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On the Capacity of Symmetric M-user Gaussian
Interference Channels with Feedback
Lan V. Truong, Member, IEEE, Hirosuke Yamamoto, Life Fellow, IEEE

Abstract—A general time-varying feedback coding scheme
is proposed for M -user fully connected symmetric Gaussian
interference channels. Based on the analysis of the general
coding scheme, we prove a theorem which gives a criterion
for designing good time-varying feedback codes for Gaussian
interference channels. The proposed scheme improves the Suh-
Tse and Kramer inner bounds of the channel capacity for the
cases of weak and not very strong interference when M = 2. This
capacity improvement is more significant when the signal-to-noise
ratio (SNR) is not very high. In addition, our coding scheme
can be proved mathematically and numerically to outperform
the Kramer code for M ≥ 2 when the SNR is equal to
the interference-to-noise ratio (INR). Besides, the generalized
degrees-of-freedom (GDoF) of our proposed coding scheme can
be proved to be optimal in the all network situations (very weak,
weak, strong, very strong) for any M . The numerical results
show that our coding scheme can attain better performance
than the Suh-Tse coding scheme for M = 2 or the Mohajer-
Tandon-Poor lattice coding scheme for M > 2. Furthermore,
the simplicity of the encoding/decoding algorithms is another
strong point of our proposed coding scheme compared with the
Suh-Tse coding scheme when M = 2 and the Mohajer-Tandon-
Poor lattice coding scheme when M > 2. More importantly, our
results show that an optimal coding scheme for the symmetric
Gaussian interference channels with feedback can be achieved
by only using marginal posterior distributions under a better
cooperation strategy between transmitters.

Index Terms—Gaussian Interference Channel with Feedback,
Feedback, Posterior Matching, Iterated Function Systems.

I. INTRODUCTION

The interference channels (IC) were first studied by
Ahlswede [1] in 1974, who established inner and outer bounds
including the simultaneous decoding inner bound. Carleial [2]
introduced the idea of rate splitting and established an in-
ner bound using successive cancellation decoding and time-
sharing. His inner bound was improved through simultaneous
decoding and coded time sharing by Han and Kobayashi [3].
For the two-user Gaussian interference channel as a special
case, there have been some significant progresses toward find-
ing better inner and outer bounds although the capacity of this
channel has been open for nearly 40 years. The approximation
of the two-user Gaussian IC by a deterministic channel was
first proposed by Bresler and Tse [4]. Furthermore, Etkin, Tse,
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and Wang [5] proved that a very simple and explicit Han-
Kobayashi type scheme can achieve the capacity for all values
of the channel parameters within a single bit per second per
hertz (bits/z/Hz).

Some other works have been done in the IC with feedback.
Kramer developed a feedback strategy and derived an outer
bound for the Gaussian channel. However, the gap between
the outer bound and the inner bound becomes arbitrarily large
with the increase of SNR (Signal-to-Noise Ratio) and INR
(Interference-to-Noise Ratio) [6]. Jiang-Xin-Garg [7] found
an achievable region in the discrete memoryless interference
channel with feedback. However, their scheme employs three
auxiliary random variables (requiring further optimization) and
block Markov encoding (requiring a long block length). Suh
and Tse [8], [9] characterized the capacity region within 2
bits/s/Hz and the symmetric capacity within 1 bit/s/Hz for the
two-user Gaussian IC with feedback. They also indicated that
feedback provides multiplicative gain at high SNR. However,
their coding scheme does not work well when the SNR is
close to the INR. It achieves even lower symmetric coding
rate than the Kramer code when this condition happens. In
addition, it has lower performance than the Kramer code
when the α = log INR/ logSNR is not very large and the
SNR is low (c.f. Figs. 2-3 of this paper, or Fig. 14 in [9]).
Recently, the Suh-Tse coding scheme has been extended to
M -user Gaussian IC with feedback for M ≥ 3 [10], [11]
or the Gaussian IC with limited feedback [12]. The main
ideas of these papers are to propose a method to manage
the interference by turning the M -user Gaussian IC with
feedback to an equivalent two-user one. Lattice codes, which
are generally complicated in encoding and decoding, are used
in these papers.

In this paper, we propose a new coding scheme based on
the Kramer code [6] and the time-varying posterior matching
code [13]–[16]. Our code can attain better coding rate by using
a devised transmission cooperation strategy and decoding only
their intended messages based on the fact that the posterior
distributions can be measured online at all transmitters and
their corresponding receivers. The proposed coding scheme
has the following strong points.
• Two-user case: Our code can attain better symmetric

coding rate than the Kramer code for all channel parame-
ters since the Kramer code can be considered as a special
case of our code and our code can be optimized more than
the Kramer code for given channel parameters. Although
the Kramer code cannot achieve the generalized degrees-
of-freedom (GDoF) of this IC [8], our code can attain the
same GDoF as the Suh-Tse code [8]. Furthermore, since
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our code can achieve better performance than the Suh-Tse
code [8] when α = log INR/ logSNR is not very large
(see Figs. 2 and 3 of this paper), our code overcomes
all the weak-points of the Suh-Tse coding scheme and
narrows the capacity gap to the Suh-Tse outer bound.

• M -user case for M ≥ 3: Our code can achieve the GDoF
of the M -user symmetric Gaussian IC with feedback.
Some numerical results show that our coding scheme
can attain better performance than the Mohajer-Tandon-
Poor lattice coding scheme [11], which achieves the
GDoF for very weak and strong interferences. The good
performance of our code comes from the use of marginal
posterior distributions under a devised cooperation strat-
egy between transmitters. For the special case such that
the SNR is equal to the INR, our code includes the
Kramer code as a special case. But we note that the
Kramer code cannot be constructed if the SNR is not
equal to the INR for M > 2.

In Section II, we describe the notation used in this paper
and the channel model of the Gaussian IC. We propose our
coding scheme for the Gaussian IC and evaluate the decoding
error probability of the proposed code in Section III. In
Section IV, we evaluate the normalized covariance matrix of
channel inputs generated by our coding scheme. Then, we
derive the symmetric coding rate of our code and also treat
several special cases in Section V. In Section VI, we show
that our code can attain the GDoF of the Gaussian IC. Finally
we show by numerical evaluations that our code can attain
better symmetric coding rate than the Kramer code, the Suh-
Tse code, and Mahajer-Tandon-Poor code.

II. CHANNEL MODEL AND PRELIMINARIES

A. Mathematical notations

Random variables and their realizations are denoted by
upper-case letters and their corresponding lower-case letters,
respectively. A real-valued random variable X is associated
with a distribution PX(·) defined on the usual Borel σ-algebra
over R, and we write X ∼ PX . The cumulative distribution
function (c.d.f.) of X is given by FX(x) = PX((−∞, x]), and
their inverse c.d.f is defined to be F−1

X (t) := inf{x : FX(x) >
t}. The uniform probability distribution over (0, 1) is denoted
through U . Then, it is known that the following lemma holds.

Lemma 1 ( [16, Lemma 1]). Let X be a continuous random
variable with X ∼ PX and Θ be a uniform distribution
random variable which is statistically independent of X , i.e.
Θ ∼ U . Then F−1

X (Θ) ∼ PX and FX(X) ∼ U .

We also use the following notations: Y(n,m) :=

(Y
(m)
1 , Y

(m)
2 , . . . , Y

(m)
n ), log x := log2(x), and exp2(x) :=

2x. Landau’s symbols O(·) and o(·) are defined as follows.

f(n) = O(g(n))

if and only if there exists real positive constants N and C
such that

|f(n)| ≤ C|g(n)| for all n > N.

Fig. 1: Cellular network with base stations and three clients
in (a), simplified and modeled as the network in (b).

Intuitively, this means that f does not grow faster than g.

f(n) = o(g(n))

if and only if there exists a real number N for any C > 0
such that |f(n)| < C|g(n)| for all n > N . If g(n) 6= 0, this
is equivalent to limn→∞ f(n)/g(n) = 0.

A Hadamard matrix [17] of order M is an (M×M) matrix
of +1s and −1s such that HHT = MIM . In fact, it is not
yet known for which values of M an H exists. However, we
know that if a Hadamard matrix of order M exists, then M is
1, 2, 4, or a multiple of 4. Moreover, for M = 2m where m a
positive integer, we can construct H by using the Sylvester
method [19]. Besides, the Paley construction [17], which
uses quadratic residues, can be used to construct Hadamard
matrices of order M if M = p+ 1 for a prime p and M is a
multiple of 4.

Let αn be the [(n − 1 mod M) + 1]-th column of the
Hadamard matrix H. In this paper, we use column-permutation
matrices of the Hadamard matrix H, say Hn, n ∈ Z+, which
are defined as follows:

Hn :=
[
αn αn+1 · · · αn+M−1

]
. (1)
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B. Gaussian Interference Channel with Feedback

Consider a network with M pairs of transmitters/receivers
shown in Fig. 1(b). Each transmitter Txm has a message
Θm ∼ U(0, 1) that it wishes to send to its respective receiver
Rxm. The signal transmitted by each transmitter is corrupted
by the interfering signals sent by other transmitters, and
received at the receiver. This can be mathematically modeled
as

Y (m)
n = X(m)

n + a

M∑
k=1,k 6=m

X(k)
n + Z(m)

n (2)

where X
(m)
n ∈ R is the transmitted symbol by sender m

at time n; Y (m)
n ∈ R is the received signal by receiver m

at the time n. We can assume without loss of generality
Z

(m)
n ∼ N (0, 1) and a ≥ 0. We also assume that the output

symbols are casually fed back to the corresponding senders
and that the transmitted symbol X(m)

n at time n can depend
on both the message Θm and the previous channel output
sequences Y(n−1,m) :=

(
Y

(m)
1 , Y

(m)
2 , . . . , Y

(m)
n−1

)
, ∀m ∈

{1, 2, . . . ,M}.
A transmission scheme for the M -user Gaussian inter-

ference channel with feedback is sequences of measurable
functions {g(m)

n : (0, 1)×Rn−1 → R}∞n=1,m ∈ {1, 2, . . . ,M}
so that the input to the channel generated by the transmitter
is given by

X(m)
n = g(m)

n (Θm,Y
(n−1,m)). (3)

A decoding rule for the M -user Gaussian interference
channel with feedback are sequences of measurable mappings
{∆(m)

n : Rn → E}∞n=1,m ∈ {1, 2, . . . ,M} where E is the set
of all open intervals in (0, 1) and ∆

(m)
n (y(n,m)) is referred to

as the decoded interval at receiver m. The error probabilities at
time n associated with a transmission scheme and a decoding
rule, is defined as

p(m)
n (e) := P(Θm /∈ ∆(m)

n (Y(n,m))), ∀m = 1, 2, . . . ,M,
(4)

and the corresponding coding rate vector
(R

(1)
n , R

(2)
n , . . . , R

(M)
n ) at time n is defined by

R(m)
n := − 1

n
log
∣∣∣∆(m)

n

(
Y(n,m)

)∣∣∣ , (5)

where | · | represents the length of an interval.
We say that a transmission scheme together with a decoding

rule achieves a rate vector (R1, R2, . . . , RM ) over a Gaussian
interference channel if for all m ∈ {1, 2, . . . ,M} we have

lim
n→∞

P
(
R(m)
n < Rm

)
= 0, (6)

lim
n→∞

p(m)
n (e) = 0. (7)

The rate vector is achieved within input power constraints
P (1), P (2), . . . , P (M) if the following is satisfied:

lim sup
n→∞

1

n

n∑
k=1

E[(X
(m)
k )2] ≤ P (m), ∀m = 1, 2, . . . ,M.

(8)

We denote the set of all achievable rate tuples
(R1, R2, . . . , RM ) by R.

For the symmetric case [11], i.e. P (1) = P (2) = · · · =
P (M) = P for some P > 0, let

SNR := P, (9)

INR := a2P, (10)

α :=
log INR

logSNR
, (11)

and define the per-user generalized degrees of freedom for
Rm = Rm(SNR,α) as

d(α) =
1

M
lim sup
SNR→∞

max(R1,R2,...,RM )∈R
∑M
m=1Rm(SNR,α)

(1/2) log(SNR)
.

(12)

If R1 = R2 = · · · = RM = Rsym we call Rsym a symmetric
rate, and the symmetric capacity is defined by

Csym := sup{Rsym : (Rsym, Rsym, . . . , Rsym) ∈ R}. (13)

The per-user generalized degrees of freedom in (12) can be
written as

d(α) = lim sup
SNR→∞

Csym

(1/2) log(SNR)
. (14)

An optimal fixed rate decoding rule for the M -user Gaus-
sian interference channel with feedback for rate vector
(R1, R2, . . . , RM ) is the one that decodes a vector of fixed
length intervals {(J1, J2, . . . , JM ) : |Jm| = 2−nRm for m ∈
{1, 2, . . . ,M}}, which maximizes posteriori probabilities, i.e.,

4(m)
n (y(n,m)) = argmax

Jm∈E:|Jm|=2−nRm
PΘm|Y n(Jm|y(n,m)).

(15)

It is easy to see that the optimal fixed rate decoding rule for the
Gaussian interference channel with feedback is the traditional
MAP, MMSE decoding rule.

An optimal variable rate decoding rule with target error
probabilities p

(m)
e (n) = δ

(m)
n is the one that decodes a

vector of minimal-length intervals (J1, J2, . . . , JM ) such that
accumulated marginal posteriori probabilities exceeds corre-
sponding targets, i.e.,

4(m)
n (y(n,m)) = min

Jm∈E:PΘm|Y n (Jm|y(n,m))≥1−δ(m)
n

|Jm|. (16)

Both decoding rules use the marginal posterior distribution of
the message point PΘm|Yn which can be calculated online at
the transmitters and the receivers. Refer [13]–[15], and [16]
for more details.

Lemma 2. The achievability in the definition (6), (7), and (8)
implies the achievability in the standard framework.

Proof: See the detailed proof in papers [16], [13]. The
idea is as follows. Assume that we use an encoding scheme
{g(m)
n }Mm=1 and a decoding rule {∆(m)

n }Mm=1 to achieve a rate
tuple {R∗m}Mm=1 under the assumption that all the transmit-
ted messages Θm are mutually independent and uniformly
distributed on (0, 1) as in Section II-B. Then, we can show
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the existence of M sequences Γm = {θ(m)
i,n ∈ (0, 1)}b2

nRmc
i=1

of message point sets for m = 1, 2, . . . ,M , where any
two message points in Γm are separated from each other
by at least 2−nR

∗
m . In addition, a uniform achievability over

{Γm}Mm=1 is guaranteed, i.e., limn→∞max
θ
(m)
n ∈Γm

P(θ
(m)
n /∈

∆
(m)
n (Y(n,m))|Θm = θ

(m)
n ) = 0 for each m ∈ {1, 2, . . . ,M}.

By mapping message points {1, 2, . . . , b2nR∗mc} defined in the
traditional way1 to message points in Γm, each coding scheme
in Section II-B is reduced to an equivalent coding scheme in
the traditional setting as in [18]. The error probabilities of the

associated scheme decay as
√
p

(m)
n (e) [16, Proof of Lemma

II.3].

III. A GENERAL TIME-VARYING CODING SCHEME FOR
THE SYMMETRIC GAUSSIAN INTERFERENCE CHANNEL

WITH FEEDBACK

In this section, we propose a time-varying encod-
ing/decoding scheme for the symmetric Gaussian interference
channel with feedback. For this symmetric case, we assume
that P (1) = P (2) = · · · = P (M) = P for some P > 0. The
time-varying encoding scheme is as follows:

A. Encoding

• Step 1: Transmitter m sends X(m)
1 = F−1

X (Θm), m ∈
{1, 2, . . . ,M}, where X ∼ N (0, P1) for some P1 > 0.

• Step n+ 1, n ≥ 1:

– All transmitters estimate

Pn+1 =
Pn
β2
n

(
[1− bn(1− a)]2

+ abnλn[2(1− a)bn +Mabn − 2] +
b2n
Pn

)
,

(17)

and each transmitter m sends

X
(m)
n+1α

(m)
n+1 :=

1

βn
(X(m)

n − bnα(m)
n Y (m)

n )α
(m)
n+1,

(18)

where αn+1 := [ α
(1)
n+1 α

(2)
n+1 . . . α

(M)
n+1

]T ,
α

(m)
n+1 ∈ {−1, 1}, is the ((n mod M) + 1)-th col-

umn of an M ×M Hadamard matrix H which is
defined in Section II-A, and bn and βn are some real
number sequences such that 0 < lim supn→∞ βn <
1 and they are determined according to network
situations.

– Receiver m receives

Y
(m)
n+1 = X

(m)
n+1α

(m)
n+1 + a

M∑
k=1,k 6=m

α
(k)
n+1X

(k)
n+1 + Z

(k)
n+1,

(19)

and each receiver feedbacks the received signal to
the corresponding transmitter.

1In the traditional settings, we usually assume that message set at user m
is {1, 2, . . . , 2nRm}, where Rm is an achievable rate of the code [18].

Here, {P1, βn, bn} must be chosen to satisfy the follow-
ing power constraint:

lim sup
N→∞

1

N

N∑
n=1

E[(X(m)
n )2] ≤ P, ∀m ∈ {1, 2, . . . ,M}.

(20)

Remark 1. The outperform of time-varying codes over the
Kramer codes [6] can be explained by our better choice of
parameter triplet (P1, βn, bn) for each network situation. We
note that each triplet of parameter (P1, βn, bn) represents
a cooperation strategy. With better cooperation among all
transmitters, we can achieve larger achievable rate region.
Besides, the use of (real) Hadamard matrix as coefficient
matrix allows us to analyze and optimize the performance
easier than the use of (complex) DFT matrix for the same
purpose as in [6]. (Refer to Corollary 3 in Section V-B for
more details.)

B. Decoding

• At each time slot n, receiver m ∈ {1, 2, . . . ,M} selects
a fixed interval J (m)

1 = (sm, tm) as the decoded interval
with respect to X(m)

n . Here,

tm := o(2n(log(β+ε)−1−R)), (21)
sm := −tm, (22)

where β := lim supn→∞ βn, and R is any positive
number such that R < log(β + ε)−1 for some ε > 0.

• Then, set J (m)
n =

(
T

(m)
n−1(sm), T

(m)
n−1(tm)

)
as the decoded

interval with respect to X(m)
1 , where

T (m)
n (s) := w

(m)
1 ◦ w(m)

2 ◦ · · · ◦ w(m)
n (s), ∀s ∈ R

(23)

and

w(m)
n (s) := βns+ bnα

(m)
n Y (m)

n , (24)

where ◦ is the composition operation defined as (f ◦
g)(x) := f(g(x)).

• The receiver m sets the decoded interval for the message
Θm as

∆(m)
n

(
Y(n,m)

)
= FX(J (m)

n ), (25)

where X ∼ N (0, P1).

We call this coding strategy the Gaussian interference time-
varying feedback coding strategy, which is an optimal variable
rate decoding rule with doubly exponential decay of targeted
error probabilities (see the proof of the Theorem 1 in this
paper).
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C. Analysis of decoding error probability

In this subsection, we evaluate the performance of the
Gaussian interference time-varying feedback coding strategy
defined in the above subsections.

Theorem 1. Under the condition that 0 < β :=
lim supn→∞ βn < 1 and W := supn,m E[(X

(m)
n )2] < ∞,

the time-varying coding scheme for the symmetric Gaussian
interference channel with feedback achieves the following
symmetric rate:

Rsym = log
1

β
(bits/channel use). (26)

Proof: Define

fX(x) :=
1√

2πP1

exp

(
− x2

2P1

)
, (27)

K := sup
x∈R
{fX(x)} =

1√
2πP1

. (28)

Let R(m)
n be the instant rate to transmit the intended messages

Θm to the receiver m. For any fixed symmetric rate R, we
have

P
(
R(m)
n < R

)
(a)
= P

(
− 1

n
log
∣∣∣∆(m)

n (Y(n,m))
∣∣∣ < R

)
= P

(
|∆(m)

n (Y(n,m))| > 2−nR
)

(b)
= P

(∫
J

(m)
n

fX(x)dx > 2−nR
)

(c)

≤ P
(
|J (m)
n | > 2−nR/K

)
, (29)

where (a) follows from (5), (b) follows from (25), and (c)
follows from (28). In addition, it holds from (24) that for any
t, s ∈ R

|w(m)
n (t)− w(m)

n (s)| = βn|t− s| (30)

for all m ∈ {1, 2, . . . ,M} and n = 1, 2, . . ..
Now, we will show that rate R is achievable if R < Rsym =

log β−1. Since R < Rsym, we can find an ε > 0 such that
R < log(β + ε)−1. Therefore, for n sufficiently large, we
have

P
(
R(m)
n < R

)
(a)

≤ K2nRE
[∣∣w(m)

1 ◦ w(m)
2 · · · ◦ w(m)

n−1(tm)

− w(m)
1 ◦ w(m)

2 · · · ◦ w(m)
n−1(sm)

∣∣]
(b)
= K2nRE

[
E
(
|w(m)

1 ◦ w(m)
2 · · · ◦ w(m)

n−1(tm)

− w(m)
1 ◦ w(m)

2 · · · ◦ w(m)
n−1(sm)|

)∣∣∣Y(n−1,m)
2

]
(c)
= K2nRβ1E

[
E
(
|w(m)

2 ◦ w(m)
3 · · · ◦ w(m)

n−1(tm)

− w(m)
2 ◦ w(m)

3 · · · ◦ w(m)
n−1(sm)|

)∣∣∣Y(n−1,m)
2

]
(d)
= K2nRβ1E

[
|w(m)

2 ◦ w(m)
3 · · · ◦ w(m)

n−1(tm)

− w(m)
2 ◦ w(m)

3 · · · ◦ w(m)
n−1(sm)|

]
...

(e)
= K2nR

( n−1∏
i=1

βi

)
E
[
|w(m)
n (tm)− w(m)

n (sm)|
]

(f)
= K2nR

( n∏
i=1

βi

)
|J (m)

1 |

= K2nR
(
2

1
n

∑n
i=1 log βi

)n|J (m)
1 |

(g)

≤ K2nR2n log(β+ε)|J (m)
1 |, (31)

where (a) follows from the Markov’s inequality and (29), (b)
and (d) follow from the law of iterated expectations, (c)
follows from (30) for each fixed Y

(n,m)
2 = y

(n,m)
2 , (e) follows

from the recursive application of (b)-(d), (f) follows from (30),
and (g) follows from 0 < βn < β + ε and Cesàro means for
n sufficiently large.

From (21), (22), and (31), it is easy to see that P(R
(m)
n <

R)→ 0 since

|J (m)
1 | = 2tm = o

(
2n(log(β+ε)−1−R)

)
. (32)

Now, from our encoding scheme, it is easy to see that

E[X(m)
n ] = 0, (33)

for all m ∈ {1, 2, . . . ,M} and n = 1, 2, . . . On the other hand,
observe that

X(m)
n

(a)
= βnX

(m)
n+1 + bnα

(m)
n Y (m)

n

(b)
= w(m)

n (X
(m)
n+1) (34)

for all n ≥ 1 and m ∈ {1, 2, · · · ,M}, where (a) and (b)
follow from (18) and (24), respectively. Therefore, we have
from (34) that

X
(m)
1 = w

(m)
1 (X

(m)
2 )

= (w
(m)
1 ◦ w(m)

2 )(X
(m)
3 )

...

= (w
(m)
1 ◦ w(m)

2 ◦ w(m)
3 · · · ◦ w(m)

n−1)(X(m)
n )

= T
(m)
n−1(X(m)

n ), (35)

where the last equality in (35) follows from (23).

Let W (m)
n = E[(X

(m)
n )2], and let Q(x) as the well-known

tail function of the standard normal distribution N (0, 1). Then,
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from the Chernoff bound of this function, we obtain

p(m)
n (e) = P

(
Θm /∈ ∆(m)

n

(
Y(n,m)

))
= P

(
Θm /∈ FX(J (m)

n )
)

= P
(
X

(m)
1 /∈ J (m)

n

)
(a)
= P

(
T

(m)
n−1(X(m)

n ) /∈
(
T

(m)
n−1(sm), T

(m)
n−1(tm)

))
= P

(
X(m)
n /∈ J (m)

1

)
(b)
= 2Q

 |J (m)
1 |

2

√
W

(m)
n


(c)

≤ exp

(
−|J

(m)
1 |2

8W
(m)
n

)
, (36)

where (a) follows from (35) and the definition of J (m)
n , (b)

follows from (33) and the fact that J (m)
1 is symmetric and

sm = −tm, and (c) follows from the Chernoff bound for the
Q-function 0 < Q(x) ≤ (1/2) exp(−x2/2),∀x > 0.

From R < log(β + ε)−1 < Rsym, we have that for each
m ∈ {1, 2, . . . ,M}, |J (m)

1 | → ∞ as n → ∞ . Furthermore,
from the assumption that W (m)

n is upper bounded by some
W , we have

|J (m)
1 |2

8W
(m)
n

≥ |J
(m)
1 |2

8W
→∞ (37)

as n → ∞. Therefore, if R < Rsym, the error probabil-
ities tend to zero as − log p

(m)
n (e) = o(22n(log(β+ε)−1−R))

from (32) and (36). Furthermore, since (P1, bn, βn) is chosen
to satisfy (20), the input power constraints are also satisfied.

Remark 2. Since we can estimate Rsym and know our desired
rate R in advance, it is possible to choose ε appropriately.
This means that the decoding algorithm can be implemented
practically. However, there is a tradeoff between the trans-
mission rate R (the possible values of ε) and the code length
n. If we transmit at a rate R very close to Rsym, ε must be
very small. As a result, the required Nε may become very
large. Furthermore, the fact that log(β + ε)−1 is very close
to R also implies that the error probabilities decay slowly to
zero. Therefore, the code length n must be very large if we
transmit nearly at Rsym. On the contrary, quite large ε makes
the required Nε smaller and the decay of error probabilities
faster.

Remark 3. In the case of finite n, P(R
(m)
n < R) is not zero

even if J (m)
1 satisfies (32). But this does not worsen the error

probability p
(m)
n (e) if retransmission is allowed. Note that

since each encoder m obtains y(n,m) via the feedback channel,
both encoder m and decoder m can know the value of R(m)

n

for y(n,m). Hence, they can know whether event {R(m)
n < R}

occurred or not for received y(n,m). If event {R(m)
n < R}

occurs, they discard this transmission and resend the same
message Θm. This retransmission decreases the coding rate
of message Θm from R

(m)
n to R(m)

n (1− P(R
(m)
n < R)). But,

this degradation of coding rate is negligible if P(R
(m)
n < R)

is sufficiently small.

Remark 4. If we cannot use the retransmission described in
Remark 3, event {R(m)

n < R} makes a decoding error. In this
case, we need to minimize the total decoding error probability
given by p(m)

n (e)+P(R
(m)
n < R), and hence we cannot attain

double exponential order. By setting |J (m)
1 |2(log e)/8W =

n(log(r(m) + ε)−1 − R) in (36), the error exponent of the
total error probability is given by

lim
ε→0

lim
n→∞

[
− 1

n
log
(
p(m)
n (e) + P(R(m)

n < R)
)]

≥ lim
ε→0

(
log(r(m) + ε)−1 −R

)
= Rsym −R. (38)

IV. NORMALIZED COVARIANCE MATRIX OF CHANNEL
INPUTS FOR THE PROPOSED SCHEME

Firstly, we show the following propositions.

Proposition 1. For E[(X
(1)
n )2] = E[(X

(2)
n )2] = · · · =

E[(X
(M)
n )2] := Pn, define a normalized covariance matrix

by

Rn :=
1

Pn


E[X

(1)
n X

(1)
n ] · · · E[X

(1)
n X

(M)
n ]

E[X
(2)
n X

(1)
n ] · · · E[X

(2)
n X

(M)
n ]

...
. . .

...
E[X

(M)
n X

(1)
n ] · · · E[X

(M)
n X

(M)
n ]



=


ρ

(1,1)
n · · · ρ

(1,M)
n

ρ
(2,1)
n · · · ρ

(2,M)
n

...
. . .

...
ρ

(M,1)
n · · · ρ

(M,M)
n

 , (39)

where

ρ(m,k)
n :=

E[X
(m)
n X

(k)
n ]

Pn
, (40)

ρ(m,k)
n = ρ(k,m)

n , ρ(m,m)
n = 1 (41)

for all m = 1, 2, . . . ,M and k = 1, 2, . . . ,M , then the
following statement holds:

If the covariance matrix Rn at time n has all the columns
of the M×M Hadamard matrix as its eigenvectors, it follows
that E[(X

(1)
n+1)2] = E[(X

(2)
n+1)2] = · · · = E[(X

(M)
n+1)2] :=

Pn+1 and the covariance matrix Rn+1 at time n + 1 also
has all the columns of the M ×M Hadamard matrix as its
eigenvectors. In addition, (42) holds, where λ(1)

n = λn, and
λ

(k)
n+i are the eigenvalue of the matrix Rn+i associated with

the eigenvector which is the [(n + i + k − 2 mod M) + 1]-th
column of the Hadamard matrix H for all k = 1, 2, . . . ,M
and for all i ∈ {0, 1}.

Proof: The proof of Proposition 1 is given in Appendix A.

Remark 5. The use of modulated coefficients is a mathe-
matical trick to force the covariance matrices Rn among all
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Pn+1λ
(k)
n+1 =


Pn
β2
n

(
[1− bn(1− a)]2λ

(k+1)
n +

b2n
Pn

)
, k = 1, 2, . . . ,M − 1

Pn
β2
n

(
[1− bn(1− a)]2λ

(1)
n +

b2n
Pn

+ abnλ
(1)
n [2(1− a)bn +Mabn − 2]M

)
, k = M

, (42)

transmitted signals to have a fixed set of eigenvectors at each
time n = 1, 2, . . . Thanks to this forcing mechanism, a relation
between the eigenvalues of Rn and Rn+1 (and/or Rn and
R1) can be established. This trick was first introduced by
Ozarow and Leung for 2-user Gaussian MAC [19] and for
2-user Gaussian broadcast channel [20] in 1984. Kramer gen-
eralized this idea to design feedback codes based on Discrete
Fourier Transform matrix (DFT) for M -user complex symbol
IC channels [6] in 2002. Later, Truong and Yamamoto [14]
combined these ideas with posterior matching idea [16] to
design a feedback code for 2-user IC which outperforms
Kramer code [6] and Suh-Tse code for 2-user IC real symbol
channel [8], [9]. They also designed a feedback code which
achieves the (optimal) linear feedback sum-capacity for the
Gaussian broadcast channel [15].

Proposition 2. Every normalized covariance matrix Rn has
all the columns of the M × M Hadamard matrix as its
eigenvectors.

Proof: Applying Lemma 1 with noting that X ∼
N (0, P1), we see that

E[(X
(1)
1 )2] = E[F−1

X (Θ1)F−1
X (Θ1)] = P1, (43)

E[(X
(2)
1 )2] = E[F−1

X (Θ2)F−1
X (Θ2)] = P1, (44)

...

E[(X
(M)
1 )2] = E[F−1

X (ΘM )F−1
X (ΘM )] = P1. (45)

Hence, we have

E[(X
(1)
1 )2] = E[(X

(2)
1 )2] = · · · = E[(X

(M)
1 )2] = P1. (46)

Besides, since Θm and Θk are pairwise independent for m 6=
k, we also have

E[X
(m)
1 X

(k)
1 ] = E[F−1

X (Θm)F−1
X (Θk)] = 0, ∀m 6= k.

(47)

It follows that

R1 =
1

P1


E[X

(1)
1 X

(1)
1 ] · · · E[X

(1)
1 X

(M)
1 ]

E[X
(2)
1 X

(1)
1 ] · · · E[X

(2)
1 X

(M)
1 ]

...
. . .

...
E[X

(M)
1 X

(1)
1 ] · · · E[X

(M)
1 X

(M)
1 ]

 (48)

= IM , (49)

where IM is the M ×M identity matrix.
By using the induction arguments and the fact that the

indentity matrix IM has all the columns of the Hadamard
matrix H as its eigenvectors, together with the results of
Propostion 1, we come to the conclusion. Note that we also
have λ(1)

1 = λ
(2)
1 = . . . = λ

(M)
1 = 1.

Now, we show that some other well-known coding schemes
are special variants of our coding strategy above.

A. Case of no interference (a = 0)

In this case, (163) and (165) in Appendix A, which is the
proof of Proposition 1, become

Pn+1 =
Pn
β2
n

[
(1− bn)2 +

b2n
Pn

]
, (50)

Pn+1Rn+1 =
Pn
β2
n

[
(1− bn)2Rn +

b2n
Pn

IM

]
. (51)

By setting the pair (Pn, bn) as

Pn = P, (52)

bn =
P

P + 1
, (53)

we obtain from (50) and (51) that

βn =
1√
P + 1

, (54)

Rn+1 =
1

1 + P
Rn +

P

1 + P
IM . (55)

Since R1 = IM , we have Rn = IM for n = 1, 2, ....
In the non-interference case, the Gaussian interference

channel with feedback becomes M separate point-to-point
Gaussian channels with feedback. Our coding algorithm with
the parameters given by (52) and (53) coincides with Shayevitz
and Feder’s posterior matching scheme [16], [21] (or a variant
of Schalkwijk-Kailath’s scheme [22], [23]). It is well-known
that this coding scheme achieves the capacity of the channel.

B. Case of two transmitter and two receivers (M = 2)

In the special case M = 2, denote ρn := ρ
(1,2)
n for

simplicity. It is easy to show that λn = 1 + |ρn| and
α

(1)
n α

(2)
n = sgn(ρn). By substituting these relations into (164)

in Appendix A, we have

Pn+1ρn+1

=
Pn
β2
n

(
[1− bn(1− a)]2ρn + abn(1 + |ρn|)

× [2(1− a)bn + 2abn − 2]sgn(ρn)

)
=
Pnsgn(ρn)

β2
n

(
|ρn| − 2bn(|ρn|+ a)

+ b2n[|ρn|(1 + a2) + 2a]

)
. (56)

On the other hand, we can show from (163) that

Pn+1 =
1

β2
n

(
Pn − 2Pnbn[1 + a|ρn|

+ b2n[1 + Pn + a2Pn + 2a|ρn|Pn]

)
. (57)
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(56) and (57) coincide with the equations (6) and (7) in [14].
By setting

Pn = P, (58)

bn =
P (1 + a|ρn|)

P (1 + a2 + 2a|ρn|) + 1
(59)

into (57), we obtain

βn =

√
a2P (1− |ρn|2) + 1

P (1 + a2 + 2a|ρn|) + 1
. (60)

With this choice of parameters, we obtain a new code which
is an optimized version of Kramer code [6, Sec. VI-B]. In
Sections V-B and VI, we will show that this variant code
outperforms the Kramer code for all channel parameters.

C. Case of SNR = INR (a = 1)

This special case has been considered in [6]. From (42), we
have

Pn+1λ
(k)
n+1 =


Pn
β2
n

[
λ
(k+1)
n +

b2n
Pn

]
, k < M,

Pn
β2
n

[
λ
(1)
n +Mbnλ

(1)
n (Mbn − 2) +

b2n
Pn

]
, k =M.

(61)

Choose

βn =

√
Pλn(M − λn) + 1

PMλn + 1
, (62)

bn =
Pnλn

PnMλn + 1
. (63)

Then, from (163), we have Pn+1 = Pn. Therefore, if we set
P1 = P as Kramer code [6], then we have Pn = P for
∀n ∈ N, i.e., the input power constraint is satisfied. Besides,
from the relation (61) we also have

λ
(k)
n+1 =


(PMλ(1)

n +1)λ(k+1)
n −P (1−an)(λ(1)

n )2

Pλ
(1)
n (M−λ(1)

n )+1
, k < M,

(PMλ(1)
n +1)λ(1)

n −P [1+(M−1)an](λ(1)
n )2

Pλ
(1)
n (M−λ(1)

n )+1
, k = M,

(64)

where

an = 1 +
1

PMλ
(1)
n + 1

. (65)

The equation (64) coincides with the one given by (76)
in [6]. It is shown in [6] that for large M , the sum-rate
is approximately (logM)/2 + log logM . This rate is about
log logM larger than the sum-rate capacity without feedback,
which is log(1 + PM)/2 ≈ (logM)/2 (cf. [6]).

V. MAIN RESULTS

Theorem 2. The symmetric rate

Rsym =
1

2
log+ 1

β2
(66)

is achievable if the following relations hold for a triplet
(b, β, λ).

β2 = [1− b(1− a)]2 + abλ[2(1− a)b+Mab− 2] +
b2

P
,

(67)
0 < λ < M, (68)

(A 6= 0, A 6= C,
λ(k) − λ(k+1)

A− C
> 0, ∀k < M)

or (A = C 6= 1, λ(k) = λ, ∀k ≤ M), (69)

(1− CAM−1)λ = B(AM−1 +AM−2 + · · ·+A+ 1), (70)

where

log+(x) := max{log2 x, 0}, (71)

λ(1) := λ, (72)

λ(k+1) =
λ(k) −B

A
, k = 1, 2, . . . ,M − 1, (73)

A =
[1− b(1− a)]2

β2
, (74)

B =
b2

Pβ2
, (75)

C =
[1− b(1− a)]2 +Mab[2(1− a)b+Mab− 2]

β2
.

(76)

Proof: The proof of Theorem 2 is given in Appendix B.

A. Case of no interference (a = 0)

Corollary 1. Under no interference (a = 0), the time-varying
coding scheme can achieve the following symmetric rate

Rsym =
1

2
log(P + 1). (77)

Proof: In the case of a = 0, we see from (74)–(76)
and (67) that

A = C =
(1− b)2

β2
, B =

b2

Pβ2
, (78)

and

β2 = (1− b)2 +
b2

P
. (79)

From (177) in Appendix B, (78), (79), λ satisfies

λ =
b2

Pβ2 − P (1− b)2
= 1 ∈ (0,M). (80)

Furthermore, from (73), (78), (79) we also have that

λ(k) = 1, ∀k = 1, 2, ...,M. (81)

It is easy to see from (79) that the minimum of β2 is equal to
1/(P + 1) which is obtained by b = P/(P + 1). In this case,
we have that

A = C =
1

P + 1
6= 1. (82)
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Therefore, all the conditions in Theorem 2 are satisfied, and
accordingly, the achievable symmetric rate is given by

Rsym =
1

2
log+ 1

β2
=

1

2
log(P + 1). (83)

It is well known that the above Rsym is the symmetric capacity
of this channel.

B. Case of two transmitter and two receivers (M = 2)

Corollary 2. For a given a and P , let

ξ(ρ, b) :=
P

P + b2[1 + P + a2P + 2aPρ]− 2bP [1 + aρ]
.

(84)

Then, the non-degraded symmetric Gaussian interference
channel (a > 0) can achieve the following symmetric rate
Rsym (bits/channel use):

Rsym =
1

2
max

ρ∈[0,ρ0], b∈{b∗1 ,b∗2}
log+ ξ(ρ, b), (85)

where

0 < ρ0 :=

√
a2P 2 + P −

√
P [2a2P 2 + P ]

a2P 2
< 1, (86)

and

b∗1,2 =
2Pρ+ aP + aPρ2

2aP + 2Pρ+ 2a2Pρ+ ρ+ 2aPρ2

±
√
P 2a2ρ4 − 2ρ2(a2P 2 + P ) + a2P 2

2aP + 2Pρ+ 2a2Pρ+ ρ+ 2aPρ2
. (87)

Proof: In the case of M = 2, the normalized correlation
matrix is

Rn =

[
1 ρn
ρn 1

]
, (88)

and 2× 2 Hadamard matrix is

H =

[
1 1
1 −1

]
. (89)

It is easy to see that the two eigenvalues of Rn associated with
two columns of H are 1± ρn. Therefore, the assumption that
λn → λ is equivalent to the assumption that |ρn| → ρ ∈ [0, 1]
for ρ = λ− 1.

From (67), we have

P =
1

β2
[P − 2bP (1 + aρ) + b2(1 + P + a2P + 2aρP )].

(90)

On the other hand, it also holds from (67), (74), and (75) that

ab[2(1− a)b+Mab− 2]

β2
=

1−A−B
λ

. (91)

Therefore, we obtain from (74), (76), (91) that

C = A+
2

λ
[1− (A+B)] . (92)

By substituting M = 2 into (70), we obtain

(1− CA)λ = B(A+ 1). (93)

This leads to

λ = CAλ+B(A+ 1)

= Aλ

(
A+

2

λ
[1− (A+B)]

)
+B(A+ 1)

= A2λ+ 2A[1− (A+B)] +B(A+ 1)

= A2λ+ 2A(1−A) +B(1−A). (94)

Equivalently,

λ(1−A2) = (1−A)(2A+B). (95)

The relation (95) holds if λ satisfies λ(1 + A) = 2A + B,
which means that

(1 + ρ)(1 +A) = 2A+B (96)

or

ρ(1 +A) = 2A+B − 1−A = A+B − 1. (97)

Then

−ρ = 1−A−B + ρA

= 1− [1− b(1− a)]2

β2
− b2

Pβ2
+ ρ

[1− b(1− a)]2

β2

=
1

β2

(
β2 − [1− b(1− a)]2 − b2

P
+ ρ[1− b(1− a)]2

)
=

1

β2

[
ρ− 2b(ρ+ a) + b2(ρ(1 + a2) + 2a)

]
, (98)

where the last equality holds from (67). Note that we assume
that a > 0 in II-B.

Combining (90) with (98), we come to an equation system
with three unknowns (b, ρ, β) as follows:

P =
1

β2

[
P − 2bP (1 + aρ) + b2(1 + P + a2P + 2aρP )

]
,

(99)

−ρ =
1

β2

[
ρ− 2b(ρ+ a) + b2

(
ρ(1 + a2) + 2a

)]
. (100)

By considering ρ as a variable, we obtain the following
quadratic equation in b for each fixed choice of ρ:

b2[2aP + 2Pρ+ 2a2Pρ+ ρ+ 2aPρ2]

− 2b[2Pρ+ aP + Paρ2] + 2Pρ = 0. (101)

The discriminant of this quadratic equation is given by

∆ = P 2a2ρ4 − 2ρ2(a2P 2 + P ) + a2P 2 := f(ρ). (102)

Since f(0) = a2P 2 > 0 and f(1) = −2P < 0, there exists the
minimum value ρ0 ∈ (0, 1) such that f(ρ0) = 0. Furthermore,
it can be shown that the value of ρ0 satisfies

0 < ρ0 =

√
a2P 2 + P −

√
P [2a2P 2 + P ]

a2P 2
< 1. (103)

On the other hand, the first derivative satisfies

f ′(ρ) = 4P 2a2(ρ3 − ρ)− 4Pρ ≤ 0 (104)
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for all ρ ∈ [0, 1]. This means ∆ = f(ρ) ≥ 0 for all ρ ∈ [0, ρ0].
For all these values of ρ, it can easily be shown that (101)
has two positive solutions b∗1, b

∗
2 described in Corollary 2.

In short, the equation system (90) and (98) has at least one
solution (b, β) for each fixed ρ ∈ [0, ρ0]. From Theorem 2,
the symmetric Gaussian interference channel with feedback
can achieve the following rate

Rsym =
1

2
log+

(
1

minρ∈[0,ρ0] β2

)
=

1

2
max

ρ∈[0,ρ0], b∈{b∗1 ,b∗2}
log+ ξ(ρ, b), (105)

where ξ(ρ, b) is defined in (84).

Corollary 3. For M = 2, the proposed time-varying code out-
performs the Kramer code in [6] for all channel parameters.

Proof: A variant of Kramer code is formed by setting the
triple (b, β, ρ), a solution of equation system (99) and (100),
as follows:

b =
P (1 + aρ)

P (1 + a2 + 2aρ) + 1
, (106)

β =

√
a2P (1− ρ2) + 1

P (1 + a2 + 2aρ) + 1
, (107)

and ρ is the unique solution in (0, 1) of the equation:

2a3P 2ρ4 + a2Pρ3 − 4aP (a2P + 1)ρ2

− (2a2P + P + 2)ρ+ 2aP (a2P + 1) = 0. (108)

(See also in [6], [8], [24]). Our proposed code can optimize ρ
as shown in (105) while the Kramer code must use the special
ρ given by the solution of (108). Therefore, the proposed code
can outperform the Kramer code.

Remark 6. Numerical evaluations shown in Figs. 2 and 3 in
Section VI affirm that the achievable rate of our coding scheme
in Corollary 2 is not worse than existing codes [6], [9] for
all channel parameters. These figures show that our coding
scheme achieves better performance than Suh-Tse code [9]
when α = log INR/ logSNR is not very large. In addition,
our code can obtain better symmetric rate than (or at least
equal to) the Kramer code for all channel parameters, and
therefore it overcomes all the weak-points of the Suh-Tse
coding scheme and narrows the capacity gap to the Suh-Tse
outer bound [9].

C. A variant of Kramer’s code for a = 1

For a = 1, by considering λ ∈ [0,M ] as a variable in (67),
we obtain the following quadratic equation in b:

β2 = 1 + bλ(Mb− 2) +
b2

P
:= fλ(b). (109)

Without considering other constraints, the function fλ(b) has
the derivative

f ′λ(b) = 2Mbλ− 2λ+
2b

P
. (110)

Note that f ′λ(b) = 0 if b = b∗ := Pλ/(MPλ + 1). For this
b = b∗, we obtain

β2 = fλ(b∗) =
Pλ(M − λ) + 1

PMλ+ 1
, (111)

and hence

β =

√
Pλ(M − λ) + 1

PMλ+ 1
. (112)

In this case, we have from (74)–(76) that

A =
1

β2
=

PMλ+ 1

Pλ(M − λ) + 1
, (113)

B =
b2

Pβ2
=

Pλ2

[Pλ(M − λ) + 1][PMλ+ 1]
, (114)

C =
1 +Mb(Mb− 2)

β2
=

1

[Pλ(M − λ) + 1][PMλ+ 1]
.

(115)

Since A 6= 1, substituting (113), (114), and (115) into (70) we
obtain

λ = CAM−1λ+B
AM − 1

A− 1

=
λ

[Pλ(M − λ) + 1][PMλ+ 1]

(
PMλ+ 1

Pλ(M − λ) + 1

)M−1

+
Pλ2

[Pλ(M − λ) + 1][PMλ+ 1]

(
PMλ+1

Pλ(M−λ)+1

)M
− 1

PMλ+1
Pλ(M−λ)+1 − 1

=
λ

[Pλ(M − λ) + 1][PMλ+ 1]

(
PMλ+ 1

Pλ(M − λ) + 1

)M−1

+
1

PMλ+ 1

{(
PMλ+ 1

Pλ(M − λ) + 1

)M
− 1

}
. (116)

Hence,

λ = − 1

PMλ+ 1

+

(
PMλ+ 1

Pλ(M − λ) + 1

)M
1

(PMλ+ 1)2
(λ+ PMλ+ 1).

(117)

It follows that

λ+
1

PMλ+ 1
=

(
PMλ+ 1

Pλ(M − λ) + 1

)M
λ+ PMλ+ 1

(PMλ+ 1)2
.

(118)

Hence,(
λ+

1

PMλ+ 1

)(
Pλ(M − λ) + 1

PMλ+ 1

)M
=
λ+ PMλ+ 1

(PMλ+ 1)2
.

(119)

Then, we have(
λ+

1

PMλ+ 1

)(
Pλ(M − λ) + 1

PMλ+ 1

)M
=

λ

(PMλ+ 1)2
+

1

PMλ+ 1
. (120)
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Rewrite this equation as

λ =(MPλ+ 1)2

{(
λ+

1

PMλ+ 1

)(
Pλ(M − λ) + 1

PMλ+ 1

)M
− 1

PMλ+ 1

}
. (121)

Observe that the equation (121) coincides with the equation
(92) in the paper [6]2. Besides, we have from (119) that

PMλ+ λ+ 1

PMλ2 + λ+ 1
= (PMλ+ 1)

(
PM(M − λ) + 1

PMλ+ 1

)M
,

(122)
or
PMλ2 + λ2 + λ

PMλ2 + λ+ 1

= λ(PMλ+ 1) exp2

[
M log

(
PM(M − λ) + 1

PMλ+ 1

)]
.

(123)

Note that the equation (123) coincides with the equation (93)
in [6]. Moreover, observe that

A =
PMλ+ 1

Pλ(M − λ) + 1
> 1, (124)

B =
Pλ

PMλ+ 1
> 0. (125)

Hence,

λ(k+1) =
λ(k) −B

A
< λ(k), k = 1, 2, ...,M. (126)

This means that the condition (69) in Theorem 2 is also
satisfied, and therefore the achievable symmetric rate is given
by

Rsym =
1

2
log+ 1

β2
=

1

2
log

[
PMλ+ 1

Pλ(M − λ) + 1

]
. (127)

For M sufficiently large, it is also shown in [6] that the
sum-rate is about λ/2, which is approximately (logM/2) +
log logM . This sum-rate is about log logM larger than
the sum-rate capacity without feedback, which is log(1 +
PM)/2 ≈ (logM)/2.

D. Extension of the Kramer’s code for a 6= 1

In the same way as Section V-C, we consider the minimum
value of the following equation for each fixed value of a:

β2 = [1−b(1−a)]2+abλ[2(1−a)b+Mab−2]+
b2

P
:= gλ(b).

(128)
The first derivative of gλ(b) is

g′λ(b) =

(
2(1− a)2 +

2

P
+ [4a(1− a) + 2Ma2]λ

)
b

− (2aλ+ 2(1− a)). (129)

If we do not care about other restrictions, the function gλ(b)
attains the minimum value at

b∗ =
aλ+ (1− a)

(1− a)2 + 1/P + [2a(1− a) +Ma2]λ
. (130)

2There is a typo in equation (92) in [6].

The minimum value of β2 in this case is

β2 = gλ(b∗). (131)

However, for the case a 6= 1, it is not easy to show the
existence of a λ > 0 such that (b∗,

√
gλ(b∗), λ) satisfies

all the restrictions in Theorem 2. In [6], the coding scheme
for a 6= 1 and M > 2 was also not proposed. The main
difficulty is the overwhelming computation which happens
when a 6= 1. It is also known that this method of choosing
parameters is suboptimal at least for M = 2 as mentioned in
Section V-B (cf. also [8], [9]). More specifically, it is shown
in [8] that the Kramer code for M = 2 does not achieve
the optimal generalized degree of freedom of the interference
channel with feedback. In the following subsections, we show
that a judicious choice of parameters of the time-varying code
can achieves the generalized degree of this channel not only
for M = 2 but also for M > 2. Our time-varying code,
which achieves the optimal generalized degree of freedom, is
proposed for any value of a /∈ {0, 1} and for any M ∈ Z+

where the Hadamard matrix exists.

E. Generalized Degree of Freedom of the Time-Varying Cod-
ing Scheme

In the following, we will characterize the achievable sym-
metric rate as the solution of a quartic equation.

Theorem 3. For a /∈ {0, 1}, the following symmetric rate
Rsym (bits/channel use) is achievable for M -user symmetric
Gaussian channel with feedback:

Rsym =
1

2
log+

[
1

infA>1 β2(A,a,P)

]
, (132)

where β = β(A, a, P ) is the smallest positive real number
satisfying the following constraints:

Z4β
4 + Z3β

3 + Z2β
2 + Z1β + Z0 = 0, (133)

and

0 <
β2(1−A)− b2/P

ab[2(1− a)b+Mab− 2]
< M, (134)

where

b =
1− β

√
A

1− a
, (135)

Z4 = Y0 +
AY2

(1− a)2
+
a[(M − 2)a+ 2]

P (1− a)4
A2, (136)

Z3 = −4(
√
A)3 a[(M − 2)a+ 2]

P (1− a)4
+

2a

P (1− a)3
(
√
A)3

− 2Y2

√
A

(1− a)2
− Y1

√
A

1− a
, (137)

Z2 =
a[(M − 2)a+ 2]

P (1− a)4
6A− 2a

P (1− a)3
3A

+
Y2

(1− a)2
+

Y1

(1− a)
, (138)

Z1 = −a[(M − 2)a+ 2]

P (1− a)4
4
√
A+

2a

P (1− a)3
3
√
A, (139)

Z0 =
a[(M − 2)a+ 2]

P (1− a)4
− 2a

P (1− a)3
, (140)
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Y0 = − (AM − 1)(A− 1)(
−MAM−1 + AM−1

A−1

) , (141)

Y1 =
M(A− 1)AM−1(
−MAM−1 + AM−1

A−1

)2a, (142)

Y2 = − (AM − 1)

P
(
−MAM−1 + AM−1

A−1

)
− (M(A− 1)AM−1)(
−MAM−1 + AM−1

A−1

)a[(M − 2)a+ 2]. (143)

Proof: The proof of Theorem 3 is given in Appendix C.

From Theorem 3, we obtain the following corollaries.

Corollary 4. For α = log INR/ logSNR > 1, the general-
ized degree of freedom of the proposed coding scheme is given
by

d(α) =
α

2
. (144)

Corollary 5. For α = log INR/ logSNR < 1, the general-
ized degree of freedom of the proposed coding scheme is given
by

d(α) = 1− α

2
. (145)

The proofs of Corollaries 4 and 5 are given in Appendices D
and E, respectively.

VI. NUMERICAL RESULTS

We have performed some numerical evaluations and obtains
some results which affirm our mathematical arguments in this
paper (cf. Figs. 2– 6). For the case M = 2, in Figs. 2 and 3, we
show some numerical results of achievable symmetric rate for
our proposed scheme in comparision with Suh-Tse scheme [9],
Kramer scheme [6], and Suh-Tse outer bound [9]. These fig-
ures show that our coding scheme achieves better performance
than Suh-Tse code when α = log INR/ logSNR is not very
large. In addition, our code can obtain better symmetric rate
than (or at least equal to) the Kramer code for all channel
parameters, and therefore it overcomes all the weak-points of
the Suh-Tse coding scheme and narrows the capacity gap to
the Suh-Tse outer bound.

Fig. 4 draws the curve of the generalized degree of freedom
of the fully-connected M -user Gaussian interference channel
with feedback as a function of α = log INR/ logSNR for
the case α 6= 1 for any M ≥ 2. This curve shows that the
generalized degree of freedom d(α) is linearly decreasing and
increasing in α < 1 and α > 1, respectively. For α = 1,
the generalized degree of freedom of this channel is not
well-defined as shown in [11, Theorem 1]. This curve was
shown to be optimal in [11, Theorem 1] for general M or for
the case M = 2 [9]. Since other coding schemes [9], [11]
which achieve the optimal generalized degree of freedom for
the Gaussian interference channel with feedback are based
on “cooperative interference alignment”, our results provide
an important conclusion that the simple strategy “treating
other users as noise” also works well if interference channels
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Fig. 2: Symmetric rate comparison at high SNR
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Fig. 3: Symmetric rate comparision at low SNR

allow feedback. Figs. 5 and 6 show that our coding scheme
can even achieve better symmetric rate than the cooperative
interference alignment strategy when numerically evaluated at
some M > 2.

VII. CONCLUSION

A general time-varying posterior matching coding scheme
for Gaussian interference channel with feedback was proposed.
Based on the analysis of achievable symmetric rate of the
channel, we proposed a coding scheme based on the ideas that
a better cooperation strategy among transmitters will make the
decoding process simpler and help to increase the achievable
transmission symmetric rate. All receivers only need to decode
their intended messages. Our proposed code has been shown
to narrow down the gap to the Suh-Tse outer bound for the
case M = 2. Besides, our code is optimal in the generalized
degree of freedom sense for any M ≥ 2. Our results show that
the simple strategy “treating other users as noise” also works
well if interference channels allow feedback. An interesting
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sian IC at high SNR

future work is to find the way to characterize the achievable
symmetric rate in a simpler way so that we can mathematically
compare our code performance with other existing coding
schemes.

APPENDIX A
PROOF OF PROPOSITION 1

Define

δ(n) =

{
1, n = 0,

0, n 6= 0.
(146)

Firstly, observe that

Y (m)
n = α(m)

n X(m)
n + a

M∑
l=1,l 6=m

α(l)
n X

(l)
n + Z(m)

n (147)

= (1− a)α(m)
n X(m)

n + a

M∑
l=1

α(l)
n X

(l)
n + Z(m)

n . (148)
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Fig. 6: Symmetric rate comparison for the very weak Gaussian
IC at high SNR

By the transmission strategy, we have

X
(m)
n+1 =

1

βn

[
X(m)
n − bnα(m)

n Y (m)
n

]
, (149)

X
(k)
n+1 =

1

βn

[
X(k)
n − bnα(k)

n Y (k)
n

]
. (150)

Hence, we obtain

E[X
(m)
n+1X

(k)
n+1] =

1

β2
n

(
E[X(m)

n X(k)
n ]− bnα(k)

n E[X(m)
n Y (k)

n ]

− bnα(m)
n E[X(k)

n Y (m)
n ] + b2nα

(m)
n α(k)

n E[Y (m)
n Y (k)

n ]

)
.

(151)

Observe that

E[X(m)
n Y (k)

n ] = (1− a)Pnα
(k)
n ρ(m,k)

n + Pna

M∑
l=1

α(l)
n ρ

(m,l)
n ,

(152)

E[X(k)
n Y (m)

n ] = (1− a)Pnα
(m)
n ρ(k,m)

n + Pna

M∑
l=1

α(l)
n ρ

(k,l)
n ,

(153)

E[Y (m)
n Y (k)

n ]

= E
(

[(1− a)α(m)
n X(m)

n + a

M∑
l=1

α(l)
n X

(l)
n + Z(m)

n ]

× [(1− a)α(k)
n X(k)

n + a

M∑
t=1

α(t)
n X(t)

n + Z(k)
n ]

)
= (1− a)2Pnα

(m)
n α(k)

n ρ(m,k)
n

+ Pna(1− a)α(m)
n

M∑
t=1

α(t)
n ρ(t,m)

n

+ Pna(1− a)α(k)
n

M∑
l=1

α(l)
n ρ

(l,k)
n

+ a2Pn

M∑
l=1

M∑
t=1

α(l)
n α

(t)
n ρ(l,t)

n + δ(m− k). (154)
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Denote by λn the eigenvalue associated with the eigenvector
αn of the covariance matrix Rn. Then, we have

M∑
l=1

M∑
t=1

α(l)
n α

(t)
n ρ(l,t)

n = αTnRnαn = Mλn, (155)

M∑
t=1

α(t)
n ρ(t,m)

n = αTnρ
(m)
n = α(m)

n λn. (156)

Therefore, using
(
α

(m)
n

)2
= 1,

E[X(m)
n Y (k)

n ] = (1− a)Pnα
(k)
n ρ(m,k)

n + Pnaλnα
(m)
n , (157)

E[X(k)
n Y (m)

n ] = (1− a)Pnα
(m)
n ρ(k,m)

n + Pnaλnα
(k)
n , (158)

E[Y (m)
n Y (k)

n ] = δ(m− k) + (1− a)2Pnα
(m)
n α(k)

n ρ(m,k)
n

+ 2Pna(1− a)λn + a2PMλn. (159)

Substituting (157)–(159) into (151), we obtain

E[X
(m)
n+1X

(k)
n+1] =

1

β2
n

(
Pnρ

(m,k)
n

− bnα(k)
n [(1− a)Pnα

(k)
n ρ(m,k)

n + Pnaλnα
(m)
n ]

− bnα(m)
n [(1− a)Pnα

(m)
n ρ(k,m)

n + Pnaλnα
(k)
n ]

+ b2nα
(m)
n α(k)

n [δ(m− k) + 2Pna(1− a)λn

+ a2PnMλn + (1− a)2Pnα
(m)
n α(k)

n ρ(m,k)
n ]

)
=
Pn
β2
n

(
[1− bn(1− a)]2ρ(m,k)

n

+ abnλn[2(1− a)bn +Mabn − 2]α(m)
n α(k)

n

+
b2n
Pn

δ(m− k)α(m)
n α(k)

n

)
. (160)

By setting k = m in (160), we also obtain

E[(X
(m)
n+1)2] =

Pn
β2
n

(
[1− bn(1− a)]2

+ abnλn[2(1− a)bn +Mabn − 2] +
b2n
Pn

)
,

(161)

for all k = 1, 2, . . . ,M . This means that

E[(X
(1)
n+1)2] = E[(X

(2)
n+1)2] = · · · = E[(X

(M)
n+1)2] := Pn+1.

(162)

Therefore,

Pn+1 =
Pn
β2
n

(
b2n
Pn

+ [1− bn(1− a)]2

+ abnλn[2(1− a)bn +Mabn − 2]

)
(163)

for all m = 1, 2, . . . ,M .
On the other hand, from (40) and (160), we obtain

Pn+1ρ
(m,k)
n+1 =

Pn
β2
n

(
[1− bn(1− a)]2ρ(m,k)

n

+ abnλn[2(1− a)bn +Mabn − 2]α(m)
n α(k)

n

+
b2n
Pn

δ(m− k)α(m)
n α(k)

n

)
, (164)

which means from (39) that

Pn+1Rn+1

=
Pn
β2
n

(
[1− bn(1− a)]2Rn +

b2n
Pn

IM

+ abnλn[2(1− a)bn +Mabn − 2]αnα
T
n

)
.

(165)

Let αn be the [(n − 1 mod M) + 1]-th column of the
Hadamard matrix H of order M , which is defined in Sec-
tion II-A. Recall the definition of Hn in (1), where Hn =
[ αn αn+1 . . . αn+M−1 ].

Then from (165), we have

Pn+1H
T
n+1Rn+1Hn+1

=
Pn
β2
n

(
[1− bn(1− a)]2HT

n+1RnHn+1 +
b2n
Pn

HT
n+1Hn+1

+ abnλn[2(1− a)bn +Mabn − 2]HT
n+1αnα

T
nHn+1

)
.

(166)

Observe that

αTnHn+1

= αTn
[
αn+1 αn+2 . . . αn+M−1 αn+M

]
=
[

0 0 . . . 0 M
]
, (167)

hence

HT
n+1αnα

T
nHn+1 = diag(0, 0, . . . , 0,M2). (168)

In addition, we also have

HT
n+1Hn+1 = MIM (169)

by the definition of the Hadamard matrix. Now, since Rn has
all the columns of the Hadamard matrix as its eigenvectors, it
also has all the columns of Hn+1 as its eigenvectors. Further-
more, since λ(k)

n is the eigenvalue of the matrix Rn associated
with the eigenvector which is the [(n+ k− 2 mod M) + 1]-th
column of the Hadamard matrix H for all k = 1, 2, . . . ,M ,
by the EVD (Eigenvalue Decompostion), we have

Rn = Hn+1 diag(λ(2)
n , λ(3)

n , . . . , λ(M)
n , λ(1)

n )H−1
n+1

=
1

M
Hn+1 diag(λ(2)

n , λ(3)
n , . . . , λ(M)

n , λ(1)
n )HT

n+1,

(170)

where (170) follows from (169). Furthermore, it follows
from (170) that

HT
n+1RnHn+1

=
1

M
HT
n+1Hn+1 diag(λ(2)

n , λ(3)
n , . . . , λ(M)

n , λ(1)
n )HT

n+1Hn+1

=
1

M
MIM diag(λ(2)

n , λ(3)
n , . . . , λ(M)

n , λ(1)
n )MIM

= M diag(λ(2)
n , λ(3)

n , . . . , λ(M)
n , λ(1)

n ). (171)
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From (166), (168), (169), and (171), we have

Pn+1H
T
n+1Rn+1Hn+1

=
Pn
β2
n

(
b2n
Pn

MIM

+ [1− bn(1− a)]2M diag(λ(2)
n , λ(3)

n , . . . , λ(M)
n , λ(1)

n )

+ abnλn[2(1− a)bn +Mabn − 2] diag(0, 0, . . . , 0,M2)

)
.

(172)

As a result, the right hand side of the equation (172) is a
diagonal matrix. In addition, from (172), we also have

Pn+1Rn+1Hn+1

=
1

M
Hn+1

Pn
β2
n

(
[1− bn(1− a)]2M

× diag(λ(2)
n , λ(3)

n , . . . , λ(M)
n , λ(1)

n ) +
b2n
Pn

MIM

+ abnλn[2(1− a)bn +Mabn − 2] diag(0, 0, . . . , 0,M2)

)
= Hn+1

Pn
β2
n

(
[1− bn(1− a)]2

× diag(λ(2)
n , λ(3)

n , . . . , λ(M)
n , λ(1)

n ) +
b2n
Pn

IM

+ abnλn[2(1− a)bn +Mabn − 2] diag(0, 0, . . . , 0,M)

)
.

(173)

From the relation (173), it is easy to see that all the columns of
the matrix Hn+1 are eigenvectors of Rn+1, so all the columns
of the Hadamard matrix H. Furthermore, since λ(k)

n+1 is the
eigenvalue of the matrix Rn+1 associated with the eigenvector
which is the [(n + k − 1 mod M) + 1]-th column of the
Hadamard matrix H for all k = 1, 2, . . . ,M , it holds that
Rn+1Hn+1 = Hn+1 diag(λ

(1)
n+1, λ

(2)
n+1, . . . , λ

(M)
n+1). Hence,

by (173), (42) of Proposition 1 holds.

APPENDIX B
PROOF OF THEOREM 2

Firstly, it is easy to see that if we can force Pn → P ,
λ

(k)
n → λ(k), bn → b, βn → β for some triplet (b, β, λ), then

from (42) we have

λ(k) =

{
Aλ(k+1) +B, k < M,
Cλ(1) +B, k = M.

(174)

Therefore, we obtain

λ = λ(1)

= Aλ(2) +B

= A[Aλ(3) +B] +B

= A2λ(3) +AB +B

...

= AM−1λ(M) +AM−2B +AM−3B + · · ·+AB +B

= CAM−1λ+B(AM−1 +AM−2 + · · ·+A+ 1), (175)

which means that

(1− CAM−1)λ = B(AM−1 +AM−2 + · · ·+A+ 1),
(176)

and for the case A 6= 1,

λ =
B(AM − 1)

(A− 1)(1− CAM−1)
. (177)

Moreover, the relation (67) holds from (163). We also note
from (42) that all the other eigenvalues λ(k) satisfy the
following relation:

λ(k+1) =
λ(k) −B

A
, k = 1, 2, . . . ,M − 1. (178)

(Note that, λ(1) = λ).

In the next part, we show a procedure to realize PM = P

and λ(k)
M = λ(k) for all k = 1, 2, . . . ,M by judiciously varying

the values of Pk, bk, βk for all k = 1, 2, . . . ,M − 1.
Define

An :=
Pn[1− bn(1− a)]2

Pn+1β2
n

, (179)

Bn :=
b2n

Pn+1β2
n

, (180)

Cn :=
Pn([1− bn(1− a)]2 +Mabn[2(1− a)bn +Mabn − 2])

Pn+1β2
n

.

(181)

From these definitions and (42) we have

λ
(k)
n+1 =

{
Anλ

(k+1)
n +Bn, k < M,

Cnλ
(1)
n +Bn, k = M.

(182)

Using the relation (182) recursively for k = 1, 2, . . . ,M − 1,
we obtain that

λ
(k)
M = AM−1λ

(k+1)
M−1 +BM−1

= AM−1AM−2λ
(k+2)
M−2

+AM−1BM−2 +BM−1

...

= AM−1AM−2 . . . Akλ
(M)
k

+AM−1AM−2 . . . Ak+1Bk

+AM−1AM−2 . . . Ak+2Bk+1

+AM−1BM−2 +BM−1

= AM−1AM−2 . . . AkCk−1λ
(1)
k−1

+AM−1AM−2 . . . AkBk−1

+AM−1AM−2 . . . Ak+1Bk

+AM−1AM−2 . . . Ak+2Bk+1

+AM−1BM−2 +BM−1

= AM−1AM−2 . . . AkCk−1Ak−2λ
(2)
k−2

+AM−1AM−2 . . . AkCk−1Bk−2

+AM−1AM−2 . . . AkBk−1

+AM−1AM−2 . . . Ak+1Bk
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+AM−1AM−2 . . . Ak+2Bk+1

+AM−1BM−2 +BM−1

...

= AM−1AM−2 . . . AkCk−1Ak−2 . . . A1λ
(k−1)
1

+AM−1AM−2 . . . AkCk−1Ak−2 . . . A2B1

+AM−1AM−2 . . . AkCk−1Ak−2 . . . A3B2

+AM−1AM−2 . . . AkCk−1Bk−2

+AM−1AM−2 . . . AkBk−1

+AM−1BM−2 +BM−1

(a)
= AM−1AM−2 . . . AkCk−1Ak−2 . . . A1

+AM−1AM−2 . . . AkCk−1Ak−2 . . . A2B1

+AM−1AM−2 . . . AkCk−1Ak−2 . . . A3B2

+AM−1AM−2 . . . AkCk−1Bk−2

+AM−1AM−2 . . . AkBk−1

+AM−1BM−2 +BM−1 (183)

for all k = 1, 2, 3, . . . ,M − 1. Here (a) follows from the fact
that R1 = IM , so λ(k)

1 = 1, k = 1, 2, . . . ,M .

We first fix An and Cn as An = A and Cn = C. Then, we
obtain the following relation from (183):

λ
(k)
M = AM−2C +AM−3CB1 +AM−4CB2 + · · ·

+AM−kCBk−2 +AM−kBk−1

+AM−k−1Bk + · · ·+ABM−2 +BM−1

= [AM−2C +AM−3CB1 + · · ·
+AM−kCBk−2 +AM−(k+1)CB(k+1)−2]

−AM−(k+1)CB(k+1)−2 +AM−kBk−1

+ [AM−(k+1)Bk + · · ·+ABM−2 +BM−1]

= λ
(k+1)
M −AM−k−1CBk−1 +AM−kBk−1. (184)

If A = C 6= 1, we have from (177) that

λ =
B

1−A
. (185)

In addition, from (67), (75), (76), and A = C,

A = C

=
β2 − (b2/P )

β2

= 1− b2

β2P

= 1−B. (186)

This leads to λ = 1. Note from (184) and A = C that
λ

(k)
M = λ

(k+1)
M , k = 1, 2, . . . ,M − 1. Hence, by setting

Pk = P, βk = β, bk = b for all k = 1, 2, . . . ,M − 1, we can
achieve λ(k)

M = 1 = λ for all k = 1, 2, . . . ,M and PM = P
(from the relations (163) and (67)).

If A 6= 0, A 6= C, we have from (180) and (184) that

b2k−1

Pkβ2
k−1

= Bk−1 =
λ

(k)
M − λ

(k+1)
M

(A− C)AM−k−1
. (187)

In order for (187) to have a solution pair (βk−1, Pk > 0), we
need

λ(k) − λ(k+1)

A− C
> 0. (188)

Furthermore, from (179) and (181), the following relations
must be satisfied

Pk[1− bk(1− a)]2

Pk+1β2
k

= A, (189)

and

Pk([1− bk(1− a)]2 +Mabk[2(1− a)bk +Mabk − 2])

Pk+1β2
k

= C.

(190)

From (187) and (189), we obtain

Pk =
Ab2k

Bk[1− bk(1− a)]2
, (191)

β2
k =

b2k
Pk+1Bk

, (192)

for all k = 1, 2, 3, ...,M−1. Since Pk > 0 obviously, we need
Bk > 0 and bk /∈ {0, 1/(1 − a)} for all k. This condition is
satisfied from (187) and (188).

Besides, we need to set PM = P and λ
(k)
M = λ(k) for all

k = 1, 2, ...,M .
The last thing we need to check is that there exists a bk 6= 0

satisfying (190). From (74), (76), and (189), this condition is
equivalent to that the following equation has at least a non-zero
solution bk:

PkMabk[2(1− a)bk +Mabk − 2]

Pk+1β2
k

2

=
PMab[2(1− a)b+Mab− 2]

Pβ2
. (193)

Combing (193) with (189), the requirement becomes

A

[1− bk(1− a)]2
Mabk[2(1− a)bk +Mabk − 2]

=
PMab[2(1− a)b+Mab− 2]

Pβ2
. (194)

From (74), this relation is satisfied by choosing bk = b for all
k = 1, 2, 3, ...,M − 1.

In short, for the case A 6= 0, A 6= C, (λ(k) − λ(k+1))/(A−
C) > 0, ∀k < M , we can realize PM = P and λ(k)

M = λ(k)

for all k = 1, 2, . . . ,M by setting the parameters as follows:

bk = b, (195)

Bk =
λ(k+1) − λ(k+2)

(A− C)AM−k−2
, (λ(M+1) := λ(1)) (196)

β2
k =

b2k
Pk+1Bk

, (197)

Pk =
APk+1β

2
k

[1− bk(1− a)]2
. (198)

For n ≥ M , we only need to set bn = b, βn = β, Pn =

P and obtain λ
(k)
n = λ(k) for all k = 1, 2, ...,M from the

relation (42).
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Observe that since W
(m)
n = P for all n ≥ M , we have

W = P < ∞. Applying Theorem 1 to the above results,
Theorem 2 is obtained. Note that, since Theorem 1 holds only
for 0 < β < 1, log+ must be used instead of log.

APPENDIX C
PROOF OF THEOREM 3

We will show that we can find a pair (b, β, λ) such that all
the conditions in Theorem 2 are satisfied for each fixed A > 1.
From (73), we have

λ(k+1) − λ(k) =
1

A

(
λ(k) − λ(k−1)

)
. (199)

Therefore, the condition λ(1) > λ(2) > · · · > λ(2) > λ(M) is
satisfied if λ(1) > λ(2). This condition is equivalent to

λ >
λ−B
A

. (200)

Of course, this equation is satisfied if we choose A > 1.
Moreover, we obtain from (74) that

b =
1± β

√
A

1− a
. (201)

On the other hand, from (67), (74), (75), and (185) we obtain

C = A+
M

λ
(1−A−B). (202)

From (202), A > 1, B ≥ 0, and λ > 0 we have that A−C > 0.
This means that the condition (69) is satisfied.

Substituting (202) into (70) and noting that A 6= 1, we
obtain(

1−
[
A+

M

λ
(1−A−B)

]
AM−1

)
λ = B

AM − 1

A− 1
.

(203)

This equation is equivalent to(
1−

[
A+

M

λ
(1−A)

]
AM−1

)
λ

= B

[
−MAM−1 +

AM − 1

A− 1

]
, (204)

or

B =

(
1−

[
A+ M

λ (1−A)
]
AM−1

)
λ

−MAM−1 + AM−1
A−1

. (205)

Observe that B = b2/(Pβ2), so we have

b2

P
= β2

(
1−

[
A+ M

λ (1−A)
]
AM−1

)
λ

−MAM−1 + AM−1
A−1

. (206)

Rewrite (206) as

b2

P
= β2 1−AM

−MAM−1 + AM−1
A−1

λ+
M(A− 1)AM−1

−MAM−1 + AM−1
A−1

β2.

(207)

Therefore, from (67) and (68) we have

λ =
β2(1−A)− b2

P

ab[2(1− a)b+Mab− 2]
. (208)

Replacing the relation (208) to (207), we obtain

b2

P
=

M(A− 1)AM−1

−MAM−1 + AM−1
A−1

β2

+ β2

(
1−AM

−MAM−1 + AM−1
A−1

)(
β2(1−A)− b2

P

ab[2(1− a)b+Mab− 2]

)
.

(209)

Rearranging this relation, we have

b2

P
ab[2(1− a)b+Mab− 2]

=
(AM − 1)(A− 1)(
−MAM−1 + AM−1

A−1

)β4 − b2(1−AM )

P
(
−MAM−1 + AM−1

A−1

)β2

+
M(A− 1)AM−1(
−MAM−1 + AM−1

A−1

)β2ab[2(1− a)b+Mab− 2].

(210)

Then, we have an equation

a[(M − 2)a+ 2]
b4

P
− 2a

b3

P
− (AM − 1)

P
(
−MAM−1 + AM−1

A−1

)β2b2

− M(A− 1)AM−1(
−MAM−1 + AM−1

A−1

)a[(M − 2)a+ 2]β2b2

+
M(A− 1)AM−1(
−MAM−1 + AM−1

A−1

)2aβ2b

− (AM − 1)(A− 1)(
−MAM−1 + AM−1

A−1

)β4 = 0. (211)

Using Y0, Y1, Y2 defined by (141), (142), and (143), respec-
tively, the equation (211) can be rewritten as

a[(M − 2)a+ 2]
b4

P
− 2a

b3

P
+ Y2β

2b2 + Y1β
2b+ Y0β

4 = 0.

(212)

Note that

b =
1±
√
Aβ

1− a
, (213)

b2 =
1

(1− a)2
(1 +Aβ2 ± 2

√
Aβ), (214)

b3 =
1

(1− a)3
(1± (

√
A)3β3 ± 3

√
Aβ + 3Aβ2, (215)

b4 =
1

(1− a)4
(1± 4

√
Aβ + 6Aβ2 ± 4(

√
A)3β3 +A2β4).

(216)

Substituting these results into the equation (212), we attain

Z4β
4 + Z3β

3 + Z2β
2 + Z1β + Z0 = 0. (217)
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Here, Z4, Z2, Z0 are given by (136), (138), (140), respectively,
and

Z3 = ±4(
√
A)3 a[(M − 2)a+ 2]

P (1− a)4
∓ 2a

P (1− a)3
(
√
A)3

± 2Y2

√
A

(1− a)2
± Y1

√
A

1− a
, (218)

Z1 = ±a[(M − 2)a+ 2]

P (1− a)4
4
√
A∓ 2a

P (1− a)3
3
√
A. (219)

Last but not least, for 0 < λ < M , (134) must hold. Now,
since A > 1, (134) holds if and only if

b[2(1− a)b+Mab− 2] < 0. (220)

This is equivalent to

0 < b <
2

(M − 2)a+ 2
. (221)

Since we assume that β > 0, it is easy to see that we must
choose

b =
1− β

√
A

1− a
. (222)

Therefore, Z3 and Z1 are given by (137) and (139), respec-
tively. Finally, from (222), it is easy to see that (221) holds if
and only if we choose β such that

Ma

[(M − 2)a+ 2]
√
A
< β <

1√
A

for a < 1, (223)

1√
A
< β <

Ma

[(M − 2)a+ 2]
√
A

for a > 1. (224)

This means that there exists a triplet (b, β, λ) which sat-
isfies (133) and (134) and that two these conditions are
sufficient conditions for (67)–(70) to hold for any A > 1.
By Theorem 2, we conclude that Theorem 3 also holds.

APPENDIX D
PROOF OF CORROLARY 4

Let A = P v for some v > 0 which will be determined later.
On the other hand, since

α =
log INR

logSNR
=

log(a2P )

log(P )
(225)

then a2P = Pα and a = P (α−1)/2. For P sufficiently
large, by keeping the dominant terms in the nominator and

denominator of fractions of polynomials in P , we have

Y0 = − (AM − 1)(A− 1)(
−MAM−1 + AM−1

A−1

)
≈ 1

M − 1
P 2v, (226)

Y1 =
M(A− 1)AM−1(
−MAM−1 + AM−1

A−1

)2a

≈ MP vM

(−M + 1)P v(M−1)
2P (α−1)/2

≈ −2M

M − 1
P (v+α−1

2 ), (227)

Y2 = −

 AM − 1

P
(
−MAM−1 + AM−1

A−1

)


− M(A− 1)AM−1

−MAM−1 + AM−1
A−1

a[(M − 2)a+ 2]

≈ P v−1

M − 1
+
M(M − 2)

M − 1
P v+α−1

≈ M(M − 2)

M − 1
P v+α−1. (228)

Using the same arguments as above, it follows that

Z4 ≈ (M − 1)P 2v, (229)

Z3 ≈ −2MP
3v
2 , (230)

Z2 ≈
M2

(M − 1)
P v, (231)

Z1 ≈ −(4M − 2)P
v
2−α, (232)

Z0 ≈MP−α. (233)

The equation (133) will be satisfied if for P sufficiently large
(P →∞) we can show that for some β > 0,

(M − 1)P 2vβ4 − 2MP
3v
2 β3

+
M2

M − 1
P vβ2 − (4M − 2)P

v
2−αβ +MP−α ≈ 0.

(234)

Moreover, β must satisfy (224), which becomes

P−v/2 < β <
Ma

[(M − 2)a+ 2]
P−v/2 ≈ M

M − 2
P−v/2.

(235)

From [11, Theorem 1], we know that d(α) ≤ α/2 for α > 1
hence β cannot decay faster than α/4 as P tends to infinity.
To show that our coding scheme can achieve the optimal
generalized degree of freedom α/2, we set β = P−α/4γ for
some γ > 0 which does not depend on P and α and show
that all the conditions in the Theorem 3 are satisfied. With this
setting, it follows that

α

2
− 2 logP (γ) < v <

α

2
+ 2 logP

(
M

M − 2

)
− 2 logP (γ).

(236)
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For P → ∞, we have v → α/2. Hence, we must set v =
α/2. We will show that we can find such a γ to satisfy the
equation (234). Indeed,

MP−α + (M − 1)P 2vP−αγ4 − 2MP
3v
2 P−3α/4γ3

+
M2

M − 1
P vP−α/2γ2 − (4M − 2)P

v
2−αP−α/2γ ≈ 0.

(237)

The above equation is equivalent to for P sufficiently large

MP−α + (M − 1)γ4 − 2Mγ3

+
M2

M − 1
γ2 + (4M − 2)P−3α/4γ ≈ 0. (238)

By choosing γ = M/(M − 1), the equation (238) is satisfied.
Next, we check that with our choices of γ and v = α/2,
β = P−α/4γ, we have 0 ≤ λ ≤M for P sufficiently large.

Indeed, for P sufficiently large, we see that

b =
1− β

√
A

1− a
≈ (γ − 1)P (1−α)/2. (239)

Hence,

b2 ≈ (γ − 1)2P 1−α. (240)

Then, from (208) we have

λ =
β2(1−A)− b2/P

(M − 2)a2b2 + 2ab2 − 2ab

≈ P−α/2γ2(1− Pα/2)− (γ − 1)2P−α

(M − 2)(γ − 1)2P + 2(γ − 1)2P 1−α/2 − 2(γ − 1)
√
P

≈ 0. (241)

This means that λ↘ 0 as P ↗∞.
By the result of Theorem 1, for P sufficiently large, the

achievable symmetric rate Rsym = Rsym(SNR,α) is approx-
imate to

Rsym(SNR,α) ≥ 1

2
log+ 1

β2

≈ α

4
logP. (242)

Therefore, the generalized degree of freedom of our code
satisfies

d(α) = lim
SNR→∞

Rsym(SNR,α)

(1/2) log(SNR)
≥ α

2
. (243)

Since we know from [11, Theorem 1] that d(α) ≤ α/2 we
have

d(α) =
α

2
. (244)

APPENDIX E
PROOF OF CORROLARY 5

Similarly to the proof in Appendix D, we set A = P v where
v > 0 will be determined later. Using the approximation ar-

guments, in which we keep the dominant terms in nominators
and denominators of fractional expressions, we obtain

Y0 ≈
1

M − 1
P 2v, (245)

Y1 ≈−
2M

M − 1
P v+(α−1)/2, (246)

Y2 ≈
M(M − 2)

M − 1
P v+α−1. (247)

It follows that

Z0 ≈0, (248)

Z1 ≈− 2P (α−1)/2+v/2−1, (249)

Z2 ≈−
2M

M − 1
P v+(α−1)/2, (250)

Z3 ≈
2M

M − 1
P 3v/2+(α−1)/2, (251)

Z4 ≈
1

M − 1
P 2v. (252)

The equation (133) will be satisfied for P sufficiently large if
1

M − 1
P 2vβ4 +

2M

M − 1
P 3v/2+(α−1)/2β3

− 2M

M − 1
P v+(α−1)/2β2 − 2P (α−1)/2+v/2−1β ≈ 0.

(253)

From the paper [11], we know that d(α) ≤ 1− α/2 for α <
1 hence β cannot decay faster than α/4 − 1/2 as P tends
to infinity. To show that our coding scheme can achieve the
optimal generalized degree of freedom 1 − α/2, we set β =
Pα/4−1/2γ where γ 6= 0 does not depend on P and α and
show all the conditions in the Theorem 3 to be satisfied. With
this setting, the equation (253) becomes

1

M − 1
P 2v+α−2γ4 +

2M

M − 1
P 3v/2+5α/4−2γ3

− 2M

M − 1
P v+α−3/2γ2 − 2P 3α/4+v/2−2γ ≈ 0. (254)

We will return to this equality later by judiciously choosing
v > 0. Now, we need to make 0 < λ < M .

In order to satisfy λ > 0, from previous arguments, we need
to set

b =
1− β

√
A

1− a
, (255)

and
Ma

[(M − 2)a+ 2]
√
A
< β <

1√
A
. (256)

Moreover, from (255) and the choices of A and β, we have

b ≈ 1− P v/2+α/4−1/2γ, (257)

b2 = 1 + P v+α/2−1γ2 − 2P v/2+α/4−1/2γ

≈ 1− 2P v/2+α/4−1/2γ, (258)

if choosing v < 1− α/2. With the choice of v < 1− α/2, it
also follows that

b2 − b ≈ P v+α/2−1γ2 − P v/2+α/4−1/2γ

≈ −P v/2+α/4−1/2γ. (259)
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From (208), we have

λ ≈ γ2Pα/2−1(1− P v)− P−1(1− 2P v/2+α/4−1)γ

−2P (α−1)/2P v/2+α/4−1/2γ

≈ −γ2Pα/2−1+v

−2γP v/2+3α/4−1

=
γ

2
P v/2−α/4. (260)

To make λ bounded in (0,M) when P →∞ and λ > 0, we
should choose v = α/2 and 0 < γ < 2M such as γ = M .

Now, we check the relation (254) when setting v = α/2. It
is easy to see that the left hand side of (254) will be

1

M − 1
P 2(α−1)γ4 +

2M

M − 1
P 2(α−1)γ3

− 2M

M − 1
P 3/2(α−1)γ2 − 2P 2(α−1)γ → 0 (261)

as P →∞ since α < 1.
This means that for P sufficiently large and α < 1, by

Theorem 2, the achievable symmetric rate is approximate to

Rsym(SNR,α) ≥ 1

2
log+ 1

β2

≈ 1

2

(
1− α

2

)
logP. (262)

Therefore, the generalized degree of freedom of our code is
greater than or equal to

d(α) = lim
SNR→∞

Rsym(SNR,α)

(1/2) log(SNR)
≥ 1− α

2
. (263)

Since we know from [11, Theorem 1] that d(α) ≤ 1 − α/2
for α < 1, we have

d(α) = 1− α

2
, α < 1. (264)
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