQL work as the frontend
and backend respectively for a web server, which is traced when running the Apache
HTTP server benchmarking tool, ab. DTrace is used to hijack function calls from
these applications and to filter out malloc() related ones. To take care of nested
allocators, the initial trace is processed so that a stack of *malloc() calls only shows
up as one entry in the final trace file. For stack allocations, we instead compile SPEC-
CPU2006 benchmarks (bzip, gobmk, mcf, sjeng and a synthetic random benchmark)
and hijack CSetBounds instructions on the stack to locate stack objects. We cannot
reuse the real-world applications for stack tracing as they are too large to be ported
to CHERI now, and stack tracing relies on observing CSetBounds instructions. For
all SPEC benchmarks, we use the reference datasets as input workloads.

I extend two commonly used allocators, dlmalloc() [40] and jemalloc() [28],
with additional rounding and alignment routines to ensure that every memory chunk
returned by malloc() is precisely representable by a capability and that they are
placed at sufficiently aligned addresses. The extended allocators are also parameter-
isable, capable of handling precision (the number of bits in the start and end index
in Low-fat terminology) from 1 to 64. For the stack traces, I build a stack allocation
simulator in C++ to simulate stack object placement and stack frames. Again, the
simulator is aware of capability precisions and can be tuned from 1 to 64 bits. The
extended heap allocators report the average internal fragmentation, as the external
one is less interesting in this case, whereas the stack simulator reports the peak stack
size, capturing both internal and external fragmentation.

Results

The results are presented in Figure 3.6 and 3.7. For comparison, I added the
original CHERI-128 (20 bits) to the graphs.

51

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

M-Machine struggles with power-of-two bounds (equivalent to 1-bit precision) as
the heap overhead approaches 30-40% in all applications. The fragmentation quickly
drops with more precision, and Low-fat (6 bits) already shows tolerable overhead.
All the curves are almost flat after 8 bits, and CHERI-128 has no problem precisely
representing almost every object. The results also confirm that heap allocators al-
ready round up and align objects to ease management, as even the perfect precision
shows some internal fragmentation. jemalloc() apparently has stronger alignment
requirements due to its need to accommodate paged-memory in modern machines.

The nature of the stack exacerbates the problem for low precisions. Both the
results and visualisations of the stack allocations suggest that external fragmentation
is contributing to high peak stack sizes. The total size of stack allocations is usually
small for each benchmark (under 64KiB), therefore even a 200% overhead would
not be a problem compared with heap allocations. However, it indicates that for
low precisions, other allocations that share the same pattern (unable or difficult to
reuse external fragmentation, e.g., large number of separate small sandboxes within a
process) could waste a large amount of memory space when facing a similar problem.

52

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

0 %
10 %
20 %
30 %
40 %
50 %

dl
ma

ll
oc

Chrome Firefox
Apache iTunes
MPlayer mySQL

1 5 6 10 15 200 %
10 %
20 %
30 %
40 %
50 %

T & B field width (bits)

je
ma

ll
oc

64

Low-fat CHERI-128

M-Machine

Figure 3.6: Heap internal fragmentation

1 5 6 10 15 200 %

50 %

100 %

150 %

200 %

T & B field width (bits)

Pe
rc

en
ta

ge
in

cr
ea

se

bzip2 gobmk
mcf sjeng

random

64

Low-Fat

M-Machine

CHERI-128

Figure 3.7: Percentage increase in peak size of total stack allocations (SPEC CPU
2006 experimental builds)

53

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

Analytical model

Stack allocations from the benchmarks are mostly small objects with a few large
objects dominating the overhead, thus the peak stack size is highly dependent on
how the workloads allocate large objects on the stack. However, the number of heap
allocations is usually significantly higher with a mixture of objects of various sizes,
whose average can be summarised with an analytical model.

For fragmentation in Figure 3.6, its upper bound can be calculated with respect
to the precision. A precision of n divides the maximal possible object under a certain
exponent (2n+E bytes) into 2n blocks. In the worst case, we need to pad the object
with almost a whole block (2E bytes) to account for the lack of precision. Also, the
object can be as small as slightly over half of the largest possible object under its
exponent, which is 2n+E−1. Therefore, the worst case internal fragmentation is:

Internal fragmentation = 2E

2E + 2n+E−1 = 1
1 + 2n−1

If we assume the sizes of allocations are approximately uniformly distributed
overall in evaluated applications, the average object size is the average of the largest
and the smallest under a certain exponent:

Avg. obj. size = 2n+E−1 + 2n+E

2 = 2n+E−2 + 2n+E−1

and assuming the required padding on average is halved (2E−1) as well, the
average internal fragmentation will be:

Avg. = avg. padding

avg. padding + avg. obj. size
= 2E−1

2E−1 + 2n+E−2 + 2n+E−1 = 1
1 + 2n−1 + 2n

Of course, additional heap metadata must be allocated as well for heap mainte-
nance in practice, which often disrupts how objects can be placed or aligned, resulting
in higher-than-predicted fragmentation. This is much more visible in dlmalloc, since
its boundary-tagging design must embed inline metadata in every allocation [40],

54

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

potentially inflating objects to the next alignment boundary or even to the next ex-
ponent.

At high precisions, the padding of dlmalloc is small compared with the in-
line metadata, thus the internal fragmentation mostly reflects the wasted space from
metadata, which we cannot eliminate no matter how high the precision is. Since the
inline metadata of each allocation is constant regardless of the object size, the ratio
of internal fragmentation at high precisions depends on the allocation pattern. An
application performing a large number of small allocations requires more memory for
metadata than one with a small number of large allocations, explaining why some
applications can reduce fragmentation to almost 0%, thus fitting the model nicely,
while others cannot.

Unlike dlmalloc, jemalloc is designed for paged systems and performs its own
rounding internally, effectively only having a precision between 3 and 6 for medium
objects and 3 for large objects [28]. As the curve shows, it quickly becomes flat after
n = 3, and approximately matches the equation between n = 3 and n = 6 for all high
precisions.

Summary

The internal and external fragmentation can be captured nicely in the C stack
and heap, representing the most common sources of memory overhead for C code-
bases. Parameterisable tools help visualise the tradeoffs between consumed precision
bits and memory wastage. The evaluation also brings the discussed compressed ca-
pability schemes together for comparison. M-Machine represents one extreme where
fragmentation is unacceptably high, whereas CHERI-128 shows almost no concern
about memory overhead issues. Low-fat (6-bit start and end index, 6-bit block size,
18 bits total for bounds) might be a good balance for 64-bit capabilities. For some
extra headroom, my initial plan is to dedicate 22 bits in total for compressed bounds
with 8-bit precision.

3.3.2 Improved encoding efficiency

A capability with certain bounds under Low-fat can be encoded in different ways.
The example in Figure 3.2 encodes the block size, base, top and pointer of 1, 0x2,

55

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

0xe and 0x7 respectively. Clearly, it is possible to use a block size of 1 and assign 0x2
and 0xe to I and M to encode exactly the same bounds. The same capability being
represented in multiple formats is wasting encoding space. To save encoding space,
we pick the canonical to be the minimum block size possible to encode the bounds. In
the Low-fat example, a block size of 1 is the minimum required and should be picked
instead of 2. Choosing the minimum makes sense because it also gives the most fine-
grained bounds. If the object size in Figure 3.2 is 11 instead of 12, then a block size
(or exponent) of 2 cannot precisely represent the bounds and must be padded to 12,
leading to memory fragmentation problems. In the CHERI ISA, this is enforced by
always choosing the minimum block size (or exponent, E) in CSetBounds, which is
the only instruction that is able to modify it.

Implied most significant bit in T

Take a 6-bit T and a 6-bit B as an example, we imagine another 6-bit field, L,
which is derived from T=B+L. By always choosing the minimum E, it is guaranteed
that the top bit of L is 1, because otherwise, the object size is smaller than half of the
largest object under this exponent, therefore a even smaller E can be chosen. This
observation is important, as it allows us to derive the top bit of T from the remaining
bits in T and B.

LCarry = 0
if T[4:0] < B[4:0]:

LCarry = 1
T[5] = B[5] + LCarry + L[5] (L[5] must be 1)

As T [5] can be derived, we are able to save a bit in T for other purposes. Note that
the L[5] = 1 assumption can only be made when E is non-zero. When E is zero, the
object size can be arbitrarily small and T [5] has to be preserved.

Internal exponent

Another novelty incorporated into the final CC format is the internal exponent.
For all the compressed capability encodings reviewed so far, they devote equal number
of bits to T, B and E for objects of all sizes. However, the precision requirements of
different sizes are inherently different. More specifically, objects tend to have align-
ment requirements in practice, and larger objects tend to be better aligned, requiring

56

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

less precision. Examples include padding structs and functions for performance, di-
rectly calling mmap() on the heap for large allocations, 1 MiB alignment for disk
partitions, well-aligned memory windows for memory-mapped devices, etc. In fact,
the paper on jemalloc [28] makes a similar observation that most allocations happen
to objects under 512 bytes. Therefore, if we are flexible about the number of bits
devoted to different precisions, optimisations can be made to reduce overall memory
overhead.

Initially, we developed a run-length encoding for the exponent so that a smaller
E (i.e., small objects) consumes fewer bits than a larger one, leaving more space for
T and B bits. This naturally fits the previous observation, but comes at a huge
cost in decoding complexity. Eventually, we use the saved bit from the implied most
significant bit in T to construct a much simpler encoding, presented in Figure 3.8. To
be comparable with Low-fat for evaluation, we keep 6 bits of precision here.

08

IE T [7 : 3] T [2 : 0] or E[2 : 0]

B[8 : 3] B[2 : 0] or E[5 : 3]

Figure 3.8: Improved Low-fat Encoding with Embedded Exponent and Implied T8

The encoding demonstrates the internal exponent idea. The saved implied bit IE

now indicates whether E is zero. If so, there is no need to have a separate E field, and
we have a full 9-bit B and 8-bit T. Remember that the top bit of T can no longer be
implied when E is zero, thus the effective precision is 8 bits not 9. When IE is set (i.e.,
the exponent is non-zero), the E “steals” 3 bits from T and B respectively to form
an actual 6-bit exponent, hence the name internal exponent. Compared with Low-fat,
CC is a strict improvement and never performs worse. It specifically improves the
precision for small objects and can represent objects precisely up to 28 = 256 bytes
instead of 26 = 64 bytes for Low-fat.

Evaluation of representability

With the improved encoding, I rerun the benchmarks to report the percentage
of imprecise capabilities.

57

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

0

5

10
Im

pr
ec

ise
ca

pa
bi

lit
ie

s
/%

Low-fat
CC

Chrome Firefox Apache iTunes MySQL Mplayer

31.1 30.7

Figure 3.9: The percentage of allocations that cannot be precisely represented in a
capability. Lower is better.

Figure 3.9 shows that CC never performs worse than Low-fat. The effectiveness of
the improved encoding depends highly on the nature of allocations in an application.
Most benchmarks benefit moderately while Apache reduces imprecision drastically,
revealing the fact that it does a large number of allocations for small objects. So far,
we improve the encoding efficiency without adding bits for bounds or introducing any
new semantics compared with Low-fat, and only add minor decoding complexity to
bounds.

3.3.3 The CHERI semantics

The major roadblock towards wider adoption of compressed capability machines
is the issue with legacy codebases. This section introduces necessary new semantics
to ensure compatibility.

Full pointer fields

Truncating the pointer field to 46 bits to make room for bounds in Low-fat
creates a non-traditional address space. Such a decision violates many design patterns
and C language idioms in traditional software. For example, top-byte metadata [50]
allows metadata to be stored in the unused upper bits (which do not participate in
memory access and address translation) of a pointer, which breaks with a truncated
pointer. Similarly, the AArch64 architecture provides the top-byte-ignore feature that
permits the OS and applications to compress information into unused pointer bits. For
common C idioms, the casts between pointers and integers often require the pointer

58

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

to preserve full information of an integer, and conventional architectures without the
distinction between pointers and integers exacerbate the problem that programmers
tend to use integer and pointer types in C interchangeably.

For 32-bit embedded systems, even if pointer metadata is uncommon and RAM
is small, it does not necessarily mean the address space is much smaller than the full
4GiB. Memory mapped devices and registers are commonly scattered in the physical
address space. Even if the entire address space is small enough to make extra bits
available, using them to encode capabilities also prohibits any future expansion of the
address space like adding new memory-mapped devices.

Clearly, if all such design patterns, idioms and address space configurations can
be avoided, it is advantageous to repurpose the unused pointer bits for capability
encoding, especially increasing the precision of compressed capabilities. However, in
this research we find that fixing all the issues to work with a truncated pointer field
is infeasible in practice. As a result, we decide to keep a full pointer field in favor of
much better compatibility, which means a 32-bit address space for 64-bit capabilities.
Reducing the pointer to 32 bits also saves 1 bit from the E field, which is later used to
provide out-of-bounds buffers to allow temporary out-of-bounds pointers. For 64-bit
address spaces, CHERI-128 is used to preserve full pointers.

Permission bits

The low precision in M-Machine is not acceptable, while removing permission
bits to encode more precise bounds in Low-fat creates other confusions, such as its
inability to distinguish between read and write or code and data capabilities. The
latter, for example, is a serious issue as it is impossible to enforce W ⊕ X on the
capability level. We acknowledge that it is necessary to include permissions bits to
guarantee any meaningful memory protection.

Returning to a traditional address space leaves half of the bits in a capabil-
ity, enough to encode sufficient permission and bound bits. CHERI compressed for-
mat conflates all the permission bits for privileged system registers into a single ac-
cess sys regs bit, and other permissions are the same as CHERI-256. In the end, a
full pointer with permission bits means CC capabilities double the size of a traditional
integer pointer. However, we believe the importance of compatibility and fine-grained
permission control far outweighs the overhead it incurs.

59

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

b

t
dereferenceable
region

rb

rt

s

representable
space, spaceR

R2E

multiple of s = 2E+60x1000

0x2000

0x3000

0x1A00

0x1F00

0x2500

0x2A00

s

s

spaceL

spaceU

Figure 3.10: CHERI Concentrate bounds in an address space. Addresses increase
upwards. The example shows a 0x600-byte object based at 0x1F00.

The representable buffer

In compressed capability schemes, it is impossible to arbitrarily change the value
of the pointer, as it may also change the bounds that are partially reconstructed from
the pointer field (like in Figure 3.3), which leads to the inability to support arbitrary
out-of-bounds pointers. The M-Machine and Low-fat approach to simply invalidate
the capability the moment it goes out of bounds is unacceptable. To overcome the
problem, we add a representable buffer space, which the pointer field can point to
without changing the decompressed bounds, even though the pointer may have already
gone out of bounds.

An example is presented in Figure 3.10, assuming 6-bit precision and an expo-
nent of 7. For simplicity, the example does not incorporate implied MSB in T and the
internal exponent. The example categorises the space into three regions. The deref-
erenceable region indicates the actual bounds of the capability. The representable
region is where the pointer field can reside without affecting the representability of
the original bounds. In the example, the pointer can change between 0x1A00 and
0x2A00. The representable region (orange) cannot be larger than s, because if so,
there will be two pointer values with the same a[E +5 : E] but different a[: E +6] (see
Figure 3.3), which will then be decoded into two different pairs of bounds. Obviously,
the representable region has to be a superset of the dereferenceable region. Outside

60

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

is the unrepresentable region. Whenever a pointer field is modified into this region, it
is no longer possible to decode T and B into the original bounds, and the capability
has to be invalidated.

Figure 3.10 denotes the lower and upper bound of the representable region with
rb and rt (rt = rb + s). Let us define R to be rb[E + 5 : E] (rt[E + 5 : E] is the same),
and A to be a[E + 5 : E]. To reconstruct the full bounds, carry bits must be taken
care of. Low-fat is simpler because the pointer must be within bounds. Adding the
representable buffer means the pointer can be greater than the top or lower than the
base, complicating the decoding of carry bits.

ct = sgn(sgn(R − T) − sgn(R − A))

cb = sgn(sgn(R − B) − sgn(R − A))

sgn(x) =

1 (x > 0)
0 (x = 0)
−1 (x < 0)

The comparisons among R, B and T calculate whether they are in the same s space.
If not, a carry of +1 or −1 must occur. With the new carry bit calculations and the
same shifting and masking logic in Figure 3.3, the bounds can be uniquely decoded
as long as the pointer is in representable region.

Of course, a representable buffer does not entirely solve the out-of-bounds pointer
problem. The capability remains valid as long as the pointer field is in the repre-
sentable region (it does not have to be within bounds). However, if the pointer field
goes too far and enters the unrepresentable region, CC still faces the same problem as
the capability is invalidated forever. Nevertheless, a properly-placed and sufficiently-
large buffer region can eliminate almost all temporary out-of-bounds issues. In the
porting of CheriBSD, only few corner cases needed to be fixed after introducing the
representable buffer.

3.3.4 CC-64

Incorporating all the aforementioned techniques, the final CC-64 format is im-
plemented as in Figure 3.11.

61

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

031

p’10 IE’1 L[9]’1 T [8 : 2]’7 TE’2 B[10 : 2]’9 BE’2

a’32

Figure 3.11: 64-bit CHERI Concentrate

The CC encoding in Figure 3.11 highlights the improvements and novelties dis-
cussed before. This design chooses to add a representable buffer that is at least as
large as the object itself while still selecting the minimum E possible. It means the
size of the object is always s

4 � size < s
2 (s = 2E+11 here) for non-zero E. The rest

of the space in s, s
2 < rest � 3

4s, is the representable buffer space. Hence, the L
in T=B+L must be b’01 in the top two bits, leaving the top two bits in T to be
implied. In other words, one precision bit is devoted to the representable buffer. The
one extra implied bit L[9] in T now forms part of the E, therefore E = {L[9], TE, BE}
when E is internal.

As RAM is usually a scarce resource for embedded systems, the number of pre-
cision bits must be sufficient to minimise memory fragmentation. My study in Sec-
tion 3.3.1 suggests that 6 bits reduces the overhead to a reasonably low level and 8
bits is safer. CC-64 has 8 bits for non-zero E (11 bits in B in total, minus 2 bits for
the internal exponent and 1 bit for the representable buffer) and 10 bits for a zero E
(11 minus 1 bit for the buffer), precisely representing objects of up to 210 = 1KiB

and providing enough precision beyond that. Further, embedded workloads which
adapt to memory-constrained scenarios tend to do smaller allocations and allocate
less frequently, which is exactly what the CC encoding is optimised for.

Detailed arithmetic for encoding and decoding CC-64 can be found in Appendix A.

3.4 Summary of compressed capability schemes

Table 3.1 summarises the capability encodings.

Despite the advantages of CC-64 described in the table, the doubled pointer
size is undesirable and may result in a higher memory footprint and cache pressure.
Nevertheless, this overhead directly correlates to the pointer density in memory. The
paper [74] finds at low density levels, the overhead is negligible even with the purecap

62

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

Table 3.1: Comparison of capability encodings

Encoding Size Addr. Precision Max. frag × ptr. Perm. Full ptr. OoB

CHERI-256 256 64 64 0 4× � � �
M-Machine 64 54 1 300% 1× � × ×

Low-fat 64 40 6 3.125% 1× × × ×
CHERI-128 C1 128 48 16 <0.01% 2× � × buffer*

CC-128 128 64 20 or 22 <0.01% 2× � � buffer
CC-64 64 32 8 or 10 0.78% 2× � � buffer

Addr. = number of address bits, Max. frag = maximum possible memory fragmentation, × ptr. = size
compared with an integer pointer, Perm. = permission bits, OoB = temporary out-of-bounds capabilities,
*the representable buffer size depends on the object size

ABI (all pointers are capabilities). For embedded systems where the pointer density
is low and pointers are only selectively replaced with capabilities, the overhead is
expected to be negligible.

3.5 A CC-64 hardware implementation

This section explores whether the CC-64 algorithms lead to a feasible imple-
mentation. To understand the overhead, I compare it with the dominant embedded
system memory protection device, the MPU.

3.5.1 The MPU model

Section 2.3.2 has already provided a high-level overview of how MPUs protect
physical memory. I choose to look at the RISC-V PMP, as other MPU models from
ARM or Intel do not publish an open-source specification or implementation details.
I follow the RISC-V specification in [66] for architectural and micro-architectural
implementation. Generally, the PMP enables multiple protected regions, which are
defined by bounds and protection attribute registers. The following demonstrates the
pseudocode to determine whether a memory request can be granted:

// n = number of regions
// addr = address of mem request
// size = size of mem request

63

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

// region = the array of protected regions
// acc = read, write or execute access
bool check_access(addr, size, acc):

permitted = false
for i in 1 to =n:

matched = match(addr, size, region[i].bounds)
if matched:

permitted = check_perms(acc, region[i].perms)
return permitted

// auxiliary functions
bool match(addr, size, bounds):

if addr>=bounds.lower and addr+size<bounds.upper:
return true

return false

bool check_perms(acc, perms):
if acc in perms:

return true
return false

The algorithm is simple. The memory access is checked against all regions. If there
is a match (in its bounds), the access is checked against the permissions of the re-
gion, which eventually grants the access. Note that this algorithm essentially grants
priorities to higher-numbered regions. That is, if a match occurs to two regions, the
permissions of the region with a higher index override those of a lower region.

A hardware implementation is straightforward following the pseudocode. An
obvious optimisation is that the for loop in check access() can be implemented in
parallel, matching all regions at once. However, I still have to serialise the match
results due to the effect of higher regions overriding lower ones.

RISC-V dictates that two modes be supported in the match() function. When
power-of-two is enabled, each region is defined by a bounds register and a permission
register. The bounds register embeds a bit mask in a pointer, and a match occurs
if the top bits of the memory access address match the masked pointer [66]. This
is essentially the same mechanism with the M-Machine where a shift value indicates

64

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

power-of-two bounds. The base-bound mode combines two bounds registers into one
region, specifying the base and the length in two registers, which trades off half of the
number of regions for much finer granularity.

I implemented the PMP in Bluespec SystemVerilog R� and incorporate it with the
baseline BERI processor to offer physical memory protection. To match the most
common configurations, 8 base-bound regions (16 power-of-two) are included.

3.5.2 Capability coprocessor vs. MPU

To understand how CC-64 competes with the MPU, I implement CC-64 in the
64-bit capability coprocessor. I synthesise two CPUs, one enhancing BERI with the
CC-64 capability coprocessor and the other adding the PMP unit. The original BERI
CPU is heavily refactored to reduce the address width from 64 to 32 bits. To match
the PMP, the capability coprocessor also has 8 general purpose capability registers.
To make the costs clear, I disable BRAM usage so that all logic is generated using
combinational circuits or registers on the Stratix R� IV GX FPGA. I synthesise 5 times
and take the mean and deviation. The Bluespec code of the CHERI-64 coprocessor
has been merged into our CHERI repository.

Table 3.2: FPGA resource utilization and timing

Category PMP Unit Capability Coprocessor
Total ALUTs 5174 ± 0.5% 7212 ± 0.4%

Combinational w/o register 4241 ± 0.6% 3879 ± 0.6%
Combinational w/ register 759 ± 2.6% 2278 ± 0.8%

Register only 174 ± 11.5% 1055 ± 1.9%
Core clock freq. (MHz) 86.71 ± 7.3% 105.83 ± 3.0%

Area. The logic utilisation is shown in Table 3.2. Overall, the capability co-
processor has 39.4% more logic utilisation. Note that the capability coprocessor not
only supports capability registers, but also implements the CHERI ISA; the PMP is
a basic implementation of the RISC-V specification. I anticipate that any extensions
on PMPs or MPUs will quickly increase the logic utilisation. These include increas-
ing the register count to 16 to enable more regions, the Execution-Aware MPU from
TrustLite and TyTAN, separating MPU entries further into sub-regions as in ARM

65

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

embedded processors, etc. Therefore, a well optimised capability coprocessor should
not be much more expensive than a commercial MPU or PMP in terms of logic usage
in an ASIC.

Critical path and timing constraints. The pipeline of the capability copro-
cessor is simple and operates in parallel with the main pipeline, not disturbing the
critical path. However, fitting the PMP into the pipeline proves to be very difficult.
For 8 PMP entries, I have to perform a full associative match, introducing 32×32-bit
comparators (each PMP entry has a base and length and the associative match has
to be done for both data and instruction fetch) within a single clock cycle. This diffi-
culty is confirmed by timing analysis, which shows that the maximum clock frequency
achieved is around 20MHz lower than with the capability coprocessor (Table 3.2). Un-
surprisingly, further analysis reveals that the PMP lies in the critical path while the
capability coprocessor does not.

Power. Although FPGA synthesis is not indicative of ASIC power, qualitative
estimates can still be made. The major power draw from PMPs (as well as MPUs)
is the large number of comparisons within each cycle. A capability coprocessor has
drastically reduced power consumption due to the absence of associative searches.
CHERI always specifies the region of each access explicitly, so that only one bounds
check is required for instruction fetch, and one for data access: instruction fetch is
checked against PCC1, and the data access is checked against either the DDC or an
explicit capability. On the other hand, the CHERI coprocessor does require additional
power to decompress the compressed capability bounds, but this is still dramatically
less than the power required by an active MPU. Note that the MPU model also has
room for optimisation. For example, the EA-MPU avoids full associative searches
by linking code and data regions. Once the code entry is matched, only linked data
regions will be searched.

1A well-optimised implementation might not even need a full PCC bounds check on instructions.
For example, we can just check the bounds on jumps or branches and use a simple counter to count
down how far the PC is to the end of PCC when the PC advances normally.

66

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

3.5.3 Other considerations

64-bit buses

32-bit CPUs with 64-bit capabilities might require the buses to be at least 64
bits. Although tiny systems cannot tolerate the cost of this upgrade, many CPUs
already have 64-bit buses like Cortex-M7 and some Cortex-R cores. This range of
CPUs are often connected to other systems and therefore already incorporate memory
protection, and is what this research is targeting. For this market, I do not think
supporting a wider type in the pipeline or the bus is a major problem.

Tags

Existing research explores efficient tag cache designs to minimise extra DRAM
traffic [34]. For small devices, the cost of a tag cache might not be acceptable. How-
ever, considering that these devices in which even a tag cache is intolerable often have
only KiBs of RAM or adopt custom designs, custom solutions may be used to cater
to their needs. For very limited memory, caching is simply not useful and all the
tags could be stored as a bit vector close to the CPU. On the other hand, embedded
SoCs often use small and custom SRAMs for memory. A custom SRAM could just
extend the interface with a tag bit and add native tags to memory words, avoiding
the complexities and workarounds of using off-the-shelf DRAMs.

3.6 Summary

This chapter attempted to develop a suitable compressed capability format for
embedded devices. The new CC-64 format learnt from past mistakes, optimised for
embedded use cases and maintained compatibility with software stacks. Also, many
design choices in this chapter were informed and guided decisions, aiming at support-
ing a wide range of software. The FPGA implementation showed that incorporating
the CC-64 capability coprocessor was not more difficult or expensive than the main-
stream MPU solutions, and was definitely feasible.

The contributions so far are the groundwork. What remains to be seen is whether
it supports a practical capability-aware Real-Time Operating System and applications

67

CHAPTER 3. A 64-BIT COMPRESSED CAPABILITY SCHEME FOR
EMBEDDED SYSTEMS

running under such an environment. This chapter developed an optimised hardware
implementation for compressed capabilities in embedded devices, and the next chapter
will explore a capability-aware Real-Time Operating System.

68

Chapter 4

CheriRTOS

On top of the CC-64 hardware, I implement a CHERI-aware Real-Time Oper-
ating System, CheriRTOS. The first point of this chapter is to prove that the CC-64
hardware is capable of hosting a practical system. Further, and most importantly,
this work shows that it is possible to efficiently isolate tasks and domains and to pro-
tect memory at arbitrary granularities in a single physical address space. These new
possibilities not only come at a low cost, but bring higher scalability, simplicity and
future-proof designs as well.

4.1 A CHERI-based RTOS

Current research of incorporating CHERI into modern operating systems concen-
trates on the CheriBSD project [71]. CheriBSD extends the FreeBSD OS with CHERI
primitives and enhances paged memory with address-space memory protection and
compartmentalisation. So far, the research effort mostly resides within user space and
within the same address space, as the separation between processes is guaranteed by
memory translation itself. Capabilities are created, copied and dereferenced in a pro-
cess but not propagated across address space boundaries. As long as the OS does not
falsely allow arbitrary flow of capabilities between address spaces, a capability is an
unforgeable token. As a result, the first implementation of CheriBSD requires minimal
changes in the kernel, other than preserving capability registers on context switches
and converting between capability and integer arguments on system calls. Ongoing
research is exploring more capability-aware kernel designs. For example, the purecap

69

CHAPTER 4. CHERIRTOS

kernel replaces pointers with capabilities for kernel space protection; the co-process
model confines processes to a single address space, using capability compartmental-
isation rather than virtual memory for isolation; the CheriABI work extends prior
user-space-only pointer protection to the OS kernel through construction and main-
tenance of abstract capabilities, allowing kernel control flows, data structures and
compartments to be protected and isolated by CHERI [22].

For embedded CPUs with no MMU, there is no virtual memory to fall back
to. The lack of MMU places all tasks together with the kernel into a single physical
address space, hence the difficulty in isolation. Theoretically, embedded processors
with MPUs can swap MPU registers on context switch boundaries to guarantee task
isolation. However, Section 2.3.2 explains that the high latency of such an approach
often prevents any fine-grained use. Therefore, I would like to investigate how a
capability RTOS and applications might use capability protection for efficient, scalable
task isolation as well as fine-grained memory protection.

4.2 Real-time operating systems

Embedded processors commonly have low-latency and real-time requirements
from real-time applications. For tiny devices and the simplest configurations, appli-
cations are run on bare-metal for only a few dedicated and static jobs. This model
is increasingly obsolete as devices are becoming more capable and the use cases are
becoming more diverse, like the WiFi chips described in Chapter 2 handling WiFi
traffic, real-time events and communications with the main CPU on a single Cortex-
R processor. The increase in processing power, while still highly constrained, enables
programmers to adopt new abstractions like real-time operating systems (analogous
to other modern OSes) and tasks (analogous to processes). Although one may choose
to understand RTOSes through the normal OS concepts, several key aspects are fun-
damentally different in an RTOS environment. For example:

Tasks

Without memory translation, the traditional abstraction of processes is impossi-
ble. Instead, tasks are the abstraction under a lightweight and pure physical RTOS.
The RTOS loads the code and data from ROM, Flash or other external storage, cre-

70

CHAPTER 4. CHERIRTOS

ates the corresponding kernel data structures, adds the task to the scheduler, and
when the task is ready, jumps to its entry point. Note that a task could be viewed as
simply a piece of code and data in physical memory, as there are no inherent bound-
aries between tasks. Any task is able to view the entire memory space. Because of
the security implications, RTOSes rely heavily on various security components like
the MPU and PMP as described in Chapter 2 for any restriction on physical memory
access.

Real-time guarantees

The priority of real-time systems is to guarantee that tasks meet their dead-
lines, not to optimise for raw performance. Meeting the deadlines also ensures the
predictability of the system. The requirements of deadlines may vary: missing a
hard deadline results in catastrophic consequences; missing a firm deadline renders
the computation results unusable; a soft deadline is a desirable target, introducing a
penalty if it is missed, but still allowing the system to proceed normally [26]. Many
schedulers exist, including priority-driven, earliest deadline first, least slack time first,
preemptive and cooperative scheduling algorithms [26]. These target different scenar-
ios and tradeoff between scheduling overhead and real-timeness, and have different
implementation complexities.

Low-power, interrupt-driven and deterministic

Running on batteries or low-voltage power sources, the processors of these sys-
tems usually adopt an interrupt-driven model where tasks are created or started via
external interrupt signals. Combined with real-time requirements, applications de-
veloped around such a model rely on deterministic delays and timings. For instance,
a task must start at a certain delay after the interrupt is fired, or the computation
results must be available at a certain time after an event. Therefore, designs that
work against this principle should be avoided: scheduling algorithms that have O(n)
complexity with respect to the number of tasks should be modified to be O(1); caches
must be introduced with extra care to make sure they do not add randomness to
deterministic routines.

The key differences above illustrate how RTOSes could diverge from typical UNIX
operating systems. The unique design requirements motivated the emergence of em-

71

CHAPTER 4. CHERIRTOS

bedded security components like MPUs and Trustzone. Such requirements are also
the guidelines for the design exploration and implementation in this chapter.

4.3 Prerequisites

This section highlights the prerequisites, especially the engineering efforts to
prepare for a CHERI-aware RTOS.

4.3.1 The MIPS-n32 ABI

The base MIPS-n64 ABI for BERI/CHERI does not function well with the 32-bit
address field in CC-64. Instead, I adopt the MIPS-n32 as the base ABI for a 32-bit
address space. The original o32 from the MIPS32 era is also an option, but it is a
rather old ABI that is not actively maintained in Clang/LLVM. The handbook [29]
provides a detailed tutorial of MIPS-n32.

MIPS-n32 uses 32 general purpose registers in a similar convention as n64, which
is a larger register file than a common embedded configuration. In contrast, ARMv7-
R/M and RISC-V rv32ec all have 16 registers. A smaller register file reduces logic
utilisation and power, but more importantly, reduces the latency of context switches
and interrupts. I modify n32 to approximate a typical embedded ABI as found in
ARM and RISC-V processors.

Registers Convention

$0 zero register
$at scratch register
$v0-$v1 temporary and return registers
$a0-$a3 argument registers
$t0 temporary, caller-save
$s0-$s3 callee-save
$gp, $sp, $fp, $ra global, stack, frame pointers and return register

72

CHAPTER 4. CHERIRTOS

4.3.2 Enabling CHERI-64 in Clang/LLVM

This part is mostly engineering effort to add CHERI-64 support in our Clang/L-
LVM toolchain. CHERI-64 depends on the MIPS-n32 backend in LLVM which was
unfortunately buggy and incomplete. Robert Kovacsics and I investigated the issues
and submitted multiple patches and many of them were merged into LLVM. The
MIPS-n32 now tracks the completeness and quality of the n64 backend.

I proceed to add CHERI support to MIPS-n32, mostly porting the existing fron-
tend and backend CHERI code to the n32 ABI. As n32 supports 64-bit integers,
the compiler has to be modified to further distinguish between 64-bit integers and
64-bit capabilities. To match the hardware, the backend only has 8 general purpose
capability registers to allocate, and the current convention is:

Capability registers Convention

$c1-$c2 caller-save & CCall registers
$c3-$c5 argument registers
$c6-$c7 callee-save

$c8 sratch register, caller-save

$PCC Program Counter Capability
$DDC Default Data Capability
$KR1C trusted stack register

The backend register allocation sees the 8 general purpose capability registers. There
are 3 system capability registers (PCC, DDC and KR1C) which are for the kernel
and will be elaborated later.

The compiler can be found on https://github.com/Jerryxia32/llvm/tree/
n32 and https://github.com/Jerryxia32/clang/tree/n32.

4.3.3 A baseline RTOS

Before I implement a CHERI-aware RTOS, a suitable baseline MIPS RTOS must
be found. Robert N. M. Watson and Hadrien Barral experimented with a pure capa-
bility microkernel, CheriOS, which exercised the idea of object capabilities and object

73

CHAPTER 4. CHERIRTOS

activations. I extract several components from CheriOS to construct a non-CHERI
bare-metal environment on MIPS, including the task loader, round-robin scheduler,
SoC drivers and message queues. The first version supports basic multi-tasking and
inter-task communication.

The initial kernel is hardly an RTOS due to its minimum feature set. To see
what qualifies as a production-level RTOS, I follow the specifications of FreeRTOS [4].
FreeRTOS is developed by Real Time Engineers, Ltd., ideally suited for deeply em-
bedded applications on microcontrollers and microprocessors. Embedded Linux and
FreeRTOS occupy two largest market shares of all embedded environments [3], and
FreeRTOS is a recognised reference implementation. I implement most of the APIs
in its specification, especially those crucial to real-time operations, including:

• Task priorities.

• An O(1) task scheduler, configurable to support all FreeRTOS scheduling modes
like time slicing, preemptive, priority-driven, cooperative, etc.

• Dynamic centralised heap manager.

• Cycle-accurate timer APIs.

• Direct user space task notification to avoid the delay of message queues.

• Dynamic task loading.

Improving the completeness of real-time APIs not only qualifies this baseline system
as an RTOS, but eases the porting effort of applications to this system as well. The
baseline pure MIPS RTOS compiles with the patched MIPS-n32 compiler and runs
on the 32-bit BERI described in Section 3.5.2.

4.4 CheriRTOS

After implementing RTOS APIs, I built CheriRTOS on top of the MIPS sys-
tem. Instead of deploying MPU, SAU or Trustzone for security, the kernel is aware of
CHERI and has access to capability registers. It offers fine-grained memory protec-
tion, task isolation, fast domain transition, return guarantee and real-time guarantee,

74

CHAPTER 4. CHERIRTOS

Hardware BERI CPU

CheriRTOS Scheduler Timer MsgQ

...

...

Cap Coprocessor

Heap
PCC
DDC
otype

User 0
PCC
DDC
otype

User 1
PCC
DDC
otype

kernel msg queue

Fast
CCall

Figure 4.1: Overall structure

etc. Within this kernel, CHERI is the only deployed security mechanism. It aims
to unify the necessary protections solely within one model. This implementation
explores the possibilities while trying to maintain a low-latency and low-overhead
profile. The following sections expand on the key design choices, which demonstrate
how capabilities can fit nicely in such a model.

4.4.1 Overview

The structure of the CheriRTOS system is shown in Figure 4.1. At start-up time,
the boot sequence retrieves the almighty capability (covering the entire address space
with all permissions), derives a code and a data capability, and installs them. The
almighty capability is then discarded. This fundamentally enforces W ⊕ X before
any other capabilities are derived. CheriBSD preserves an almighty capability to
support rwx pages, self-modifying code and capability retagging for memory swapping.
However, none of these use cases are of any interest in an embedded system and
CheriRTOS can afford to enforce this separation at the very beginning of the boot
sequence, significantly complicating any effort to perform code injection attacks.

The boot sequence then loads the kernel and starts the initialisation sequence,
which loads tasks from external storage to RAM. After copying its code and data to
memory, a task is confined within a pair of code (PCC) and data (DDC) capabilities,
with PCC restricted to its code section and DDC restricted to data sections and the
stack. The closure of the PCC and DDC pair defines the initial domain of a task.

75

CHAPTER 4. CHERIRTOS

lw $t0, 8($s0) # implicit, check against DDC
load addr = DDC.base+$s0+8

clw $t0, $s0, 8($c1) # explicit, check against $c1
load addr = $c1.base+$s0+8

Figure 4.2: Example of memory access instructions under CHERI. “$” denotes
registers. Loading a word at address $s0 + 8 (relative to the base of the capability)
into $t0, either implicitly or via an explicit capability register.

The Program Counter (PC) is allowed to fetch instructions only within the
bounds and permissions of PCC. The system operates under the hybrid capability
ABI, hence data loads and stores are restricted implicitly by the bounds and permis-
sions of DDC by default. Any access outside one’s domain can be granted only by
receiving additional capabilities and explicitly specifying the capability to use instead
of using one’s own DDC (Figure 4.2). Note that this means by design, passing raw
pointers between domains is inherently meaningless, as they can only be interpreted
as offsets into the receiver’s PCC or DDC but not into the sender’s domain. The only
option for memory sharing or communication is to send capabilities via capability
APIs.

The overall structure reflects the requirement of an isolated and scalable system.
All tasks reside within individual domains and the architecture does not impose a limit
on the number of domains created. Theoretically, CheriRTOS scales up to arbitrary
numbers of tasks, and should be limited in practice only by otype, memory and
processing power.

4.4.2 OType space

The otype field steals 8 bits in total from T and B in a sealed CC-64 capability,
which allows 256 different types. The kernel simply allocates one unique type for each
task. 256 types is sufficient because it is impractical for the number of tasks in an
embedded environment to exceed this limit. The type allocation is made by giving
each task a “key” capability with the permit seal permission, which has a length of
only one and a unique base. This key allows the receiver to seal and unseal capabilities
of the unique type. Upon receiving the key, each task now has the ability to create
CCall handles and unforgeable tokens.

76

CHAPTER 4. CHERIRTOS

4.4.3 Non-PIC dynamic task loading

Following the specification of FreeRTOS, CheriRTOS implements dynamic task
loading, albeit with a major difference and advantage. Dynamic tasks are tasks that
can be loaded and unloaded during run-time. Since the load address of a binary
cannot be known statically, it has to be compiled in a way that allows loading at
arbitrary addresses. Without CHERI, two solutions exist: either patching all the
addresses in the binary before loading it, or compiling it as Position-Independent
Code (PIC). PIC adds a layer of indirection by treating symbol addresses as offsets
to Global Offset Table (GOT) entries. Instead of patching all addresses, the binary
loader can simply patch a few GOT entries to indirect all accesses around the actual
load address, significantly reducing the complexity of run-time patching. However,
it comes at a cost of extra indirections and memory accesses, which translates to a
reduction in performance and an increase in power.

I take advantage of the fact that memory accesses in CHERI are offset by the
base of capabilities. This offset property creates an obvious means to relocate binaries
at near-zero cost. Figure 4.3 shows how a binary is patched to work at a different
address.

In CheriRTOS, all code is compiled in non-PIC mode starting at address 0. To
load it at a different location, I simply copy it to the target address and bound it with
a PCC or DDC whose base is set to this address. The PCC and DDC will then offset
any memory access, giving the task the illusion that memory still starts from 0 and
that it has its own “address space”. As a matter of fact, supporting dynamic loading
does not need any patching to the original binary, nor does it introduce any run-time
costs, unlike the PIC solution.

4.4.4 Context switch

Capability registers have single-cycle access for most capability instructions.
Context switches, exceptions, and interrupts will also store and load the capabil-
ity register file (including PCC, DDC and the KR1C). This means a context switch
also becomes a domain switch. Because capability registers can be stored or loaded
like general purpose registers, we can efficiently maintain a capability context for each
user task. Problems like secure interrupts, for example, are less of a concern because

77

CHAPTER 4. CHERIRTOS

lui $t0, 0
ld $t1, 0x800($t0)
addi $t1, $t1, 1
sd $t1, 0x800($t0)

lui $t0, 0
ld $t1, 0x900($t0)
addi $t1, $t1, 2
sd $t1, 0x900($t0)

lui $t0, 0x1
ld $t1, 0x1800($t0)
addi $t1, $t1, 1
sd $t1, 0x1800($t0)

lui $t0, 0x1
ld $t1, 0x1900($t0)
addi $t1, $t1, 2
sd $t1, 0x1900($t0)

Patch GOT entry #1 from 0x0 to 0x11000.
lui $t0, 0
addu $t0, $gp, $t0
ld $t0, 0x1a0($t0) // load GOT entry #1 to $t0
ld $t1, 0x800($t0) // load relative to $t0
addi $t1, $t1, 1
sd $t1, 0($t0)

lui $t0, 0
addu $t0, $gp, $t0
ld $t0, 0x1a0($t0) // same GOT entry #1
ld $t1, 0x900($t0)
addi $t1, $t1, 2
sd $t1, 0($t0)

PCC = newPCC, DDC = newDDC // code same as original

Original Address patching

Global Offset Table

CheriRTOS

Figure 4.3: Increment two variables at 0x800 and 0x900. Binary compiled for 0x0
now loaded at 0x11000. Red indicates patching.

context switching to the interrupt code effectively switches to a new set of capability
registers including PCC and DDC.

As capability register file switching is fast and efficient, unlike MPUs, CheriRTOS
does not have to configure capability registers globally at boot time for all tasks, nor
does it have an inherent limit on the number of tasks (and the number of protection
regions for each task) that could be enabled simultaneously. Recall that RISC-V PMP
needs 3 registers to describe a protection region, or 2 in power-of-two mode for double
the number of regions. This at least triples or quadruples the register switching costs.
Some ARM MPUs further divide each entry into sub-regions or implement regions
as memory-mapped registers with much higher latency than a single cycle, which
makes MPU context switches a huge overhead. Thus, commercial embedded chips
with MPUs enabled never use them on a per-task basis. MPU registers are installed

78

CHAPTER 4. CHERIRTOS

on start-up to protect secret keys, kernel, code sections, etc., and remain largely static
till the end.

4.4.5 CCallFast

The paper on fast domain crossing illustrates how CCall crosses and enables
communication between domains with overheads on the same order of magnitude as
function calls [67]. The CCall instruction in the paper is exception-based and the ker-
nel services the exception like other system calls. Unfortunately, software argument
validation, kernel entry/exit and hardware pipeline flushes still impose considerable
overhead. The paper hypothesises a hardware-assisted CCall, where argument valida-
tion, register clearing, type matching and unsealing are done in dedicated instructions
without exceptions.

CheriBSD, Lawrence Esswood’s CheriOS implementation [27] and CheriRTOS
all heavily rely on a fast exception-less mechanism for fine-grained compartments,
making the hypothesised hardware assist necessary. Jonathan Woodruff implemented
the first version of the CCallFast instruction. After that, many discussions were raised
to improve and to finalise its semantics. I pick up the final specification and implement
it in our CHERI hardware (Figure 4.4).

ccallfast $c1, $c2:
1 validate_args ($c1 , $c2)
2 PCC <- unsealed ($c1)
3 DDC <- unsealed ($c2)

Figure 4.4: CCallFast sequence

The validate args() function performs a series of assertions to ensure the call
is authorised in hardware, including sealing, permission checks and type matching.
Upon a successful CCallFast, the sealed code and data capabilities are atomically
unsealed and installed to PCC and DDC respectively, transferring control to the new
domain. It is exception-less and allows atomic domain transitions within a ring. This
instruction has a delay of only one cycle (the branch delay slot).

MIPS branch delay slots are a security vulnerability. I removed the
CCallFast branch delay slot, making it the only jump/branch instruction in CHERI-

79

CHAPTER 4. CHERIRTOS

MIPS without a one-instruction delay. From the code above, CCallFast is similar
to a jump-and-link instruction with the link content from an unsealed CCall data
capability instead of PC+8. Initially, CCallFast followed MIPS by linking to the
DDC register in the delay slot and jumping to the new PC in the next cycle. A
direct exploit was immediately found by copying the unsealed DDC to another reg-
ister in the delay slot. The caller then grabbed the unsealed capability of the callee
for unauthorised access. The vulnerability was patched by disallowing any access to
DDC in the CCallFast delay slot. However, Kyndylan Nienhuis pointed out that if
an exception was fired in the delay slot, the unsealed DDC would be available after
the exception exit for the CCallFast instruction, as the faulty Exception PC (EPC)
of the delay slot was the branch itself. I attempted the exploit using the UNIX signal
delivery mechanism to retrieve the callee’s DDC. UNIX processes are able to register
signal handlers to handle certain exceptions. The exception in the CCallFast delay
slot is delivered to the caller’s signal handler, and by examining the register file in the
signal handler, the caller successfully reads the unsealed DDC of the callee. I have
demonstrated this exploit on both QEMU-CHERI and the FPGA implementation.
A quick mitigation was to clear the DDC in the kernel when a CCallFast delay slot
generates an exception. To solve the problem, I modified the pipeline to implement
CCallFast without an architectural delay slot. This fundamentally removed the vul-
nerability in hardware. Meanwhile, this incident brings attention to the interaction
between MIPS delay slots and security. In the context of domain crossing, the design
of MIPS’ jump-and-link is inappropriate due to the fact that the CCallFast link reg-
ister belongs to the callee and linking is performed before jumping. Since the delay
slot instruction is still controlled by the caller, the linked register can be read or hi-
jacked before entering the callee. This does not expose security vulnerabilities in the
normal MIPS ISA, since domain switches do no occur on jump-and-link boundaries.
However, when intra-address-space domain crossings happen with jump-and-link style
instructions like CCallFast, we must guarantee that the pipeline does not expose any
transient state between linking and jumping, or simply make sure no such transient
state exists.

Direct inter-task communication via capabilities

FreeRTOS implements at least two APIs for inter-task communication. Firstly,
message queues provides buffered communication between tasks. At the beginning of a
communication, the kernel creates communication objects and buffers them in a queue.

80

CHAPTER 4. CHERIRTOS

Receivers do not receive the messages directly, but instead receive the intermediary
objects dequeued by the kernel. Secondly, the task notification mechanism allows
the sender to directly send one message to the receiver, circumventing any queue
manipulation and temporary objects [4]. Apparently, queues permit buffered and
more importantly non-blocking message sending at a cost of more kernel involvement,
higher memory footprint and higher latency, whereas task notifications are a low-cost,
low-latency mechanism with limitations.

In the baseline MIPS RTOS, an idle task waiting for messages will be woken up
if the kernel finds outstanding messages in its queue. In CheriRTOS, as described in
Section 4.4.4, context switching to the message receiver transitions to a new domain,
which automatically guarantees isolation between two ends of the communication.
However, the direct task notification circumvents kernel intervention. Without the
exception path and the kernel, a user space mechanism must exist for atomic and
isolated domain crossing.

CheriRTOS guarantees user space isolation in domain crossing using CCallFast
and unique otype allocation. Each task is able to use the unique key to seal a pair of
code and data capabilities as a handle, and distribute them to other tasks. This does
not expose any memory to others due to the immutability and non-dereferenceability.
The handles can only be used for CCallFast purposes. As described in Section 4.4.5,
the atomic switch on PCC and DDC ensures the caller-callee isolation, which also
means that any memory sharing must be done via passing capabilities instead of raw
pointers.

Register safety

The domain of a task is defined by the transitive closure of all its reachable capa-
bilities. CCallFast atomically replaces the PCC and DDC pair but not all registers.
To avoid leaking capabilities or data, a safe CCallFast should back up all registers and
clear them before the domain transition. Two CCallFast subroutines are provided in
CheriRTOS. CCallFast API 1 assumes the callee can be trusted and only maintains
caller-save registers. API 2 does not trust the callee to maintain the callee-save regis-
ters and therefore backs up all. The first API is intended for frequent calling of system
tasks, e.g. the centralised heap manager or drivers, for further reduced latency. For

81

CHAPTER 4. CHERIRTOS

communication between two user tasks where mutual distrust is more appropriate,
the API 2 should be used.

Capability “system calls”

The user space CCallFast enables another opportunity for low-latency. A user
with limited privileges would often require the system to perform privileged opera-
tions, which is done via system calls. System call instructions serve no other purpose
than generating an exception and signalling the kernel that a system call has been
made. This is the common model adopted in almost all architectures today. Unfor-
tunately, conflating system calls and the exception path is inherently high latency
due to multiple CPU pipeline flushes and kernel handler routines. As a result, many
researchers explore ideas of exception-less system calls [60, 59].

Switching domains with CCallFast requires no exception level transitions. CheriR-
TOS does this by using CCallFast heavily to provide “system calls” in user space like
timer get() and tid get(). A task takes a sealed capability pair to the kernel to di-
rectly CCall kernel functions in user space, resulting in significantly lower latency. Of
course, normal exceptions and interrupts still go through the exception path because
they are unpredictable and are involuntary context switches.

Another advantage of CCallFast “system calls” is its interruptability. The CheriR-
TOS kernel is not preemptive, thus all kernel routines are designed to be short and
deterministic to meet real-time requirements. For frequent system calls, the non-
interruptable kernel routines may accumulate to be a significant portion of the task’s
run time, during which interrupts are blocked. In contrast, CCallFast system calls
are normal user space routines that are fully interruptable. This also makes it less
necessary to build a preemptive kernel.

Device driver isolation. Isolating device drivers is similar to capability sytem
calls. I decentralise the kernel so that drivers are isolated into individual tasks. As
a result, the kernel becomes smaller, further reducing the attack interface for a mini-
mum Trusted Computing Base (TCB). For example, the UART module is just a task
possessing a capability to the UART memory region. Whether another user task is
able to access the UART is determined by whether it is granted the sealed capability
pair to CCall into the UART task. Previously, printf()s are exception-based system
calls into the kernel which has all the rights. Now, tasks which are allowed to call

82

CHAPTER 4. CHERIRTOS

printf() are performing low-latency CCalls into the UART task which only has ac-
cess to the UART memory-mapped region. CheriRTOS not only restricts which tasks
have access to a device, but confines the rights of the device drivers as well.

4.4.6 Return and real-time guarantees

It is crucial to enforce that a CCall to a potentially buggy or malicious callee
returns and meets the deadline. However, a direct CCallFast cannot guarantee this
on its own. To return from a CCall, the caller’s PCC and DDC have to be securely
restored. I implement distributed trusted stacks to protect these capabilities from
tampering by the callee, as shown in Figure 4.5.

TStack

Stack & Data

Code$PCC

$DDC

$KR1C
$KR1C.ptr

Caller's PCC, DDC, time stamp

...
Prologue

CCall

Epilogue
...

Caller

Push TStack
Cap jump

Pop TStack
Cap jump

Kernel CCall Helper
Callee

Prologue
...
...

Epilogue
CCall

Figure 4.5: Trusted stack and CCallFast round trip. Dark indicates kernel-only
objects. The pointer field of $KR1C points to the top of the trusted stack.

Upon task creation, the memory allocator also allocates a small trusted stack
for each task. A kernel capability register ($KR1C, not accessible to user tasks) is
reserved to point to the trusted stack, and a kernel CCall helper is inserted between
the caller and the callee. With a trusted stack, a CCallFast first calls into a kernel
helper, which pushes the caller’s PCC and DDC onto the trusted stack, and then calls
into the callee. A CCall return also returns into the helper, popping the caller’s PCC
and DDC before jumping back. Note that the centralised CCall helper also changes
how sealed capabilities are distributed. Before, sealed capability pairs are directly
distributed to the callers. Now, a sealed pair is submitted to the helper, and another
sealed capability is created by the helper as an identifier to the actual pair. Potential
callers only receive the sealed capabilities to the CCall helper and the identifier. The
helper maintains the trusted stack and does the actual CCall on the caller’s behalf.

83

CHAPTER 4. CHERIRTOS

Interrupt
 n=0

$kr1c.ptr
 (stack top)

Stack[0]
Stack[1]

Stack[2]

...

n reached
stack top?

Read Stack[n]

Stack[n]
expired?

Update Stack[n]->
timestamp, n+= 1

Pop all stack slots
above, clear regs,
restore caller

Exit interrupt

Y

N

N

Y

n=0

Figure 4.6: Interrupt routine to check for expired CCalls

These measures ensure the caller’s return information cannot be tampered with or
cleared; as a result, it is always possible to securely return to the caller regardless of
the callee, further enforcing the control flow between domains.

In addition, a caller may also specify a timeout for a CCall, which will cause a
time stamp to be recorded in a trusted stack entry. Time stamps are regularly checked
by the timer interrupt, and force the callee to return after expiry. The trusted stack
is traversed from the bottom to the top but not vice versa (Figure 4.6). The reason
is that if A calls B with a time stamp of x and then B calls C with a time stamp
of y, when x expires, all subroutines called by B should also be considered expired,
therefore there is no need to scan the stack any further, whereas scanning from top to
bottom does not have this simplicity. Popping the stack restores the caller’s context,

84

CHAPTER 4. CHERIRTOS

and assigns zeros to return registers to signal the caller that the CCall has expired
and real-time mitigation action may be required.

A caveat found in evaluation of the real-time guarantee is that the real-time
check routine itself is not deterministic. The time spent to scan the trusted stack
may vary due to different depths of CCalls, so the interrupt latency can become
unpredictable. To compensate, the size of the trusted stack should be limited, both
to increase determinism and to prevent malicious callees from creating a very deep
stack (e.g. CCalling itself recursively) that severely disrupts real-time checking.

Note that Figure 4.5 omits CCall helper’s interaction with the scheduler, assum-
ing no scheduling events in the round trip. To guarantee real-timeness in practice,
the return path of the CCall helper also calls into the scheduler to check work queues,
ready status and task priorities to determine whether a re-scheduling is required. For
example, a CCall from a low-priority task that manipulated a device might have also
received input for a high-priority or real-time task. Under such circumstances, the
scheduler re-schedules for a high-priority task and performs a context switch. The
CCall return will be resumed after the completion of high-priority tasks, thus the
round trip may not be as straightforward as the diagram depicts.

4.4.7 Secure centralised heap management

Section 2.4.1 explains why a centralised heap is a common source of memory
safety vulnerabilities due to shared and unbounded access. Tasks that request heap
allocations usually have access to the whole heap and its data structures. Worse,
the heap shares the address space with all tasks and the kernel, leading to potential
escalations of memory safety attacks like in the Broadcom WiFi example.

Properties of CHERI capabilities – fast domain crossing, fine-grained memory
protection and capability unforgeability – provide the excellent infrastructure for
solving the problem of a centralised shared heap. Note that in Figure 4.1, the heap
manager is no different from a normal user task to the rest of the system. The only
significance is that it has a relatively large initial domain that covers the whole heap.
Internally, the heap adopts dlmalloc() style metadata and “free-lists” for mainte-
nance (Figure 4.7).

85

CHAPTER 4. CHERIRTOS

8B

Buckets

header

chunk

16B

...
Bucket ID

Bucket ID

Allocator’s
free lists

(unallocated)

User
(allocated)

Figure 4.7: Memory allocator structure (gray boxes indicate that the bucket ID is
sealed inside a sealed capability)

Overall, the allocator maintains multiple bins for multiple sizes of free memory
chunks. If multiple chunks belong to the same bin, they are chained into a linked
list, which means the header of a free chunk contains a capability to the next in the
bin. A request of size n larger than the size of bin m − 1 and not larger than the
next bin m will pick bin m and unlink the first chunk. The unlinked chunk no longer
belongs to the bin and its header is modified to a sealed capability with the heap
manager’s otype. To remember which bin to return to upon free(), the offset in the
sealed capability is an integer of the bin index. The unlinked chunk is restricted by
a CSetBounds to exclude the header and to restrict it to n, before being returned to
the caller via a CCallFast return. Upon free(), the capability has to be rederived
to include the header. The heap manager unseals the header to know which bin it
belongs to. Then, it needs to rederive and grow the capability to its original size based
on the bin index. The heap has to store the bin index instead of using the length of
the capability to derive the bin, because the user might have performed CSetBounds
on it and the heap may then put it in a bin of smaller size, losing available memory.

The advantage of this design is twofold. First, as pointers are meaningless to
another task, heap memory has to be accessed via bounded capabilities, protecting
other allocations and the heap itself. Section 2.4.1 points out the alternative approach
to separate chunk metadata from the chunk itself to avoid metadata contamination.
However, bounded access via capabilities makes this design unnecessary, and it is safe
to use inline metadata for low-latency. Second, the unforgeability and the unique
otype guarantee the correct flow of memory chunks. It is impossible for a user task

86

CHAPTER 4. CHERIRTOS

to free arbitrary memory outside the heap, because the sealed capability header will
not be present and the free() call will be rejected. The double free problem is also
impossible. The first free() call mutates the sealed header back into a linked-list
capability. The second call will therefore fail to see a valid sealed token and will be
rejected. By incorporating the unique sealed token, it is guaranteed that capabilities
flowing between the user and the heap manager originate from the heap region, and
the free-lists are in valid states.

4.5 Evaluation

4.5.1 The MiBench benchmark suite

For the evaluation section, proper benchmarks need to be selected to mimic
the typical workload on IoT devices. Common benchmark suites, e.g, SPEC-CPU,
Dhrystone, Olden and Octane, are not suitable for this task as they target larger
operating systems which include support for multi-threading, virtual memory, file
system handling, etc., and focus largely on overall CPU performance but little on
latency and real-time behaviour. For these reasons, the benchmark suite MiBench was
chosen. MiBench is a free, commercially representative embedded benchmark suite
that shows considerably different characteristics than SPEC2000 when analysing the
static and dynamic instructions of embedded processor performance. It is composed of
various benchmark categories including automotive and industrial control, network,
security, consumer devices, office automation and telecommunications [32]. These
benchmarks attempt to replicate typical use cases which are closer to IoT scenarios
than existing CPU performance-oriented benchmarks.

Capabilities allow benchmarks to run within their own sandboxes, making the
organisation of them inside CheriRTOS relatively straightforward. After the imple-
mentation of the kernel, I also port a large number of benchmarks to CheriRTOS,
including qsort, AES, stringsearch, dijkstra, spam, sha, CRC32, bitcount and adpcm.
The porting effort is mostly adopting the benchmarks to the task isolation and com-
munication primitives of CheriRTOS, converting system calls into capability-based
CCalls and reorganising memory allocation. The benchmarks ported can be parti-
tioned into three categories:

87

CHAPTER 4. CHERIRTOS

1. Self-contained benchmarks: qsort, stringsearch, bitcount, adpcm, CRC32.
These benchmarks involve data processing on certain datasets and function
within their own compartments.

2. Domain crossing: AES, SHA. These benchmarks are converted into CheriR-
TOS core services which operate in separate compartments. A user module,
CCallTest, performs encryption and decryption, hash computing via domain
crossing into these services repeatedly.

3. Memory allocation: dijkstra. This benchmark generates large graphs to com-
pute minimum distances, requiring frequent dynamic memory allocations and
frees.

4.5.2 Non-PIC and compartmentalisation

The immediate advantage that capabilities bring is the ability to create isolated
tasks and to “offset address spaces”. As explained in Section 4.4.3, PIC is no longer
compulsory, which immediately gives a performance advantage during run-time due
to fewer instructions and fewer memory indirections. Comparing non-PIC with PIC
binaries requires proper loading of both. For evaluation purposes, the kernel is aug-
mented with PIC loading routines which identify ELF headers and sections to rewrite
GOT entries around actual load addresses, whereas non-PIC loading is mostly just a
memcpy().

All ported benchmarks are compiled both in non-PIC and PIC. Below demon-
strates the performance. Total cycles, number of instructions and memory access
statistics are reported (Table 4.1).

It is clearly seen that non-PIC alone is able to contribute to a performance benefit.
Although less drastic than the high variation on x86 [52], the impact is still ranging
between 0% and as high as 15%, which is not negligible. The PIC indirections are
reflected by the number of instructions and the memory access behaviour. Table 4.1
shows that the additional data traffic can be as high as 56% (35.93% reduction) for
bitcount.

Two benchmarks that show the most overhead in PIC are qsort and bitcount.
Both have a rather modular design by splitting the code into small functions, and

88

CHAPTER 4. CHERIRTOS

call them repeatedly from multiple call sites. This behaviour suffers significantly from
additional PIC function call prologues. For non-capability systems in which PIC is
compulsory, these benchmarks should merge and explicitly inline tiny functions where
appropriate in order to mitigate the cost.

The experiment also discovered a compiler defect, which explains why in few
cases, non-PIC performance is worse. MIPS PIC reserves $gp for a pointer into
GOT, and further accesses to GOT can simply issue a load based on $gp. However,
the non-PIC mode of the compiler synthesises the address each time before loading a
global variable, which clearly can be optimised by temporarily reserving a register for
continuous global access.

4.5.3 Fast and direct domain crossing

With CCallFast, we are able to bypass the kernel and exception paths, and
directly CCall into the callee – significantly reducing the latency of inter-task com-
munication.

The results show the decomposition of instructions and cycles respectively in
Figure 4.8. The benchmark is done by sending a short message from a user task to an
encryption task, and returning immediately. The first item is a direct service call in the
MIPS setup, which offers absolutely no protection and acts as a baseline, and strictly
speaking not a CCall. Under CheriRTOS, a jump with a raw pointer is impossible
due to task isolation, and must be done via CCall. I implement two CCall paths: one
signals an exception to a kernel handler that performs software otype checking and
unsealing before jumping to the new domain, similar to the exception-based domain

Code qsort AES SHA CRC32 string dijkstra adpcm bitcount

Cycles
PIC 0.875 3.501 1.897 3.258 0.631 0.837 0.909 1.305

non-PIC 0.807 3.456 1.908 3.257 0.601 0.746 0.899 1.204
reduction 7.77% 1.29% -0.58% <0.01% 4.75% 10.87% 1.10% 7.74%

Instr.
PIC 0.611 2.923 1.770 2.635 0.546 0.616 0.805 1.358

non-PIC 0.555 2.894 1.768 2.635 0.529 0.590 0.819 1.204
reduction 9.17% 0.99% 0.11% <0.01% 3.11% 4.22% -1.74% 11.34%

Mem.
PIC 0.183 0.567 0.353 0.154 0.143 0.165 0.526 0.176

non-PIC 0.162 0.546 0.351 0.154 0.136 0.130 0.525 0.113
reduction 11.48% 3.70% 3.36% <0.01% 5.40% 21.64% 0.15% 35.93%

Table 4.1: MiBench: non-PIC vs. PIC (all numbers in billions)

89

CHAPTER 4. CHERIRTOS

crossing in Cortex A and R TrustZone; the other is the fast CCall path, which uses the
CCallFast instruction to perform hardware and exception-less inter-task calls. Some
steps need further clarification. The caller’s prologue involves setting up arguments
and CCall capabilities. The called service acquires a mutex before entering the critical
section due to CheriRTOS supporting multi-tasking. After the service call is finished,
it releases the mutex and returns.

For the capability domain crossing, even without packing multiple checks and
unsealing into the CCallFast instruction, removing four pipeline flushes has already
contributed to 40 cycles, which is 26% of the total round trip. With the atomic
checks and unsealing, jump based CCall removes another 25 cycles (15%). Taking all
changes into account, a reduction of 64 cycles is achieved in total, improving the CPI
drastically from 1.64 to 1.17. This is the result from a version of CheriRTOS that
already supports multiple services in a domain and multitasking. For even lighter use
cases where only a single thread is running at a time, service number checking and
mutex handling can be removed. An experimental single-thread configuration shows
a round trip of only 63 cycles for jump based CCalls, whereas the exception path
takes 127 cycles, a CPI of over 2.0.

CCall cycle decomposition

Direct Jump

Fast CCall

Exception

0 20 40 60 80 100 120 140 160 180

Caller Pipeline Flush Trusted stack Mutex, args, callee, etc

CCall instruction decomposition

Direct Jump

Fast CCall

Exception

Figure 4.8: Instruction and cycle counts for a round trip: direct jump vs. capability
jump (fast CCall) vs. exception based CCalls

90

CHAPTER 4. CHERIRTOS

4.5.4 Register safety, return and real-time guarantees

The previous evaluation focuses on basic memory safety and task isolation, which
is only sufficient when the caller has certain level of trust of the callee. Obviously,
there is a spectrum of protection and trust levels that need to be explored, shown in
Table 4.2. These protection levels have all been explained in Section 4.4.5.

I extend the CCallFast routines with the additional guarantees and evaluate their
overhead in Figure 4.9. The bar chart at the top is additive, and the next protection
level includes the costs from the previous level. The bottom shows the additional
costs in the timer interrupt. Both the return and the real-time guarantees require the
timer interrupt to check the time stamps on the trusted stack. The return guarantee
computes a hash and examines a random stack slot at a time, while real-time guarantee
has a cost that depends on the run-time trusted stack depth, between examining only
one stack slot (min) and examining a full stack (max).

The full traversal inspects all slots on the stack and checks expiry for all time
stamps. This full traversal adds non-determinism, as the timer interrupt delay now
depends on the depth of the trusted stack, but may be necessary for tasks requiring
precise real-time guarantees. The worst case performs a full trusted stack traversal
which can add a maximum delay of 100 cycles when all 4 stack slots are visited, and
creates a variation of 60 cycles (0.6µs) between the extremes. The non-determinism
of the timer interrupt delay is the very reason why the depth of the trusted stack is
restricted to only 4. The depth could be limited even further for more determinism.
In practice, a depth of 4 might still be too permissive. The deepest call chain observed
in this benchmark setup is a round trip of an encryption cycle from a user, in which
the chain involves the user calling the AES module, which calls the memory allocator

Protection level Overhead

Simple CCallFast Setting up capability arguments for trampoline and callee

+ register safety Clear registers. Save and restore callee-save registers

+ return guarantee Additional flags and random checking of the trusted stack

+ real-time return Full trusted stack traversal

Table 4.2: Spectrum of protection levels and overhead

91

CHAPTER 4. CHERIRTOS

min max

min max

Instruction and cycle count of fast CCall round trip

Instr.

Cycles

Instr.

Cycles

0 20 40 60 80 100 120 140

Real-time returnReturn guaranteeReg safetySimple CCallFast

Additional cost per timer interrupt

Instr.

Cycles

Return
guarantee

Real-time
return

Figure 4.9: Overhead of different protection levels

for a temporary buffer. The allocator under debug mode may call the system logger to
write debug messages into a circular trace buffer, which later (after the real-time task
ends) emits output to UART or can be read for offline analysis. This example creates
a CCall depth of 3. As for almost all cases, a CCall depth of 1 or 2 may already be
sufficient, as it is unlikely that a real-time task would perform a CCallFast to further
deepen the stack.

4.5.5 Overall system performance

This section investigates the impact of the overall system performance by com-
paring the CheriRTOS implementation with its pure MIPS baseline. The pure MIPS
kernel contains all modules in a single physical address space. Self-contained bench-
marks access their datasets (e.g., arrays to be sorted in qsort, strings to be searched in
stringsearch, etc.) on the heap outside the domains of the benchmarks via constrained
capabilities. For the rest of the benchmarks, AES and SHA stress domain crossing
performance and dijkstra stresses both domain crossing and heap allocation. Another
user task, ccalltest, CCalls into AES and SHA to perform encryption and message
digest respectively on 1MiB of data. Due to the tight memory budget, the test has

92

CHAPTER 4. CHERIRTOS

a data buffer of only 8KiB, therefore 128 domain crossings are required for AES or
SHA. In the CHERI case, these are safe domain transitions with memory safety; in
the baseline case, these are simple function calls passing unprotected pointers.

However, directly comparing the two may result in an unfair advantage towards
CheriRTOS due to non-PIC alone contributing to up to 15% of the performance
increase. To expose the overall cost of a capability system, all benchmarks under
CheriRTOS are compiled into PIC (although unnecessary) to give up this advantage.
All benchmarks now should show the overhead of capabilities.

I set the timer interrupt at 100Hz, the suggested rate by FreeRTOS, to also
detect the expiry of real-time tasks (a resolution of 0.01s). The results are shown in
Figure 4.10.

Overall, the cycle overhead falls below 5%, varying from 4.7% to almost no
overhead. Dijkstra sees the highest overhead because each node of the graph is dy-
namically allocated with CCall. In addition, as a capability is double the size of a
32-bit pointer, graphs constructed with capabilities have a larger cache and memory
footprint. Despite these issues, Dijkstra’s cycle count is still only 4.7% above the
insecure baseline.

In two benchmarks, namely AES and adpcm, a negative overhead is sometimes
observed. Tracing shows that having an additional 8 registers used for capabilities
relieves register pressure and reduces stack loads and stores. Although in the extreme

-2

0

2

4

6

8
Cycles Instr. Data Accesses

qsort
AES

SHA
CRC32

stringsearch
dijkstra

adpcm

bitcount

-10.5%

(%)

Figure 4.10: Overall overhead across benchmarks

93

CHAPTER 4. CHERIRTOS

case data accesses are reduced by 10%, they are typically on the stack with good
spatial locality, which normally hit in the data cache and have less impact on cycles.

4.6 CheriRTOS vs. state-of-the-art

This section highlights how CHERI provides a superior substrate to the state-of-
the-art solutions, especially in terms of meeting the goals set in Chapter 2.

Task isolation. CheriRTOS is able to create an arbitrary number of mutu-
ally isolated tasks1. In contrast, MPU and TrustZone have trouble supporting more
simultaneous tasks than the number of protection regions the scheme supports.

Fine-grained memory protection. Due to the limited number of protected
regions, state-of-the-art solutions cannot protect memory at arbitrary granularities
or on a per-object basis. CHERI capabilities are user space types that can flow
between registers and memory just like traditional pointers, having no restriction on
the number or the size of protected objects.

Fast and secure domain crossing and inter-task communication. The
memory protection components in state-of-the-art solutions are normally kernel-only,
thus switching between domains is inherently impossible without kernel intervention.
CheriRTOS offers direct inter-task communication via CCallFast, which bypasses the
kernel and switches the domain atomically, purely in user space.

Secure centralised heap management. Secure and performant centralised
heap management depends on fine-grained memory protection, task isolation and fast
inter-task communication. Here, the prerequisites are all met.

Real-time guarantees. Non-CHERI commercial RTOSes already provide real-
time primitives like real-time events and timers. CheriRTOS makes them secure by
forcing a domain switch on each context switch and by implementing the trusted
stacks. Malicious callees are unable to block the system, and the real-time handler’s
or the caller’s context cannot be tampered with.

1Apparently, a unique otype per task restricts the maximal number of tasks. CHERI-64 supports
256 otypes which is much higher than typical embedded processors can multitask. Even if the otype
limit is a concern, alternative designs exist like allocating a single otype for all user tasks and using
additional identifiers to distinguish among them.

94

CHAPTER 4. CHERIRTOS

Scalability. As described previously, there are no restrictions on the size and the
number of tasks and protected regions. Having multiple isolated tasks each accessing
the heap via numerous protected capabilities is simply not achievable via state-of-the-
art solutions.

4.7 Summary

In this chapter, I presented CheriRTOS, a CHERI-based real-time operating sys-
tem for embedded systems. A capability approach addressed many existing memory
safety problems for embedded systems, and also enabled novel, efficient, and scalable
solutions to task isolation with control-flow robustness. The evaluation confirmed that
these benefits could be achieved without violating the performance and determinism
constraints of embedded systems.

The review of state-of-the-art security architectures for embedded systems in
Chapter 2 demonstrated the difficulty in finding a comprehensive security framework
that is efficient, scalable and generic. Nevertheless, this implementation relied on the
fundamental protection mechanisms of CHERI, which were utilised by the CheriR-
TOS platform to enforce fine-grained memory protection, task separation with fast
and secure inter-task domain crossing, secure device drivers, secure centralised heap
allocation, return and real-time guarantees.

I envisage a future where a fine-grained and unified security interface eases the
safe design and deployment of embedded software systems. For example, removing
position-independent code or run-time relocation results in a much simpler binary
loader; separating peripherals from the kernel reduces its complexity and the attack
surface; fine-grained memory protection removes many manual (and likely incom-
plete) bound checks and assertions made by programmers, resulting in higher assur-
ance and performance. New software stacks targeting CheriRTOS specifically could
easily achieve high robustness and efficiency, with less effort than state-of-the-art
approaches.

95

CHAPTER 4. CHERIRTOS

4.7.1 The problem of temporal memory safety

Capabilities preserve bounds and permissions but do not prevent temporal mem-
ory attacks. If carefully designed and timed, an attacker could return a memory
chunk to the heap manager by calling free() but still retain the capability. Later,
the memory chunk is allocated to another user which now the attacker has access to.
So far, no special measures are implemented to defend against such attacks.

The next chapter will investigate how CHERI can take advantage of its spatial
safety properties to defend against temporal memory vulnerabilities.

96

Chapter 5

Temporal safety under the CHERI
architecture

A question that arises from the previous chapter is how to prevent a centralised
and dynamic heap from being exploited temporally. The difficulty is tied to the na-
ture of CHERI capabilities: they are unforgeable tokens designed to enforce bounded
memory access, but do not possess any temporal semantics. However, capabilities
being bounded and distinguishable from integers is sufficient to make temporal safety
possible. In this chapter, I explore how feasible temporal memory safety is for CHERI,
proposing and implementing architectural, micro-architectural changes and software
prototypes, especially for the sweeping revocation scheme. As temporal memory safety
under CHERI is a relatively new frontier, this chapter does not restrict its scope to the
embedded space, but focuses on the most common denominator of both the desktop
and the embedded configurations. The results, conclusions and research byproducts, I
think, are applicable to a variety of CHERI situations and should be the prerequisites
of more elaborate and complex CHERI temporal safety schemes in the future.

5.1 Background

This section gives a quick overview of the defenses and mitigation techniques
against temporal memory safety in particular.

97

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

Software defenses

Temporal memory safety violations have been one of the major sources of security
vulnerabilities for unsafe languages like C and C++. Due to the lack of bounds and
time information in such languages, guaranteeing temporal safety can be as challeng-
ing as enforcing spatial memory safety. FreeGuard already offers an overview on the
categories of heap memory safety violations as well as existing debugging and defense
tools [58].

Apart from guarding against spatial overflows, some memory allocators directly
target temporal safety by building safe-reuse allocators. The Cling allocator [1] pro-
poses a type-safe strategy, where allocations of the same type are grouped within the
same buckets and memory reuse cannot occur across buckets. Since most use-after-free
attacks hijack function tables of a different type, this defense works reasonably well.
However, the functionality depends on identifying objects of the same type, which
many require examining the source program, identifying the call sites or even unwind-
ing the stack. Failing to correctly extract type information leads to ineffective reuse
separation and possible vulnerabilities. FreeGuard [58] combines multiple defenses
and optimises them for production use, in which one idea used by temporally-safe
allocators is to buffer freed chunks in quarantine zones for delayed reuse. To actually
invalidate access to freed memory, allocators also use paged memory to implement
virtual address non-reuse and to trap illegal access [51, 19]. Of course, using paged
memory this way has its shortcomings, like the coarse granularity, the large sizes of
page tables and the reduction in TLB efficiency. For debugging, AddressSanitizer
creates auxiliary bit maps to track allocated spaces [56]. A mismatch between the
bit map and a memory access signals an attempt to visit freed memory. However,
such debugging tools usually come at high run-time costs and are cautiously used in
production.

Hardware support

In addition to the attempts of developing temporally-secure allocators and de-
bugging facilities, other schemes attack the problem directly at the hardware and
architectural level.

Historically, many centralised capability systems store capabilities in dedicated
data structures, and applications possess tokens that reference actual capabilities in

98

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

capability tables [16, 73]. A memory access is done via an indirection through the
table. To remove dangling capabilities, a distributed capability system like CHERI
must sweep all reachable memory to locate all capabilities a process could have cre-
ated, whereas a centralised table takes significantly less effort to locate and invalidate
capabilities. However, these systems incur a high overhead due to the cost of capabil-
ity indirections and lookups among other performance penalties, and are not widely
adopted in production.

Another category of hardware temporal safety involves memory tagging. Mem-
ory tags can assist at different levels and different granularities, annotating address
validity, version numbers, object types, ownerships and so forth [31]. For example,
the SPARC Silicon Secured Memory (SSM) tags pointers and cache lines with version
numbers. An access via a marked pointer must also match the version of the cache
lines, otherwise an exception is raised [50]. This enables the invalidation of stale refer-
ences by simply changing the version numbers in cache lines, although problems arise
when we run out of version numbers and are forced to reuse them, and it is yet to
be seen how much stronger the security guarantee is when systems are built around
such a mechanism. Similarly, the AArch64 HWASAN combines memory tagging
(using top-byte-ignore) with a modified compiler toolchain for a hardware-assisted
AddressSanitizer-like scheme [56, 57], which is also using unused bits in pointers as
memory tags to detect stale references.

As previously discussed, many temporally-secure allocators are built by limiting
the reuse of virtual addresses and leveraging the MMU. Similarly in peripheral accesses
with I/O virtual addresses, the Input-Output MMU (IO-MMU) not only translates
addresses but also blocks any stale references from peripherals. This is done by
quickly unmapping IO-MMU entries after a transaction with a peripheral is finished,
and assigning new mappings for later transactions [53]. However, as MMUs were not
originally designed for temporal memory safety, these schemes typically offer coarse-
grained solutions only at the page level. Meanwhile, poor TLB performance and
the overhead from frequent map and unmap calls is the major factor why dynamic
IO-MMU mapping is not enabled in most systems [53].

Probabilistic in nature. Note that till this point, no scheme guarantees deter-
ministic temporal memory safety. Any scheme is forced to reuse a resource at some
point of program execution. Quarantine buffers, for example, eventually fill up and

99

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

cannot grow any further; address non-reuse cannot grow the virtual address space
indefinitely due to page table sizes and TLB inefficiency; the limit on the number of
colours for memory tags means they eventually wrap around. Once a resource needs
to be reused, it no longer prevents old references from being dereferenced. Thus, the
aforementioned schemes usually present probabilities: memory tagging with n tag bits
has a probability of 1

2n to detect tag mismatch on average; Cling type identification
relies on heuristics of the call stack and there is the probability of failing. In practice,
the detection or mitigation probabilities of said schemes are considered sufficiently
high, but this means attacks are still possible. Also, in the hands of an attacker,
an average probability might not be useful. Take ASLR as an example, its random-
ness can be dramatically reduced by attacker’s intervention and active probing, like
in [30]. In the end, a probabilistic approach guards against bugs but may not defend
well against dedicated attacks.

5.2 Opportunities of CHERI temporal safety

CHERI does not target temporal memory safety directly, and a valid capability
is valid at any point on the time axis. However, the most notorious form of temporal
violation, use-after-reuse, can still be prevented. Note that I use use-after-reuse to
phrase the problem because it is more accurate. A pure use-after-free without reallo-
cation of the underlying memory is less dangerous, which usually only results in heap
metadata corruption that can be prevented by metadata segregation. In practice, it
is almost guaranteed that a use-after-free will eventually become use-after-reuse, as a
reasonable memory allocator will try to buffer freed memory chunks and hand them
back to the user for efficiency. However, the difference between the two is important
because the temporally-safe allocator later in this chapter enforces temporal safety
but does not prevent any dereference on freed (but not reused) memory.

5.2.1 Deterministic temporal memory safety

Notably, CHERI achieves non-probabilistic safety through its two properties:
unforgeability and monotonicity. If a heap allocator distributes a capability to user
code, it is guaranteed that only subset capabilities will ever exist in the user. To
disable access to a memory region, one can sweep through the address space and

100

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

identify capabilities pointing to freed memory. Several approaches exist to identify
such capabilities, including shadow maps and subset testing (explained later). Once a
stale capability is found, one may either zero the capability or strip the tag to revoke
its rights.

Revocation, the act of retracting granted authority, is a key design choice in
any capability system. In a centralised capability system, a capability table is the
single accessible point for revocation state with strong integrity as described in Sec-
tion 5.1. In other systems like CHERI, capabilities are distributed throughout the
system, protected via other means, and must be all swept and deleted in order for re-
vocation to take place. This dissertation uses the same term revocation for distributed
capability systems as well to align with existing literature, although the details differ
substantially.

A revocation pass or sweeping pass in CHERI invalidates all stale references
pointing to certain freed memory, which can now be safely reallocated to other con-
sumers, knowing that no stale references could exist at this point. To the best of my
knowledge, sweeping is necessary for revocation in distributed capability machines.

The properties of CHERI let us precisely find and revoke all stale references,
giving deterministic temporal memory safety. In contrast, conventional architectures
cannot support the concept of revocation; once the underlying memory is reallocated,
the defense on a conventional machine immediately becomes probabilistic at best.

5.2.2 Spatial and temporal safety combined

Unlike other aforementioned protections, which usually handle one particular
category of vulnerabilities at a time, CHERI deterministically and architecturally
guarantees both spatial and temporal memory safety. In fact, the CHERI tempo-
ral safety scheme described so far depends on the strong spatial safety provided by
bounded capabilities: without bounded memory access, it is impossible to identify ca-
pabilities pointing to a certain memory region, thus revocation as a temporal defense
is also impossible. In other words, CHERI temporal memory safety co-exists with its
spatial safety, giving much stronger guarantees than previous partial and probabilistic
approaches.

101

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

5.2.3 Possible but inefficient

The theoretical possibility of deterministic temporal safety does not translate
well into a practical implementation if the CHERI ISA remains in its current form.

Locating capabilities. Sweeping through memory to check whether each word
is a capability and whether a capability needs to be revoked is costly. To identify
whether a memory word is a capability, one must load it into a register before per-
forming CGetTag to get the result. This means all memory words are fetched into the
cache, even though most of them do not have their tags set and are ignored immedi-
ately, wasting significant amount of DRAM traffic and cache capacity. To accelerate,
one should be able to quickly locate only valid capabilities to avoid unnecessary work.
This is significant for pointer-light applications, since such a mechanism allows the
sweeper to skip pure data regions to dramatically reduce the overhead of sweeping.

Lack of temporal-safety-aware software for CHERI. Current software
stacks ported to CHERI do not have a focus on temporal safety. For example, heap
memory allocators for most modern OSes (like dlmalloc() and jemalloc()) priori-
tise the caching of freed memory chunks. They attempt to reuse chunks as much as
possible for minimum memory footprint and maximum cache efficiency. Of course,
this policy directly conflicts with temporal safety and will not function well with
revocation. For example, to re-allocate a memory region to a malloc() call, stale
references to this region need to be invalidated first. Unfortunately, under a maxi-
mum reuse policy, this could potentially require a memory sweep for each malloc() to
perform invalidation, introducing unacceptable overhead. As a result, software stacks
must be redesigned to be aware of temporal safety semantics.

5.3 Optimising for efficient sweeping revocation

The cost of sweeping revocation depends on two major factors:

Overhead = cost per sweep × frequency of sweeping

Improving the efficiency should focus both on reducing the cost of each sweep and on
minimising the frequency of sweeping in an application. Therefore, the two themes
after this section are:

102

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

• Hardware assists to rapidly locate and revoke capabilities through memory,
which reduce the cost of the first factor.

• Design of a new memory allocator to minimise the second factor.

5.4 Architectural/microarchitectural proposals and im-
plementations for fast sweeping

I implement two important optimisations that dramatically increase the efficiency
and overall speed of memory sweeping as well as reducing the corresponding DRAM
traffic. Both are implemented in the CC-64 setup.

• CLoadTags to read multiple tag bits from the tag cache with non-temporal
semantics.

• Page table cap-dirty bits to locate capabilities on a page granularity.

5.4.1 CLoadTags

A tagged architecture in CHERI extends each memory word with a tag, which
requires all data paths (registers, caches and DRAM) to handle addtional tag bits. In
the current implementation, tags in the memory hierarchy are depicted in Figure 5.1.

Figure 5.1: Tags in the CHERI memory hierarchy and the refactoring of caches

103

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

Chapter 2 already describes how CHERI uses off-the-shelf DRAM to support tags
and how a tag cache improves its efficiency.

I modify the pipeline and the L1 and L2 caches to enable fast tag access. Before,
tags in each cache line are interleaved into 4 banks with data, thus reading all tags
in a cache line requires 4 read accesses. I separate data and tags, which means
each capability access now issues two separate lookups (Figure 5.1 right). In this
implementation, it has minimum impact on the critical path as I parallelise the two
lookups. With this structure, it enables the hardware to do bulk tag reads (far more
than the number of tags in a single cache line bank) in a single access. Further, I
modify the tag controller to accept tag-only requests. Before, each request that reaches
the tag controller will issue a lookup in the tag cache and a request to DRAM. The tag
controller then combines the two responses to return actual tagged memory words.
When a tag-only request is received, the controller does not visit DRAM, but only
returns the tags from the tag cache as data, and the number of tags returned can be
up to a register width (64 bits under CHERI-MIPS).

Format: CLoadTags $rd, $cb

056101115162021252631

0x12 0x00 rd cb 0x1E 0x3F

Semantics

let vAddr = getCapCursor(cb_val);
let vAddr64 = to_bits(64, getCapCursor(cb_val));
if (vAddr + 16 * cap_size) > getCapTop(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)
else if vAddr < getCapBase(cb_val) then

raise_c2_exception(CapEx_LengthViolation, cb)
else if not (vAddr64[6..0] == 0b0000000) then // 128-byte cache line

SignalExceptionBadAddr(AdEL, vAddr64)
else

let pAddr = TLBTranslate(vAddr64, LoadData);
for i in [0..16)

let tag[i] = MEMr_tag(pAddr + i*cap_size);
wGPR(rd) = zero_extend (tag[]);

Figure 5.2: CLoadTags. Assuming 128-byte cache lines and 64-bit capabilities.

104

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

To allow the programmer to take advantage of the above micro-architectural
changes, I expose this by introducing a new instruction, CLoadTags (Figure 5.2). Ar-
chitecturally, it shares the format of CHERI memory instructions and returns multiple
tag bits at a given address into a general purpose register. If the returned value is
zero, no valid capabilities exist in this batch and the revocation routine can skip all
corresponding capability words. If not, capability words with tags set are then fetched
for testing. In addition, a CLoadTags generates tag-only memory requests to the tag
controller, which means a zero return value will also avoid data traffic from DRAM
to the cache hierarchy (if the corresponding data do not exist in caches).

This instruction can theoretically return XLEN number of bits, where XLEN
is the width of the general purpose register. In practice, a design of this nature
would complicate the implementation substantially as this many tags can span across
multiple cache lines, introducing coherency problems both between the L2 and the tag
cache, and between multiple cores. Eventually, I decided to restrict this instruction
to return only the tags of a single cache line. First, I do not think the complexity
to make this instruction coherent justifies its benefit. Second, reading tags on a
larger granularity can be better achieved by another architectural assist that will be
discussed next, namely the page table cap-dirty bits (see next section).

By restricting CLoadTags to a single cache line, I further implement non-temporal
semantics for this instruction. CLoadTags is used to sweep through memory and it is
not helpful to cache its response. Therefore, this instruction goes through the cache
hierarchy normally but the response is not cached. This greatly reduces cache thrash-
ing, which has significantly less performance impact for pointer-light applications.

5.4.2 Page table cap-dirty bit

I further take advantage of the virtual memory structure to accelerate sweeping
on a page level. For almost all ISAs, virtual memory incorporates both translation and
protection in the Page Table Entries (PTEs). Memory accesses are checked against
multiple PTE permission bits to enforce access control, typically including read, write,
execute and kernel permissions. CHERI extends the MIPS PTE to control the flow
of capabilities. Two additional bits indicate whether capability loads and stores are
prohibited in a page.

105

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

With this infrastructure already in place, I add a new cap-dirty bit. All PTEs are
created with this bit cleared. The first capability store to a page will trigger a fault
that is captured by the kernel, which does not terminate the program, but instead
sets the bit to indicate that this page has received capability stores. With this bit set,
subsequent capability writes to the page will proceed and no exception is triggered.
Notice that this bit has the same behaviour as the prohibit-cap-store bit in the
PTE entry, but is handled differently by the exception handler.

To accelerate sweeping in user space, all PTE cap-dirty bits can be written into a
bit-vector structure so that a revoker can read multiple dirty bits. This complements
CLoadTags on a much larger granularity. As each bit typically covers a 4-KiB page,
a read of XLEN bits can locate (or even completely skip) potential pages of 256-KiB
in memory.

However, this approach introduces the problem of false-positives. As the bit is
only set on the first capability write to a clean page but not cleared after clearing all
capabilities in a page, there are pages with the cap-dirty bit set but whose capabilities
are no longer present. Therefore, the revoker has to ensure that whenever it discovers
a false-positive page, it also clears the cap-dirty bit to reduce the false positive for
subsequent revocations. Although false positives are a problem, my evaluation finds
that in practice they do not appear to be a hindrance as the false positive rate is
usually negligible, and a revocation pass will clear false positives anyway. This is also
the reason why I only implement CLoadTags on a single cache line, as locating tags
on a larger granularity is better achieved by this approach instead of reading tags of
multiple cache lines while maintaining tag coherency.

5.4.3 Core dump study

Methodology

To allow fast prototyping and evaluation with high coverage (many applications
do not yet have MIPS64 ports), I gather core dumps under x86-64 FreeBSD 12 for
sweeping speed study. For the pointer distribution in data sections in a core image, I
do not think that it is very different across ISAs as long as the pointer size and memory
allocation strategy are the same. Therefore, I believe the core dumps obtained on x86-
64 can be used to evaluate hardware revocation efficiency on CHERI-64.

106

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

I collect the core dumps by hijacking malloc() calls so that every nth (n de-
pending on the revocation interval) will fork the process, and the child process aborts
immediately to leave a core dump. The core dumps are then processed by analysis
tools to mark pointers and calculate pointer distribution statistics. As non-CHERI
architectures cannot distinguish between pointers and data, I employ heuristics to
identify pointers by examining whether their values point to valid data ranges (glob-
als, stack, heap, etc.) in the address space. This approach generally works well and
is used in many conservative garbage collectors [8, 44]. I find that this algorithm
usually fails to identify null pointers. However, on CHERI this is not a problem as
null capabilities are of no interest to revocation.

The processed core dumps with marked pointers are transferred to the CHERI-64
FPGA. Before doing a sweep, it re-derives the marked pointers into actual capabilities
to simulate its core image as if the application were compiled and run under the
purecap (all pointers are capabilities) ABI. It then starts the sweeping revocation
and measures its cycle and instruction count as well as cache and DRAM traffic.
This allows to report the performance of the implemented architectural and micro-
architectural changes on a wide range of applications.

Study of false positive pages

To deploy page table cap-dirty bits, it needs to be shown that false positives are
not a major setback. A high false positive rate indicates that many pages are dirty
but actually contain no capabilities, reducing its effectiveness.

To verify this, the core dumps I gathered from each application are sorted chrono-
logically. Each core dump identifies pages which have at least one pointer. On CHERI,
these pages will be marked with cap-dirty bits, and a set of cap-dirty pages is estab-
lished. With n core dumps, I compare the set from core dump m with m + 1 (m
ranging from 1 to n − 1), and the pages that are marked in set m but not in m + 1
are false positive pages. This number is then divided by the number of total pages to
derive the false positive rate.

In the evaluation, I find that the false positive rates tend to be negligible and
almost zero for many applications (Table 5.1). Node.js running regexp shows a no-
ticeable rate of 2.25%. This pattern also gives insights into how applications tend
to allocate memory. Once a page is used for pointer-based data structures (graphs,

107

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

trees, linked lists, etc.), it is likely to hold similar structures in the future and not for
pure data. The results indicate that in practice, false positive pages do not signifi-
cantly occupy the address space, and PTE cap-dirty bits is an effective mechanism to
accelerate sweeping revocation.

5.4.4 Performance of fast sweeping

I evaluated 120 core dumps from more than 50 applications, ranging from pointer-
light C programs to pointer-heavy web browsers and Javascript engines. To evaluate
individual hardware optimisations, I compare each with the unoptimised baseline
in terms of cycle count and number of DRAM data transfers (not considering row
activations), and calculate their percentage reductions. To correlate the performance
with pointer distribution characteristics, three key metrics are extracted:

pointer density (ptr dens) = no. of pointers

total no. of double words
(5.1)

cache line dirty density (cache dens) = no. of cache lines with at least one pointer

total no. of cache lines

(5.2)

page dirty density (page dens) = no. of pages with at least one pointer

total no. of pages
(5.3)

Table 5.1: Sweeping performance of sample applications. The percentages in the last
four columns indicate relative reduction compared with the baseline. Negative means
overhead instead of reduction. Tildes indicate negligible numbers.

benchmark FP
rate

ptr
dens

cache
dens

page
dens

CLoad-
Tags
cycle

CLoad-
Tags

DRAM
cap-dirty

cycle
cap-dirty
DRAM

sqlite3 ˜ 0.12% 0.28% 2.56% 90.04% 98.21% 97.07% 97.41%
bsdtar-bzip2 ˜ 1.56% 3.52% 5.81% 85.50% 95.12% 92.47% 94.75%
ssh-chacha20 ˜ 6.73% 14.04% 20.67% 71.44% 86.41% 73.83% 83.01%
chromium-

main ˜ 7.41% 20.62% 28.92% 64.45% 78.35% 64.90% 71.25%

chromium-
renderer 0.69% 18.34% 37.15% 44.23% 44.91% 62.22% 44.79% 54.71%

js-splay 0.08% 75.15% 95.16% 96.84% -1.35% 5.66% 1.51% 3.88%
js-early boyer 0.62% 52.13% 66.82% 73.47% 16.96% 33.88% 16.63% 26.29%

python3 ˜ 26.35% 63.92% 76.85% 21.41% 37.00% 17.17% 24.80%
olden-mst ˜ 22.03% 92.09% 93.65% 0.54% 9.19% 4.14% 7.73%
js-regexp 2.25% 24.25% 44.12% 68.46% 37.31% 55.45% 23.66% 30.98%

108

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

Several representative applications are shown in Table 5.1. Both optimisations
are able to accelerate sweeping in all applications.

CLoadTags shows a significant performance gap between pointer-light and pointer-
heavy applications. Pointer-light ones dramatically benefit from a reduction of both
cycles and DRAM traffic, up to 90% and 98% respectively. CLoadTags allows the
revoker to skip lines that contain no capabilities. Therefore, the cycle and DRAM
data transfer reductions are proportional to the dirty cache line density. A minor
overhead does show in js-splay. With almost all cache lines dirty in this benchmark,
CLoadTags becomes pure overhead as it cannot skip but has to fetch the cache lines
anyway, wasting an additional check per cache line. However, js-splay is a synthetic
benchmark targeting object creation and destruction performance. For pointer-light
and other real-world applications, this optimisation drastically improves the efficiency
of sweeping revocation by taking advantage of the tag cache.

Cap-dirty bits show a similar pattern to CLoadTags, albeit on a larger granu-
larity. In the evaluation, extra pages are marked dirty to represent the false positive
rates, although this number is typically too low to have any effect. Also similar to
CLoadTags, the cycle and DRAM reductions correspond well to the page dirty density.

5.4.5 Pointer concentration

Even with the same pointer density, the sweeping speed can still vary depending
on other factors. One important factor is how concentrated the pointers (capabilities)
are stored within cache lines due to CLoadTags working on a cache line granularity.
Take python3 and olden-mst in Table 5.1 as an example. The latter clearly has a
lower pointer density but fails to show comparable sweeping speed increase with the
former. Clearly, this demonstrates that even if reducing the number of pointers is
not an option, developers are encouraged to concentrate the allocation of pointers
to occupy fewer cache lines. This might require novel data structures and memory
allocation schemes to improve over existing pointer and data layout in memory.

109

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

5.5 New allocator design for reduced sweeping frequency

5.5.1 Brief overview of dlmalloc()

The Doug Lea’s Malloc (dlmalloc) [40] is widely used in systems like Android and
many embedded devices, and is the basis of the allocator of the GNU C library (glibc),
which in turn is commonly deployed on modern Linux systems. Two key properties
of the allocator design are boundary tags and binning. The former ensures that
two bordering unused chunks can be coalesced into one larger chunk, and all chunks
can be traversed starting from any known chunk in either a forward or backward
direction. The latter chains chunks of similar sizes and categorises them into separate
bins for caching and searching. For large sizes above the mmap threshold, dlmalloc
directly manages them via mmap and munmap calls to immediately release large chunks
of memory.

5.5.2 Implementation of dlmalloc nonreuse()

Modern allocators attempt to re-allocate recently freed chunks in hope of max-
imising the effect of CPU caches, TLB entries, etc. However, this strategy demands
extremely high numbers of sweeps to achieve a non-reuse policy. Without proper al-
locator support, the frequent sweeping incurs an unacceptably high cost to both run
time and DRAM traffic. Therefore, I implement dlmalloc nonreuse with a modified
allocation policy, which avoids immediate reuse of recently freed chunks to reduce the
number of sweeps required.

The original dlmalloc consists of two spaces: in-use chunks and free chunks in
free-lists. I introduce a third quarantine space which consists of memory chunks that
are freed but have not been revoked (may still have stale pointers pointing to them).

Life cycle of a memory chunk. A memory chunk enters the quarantine space
when a function calls free(). Chunks in this state cannot be returned to a free-list
unless they undergo a revocation pass. After the revocation, all stale pointers pointing
to quarantined chunks are invalidated. The chunks can now be returned to a free-list
and can be reused by another malloc() call.

110

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

Quarantine queue and threshold. The quarantine maintains a queue to
include all quarantined chunks. A sweeping revocation is triggered whenever the
total size of chunks in the queue reaches a threshold. The threshold is configurable
at a certain percentage of the heap size. Obviously, the frequency of sweeping can be
reduced at the expense of larger quarantine size.

Revocation shadow map. During sweeping revocation, stale capabilities have
to be identified and revoked. To achieve this, a separate revocation shadow map is
maintained to indicate whether each heap allocation granule is currently in quarantine.
For each allocation granule, which I choose to be 16 bytes of memory to match the
default in dlmalloc [40], I allocate 1 bit in a shadow map; this shadow space therefore
occupies 1

128 of the heap. Before a sweep, for all allocations in the quarantine buffer,
the revoker “paints” the bits of the shadow map corresponding to the allocation
granules to indicate that these regions are in quarantine, and references to them
should be revoked in the sweep. The actual sweeping procedure performs a lookup in
the shadow map using the base field of each capability to detect if it is pointing into
quarantined memory1. If so, the capability is revoked.

Efficient shadow map lookup. To achieve high memory sweeping speeds, the
shadow map lookup must be simple and efficient. By default, FreeBSD does not map
the bottom 2GiB of virtual address space on 64-bit architectures. Memory mapping
to the bottom 2GiB can be forced by setting the MAP 32BIT flag when calling mmap().
This default setup conveniently leaves us 2GiB for shadow maps. Therefore, all normal
mmaps and munmaps in the allocator are accompanied by a shadow space mmap call with
MAP 32BIT set under 2GiB. Since the heap allocation granule is 16 bytes, a shadow
map accompanying a normal mmap is only 1

128 in size. Also, I set the MAP FIXED flag
so that the shadow map has to be at a constant bit shift (a right shift of 7 for 16-byte
granule) of the original. This shadow map scheme allows fast, flat index lookup for
testing each capability reference during a sweep, and is deterministic in its instruction
count.

The following shows the C code for revoking stale capabilities within a region.
Note that in a CHERI system, uintptr t type is a capability when the tag is set.

1We can be sure that any heap capability will have a base within the original malloc bounds
due to the monotonicity of capabilities.

111

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

1 for(uintptr_t * x= MIN_ADDR ; x< MAX_ADDR ; x++) {
2 uintptr_t capword = *x;
3 if(is_capability (x)) {
4 capword >>= 4; // 16- byte alloc granule
5 // Get the bit index.
6 int bitIdx = capword & 0x7;
7 // Get the byte from the shadow space at a constant

�→shift.
8 char shadowbyte = *(char *)(capword >> 3);
9 if(shadowbyte & (1<< bitIdx)) {

10 // Pointing at freed memory .
11 // Invalidate the capability .
12 *x = 0;
13 }
14 }
15 }

Parallel sweeping. Unlike tracing garbage collection which requires a tree walk
from the roots to find reachable objects which exposes only limited amount of paral-
lelism, sweeping on the other hand is embarrassingly parallel. As shown in the code
snippet of shadow map lookup, there are no dependencies between any two itera-
tions of the for loop, thus theoretically all iterations can be performed in parallel.
As a result, many optimisations are possible to achieve a higher (or completely sat-
urate) DRAM bandwidth of the system during sweeping. For example, programs on
a multi-core machine can spawn multiple sweeper threads to sweep its address space
in parallel; dedicated DMA engines can perform sweeping, shadow map lookup and
capability invalidation in the background. Even in this chapter where the benchmarks
are mostly single-threaded and I assume only a single core model, the operations of
sweeping can fit in vector instructions which is able to parallelise nicely even on a
single core.

Coalescing chunks in the quarantine space. Each quarantined chunk has
an extra function call overhead, as each free() first calls quarantine() before the
revoker calls the actual free function on each chunk after revocation. In my im-
plementation, calling quarantine() is significantly cheaper than the actual freeing
because the only maintenance is the quarantine queue, whereas the actual free needs
to find the correct bucket (which may involve a prefix tree walk) or to perform other
maintenance work. Therefore, if quarantined chunks are coalesced before calling free,

112

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

the number of eventual calls is lower than calling free directly, which results in higher
performance.

The coalescing algorithm is similar to how dlmalloc coalesces free chunks. The
16-byte alignment of memory chunks leaves 4 bits for other purposes in the size field
of chunk headers, among which 2 are already in use by dlmalloc. I use the remaining
2 bits to indicate whether this chunk and the previous chunk is in the quarantine
space (cdirty and pdirty respectively). In this way, it can be trivially determined
whether adjacent chunks are also in the quarantine space, in O(1) complexity.

1 void free_nonreuse (void* mem) {
2 void* ptr = mem2chunk (mem); // Point to metadata .
3 size = ptr ->size;
4 if(ptr -> pdirty) { // Try to coalesce with the previous

�→chunk.
5 pptr = get_prev_chunk_ptr (ptr);
6 unlink_freebuf (pptr);
7 size += pptr ->size;
8 ptr = pptr;
9 }

10 nptr = get_next_chunk_ptr (ptr);
11 if(nptr -> cdirty) { // Try to coalesce with the next chunk.
12 unlink_freebuf (nptr);
13 size += nptr ->size;
14 }
15 // Write metadata and insert to quarantine .
16 ptr ->size = size;
17 ptr -> cdirty = 1;
18 get_next_chunk_ptr (ptr)->pdirty = 1;
19 insert_freebuf (ptr);
20 }

As described in the C code, adjacent quarantined chunks are removed from the
queue, and a new coalesced chunk will be formed and added to the tail of the queue
(also demonstrated in Figure 5.3).

113

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

Ck0 Ck1 Ck2 Ck3

size
user data

stale data
 ...

size

size

size

user data

...

...

in-use

Ck0

Ck2

in-use

Ck3

head

tail

stale data
 ...

stale data
 ...

c=1 p=0

size c=1 p=1

size c=1 p=1

size c=0 p=1

Ck4 Ck5

size
user data

size

user data

...

...

in-use

in-use

free

head

tail

c=0 p=0

size c=0 p=0

stale data
...Revoke Ck0-3

Figure 5.3: c and p represent cdirty and pdrity bits. At the end Ck0 and Ck2 are
unlinked from the queue and the newly freed chunk (in the middle) will be coalesced
with Ck0 and Ck2 into Ck3 and inserted at the tail of the queue. After a revocation,
Ck3 is returned to the free lists to be reused.

5.5.3 Experimental setup

In addition to evaluation of the hardware extensions on the CHERI FPGA plat-
form in the previous core dump study, I have designed experiments of the new allo-
cator on a modern x86-64 machine to establish performance expectations for a wide
deployment of mature CHERI implementations. Memory-sweeping performance de-
pends heavily on the microarchitecture. These experiments allow us to characterise
revocation using state-of-the-art memory systems, vector extensions, and out-of-order
superscalar hardware. The x86-64 platform also has much higher application and
benchmark coverage.

114

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

The x86 machine has the following specifications: Intel Core i7-7820HK CPU,
2.9GHz, 4 cores 8 threads, 8MiB LLC, 14–18 stage out-of-order superscalar pipeline,
AVX2 support, 16GiB DDR4 2400, FreeBSD 12.0.

Allocator override. All applications and benchmarks need to be run with
dlmalloc nonreuse() instead of the default libc memory allocator (jemalloc on
FreeBSD 12.0). Fortunately, this can be done easily by compiling the allocator into
a shared library and overriding with LD PRELOAD. In addition, I implement a debug
mode to collect allocation traces to analyse free rate, sweep rate, heap layout, etc.

Sweeping cost. dlmalloc nonreuse() evaluates all overheads besides the
sweeping itself. This is because on a non-capability architecture, sweeping is im-
possible without the ability to precisely identify pointers. Instead, I again collect
memory core dumps in a similar way to the evaluation of hardware optimisations at
sweeping points. I preprocess the memory image so that non-pointers are zeroed, thus
a CGetTag can be simulated by a comparison to zero. The core dump also preserves
the revocation shadow map, which is used during the sweep. The sweeping is then
done offline on the preprocessed core dumps. It simulates a system API that returns
an array of pages that could contain capabilities according to PTE cap-dirty flags.
While page elimination can be modelled sufficiently on a standard microarchitecture,
CLoadTags is not modelled due to the lack of tagged memory and a tag cache. As a
result, the performance numbers presented later are a pessimistic estimation of the
full optimisations possible on CHERI. To evaluate the overall cost, I perform revo-
cation sweeps on ten sample core dumps from across each application’s execution. I
then multiply the average sweep time by the total number of sweep events to derive
the total sweeping cost for that execution.

Vectored sweeping. As sweeping is embarrassingly parallel, parallelisation
opportunities exist even on a single core using vector instructions. Most modern
CPUs of different ISAs have decent vector extensions, and it is reasonable to imagine
that a commercial CPU with CHERI support is able to operate on capability vectors.
Therefore, to achieve higher sweeping performance on the x86 machine, I convert the
näıve sweeping loop into vectored code in AVX2 instructions.

1 static inline void
2 sweep_page (char* thisPage) {

115

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

3 for(__m256i * ptr = (__m256i *) thisPage ; (char *)ptr < thisPage
�→+4096; ptr ++) {

4 __m256i zeroVec = _mm256_setzero_si256 ();
5 // Use streaming instructions for less cache disturbance .
6 __m256i loadVec = _mm256_stream_load_si256 (ptr);
7 // a mask indicating which are capabilities
8 __m256i ptrMask = _mm256_cmpgt_epi64 (loadVec , zeroVec);
9 // Heap granularity is 16 bytes , shift by 4.

10 loadVec = _mm256_srli_epi64 (loadVec , 4);
11 // A mask to select the bot 6 bits.
12 __m256i botMask = _mm256_set1_epi64x ((size_t)0x3f);
13 __m256i bitShift = _mm256_and_si256 (loadVec , botMask);
14 // Now pointing to 64- bit aligned addresses in shadow space.
15 loadVec = _mm256_srli_epi64 (loadVec , 6);
16 loadVec = _mm256_slli_epi64 (loadVec , 3);
17 // Do a masked gather .
18 __m256i shadowBits = _mm256_mask_i64gather_epi64 (zeroVec ,

�→NULL , loadVec , ptrMask , 1);
19 shadowBits = _mm256_srlv_epi64 (shadowBits , bitShift);
20 __m256i ones = _mm256_set1_epi64x ((size_t)0x1);
21 shadowBits = _mm256_and_si256 (shadowBits , ones);
22 shadowBits = _mm256_slli_epi64 (shadowBits , 63);
23 // Zero stale capabilities .
24 _mm256_maskstore_epi64 (ptr , shadowBits , zeroVec);
25 }
26 }

Notice that the entire sweeping procedure can be expressed purely in vector
instructions (except for the outer for loop, of course). This demonstrates how sweeping
has significant parallelism potential in a way that garbage collection cannot match.
With multiple cores and DMA engines in practice, sweeping should be limited only
to the DRAM bandwidth of the system.

Benchmarks. I evaluated benchmarks taken mostly from SPEC CPU2006 [33],
in line with other papers. The subset includes all SPEC-CPU2006 benchmarks that
would compile under x86 64 FreeBSD, which is the infrastructure for CHERI research:
astar, bzip2, gobmk, h264ref, hmmer, lbm, libquantum, mcf, milc, povray, sjeng,
soplex, and sphinx3. In each case, I evaluated on the SPEC reference input. The
benchmark set further adds ffmpeg, which has a larger allocation throughput than

116

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

 1

 1.2

 1.4

 1.6

 1.8

 2

astar
bzip2 dealII

gobmk
h264ref

hmmer
lbm

libquantum
mcf milc

omnetpp
povray

sjeng
soplex

sphinx3
xalancbmk

geomean

N
o
rm

a
liz

e
d
 E

xe
cu

ti
o
n
 T

im
e

CHERIvoke Oscar pSweeper
2.9 4.6 4.1

DangSan Boehm-GC
4.2 9.4 9.7 3.8 14.4 2 31.6 2.57.5

(a) Execution Time

 0

 1

 2

 3

 4

 5

astar
bzip2 dealII

gobmk
h264ref

hmmer
lbm

libquantum
mcf milc

omnetpp
povray

sjeng
soplex

sphinx3
xalancbmk

geomeanN
o
rm

a
liz

e
d
 M

e
m

o
ry

 U
ti

liz
a
ti

o
n 226.5 135

(b) Memory

Figure 5.4: Overheads compared with results reported by other state-of-the-art tech-
niques. CHERIvoke represents the new dlmalloc.

any SPEC benchmark and is useful to more fully account for worst-case application
behavior. I take the average of 4 runs for each benchmark.

5.5.4 Overall overheads of dlmalloc nonreuse()

The overall observed overhead is shown in 5.4, compared with other literature [8,
19, 43, 38] that do not make use of CHERI capabilities. I am very grateful to Sam
Ainsworth for providing the results and insights of other non-CHERI temporal-safety
schemes used in comparison. For a target 25% heap storage overhead in the quaran-
tine buffer, sweeping revocation adds 4.7% execution time and 12.5% total memory
overhead on average. This significantly outperforms any other technique. Further, ca-
pability revocation performs far more reliably, with only 1.51× and 1.35× maximum

117

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

ffmpeg
asta

r
bzip

2
dealII

gobmk
h264ref

hmmer
lbm

libquantum mcf
milc

omnetpp
povray

sje
ng
soplex

sphinx3

xalancbmk

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n
 T

im
e

CHERIvoke with quarantine buffer only
+ shadow space
+ sweeping

1.5053

Figure 5.5: Run-time overhead decomposition for the constituent parts, with the
default 25% heap overhead.

runtime and memory overheads. Sweeping revocation with dlmalloc nonreuse() has
significantly more predictable behaviour regardless of workload, as its sweeping tech-
nique suffers none of the worst cases encountered by more complex temporal-safety
schemes: overheads are proportional to memory freed and pointer density, rather than
pointer movement, number of frees, loads per second, or memory layout.

5.5.5 Breakdown of overheads

Figure 5.5 shows overheads for successively adding constituent parts of sweeping
revocation, beginning with quarantining freed memory, adding shadow-map main-
tenance, and finally, full-memory sweeps. While memory sweeping is usually the
dominant overhead, there are notable exceptions that are discussed below.

Quarantine buffer. dlmalloc aggressively reuses recently freed memory for
better cache efficiency. Introducing a quarantine buffer misses the opportunity to
reuse cached memory. The quarantine buffer has negligible impact on most bench-
marks. For xalancbmk, however, the quarantine buffer increases execution time by
22%. Performance counters confirm that instruction count only grows by 3%, but L2
cache misses grow by 50%.

118

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

The quarantine buffer actually improves performance in most of the benchmarks.
One reason for this is the coalescing strategy implemented in Section 5.5.2. The
dealII benchmark, for example, has 630,000 calls to free per second, constituting
a significant amount of execution time. dlmalloc nonreuse() simply quarantines
these allocations at typically less than half the execution time of a real free. If these
freed regions coalesce well, many fewer free operations will be performed when the
quarantine buffer is drained than would have been performed on demand. While
this effect is minor, only a few benchmarks that gain advantage from the addition
of the quarantine buffer subsequently experience a net overhead when considering
shadow-map maintenance and full memory sweeps.

Shadow-map maintenance. Revocation also requires maintenance of the re-
vocation shadow map (the second bar in Figure 5.5). The size of the shadow map
is small compared to the heap itself. Therefore, the net impact of shadow-space
maintenance is minor for all applications benchmarked.

Overhead of sweeping. The overhead of sweeping itself can be easily observed
from the difference between the second and third bar in Figure 5.5. For allocation
intensive benchmarks, the largest cost is in memory sweeping. It is shown that, of
the four benchmarks that have overheads beyond 5%, omnetpp, dealII and soplex are
dominated by sweeping overhead and xalancbmk is a special case, as discussed above.

Optimisation of sweeping. The majority of the overhead comes from sweep-
ing; critical to that is how fast we are able to move through memory. In Figure 5.6, I
evaluate the performance of three different sweeping-procedure kernels, implemented
under increasing levels of complexity. A näıve sweeping loop (presented in red) comes
far short of saturating the full system DRAM bandwidth of 19,405MiB/s (saturating
only 28% of the full bandwidth on average). I optimise the näıve loop by unrolling
and manually pipelining for the target micro-architecture to achieve better instruction
scheduling (32% average). Further, I evaluate the AVX2 vectorised sweeping proce-
dure presented in Section 5.5.3, which shows the highest bandwidths (39% average).

The näıve loop (see code in Section 5.5.2) compiles into 15 instructions, among
which three are conditional jumps. The lack of instruction-level parallelism within
each loop and the unpredictability of the first two jumps (conditioning on whether
a capability word is valid and whether the shadow space bit is set) result in a poor
Instruction Per Cycle (IPC). The manual optimisation unrolls two loops at once,

119

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

 0

 2000

 4000

 6000

 8000

 10000

ffmpeg
asta

r
dealII

gobmk
h264ref

hmmer
mcf

milc

omnetpp
povray

soplex
sphinx3

xalancbmk

geomean

D
R

A
M

 B
a
n
d

w
id

th
 (

M
iB

/s
)

Simple loop
Unrolling + manual pipelining

AVX2

Figure 5.6: Memory bandwidth achieved for the sweep loop with different optimisa-
tions. The system’s full bandwidth is 19405MiB/s.

interleaving the instructions (especially between dependent instructions of each loop)
to increase pipeline utilisation and to hide memory latency. Of course, modern out-
of-order CPUs like the one in this evaluation can already extract some ILP across
loops even in näıve sweeping, so manual optimisation is only mildly effective.

AVX2 significantly changes the sweeping loop. Being able to fully parallelise us-
ing vector instructions, the sweeping procedure can process an entire cache line in only
29 instructions (see code in Section 5.5.3). In contrast, one cache line takes around
120 and 116 instructions for the näıve loop and manual optimisation respectively.
Further, all unpredictable branches are replaced with conditional vector instructions
which avoid mis-speculations. However, several factors limit how AVX2 sweeping
performs [55]:

• Intel AVX instructions typically run at throttled frequencies to prevent thermal
damage, whereas non-AVX instructions benefit from frequency boosts.

• The CPU operates in frequency phases, which resumes at normal frequencies
after a delay when transitioning from AVX to scalar operations.

• AVX instructions typically exhibit higher latencies. For example, a gather op-
eration has a latency of ∼20 cycles and an IPC of less than 0.25.

120

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n
 T

im
e

Heap Overhead (%)

Xalancbmk
Omnetpp

Figure 5.7: Normalised execution time for the two workloads with highest overheads,
at varying heap overhead. Default setup shown by dotted line.

These restrictions on AVX instructions as well as the limit on the memory subsystem
mean that ultimately, the sweeping speed increase is around 40% faster than the näıve
baseline or 22% faster than the optimised sweeping loop as the evaluation shows, not
as dramatic as the instruction count reduction may suggest.

5.5.6 Tradeoff between space and time

Another advantage of sweeping revocation is that time and space overheads can
be traded off for one another. Under the default quarantine size of 25% of the heap,
xalancbmk and omnetpp show the highest overheads among all benchmarks. I re-
evaluate both with different target heap-space overheads. Figure 5.7 illustrates the
results. The higher the heap overhead, the less of a performance impact it will observe,
even on highly allocation-intensive workloads.

There are two reasons for this. Clearly, a larger quarantine will be filled less
frequently than a smaller one, resulting in fewer sweeps. This accounts for the majority
of the performance increase, as most of the overhead is brought about via the sweeping
procedure. The second is more subtle: for xalancbmk, by the time it reaches 100%
heap overhead, the normalised execution time is actually lower than the non-sweeping

121

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

costs alone in Figure 5.5. A consistent reduction in non-sweeping overheads is found
as the buffer increases, corresponding to an increase in observed cache hit rate for the
program. This counter-intuitive result is caused by better allocation-fragmentation
properties as the heap size is increased: under severe temporal fragmentation, it is
better to quarantine memory for longer to allow cache lines to fall entirely out of use
rather than frequently releasing small fragments in a severely fragmented heap.

5.6 Alternative sweeping schemes and concurrency

This section briefly introduces discussions and proposals towards other schemes
of sweeping revocation and concurrent revocation. Many people working on temporal
safety, including Nathaniel Filardo, Jonathan Woodruff, Lucian Paul-Trifu, Peter
Rugg, Hadrien Barral, Robert N. M. Watson and myself, have contributed to the
ideas and implementation.

5.6.1 Subset testing revocation

An alternative approach prior to shadow map revocation is to simply sweep
through memory and test whether each memory word is a subset to the memory
region the allocator is revoking. If so, the capability is stale and therefore invalidated.
To accelerate, a new instruction CTestSubset is introduced to atomically test whether
a capability is a subset of the other.

Advantages. This model is relatively simple without any shadow space main-
tenance and “painting”. The only overhead is maintaining the quarantine buffer.

Shortcomings. With a certain quarantine buffer size, the frequency of sweep-
ing in this scheme depends on the number of quarantined chunks rather than the
quarantine size itself, which exhibits terrible performance in worst cases. Each sweep
dequeues only one (or a small fixed number) chunk in the quarantine instead of re-
turning all of them in the shadow map approach. Another problem of this appoach
is the need to reduce temporal fragmentation to maximise quarantine buffer coalesc-
ing. If the quarantined chunks are adjacent and can be coalesced well, the number of
chunks in the quarantine can be made small, thus reducing the sweeping frequency.
However, in earlier studies we find that this is not always true, and we often need to

122

CHAPTER 5. TEMPORAL SAFETY UNDER THE CHERI ARCHITECTURE

apply heuristics to place allocations with similar lifetimes together, in hope that they
will be freed at similar times in the future for maximised coalescing. This results in a
complex design and unpredictable performance. However, for embedded applications
where dynamic allocations are predictable and not often, subset testing revocation
might already be sufficient.

5.6.2 Concurrent revocation

The allocator so far assumes a stop-the-world model, i.e., no mutators can run
concurrently when the revoker is working. Similar to other language virtual machines
and runtimes, a revocation pass may pause the program for an undeterministic period
of time, which is unacceptable for many low-latency use cases.

Similar to concurrent garbage collection, one may relax the rules and still permit
stale capabilities to be stored. At the beginning, the revoker clears all cap-dirty bits
in page table entries. At the end of a pass, the revoker scans all cap-dirty bits to
know which pages have new capability stores. The set of new dirty pages should be
small enough to allow a quick stop-the-world pass. Also, invalidating each capability
requires LL/SC sequences. If the revoker decides a capability is invalid, a mutator
may in parallel rewrite it with valid data, and the revoker should not invalidate the
new data.

5.7 Summary

This chapter described my work on CHERI temporal memory safety. To improve
the efficiency of sweeping revocation, I focused on two ways to reduce the overhead.
One is to accelerate memory sweeping by introducing architectural changes and micro-
architectural optimisations. The other is to implement a non-reuse memory allocator
that uses quarantine buffers and shadow maps for reduced sweeping frequency. To-
gether, they make it feasible to deploy CHERI temporal safety in most applications,
giving much lower and more predictable performance overhead compared with other
state-of-the-art probabilistic temporal defenses.

123

Chapter 6

Conclusion

6.1 Contributions

In this dissertation, I reviewed the state-of-the-art memory safety for embedded
processors, drawing the first conclusion that existing security approaches are insuffi-
cient. They suffer from high run-time overhead, high latency and non-determinism
and fail to scale as embedded devices become more capable and ubiquitous. Un-
like conventional embedded CPUs, the 64-bit CHERI ISA provides direct hardware
support for fine-grained memory protection, scalable compartmentalisation and fast
domain crossing. I hypothesised that CHERI would provide a novel approach to solv-
ing the existing memory safety problems that could be applied to 32-bit embedded
processors, as well as offering significantly improved scalability compared with the
state-of-the-art. I addressed two major problems in applying CHERI capabilities to
embedded processors. Firstly, typical 32-bit embedded processors do not function
with existing capability compression schemes for 64-bit CPUs. I implemented and
evaluated a new 64-bit compressed capability scheme tailored to embedded use cases.
Secondly, the OS used in previous CHERI research, CheriBSD, was a heavy-weight
UNIX system with POSIX abstractions and virtual memory, which was obviously not
suitable for embedded devices. As a result, I designed and implemented a real-time
kernel specifically for resource-constrained, latency-sensitive processors in a flat phys-
ical address space (no MMU), using capabilities as the only mechanism to enforce
fine-grained memory protection and scalable task isolation.

125

CHAPTER 6. CONCLUSION

I further hypothesised that the monotonicity and unforgeability properties of
capabilities indirectly enable temporal memory safety, deterministically solving prob-
lems like use-after-free vulnerabilities. However, frequently sweeping memory to in-
validate capabilities could incur infeasible overhead. To address this, I introduced
new instructions, hardware optimisations and new memory allocator designs to sig-
nificantly reduce the cycle overhead and DRAM traffic for capability sweeping revo-
cation, making it practical for most applications to adopt CHERI temporal memory
safety.

6.1.1 A capability format for 32-bit cores

For 64-bit CPUs, the original uncompressed CHERI-256 quadrupled the size for
all pointers which was unacceptable. We developed the CHERI Concentrate format
to compress pointer, bounds, permissions and so forth within 128 bits, which was
achieved with reasonable pipelining complexity while maintaining legacy C compati-
bility. For typical 32-bit embedded processors, I further compressed the metadata and
built CHERI-64 to make CHERI capabilities feasible for 32-bit processors. My study
showed that memory fragmentation was still minimum under heavy compression. The
CHERI-64 implementation replaced the conventional MPU/PMP unit with the capa-
bility coprocessor. To evaluate the hardware costs, I compared CHERI-64 hardware
logic utilisation against the RISC-V PMP, concluding that it was at a comparable cost
with state-of-the-art hardware security components in embedded processors. The re-
sults also showed that CHERI-64 had much less impact on the critical path, whereas
the large number of associative comparisons in MPU and PMP models incurred sig-
nificant penalties on pipelining and core clock frequency.

6.1.2 CheriRTOS

Real-time operating systems atop conventional embedded architectures heavily
rely on MPU/PMP models and TrustZone to enforce isolation and memory safety. As
described in Section 2.3.2 and 2.4, those protection schemes unfortunately suffer from
several drawbacks including the coarse granularity, high latency and poor scalability.
In contrast, CHERI primitives can resolve the isolation and memory protection prob-
lems efficiently and scalably. Therefore, I designed and implemented a CHERI-based
real-time operating system, CheriRTOS, incorporating CHERI capabilities from the

126

CHAPTER 6. CONCLUSION

ground up for scalable task isolation, fine-grained memory protection and secure inter-
task communication. The evaluation confirmed that these benefits could be achieved
without violating the low-latency and determinism constraints. In fact, unlike pre-
vious memory safety measures that brought complexity and overhead, many aspects
of a CHERI-based kernel actually offered improvements in performance and design.
For instance, the offset addressing in PCC and DDC rendered Position Independent
Code (PIC) unnecessary, which increased performance; the scalable task isolation and
low-latency domain crossing facilitated a decentralised kernel where drivers from var-
ious vendors could be efficiently isolated in constrained compartments; a fine-grained
heap brought scalability and relieved programmers of the tedious and costly manual
bounds checks. These benefits were made possible with a CHERI-based kernel and
CHERI primitives.

6.1.3 CHERI temporal memory safety

As previously described, CHERI can theoretically guarantee temporal safety by
frequently sweeping memory and invalidating stale capabilities. Due to the ineffi-
ciency of the näıve approach, I investigated the means to optimise the key factors in
the overhead of sweeping revocation. I proposed architectural and micro-architectural
modifications that substantially improved the efficiency of memory sweeping, espe-
cially taking advantage of the tag cache and page table structure to avoid unneces-
sary memory traffic. The proposed changes were implemented on the FPGA which
showed that the processor cycles and DRAM traffic overhead due to sweeping could
be reduced by orders of magnitude, especially for pointer-light applications. On the
software side, I implemented an alternative memory allocator which used quarantine
buffers to buffer and coalesce freed memory regions before revocation. I explored the
tradeoffs between quarantine buffer overhead and sweeping frequency. The hardware
and software assists already made it feasible for most applications to adopt temporal
memory safety under CHERI, and paved the way towards incremental and concurrent
capability revocation in the future as well.

127

CHAPTER 6. CONCLUSION

6.2 Future work

6.2.1 CHERI-64

To maintain toolchain compatibility, the permission bits of CHERI-64 are not
well compressed. In a simpler model, the possible use cases and combinations of
permissions should only be a subset of what we have seen in CheriBSD. Clearly, the
1024 combinations of 10 permission bits in CHERI-64 are likely to be much higher than
needed in practice. With careful profiling and design, more bits could be extracted
to be used to increase precision of bounds or the size of the object type field.

A split register file with separate capability registers adds latency to context
switches. Merging the coprocessor with the main pipeline and extending existing
registers to also hold capabilities can further reduce logic and latency overhead. This
has already been worked on in our new CHERI-RISC-V implementation.

6.2.2 CheriRTOS

The traditional MIPS pipeline cannot handle complex register loads and stores
in a single cycle, thus the trusted stack helper is implemented purely in software. If
the CCallFast instruction was used in a frequent and fine-grained way, this over-
head might be worth optimising. We have seen ARM Cortex-M embedded processors
performing hardware-assisted register stacking and restoring on context boundaries.
If hardware-assisted trusted stacks are implemented, the latency of CCallFast in
CheriRTOS is expected to be much closer to the baseline.

6.2.3 CHERI temporal memory safety

I provide temporal memory safety through revocation of stale capabilities using
a stop-the-world revoker. While more complex, it may be preferable to undertake re-
vocation concurrently with mutator threads as used by concurrent garbage collectors.
The question is how to guarantee correctness while still permitting the mutators to
proceed. It is expected that a mature concurrent revocation scheme requires more

128

CHAPTER 6. CONCLUSION

hardware assists and software changes (especially kernel/OS support) than what we
have seen at this point.

6.2.4 Adopting capability protection in future embedded devices

This dissertation has explored the design space and has demonstrated an imple-
mentation that facilitates efficient, scalable and fine-grained memory protection for
embedded processors using CHERI capability protection. The security guarantees
and the low overhead are able to justify its deployment in future devices. However,
similar to other emerging architectures, CHERI requires the following steps before
achieving wider adoption in commercial and industrial embedded systems.

Firstly, researchers and engineers must embrace CHERI as a new paradigm.
Often, security measures are introduced incrementally as extensions to ease the tran-
sition and deployment in industry. However, CHERI fundamentally changes several
key aspects which create new ideas and concepts that cannot be viewed as incremental
to conventional architectures. As a result, a wider understanding of CHERI is a pre-
requisite. For example, the idea of sealed capabilities facilitating intra-address-space
domain transitions can be quite obscure to a non-CHERI audience. To educate people
about CHERI capabilities, we need to engage them more frequently through techni-
cal talks, conferences, laboratory sessions and industrial collaborations to ensure that
CHERI is well understood.

Secondly, unlike other security components that function as add-ons like MPU
and Trustzone, CHERI interacts intricately with the main CPU, memory hierarchy
as well as the operating system. The design and optimisation of CHERI in embedded
processors cannot be standalone to the rest of the system. Although the evaluation
suggests the total transistor logic and run-time overhead should be reasonable, we can
imagine the effort it takes to integrate CHERI into a complete system. The higher
difficulty in integration translates to a longer wait-time before wider adoption.

Thirdly, the maturity and availability of CHERI platforms must be improved.
Currently, the CHERI ecosystem is still maturing with ongoing work in the ISA spec-
ification, compiler toolchain, operating system, formal verification and so forth. Also,
official CHERI platforms are not readily available to the public for experimentation
and development. What we can learn from the successful ARM embedded ecosystem

129

CHAPTER 6. CONCLUSION

is that a mature toolchain and hardware platform must be ready before attracting
developers and wider adoption.

6.2.5 Extrapolating to non-CHERI systems

Although this research work bases itself on CHERI capabilities, the results and
conclusions are not necessarily restricted to the CHERI world. The findings can
be easily extrapolated to other architectures and security related topics. Typical
examples are listed below.

CHERI-CC compression algorithm. The compression algorithm should be
applicable to all object-bounds related metadata. MPU regions are a perfect candi-
date to apply compression due to its large number of bounds registers. Compressing
multiple registers of a region into one significantly reduces the context size, which po-
tentially allows for per-task MPU context. Similarly, Intel MPX observes performance
degradation due to the contention on bounds registers. The compression algorithm
will greatly alleviate the pressure on the bounds register file, translating to better
performance.

Temporal memory safety wrt. spatial memory protection. Chapter 5
revealed how temporal memory safety should be built atop a spatial memory safety
infrastructure. Although drawn on CHERI, the conclusion of the relationship be-
tween the two aspects of memory safety is applicable to other schemes. With bounds
and monotonicity, most other spatial schemes can adopt similar architectural opti-
misations and memory allocator design to construct a low-overhead defense against
temporal vulnerabilities. Of course, CHERI shines in its unforgeability, which means
the temporal safety built on top it is deterministic, unlike other probabilistic defenses.

6.2.6 Adversarial security evaluation

The spatial and temporal safety guarantees presented in this thesis demonstrably
improve resistance to many classes of attacks. Once these attacks have been rendered
ineffective, there remains the question: what new attacks will be invented to cir-
cumvent the new protection mechanisms? The adversarial analysis is left as future
work.

130

Appendix A

CHERI Concentrate bounds and
region arithmetic

This appendix assumes a 32-bit address space and a capability precision of 8.
Lower case and upper case letters represent the actual values and the encoded fields
in the capability format respectively. For example, a capability has a base b of 0x1200,
but due to precision, only 8 bits can be encoded in the B field as 0x12.

T/t denotes top. B/b denotes base. A/a denotes the pointer field. L/l denotes
length. E/e denotes exponent. R/r denotes the representable limit.

A.1 Encoding the bounds

CHERI ISA adds the CSetBounds instruction to allow selecting the appropriate
precision for a capability. It takes the full pointer address a as the desired base, and
takes a length operand from a general-purpose register, thus providing full visibility
of the precise base and top to a single instruction – which can select the new precision
without violating a tenet of MIPS (our base ISA) by requiring a third operand.

Deriving E

The value of E is a function of the requested length, l:

131

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

index of msb(x) = size of(x) − count leading zeros(x)
E = index of msb(l[31 : 8])

This operation chooses a value for E that ensures that the most significant bit
of l will be implied correctly. If l is larger than 28, the most significant bit of l will
always align with T [7], and indeed T [7] can be implied by E. If l is smaller than 28, E

is 0, giving more bits to T and B and so enabling proportionally more out-of-bounds
pointers than otherwise allowed for small objects.

We may respond to a request for unrepresentable precision by extending the
bounds slightly to the next representable bound, or by throwing an exception. These
two behaviors are implemented in the CSetBounds and CSetBoundsExact variants
respectively.

Extracting T and B

The CSetBounds instruction derives the values of B and T by simply extracting
bits at E from b and t respectively (with appropriate rounding):

E = 0 E > 0; T [1 : 0] and B[1 : 0] implied 0s

T = t[6 : 0] T [6 : 2] = t[E + 6 : E + 2] + round
round = one if nonzero(t[E + 1 : 0])

B = b[8 : 0] B[8 : 2] = b[E + 8 : E + 2]

Rounding Up length

The CSetBounds instruction may round up the top or round down the base to
the nearest representable alignment boundary, effectively increasing the length and
potentially increasing the MSB of length by one, thus requiring that E increase to
ensure that the MSB of the new L can be correctly implied. Rather than detect
whether overflow will certainly occur (which did not pass timing in our 100MHz
CHERI-128 FPGA prototype), we choose to detect whether L[7 : 3] is all 1s – i.e., the

132

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

largest length that would use this exponent – and force T to round up and increase
E by one. This simplifies the implementation at the expense of precision for 1/16th
of the requestable length values.

A.2 Decoding the bounds

Unlike Low-fat, CHERI Concentrate can decode the full t and b bounds from the
B and T fields even when the pointer address a is not between the bounds. We now
detail how each bit of the bounds is produced:

Lower bits: The bits below E in t and b are zero, that is, both bounds are aligned
at E.

Middle bits: The middle bits of the bounds, t[E + 8 : E] and b[E + 8 : E], are
simply T and B respectively, with the top two bits of T reconstituted as in Chapter 3.
In addition, if IE is set, indicating that E is stored in the lower bits of T and B, the
lower two bits of T and B are also zero.

Upper bits: The bits above E + 8, for example t[31 : E + 9], are either identical
to a[31 : E + 9], or need a correction of ±1, depending on whether a is in the same
alignment boundary as t, as described below and in Chapter 3.

Deriving the representable limit, R

CC allows pointer addresses within a power-of-two-sized space, spaceR, without
losing the ability to decode the original bounds. The size of spaceR is s = 2E+9, fully
utilizing the encoding space of B. Figure A.1 shows an example of object bounds
within the larger spaceR. Due to the extra bit in B, spaceR is twice the maximum
object size (2E+8), ensuring that the out-of-bounds representable buffers are, in total,
at least as large the object itself.

As portrayed in Figure A.1, spaceR is not usually naturally aligned, but straddles
an alignment boundary. Nevertheless, as spaceR is power-of-two-sized, a bit slice from
its base address rb[E + 9 : E] will yield the same value as a bit slice from the first
address above the top, rt[E + 9 : E]. We call this value the representable limit, R.

133

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

Locating b, t, and a either above or below the alignment boundary in spaceR requires
comparison with this value R. We may choose R to be any out-of-bounds value in
spaceR, but to reduce comparison logic we have chosen:

R = {B[8 : 6] − 1, zeros’6}

This choice ensures that R is at least 1/8 and less than 1/4 of the representable space
below b, leaving at least as much representable buffer above t as below b.

For every valid capability, the address a as well as the bounds b and t lie within
spaceR. However the upper bits of any of these addresses may differ by at most 1 by
virtue of lying in the upper or lower segments of spaceR. For example, if a is in the
upper segment of spaceR, the upper bits of a bound will be one less than the upper
bits of a if the bound lies in the lower segment. We can determine whether a falls
into upper or lower segment of spaceR by inspecting:

Amid = a[E + 8 : E]

If Amid is less than R, then a must lie in the upper segment of spaceR, and otherwise
in the lower segment. The same comparison for T and B locates each bound uniquely
in the upper or the lower segment. These locations directly imply the correction bits
ct and cb that are needed to compute the upper bits of t and b from the upper bits of
a.

b

t
dereferenceable
region

rb

rt

s

representable
space, spaceR

R2E

multiple of s = 2E+90x1000

0x2000

0x3000

0x1A00

0x1E00

0x2400

0x2A00

s

s

spaceL

spaceU

Figure A.1: CHERI Concentrate bounds in an address space. Addresses increase
upwards. To the left are example values for a 0x600-byte object based at 0x1E00.

134

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

As we have chosen to align R such that R[5 : 0] are zero, only three-bit arithmetic
is required for this comparison, specifically:

a in upper segment = Amid[8 : 6] < R[8 : 6]

While Low-fat requires a 6-bit comparison to establish the relationship between a,
t, and b, growing with the precision of the bounds fields, CC requires a fixed 3-bit
comparison regardless of field size, particularly benefiting CHERI-128, which uses
21-bit T and B fields. CC enables capabilities to be stored in the register file in
compressed format, often requiring decoding before use. As a result, this comparison
lies on several critical paths in our processor prototype.

The bounds t and b are computed relative to Aupper:

t = {(Aupper + ct), T, zeros’E}
b = {(Aupper + cb), B, zeros’E}
where Aupper = a[31 : E + 9]

The bounds check during memory access is then:

b � computed address < t

In summary, CC generalizes Low-fat arithmetic to allow full use of the power-
of-two-sized encoding space for representing addresses outside of the bounds, while
improving speed of decoding.

Encoding full address space

The largest encodable 32-bit value of t is 0xFF800000, making a portion of the
address space inaccessible to the largest capability. We can resolve this by allowing t to
be a 33-bit value, but this bit-size mismatch introduces some additional complication
when decoding t. The following condition is required to correct t for capabilities whose
representable region wraps the edge of the address space:

if ((E < 24) &((t[32 : 31] − b[31]) > 1)) then t[32] =!t[32]

That is, if the length of the capability is larger than E allows, invert the most signif-
icant bit of t.

135

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

A.3 Fast representable limit checking

Pointer arithmetic is typically performed using addition, and does not raise an
exception. If we wish to preserve these semantics for capabilities, capability pointer
addition must fit comfortably within the delay of simple arithmetic in the pipeline,
and should not introduce the possibility of an exception. For CC, as with Low-fat,
typical pointer addition requires adding only an offset to the pointer address, leaving
the rest of the capability fields unchanged. However, it is possible that the address
could pass either the upper or the lower limits of the representable space, beyond
which the original bounds can no longer be reconstituted. In this case, CC clears
the tag of the resulting capability to maintain memory safety, preventing an illegal
reference to memory from being forged. This check against the representable limit, R,
has been designed to be much faster than a precise bounds check, thereby eliminating
the costly measures the Low-fat design required to achieve reasonable performance.

To ensure that the critical path is not unduly lengthened, CC verifies that an
increment i will not compromise the encoding by inspecting only i and the original
address field. We first ascertain if i is inRange, and then if it is inLimit. The inRange
test determines whether the magnitude of i is greater than that of the size of the
representable space, s, which would certainly take the address out of representable
limits:

inRange = −s < i < s

The inLimit test assumes the success of the inRange test, and determines whether the
update to Amid could take it beyond the representable limit, outside the representable
space:

inLimit =

Imid < (R − Amid − 1), if i � 0
Imid � (R − Amid) and R �= Amid, if i < 0

The inRange test reduces to a test that all the bits of Itop (i[63 : E +9]) are the same.
The inLimit test needs only 9-bit fields (Imid = i[E + 8, E]) and the sign of i.

The Imid and Amid used in the inLimit test do not include the lower bits of i

and a, potentially ignoring a carry in from the lower bits, presenting an imprecision
hazard. We solve this by conservatively subtracting one from the representable limit
when we are incrementing upwards, and by not allowing any subtraction when Amid

is equal to R.

136

APPENDIX A. CHERI CONCENTRATE BOUNDS AND REGION
ARITHMETIC

One final test is required to ensure that if E � 23, any increment is representable.
(If E = 23, the representable space, s, encompases the entire address space.) This
handles a number of corner cases related to T , B, and Amid describing bits beyond
the top of a virtual address. Our final fast representability check composes these three
tests:

representable = (inRange and inLimit) or (E � 23)

To summarize, the representability check depends only on four 9-bit fields, T , B,
Amid, and Imid, and the sign of i. Only Imid must be extracted during execute, as Amid

is cached in our register file. This operation is simpler than reconstructing even one
full bound. This fast representability check allows us to perform pointer arithmetic on
compressed capabilities directly, avoiding decompressing capabilities in the register file
that introduces both a dramatically enlarged register file and substantial load-to-use
delay.

137

References

[1] Akritidis, P. ‘Cling: A Memory Allocator to Mitigate Dangling Pointers’. In:
Proceedings of the 19th USENIX Conference on Security. USENIX Security’10.
Washington, DC: USENIX Association, 2010, pp. 12–12.

[2] ARMv8-M Memory Protection Unit. 0200-00. ARM Ltd. Feb. 2017.

[3] Aspencore. 2017 Embedded Markets Study. 2017.
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf.

[4] Barry, R. Mastering the FreeRTOS Real Time Kernel. 161204th ed. FreeR-
TOS.org. Real Time Engineers Ltd. London, Dec. 2016.

[5] Beniamini, G. Over The Air: Exploiting Broadcom’s Wi-Fi Stack. 2017.
https : / / googleprojectzero . blogspot . co . uk / 2017 / 04 / over - air -
exploiting-broadcoms-wi-fi_4.html (visited on 15/05/2017).

[6] Beniamini, G. QSEE privilege escalation vulnerability and exploit. 2016.
https : / / bits - please . blogspot . co . uk / 2016 / 05 / qsee - privilege -
escalation-vulnerability.html (visited on 05/02/2016).

[7] Bluespec SystemVerilog Version 3.8 Reference Guide. Bluespec, Inc. Waltham, MA,
2004.

[8] Boehm, H. and Weiser, M. ‘Garbage Collection in an Uncooperative Environ-
ment’. In: Softw. Pract. Exper. 18.9 (Sept. 1988), pp. 807–820.

[9] Brasser, F. et al. ‘TyTAN: Tiny trust anchor for tiny devices’. In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2015, pp. 1–6.

[10] Brion. JavaScript engine internals: NaN-boxing. 2018.
https://brionv.com/log/2018/05/17/javascript-engine-internals-
nan-boxing/.

[11] Brown, J. et al. ‘A capability representation with embedded address and nearly-
exact object bounds’. In: Project Aries Technical Memo 5 (2000).

139

[12] Burow, N. et al. ‘Control-Flow Integrity: Precision, Security, and Performance’.
In: ACM Comput. Surv. 50.1 (Apr. 2017), 16:1–16:33.

[13] Carter, N. P., Keckler, S. W. and Dally, W. J. ‘Hardware support for fast
capability-based addressing’. In: SIGPLAN Not. 29.11 (Nov. 1994), pp. 319–
327.

[14] Checkoway, S. et al. ‘Comprehensive Experimental Analyses of Automotive At-
tack Surfaces’. In: Proceedings of the 20th USENIX Conference on Security.
SEC’11. San Francisco, CA: USENIX Association, 2011, pp. 6–6.

[15] Chisnall, D. et al. ‘Beyond the PDP-11: Architectural Support for a Memory-
Safe C Abstract Machine’. In: Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. ASPLOS ’15. Istanbul, Turkey: ACM, 2015, pp. 117–130.

[16] Colwell, R. P., Gehringer, E. F. and Jensen, E. D. ‘Performance Effects of Archi-
tectural Complexity in the Intel 432’. In: ACM Trans. Comput. Syst. 6.3 (Aug.
1988), pp. 296–339.

[17] Costin, A. et al. ‘A Large-Scale Analysis of the Security of Embedded Firmwares’.
In: 23rd USENIX Security Symposium (USENIX Security 14). San Diego, CA:
USENIX Association, 2014, pp. 95–110.

[18] Cowan, C. et al. ‘StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-overflow Attacks’. In: Proceedings of the 7th Conference on USENIX
Security Symposium - Volume 7. SSYM’98. San Antonio, Texas: USENIX As-
sociation, 1998, pp. 5–5.

[19] Dang, T. H. Y., Maniatis, P. and Wagner, D. ‘Oscar: A Practical Page-Permissions-
Based Scheme for Thwarting Dangling Pointers’. In: 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 815–832.

[20] Davi, L. et al. ‘HAFIX: Hardware-Assisted Flow Integrity eXtension’. In: 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 2015, pp. 1–6.

[21] Davi, L., Koeberl, P. and Sadeghi, A. R. ‘Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation’. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). 2014, pp. 1–6.

140

[22] Davis, B. et al. ‘CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment’. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA:
ACM, 2019, pp. 379–393.

[23] Dennis, J. B. and Horn, E. C. Van. ‘Programming semantics for multipro-
grammed computations’. In: Commun. ACM 9.3 (1966), pp. 143–155.

[24] Dent, S. Google and others back Internet of Things security push. 2017.
https: / / www.engadget . com/ 2017/ 10/ 23 / google- arm- internet - of-
things-security/ (visited on 21/11/2018).

[25] Dhurjati, D. et al. ‘Memory Safety Without Garbage Collection for Embedded
Applications’. In: ACM Trans. Embed. Comput. Syst. 4.1 (Feb. 2005), pp. 73–
111.

[26] Ecker, W., Müller, W. and Dömer, R. Hardware-dependent Software: Principles
and Practice. 1st. Springer Publishing Company, Incorporated, 2009.

[27] Esswood, L. ‘CheriOS: A high-performance and completely untrusted single-
address-space capability operating system’. PhD Thesis. Cambridge, UK: Uni-
versity of Cambridge, 2019. to be submitted.

[28] Evans, J. ‘A Scalable Concurrent malloc(3) Implementation for FreeBSD’. In:
BSDCan. 2006.

[29] George, P. et al. ‘MIPSproTM N32 ABI Handbook’. In: (2002).

[30] Gras, B. et al. ‘ASLR on the Line: Practical Cache Attacks on the MMU’. In:
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA. 2017.

[31] Gumpertz, R. H. ‘Error Detection with Memory Tags’. PhD thesis. Carnegie
Mellon University, 1981.

[32] Guthaus, M. R. et al. ‘MiBench: A free, commercially representative embed-
ded benchmark suite’. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538). 2001,
pp. 3–14.

[33] Henning, J. L. ‘SPEC CPU2006 Benchmark Descriptions’. In: SIGARCH Com-
put. Archit. News 34.4 (Sept. 2006).

141

[34] Joannou, A. et al. ‘Efficient Tagged Memory’. In: 2017 IEEE International Con-
ference on Computer Design (ICCD). Nov. 2017, pp. 641–648.

[35] Joannou, A. J. P. ‘High-performance memory safety - Optimizing the CHERI
capability machine’. PhD thesis. University of Cambridge, Computer Labora-
tory, May 2018.

[36] Klein, G. et al. ‘seL4: Formal Verification of an OS Kernel’. In: Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP
’09. Big Sky, Montana, USA: ACM, 2009, pp. 207–220.

[37] Koeberl, P. et al. ‘TrustLite: A Security Architecture for Tiny Embedded De-
vices’. In: Proceedings of the Ninth European Conference on Computer Systems.
EuroSys ’14. Amsterdam, The Netherlands: ACM, 2014, 10:1–10:14.

[38] Kouwe, E. van der, Nigade, V. and Giuffrida, C. ‘DangSan: Scalable Use-after-
free Detection’. In: EuroSys. 2017.

[39] Kwon, A. et al. ‘Low-Fat Pointers: Compact Encoding and Efficient Gate-Level
Implementation of Fat Pointers for Spatial Safety and Capability-based Secu-
rity’. In: 20th Conference on Computer and Communications Security. ACM,
2013.

[40] Lea, D. A Memory Allocator. 2000.
http://g.oswego.edu/dl/html/malloc.html.

[41] Levy, H. M. Capability-Based Computer Systems. Digital Press, 1984.

[42] Lindqvist, U. and Neumann, P. G. ‘The Future of the Internet of Things’. In:
Commun. ACM 60.2 (Jan. 2017), pp. 26–30.

[43] Liu, D., Zhang, M. and Wang, H. ‘A Robust and Efficient Defense Against
Use-after-Free Exploits via Concurrent Pointer Sweeping’. In: CCS. 2018.

[44] Lougher, R. JamVM. 2014.
http://jamvm.sourceforge.net/.

[45] Midi, D., Payer, M. and Bertino, E. ‘Memory Safety for Embedded Devices
with nesCheck’. In: Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security. ASIA CCS ’17. Abu Dhabi, United Arab
Emirates: ACM, 2017, pp. 127–139.

142

[46] Nagarakatte, S. et al. ‘SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C’. In: Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’09. Dublin, Ire-
land: ACM, 2009, pp. 245–258.

[47] Needham, R. M. and Walker, R. D. H. ‘The Cambridge CAP computer and its
protection system’. In: Proceedings of the sixth ACM symposium on Operating
systems principles. SOSP ’77. West Lafayette, Indiana, United States: ACM,
1977, pp. 1–10.

[48] Noorman, J. et al. ‘Sancus: Low-cost Trustworthy Extensible Networked Devices
with a Zero-software Trusted Computing Base’. In: Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13). Washington, D.C.:
USENIX, 2013, pp. 479–498.

[49] Oleksenko, O. et al. ‘Intel MPX Explained: A Cross-layer Analysis of the Intel
MPX System Stack’. In: Proc. ACM Meas. Anal. Comput. Syst. 2.2 (June 2018),
28:1–28:30.

[50] Oracle’s SPARC T7 and SPARC M7 Server Architecture. Oracle. Aug. 2016.

[51] Parkinson, M. et al. Project Snowflake: Non-blocking safe manual memory man-
agement in .NET. Tech. rep. 2017.

[52] Payer, M. ‘Too much PIE is bad for performance’. In: (2012).

[53] Peleg, O. et al. ‘Utilizing the IOMMU Scalably’. In: 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015, pp. 549–562.

[54] Saltzer, J. H. and Schroeder, M. D. ‘The Protection of Information in Computer
Systems’. In: Communications of the ACM 17.7 (July 1974).

[55] Schöne, R. et al. ‘Energy Efficiency Features of the Intel Skylake-SP Processor
and Their Impact on Performance’. In: CoRR abs/1905.12468 (2019). arXiv:
1905.12468.

[56] Serebryany, K. et al. ‘AddressSanitizer: A Fast Address Sanity Checker’. In:
Proceedings of the 2012 USENIX Conference on Annual Technical Conference.
USENIX ATC’12. Boston, MA: USENIX Association, 2012, pp. 28–28.

[57] Serebryany, K. et al. ‘Memory Tagging and how it improves C/C++ memory
safety’. In: CoRR abs/1802.09517 (2018). arXiv: 1802.09517.

143

[58] Silvestro, S. et al. ‘FreeGuard: A Faster Secure Heap Allocator’. In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’17. Dallas, Texas, USA: ACM, 2017, pp. 2389–2403.

[59] Soares, L. and Stumm, M. ‘Exception-less System Calls for Event-driven Servers’.
In: Proceedings of the 2011 USENIX Conference on USENIX Annual Techni-
cal Conference. USENIXATC’11. Portland, OR: USENIX Association, 2011,
pp. 10–10.

[60] Soares, L. and Stumm, M. ‘FlexSC: Flexible System Call Scheduling with Exception-
less System Calls’. In: Proceedings of the 9th USENIX Conference on Operat-
ing Systems Design and Implementation. OSDI’10. Vancouver, BC, Canada:
USENIX Association, 2010, pp. 33–46.

[61] Strackx, R., Piessens, F. and Preneel, B. ‘Efficient Isolation of Trusted Subsys-
tems in Embedded Systems’. In: Security and Privacy in Communication Net-
works. Ed. by Jajodia, Sushil and Zhou, Jianying. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 344–361.

[62] Szekeres, L. et al. ‘SoK: Eternal War in Memory’. In: Proceedings of the 2013
IEEE Symposium on Security and Privacy. SP ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 48–62.

[63] Thomas, G. A proactive approach to more secure code. 2019.
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-
to-more-secure-code/ (visited on 05/11/2019).

[64] TrustZone technology for ARMv8-M Architecture. 0101-00. ARM Ltd. Aug.
2016.

[65] Ukil, A., Sen, J. and Koilakonda, S. ‘Embedded security for Internet of Things’.
In: 2011 2nd National Conference on Emerging Trends and Applications in Com-
puter Science. 2011, pp. 1–6.

[66] Waterman, A. et al. The RISC-V Instruction Set Manual Volume II: Privileged
Architecture Version 1.10. Tech. rep. EECS Department, University of Califor-
nia, Berkeley, 2017.

[67] Watson, R. N. et al. ‘Fast Protection-Domain Crossing in the CHERI Capability-
System Architecture’. In: IEEE Micro 36.5 (2016), pp. 38–49.

[68] Watson, R. N. M. et al. ‘A Taste of Capsicum: Practical Capabilities for UNIX’.
In: Commun. ACM 55.3 (Mar. 2012), pp. 97–104.

144

[69] Watson, R. N. M. et al. Capability Hardware Enhanced RISC Instructions:
CHERI Programmer’s Guide. Tech. rep. UCAM-CL-TR-877. University of Cam-
bridge, Computer Laboratory, Sept. 2015.

[70] Watson, R. N. M. et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 6). Tech. rep. UCAM-CL-TR-907.
University of Cambridge, Computer Laboratory, Apr. 2017.

[71] Watson, R. N. M. et al. ‘CHERI: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization’. In: 2015 IEEE Symposium on
Security and Privacy. 2015, pp. 20–37.

[72] WikiDevi. a user-editable database for computer hardware based on MediaWiki
and Semantic MediaWiki.
https://wikidevi.com/wiki/Main_Page.

[73] Wilkes, M. V. The Cambridge CAP Computer and Its Operating System (Op-
erating and Programming Systems Series). Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co., 1979.

[74] Woodruff, J. et al. ‘CHERI Concentrate: Practical Compressed Capabilities’.
In: IEEE Transactions on Computers (2019).

[75] Woodruff, J. et al. ‘The CHERI Capability Model: Revisiting RISC in an Age
of Risk’. In: Proceeding of the 41st Annual International Symposium on Com-
puter Architecuture. ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014,
pp. 457–468.

[76] Wulf, W. et al. ‘HYDRA: The Kernel of a Multiprocessor Operating System’.
In: Commun. ACM 17.6 (June 1974), pp. 337–345.

[77] Xia, H. et al. ‘CHERIvoke: Characterising Pointer Revocation Using CHERI
Capabilities for Temporal Memory Safety’. In: Proceedings of the 52Nd An-
nual IEEE/ACM International Symposium on Microarchitecture. MICRO ’52.
Columbus, OH, USA: ACM, 2019, pp. 545–557.

[78] Xia, H. et al. ‘CheriRTOS: A Capability Model for Embedded Devices’. In:
2018 IEEE 36th International Conference on Computer Design (ICCD). 2018,
pp. 92–99.

145

