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Cardiovascular disease (CVD) is a leading cause of mor-
tality worldwide. In 2015, it accounted for 17.9 million 

deaths or almost one-third of all deaths globally.1 New strate-
gies to prevent CVD are highly sought after from both a hu-
manitarian and economical perspective. The identification of 
causal risk factors associated with CVD is expected to provide 
important insights on how to develop new strategies.

Over the past decades, several kidney-related biomarkers 
have been proposed to be associated with CVD,2,3 but their po-
tential causal role in disease processes is not well understood. 
We used urinary biomarkers, as proxies for kidney function, 

to shed light on this relationship and to pinpoint causal risk 
biomarkers involved in this association.

The association of high sodium and low potassium with 
elevated blood pressure is supported by a large body of evi-
dence in populations of different ancestry.4–6 The Prospective 
Urban Rural Epidemiology project recently assessed that in 
addition to hypertension, increasing potassium excretion is 
also associated with all major cardiovascular outcomes de-
crease. In the same study, urinary sodium showed association 
with CVD and strokes only in communities where mean intake 
was >5 g/d.7 In observational epidemiological studies, high 
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Abstract—Urinary biomarkers are associated with cardiovascular disease, but the nature of these associations is not well 
understood. We performed multivariable-adjusted regression models to assess associations of random spot measurements 
of the urine sodium-potassium ratio (UNa/UK) and urine albumin adjusted for creatinine with cardiovascular risk factors, 
cardiovascular disease, and type 2 diabetes mellitus (T2D) in 478 311 participants of the UK Biobank. Further, we 
assessed the causal relationships of these kidney biomarkers, used as proxies for kidney function, with cardiovascular 
outcomes using the 2-sample Mendelian randomization approach. In observational analyses, UNa/UK showed significant 
inverse associations with atrial fibrillation, coronary artery disease, ischemic stroke, lipid-lowering medication, and 
T2D. In contrast, urine albumin adjusted for creatinine showed significant positive associations with atrial fibrillation, 
coronary artery disease, heart failure, hemorrhagic stroke, lipid-lowering medication, and T2D. We found a positive 
association between UNa/UK and albumin with blood pressure (BP), as well as with adiposity-related measures. After 
correcting for potential horizontal pleiotropy, we found evidence of causal associations of UNa/UK and albumin with BP 
(β systolic BP ≥2.63; β diastolic BP ≥0.85 SD increase in BP per SD change in UNa/UK and urine albumin adjusted for 
creatinine; P≤0.04), and of albumin with T2D (odds ratio=1.33 per SD change in albumin, P=0.02). Our comprehensive 
study of urinary biomarkers performed using state-of-the-art analyses of causality mirror and extend findings from 
randomized interventional trials which have established UNa/UK as a risk factor for hypertension. In addition, we 
detect a causal feedback loop between albumin and hypertension, and our finding of a bidirectional causal association 
between albumin and T2D reflects the well-known nephropathy in T2D.  (Hypertension. 2020;75:00-00. DOI: 10.1161/
HYPERTENSIONAHA.119.14028.) • Online Data Supplement
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albuminuria is associated with risk for cardiovascular events 
in individuals with or without diabetes mellitus.8,9 One recent 
study10 supported the existence of a bidirectional causal as-
sociation between albuminuria and blood pressure, implying 
that albuminuria could increase risk of CVD through blood 
pressure. But there is a lack of prior studies comprehensively 
examining several urinary biomarkers reflecting different 
aspects of kidney function and their associations with blood 
pressure, type 2 diabetes mellitus (T2D), and CVD in a large 
study sample from the general population. Furthermore, the 
causal associations of these biomarkers with cardiometabolic 
traits are not well understood. We hypothesized that urinary 
excretion of albumin, sodium, and potassium are associated 
with cardiovascular and metabolic disease.

The aims of this study were to first determine the asso-
ciations between urinary biomarkers, specifically urinary 
sodium, potassium, and albumin, with cardiovascular risk fac-
tors, T2D, and CVD in the UK Biobank by means of obser-
vational analyses including sex-stratified analyses; and then 
to test whether any of these associations are causal using a 
2-sample Mendelian randomization (MR) approach, com-
bining UK Biobank data with publicly available data from rel-
evant genome-wide association studies (GWAS).

Methods

Data Availability
Datasets related to this article are available at UK Biobank resource 
(https://www.ukbiobank.ac.uk/). GWAS summary statistics for uri-
nary biomarkers are available at GRASP resource (https://grasp.
nhlbi.nih.gov/FullResults.aspx).

Study Population
The UK Biobank is a longitudinal cohort study of >500 000 individu-
als aged 40 to 69 years initiated in the United Kingdom in 2006 to 
2010.11 We used the data collected at the UK Biobank assessment cen-
ters at baseline, combined with information on incident events from 
the hospital and death registries. In our main analysis (N=478 311), we 
excluded participants with diagnoses indicating impaired kidney func-
tion (N=7221) and CVD at baseline (atrial fibrillation [AF], coronary 
artery disease [CAD], heart failure [HF], hemorrhagic stroke, or is-
chemic stroke [IS]; N=17 087; see below). We defined impaired kidney 
function as International Classification of Diseases, Ninth Revision 
(ICD-9) codes 581-589, 591, 2503, and V420; Tenth Revision (ICD-10) 
codes N00, N01, N03-N08, N10-N19, N25-29, E10.2, E11.2, E14.4, 
and Z99.2; and surgical codes for kidney (codes M01-M06, M08). In 
our sensitivity analysis (N=390 893), we additionally excluded partici-
pants using diuretics, ACE (angiotensin-converting enzyme) inhibitors, 
angiotensin II receptor blockers, or calcium channel blockers for any 
reason, and medications that are combination drugs including ≥1 of 
these categories (N=87 418), as these medications may influence glo-
merular filtration and electrolyte reabsorption and, therefore, urinary 
excretion of sodium, potassium, or albumin or may influence the effect 
of solute on CVD. Details of these measurements can be found in the 
UK Biobank Data Showcase (http://biobank.ctsu.ox.ac.uk/crystal/).

Definition of Exposure and Cardiovascular 
Outcomes for Observational Analyses
The exposures of interest for our main analysis were urinary sodium 
(field ID 30530) to potassium (field ID 30520) excretion ratio (UNa/
UK), and urinary albumin (field ID 30500) to creatinine (field ID 
30510) ratio (UAlb/UCr). We analyzed urinary sodium to creatinine 
ratio (UNa/UCr) and urinary potassium to creatinine ratio (UK/UCr) 
for secondary analyses. Urine samples were collected at baseline in 
all UK Biobank participants. A random urinary spot was used as a 

measure of electrolyte excretion due to the difficulty in collecting and 
processing overnight or 24-hour urine samples in a very large popula-
tion cohort with multiple study centers and a central biobank. All uri-
nary biomarker measurements were performed on a single Beckman 
Coulter AU5400 clinical chemistry analyzer using the manufac-
turer’s reagents and calibrators, except for urinary albumin, which 
used reagents and calibrators sourced from Randox Bioscience. The 
Beckman Coulter analyzer used a photometric measurement for the 
determination of creatinine and albumin concentration and a potenti-
ometric measurement for the determination of sodium and potassium 
concentration. The analysis method for urinary sodium and potas-
sium involved a predilution of sample step, while for urinary albumin 
and creatinine assays it allowed samples with results exceeding the 
upper analytical limit of the assay to be diluted and reanalyzed. One 
advantage of using urine biomarkers in UK Biobank data is that all 
data were processed in the same laboratory with the same proce-
dures. Internal quality control was performed for all the 4 urinary 
biomarkers data (http://biobank.ctsu.ox.ac.uk/crystal/docs/urine_
assay.pdf). The method of using spot-urine samples to approximate 
24-hour excretion is widely used, especially for surveys with large 
populations.12,13

Cardiovascular outcomes were defined using the inpatient hospital 
and death registries, including primary and secondary causes to max-
imize power. AF was defined as ICD-9 code 427.3, ICD-10 code I48, 
and surgical codes K50.1, K62.2-K62.4. CAD was defined as ICD-9 
codes 410-411, ICD-10 codes I20.0, I21, and I22; and surgical codes 
for percutaneous transluminal coronary angioplasty and coronary ar-
tery bypass graft (codes K40-K46, K49-K50, and K75). HF was de-
fined as ICD-9 code 428 and ICD-10 code I50. Stroke was defined as 
hemorrhagic (ICD-9: 430-432, ICD-10: I60-I62) or IS (ICD-9: 433-
434, ICD-10: I63). The hospital registry-based follow-up ended on 
March 31, 2015 in England; August 31, 2014 in Scotland; and February 
28, 2015 in Wales. We censored individuals either on these dates, at the 
time of event in question, or at the time of death, whichever occurred 
first. The death registry included all deaths that occurred before January 
31, 2016 in England and Wales, and November 30, 2015 in Scotland.

Definition of Confounders for Observational 
Analyses
We used data from questionnaires to derive the following poten-
tial confounders: sex (ID 31), age (ID 21003), region of the UK 
Biobank assessment center (ID 54; recoded to 3 countries: United 
Kingdom, Scotland, and Wales), ethnicity (ID 21000; recoded to 4 
groups: black, Asian, white, and mixed), smoking status (ID 20116, 
recoded to 3 groups: never, previous, and current), alcohol use (ID 
100022, weekly alcohol intake in grams), degree of physical ac-
tivity (ID 894, recoded to 2 groups: days/wk of moderate phys-
ical activity <5, days/wk of moderate physical activity ≥5), and a 
Townsend index reflecting socioeconomic status (ID 189). Physical 
measurements were used to define systolic blood pressure (SBP; 
ID 4080, but if missing ID 93), diastolic blood pressure (DBP; ID 
4079, but if missing ID 940), body fat percentage (ID 23099), body 
mass index (BMI; ID 21001), and waist-to-hip ratio (WHR; ID 48/
ID 49). Lipid medications (ID 20003; including the following medi-
cations: simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvas-
tatin, ezetimibe, nicotinic acid product, or fenofibrate) were used 
as a proxy for hyperlipidemia, as lipid level measurements were not 
available in UK Biobank at the time of the present study. T2D was 
defined as having a diagnosis of ICD-9 code 250.10 or 250.12, or 
ICD-10 code E11 in the inpatient hospital register; diabetes mellitus 
diagnosed by a physician (ID 2443) after 35 years old (ID 2976), 
or being treated with antidiabetic medication, but without insulin 
treatment in the first year (ID 2986).

Statistical Methods

Observational Analysis
Multivariable-adjusted Cox proportional hazards models were per-
formed to determine associations of our exposures with AF, CAD, 
HF, hemorrhagic stroke and IS events, separately; during a median 
follow-up time of 6.1 years. We performed multivariable linear 
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regression models to determine associations of exposures with SBP, 
DBP, body fat percentage, BMI, and WHR and multivariable logistic 
regression models to study associations of urinary biomarkers with 
lipid medications and T2D. We assessed evidence of nonlinear effects 
of UNa/UK and UAlb/UCr on different outcomes using spline regres-
sion models. We use the DAGitty web tool (http://dagitty.net/dags.
html) to systematically construct our multivariable model adjusting 
for confounders. All association analyses were adjusted for age, sex, 
region of the UK Biobank assessment center, ethnicity, smoking, 
alcohol, physical activity, Townsend index, blood pressure (DBP 
and SBP), obesity (BMI, body fat percentage, WHR), lipid medica-
tions, T2D, and medications affecting renal excretion. In addition, 
we performed secondary analyses for UNa/UK without adjustment 
for blood pressure, to further disentangle a possible mediating or 
confounding effect of blood pressure on CVD, lipids, T2D and obe-
sity traits; and adjusting our models only for age, sex, region of the 
UK Biobank assessment center, and ethnicity (minimally adjusted 
model). Further, we performed sex-stratified analyses to study sex 
differences of these associations. A Bonferroni-corrected threshold of 
4.17×10-3 (adjusting for 12 comparisons) was used to adjust for mul-
tiple testing to avoid false-positive findings. Cox regressions analyses 
were conducted with the R package Survival (version 3.3.0).

Mendelian Randomization
MR uses genetic variants as instrumental variables to make infer-
ences about causal effects based on observational data. Associations 
between modifiable exposures and disease seen in observational 
epidemiology are often prone to reverse causation and confound-
ing, and thus noninformative with regards to causality. MR—based 
on the random assortment of genes from parents to offspring that 
occurs at conception—provides a method for assessing the causal 
nature of associations between exposures (risk factors, biomarkers) 
and outcomes. Unlike environmental exposures, genetic variants 
cannot change as a result of the outcome (hence, excluding reverse 
causation) and are not generally associated with the wide range of 
behavioral, social, or physiological factors that confound classic ob-
servational associations. This means that if a genetic variant is used 
as a proxy for an environmentally modifiable exposure or biomarker, 
it is unlikely to be affected by reverse causation or confounding in 
the way that direct measures of the exposure or biomarker will be.14

We performed 2-sample MR analyses using as outcomes data 
from publicly available consortia, except for blood pressure where we 
performed a GWAS in UK Biobank (as the publicly available GWAS 
summary statistics were adjusted for BMI).

We previously performed GWAS of all the urinary biomarkers in 
up to 327 616 unrelated Europeans participants of the UK Biobank.15 
We excluded individuals who had withdrawn consent at the time of 
this study, who were related, and those who did not self-report as 
white or did not cluster with Europeans based on principal component 
analysis of genetic data. We adjusted all models for age, sex, batch (3 
levels; UK Biobank Lung Exome Variant Evaluation, UK Biobank re-
lease 1, and UK Biobank release 2), and the first 10 genotype principal 
components, and restricted association analyses to single-nucleotide 
polymorphisms (SNPs) with minor allele count ≥30 and imputation 
quality information score (info) ≥0.8. We then used genome-wide 
significant independent hits (after linkage disequilibrium clumping 
using a window of 500 kb and r2 cutoff=0.05) associated with UNa/
UK, UNa/UCr, UK/UCr, and UAlb/UCr as instrument variables for 
the MR analyses. The results of this previous GWAS15 are available 
at GRASP resource (https://grasp.nhlbi.nih.gov/FullResults.aspx). A 
list of the variants included in the instrument variable is shown in 
Table S1 in the online-only Data Supplement. Finally, as a last step 
before performing the MR analyses, we performed several data har-
monization steps. Since, the effects of a SNP on the exposure and the 
outcome must correspond to the same allele, we identified variants 
with unmatched effect alleles and inferred the forward strand allele 
using allele frequency information. After that, we flipped their effect 
estimates and the effect allele frequencies in one of the data sets.

We assessed the causal relationships of the 4 urinary biomark-
ers with risk factors for CVD (SBP, DBP, BMI, and WHR). We did 
not study causal associations of UNa/UK, UNa/Cr, and UK/Cr with 

any hard CVD end points due to lack of statistical power (Table S2). 
We assessed the causal relationships of UAlb/UCr with AF and T2D 
(power to detect causal effects >75%; Table S2).

We performed 2-sample MR using 3 separate methods to estimate 
causal effects: the standard inverse variance weighted regression; as 
well as 2 robust regression methods, the weighted median-based 
method, and Egger regression.16 We performed leave-one-out sensi-
tivity analyses to identify if a single SNP was driving an association. 
In addition, we performed bidirectional MR and multivariable MR 
for significant causal outcomes.

We performed the 2-sample MR analyses,16,17 as well as the bidi-
rectional MR and the multivariable MR with the R package, 2-sample 
MR. In addition, we used the Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier software18 to minimize the risk of hori-
zontal pleiotropy affecting our results. A fundamental assumption of 
MR is the lack of horizontal pleiotropy assumption which requires 
that the genetic variants used for MR analyses act on the outcome ex-
clusively through the exposure of interest (if there is an association). 
Horizontal pleiotropy occurs when the variant has an effect on other 
traits outside of the pathway of the exposure of interest that has an 
impact on the target outcome. As a violation of the lack of horizon-
tal pleiotropy assumption, horizontal pleiotropy can distort MR tests, 
leading to inaccurate causal estimates, loss of statistical power, and 
potential false-positive causal relationships. It should be noted that 
vertical pleiotropy or mediation (genetic variants associated with the 
exposure and several other steps along the causal pathway before the 
outcome) is not a violation of any MR assumptions (and a common 
feature in biology). We applied 2 robust methods with different as-
sumptions about the behavior of pleiotropic variants: (1) MR-Egger,19 
which assumes that the INstrument Strength is Independent of the 
Direct Effect, which means that pleiotropic effects are independent of 
phenotypic effects across variants and (2) Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier,18 that excludes outlying vari-
ants as being potentially pleiotropic.

Details of the GWAS summary statistics used to performed MR 
analyses and variance explained by our instruments can be found in 
Table S2.

We estimated statistical power for each of the MR analyses using 
variance explained from our exposures and effect size from observa-
tional analyses and an alpha threshold of 0.05. In addition, we calcu-
lated the statistical power using a fixed effect of 1.15 for binary trait 
and 0.15 for continuous traits. Power for MR analyses was estimated 
with the online tool at https://sb452.shinyapps.io/power/.

Results
Baseline characteristics of UK Biobank participants are 
shown in Table 1. In the main analysis, the mean age at base-
line was 56.3 years (SD, 8.1 years), and 56% of participants 
were females. During a median follow-up time of 6.1 years, 
22 212 incident CVD cases occurred in participants free from 
the disease at baseline (9196 AF; 7375 CAD; 2775 HF; 978 
hemorrhagic stroke; and 1888 IS events; Table 2).

Observational Analyses
Table 2 summarizes the results from our main observational 
analyses (full results in Table S3). UNa/UK showed signifi-
cant inverse associations (ie, higher UNa/UK associated with 
lower disease risk) with AF, CAD, lipid-lowering medica-
tion, and T2D. In contrast, higher UNa/UK was associated 
with higher SBP and DBP, as well as increased body fat per-
centage, BMI, and WHR (P≤0.0042). When we performed 
these associations using sodium and potassium adjusted for 
creatinine, we detected similar and consistent results for UNa/
UCr, but slightly different results for UK/UCr. Indeed, higher 
UK/UCr was associated with higher lipid-lowering medica-
tion and T2D and lower SBP (Table S3 and Figure S1). When 
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we excluded blood pressure from our multivariable-adjusted 

models, we observed mostly similar results, except the asso-

ciations of UNa/UK with CAD and IS that were attenuated 

(Table S4A). In our minimally adjusted models (adjusted only 

for age, sex, region of the UK Biobank assessment center, and 

ethnicity), we observed a significant inverse and direct associ-

ation of UNa/UK with AF and CAD, respectively (Table S4B).

UAlb/UCr showed significant positive associations with 
AF, CAD, HF, hemorrhagic stroke, lipid-lowering medica-
tion, and T2D. Further, high UAlb/UCr was associated with 
higher SBP and DBP. In contrast, UAlb/UCr showed signifi-
cant inverse associations with body fat percentage, BMI, and 
WHR. The negative association with obesity traits (body fat 
percentage, BMI, and WHR) was consistent also for UNa/UCr 
and UK/UCr (Table S3) and was driven by the adjustment for 
creatinine. Indeed, urine sodium, potassium, and albumin not 
adjusted for creatinine showed significant positive associa-
tions with obesity traits (Table S5).

In our sensitivity analyses, after excluding participants 
using diuretics, ACE inhibitors, angiotensin II receptor block-
ers, or calcium channel blockers, we observed consistent 
results. For a few associations, UNa/UK with CAD, IS, and 
T2D; UNa/UCr and UK/UCr with HF; and UAlb/UCr with 
CAD, we observed consistent directions with the main analy-
ses, without reaching significance, probably due to the lower 
sample size (lower statistical power; Table S3 and Figure S1).

We excluded nonlinear associations between UNa/UK 
and UAlb/UCr and all outcomes tested (P>0.05), except for 
HF (P=9.0×10-8, UNa/UK) and IS (P=0.001, UAlb/UCr) by 
spline regression (Figure S2 and S3).

When participants eligible for inclusion in the main analysis 
were stratified by sex (Table S6 and Figure S4), no additional 
significant associations were found between exposures and out-
comes in either subset. All associations between urinary biomark-
ers and outcomes remained significant and consistent with the 
main analyses in both men and women. Events were more com-
mon in the male sample set for all CVD outcomes (Table S6). 
Generally, males displayed larger effect estimates than females. 
For disease outcomes, this potentially could be explained by bet-
ter statistical power (more events), while the power should be 
equal for continuous traits (as the number of measurements were 
similar). The strongest sex interactions were observed for UAlb/
UCr and T2D (P<2×10−16) and across urinary biomarkers and 
obesity traits (P<2×10−16; Table S6 and Figure S4).

Mendelian Randomization
After correcting for horizontal pleiotropy, we found evidence 
of causal associations between UNa/UK and BMI, UAlb/UCr 
and T2D, and of both biomarkers (UNa/UK and UAlb/UCr) 
with blood pressure and WHR (Table 2 and Figure 1). A leave-
one out sensitivity analysis did not highlight any SNPs with a 
large effect on the results. After excluding heterogeneous SNPs 
using Mendelian Randomization Pleiotropy RESidual Sum 
and Outlier (Figures S5 through S8), our analysis showed no 
significant heterogeneity and no significant directional hori-
zontal pleiotropy. Numbers of variants included in the analyses, 
number of outliers excluded, and full results are shown in Table 
S7. We only performed MR analyses for outcomes for which 
we had at least 75% statistical power (Table S2).

We found evidence of causal bidirectional effect across 
UNa/UK and UAlb/UCr and blood pressure, and between al-
bumin and T2D (Table S8).

We performed multivariable MR using all established 
GWAS significant variants for UAlb/UCr, SBP, and WHR as 
predictor variables and GWAS of T2D and AF as outcome 
variables. We detected an independent association between 

Table 1. Baseline Characteristics of UK Biobank Participants for Main 
(N=478 311) and Sensitivity (N=390 893) Analyses

Variables

Main Cohort*
Cohort for Sensitivity 

Analyses†

N (%) or Mean (SD) N (%) or Mean (SD)

Sex (female) 265 777 (56) 222 152 (57)

Age 56.3 (8.1) 55.4 (8.1)

Ethnicity

    Black 7773 (2) 5632 (2)

    Asian 10 754 (2) 8566 (2)

    White 449 961 (94) 368 525 (94)

    Mixed 7207 (2) 6013 (2)

Smoking

    Previous 161 803 (34) 126 636 (33)

    Current 50 067 (11) 42 434 (11)

Weekly alcohol intake, g 128.6 (159.1) 127.7 (156.2)

Days/wk of moderate 
physical activity <5

274 641 (58) 224 396 (57)

SBP, mm Hg 140 (20) 138 (19)

DBP, mm Hg 82 (11) 82 (11)

Body fat, % 31.5 (8.6) 31.0 (8.5)

BMI, kg/m2 27.4 (4.8) 26.8 (4.5)

WHR 0.87 (0.09) 0.86 (0.09)

Lipid medications 67 898 (14) 28,978 (7)

T2D 19 876 (4) 7,758 (2)

Medications affecting renal 
excretion

87 417 (18)  

Urine sodium, mM/L 77.47 (44.51) 76.63 (44.40)

Urine potassium, mM/L 63.01 (33.88) 63.10 (34.15)

Urine albumin, mg/L 13.11 (57.38) 11.27 (41.85)

Urine creatinine, mM/L 8.83 (5.80) 8.81 (5.78)

Urine sodium/potassium ratio 1.44 (0.91) 1.41 (0.87)

Urine sodium/creatinine ratio 10.76 (6.98) 10.53 (6.60)

Urine potassium/creatinine ratio 8.41 (4.30) 8.45 (3.98)

Urine albumin/creatinine ratio 16.59 (60.40) 14.84 (44.84)

BMI indicates body mass index; DBP, diastolic blood pressure; SBP, systolic 
blood pressure; T2D, type 2 diabetes mellitus; and WHR, waist-to-hip ratio.

*Main cohort (N=478 311) excluded participants with diagnosis indicating 
decreased kidney function (N=7221) and cardiovascular disease at baseline 
(N=17 087).

†Cohort for sensitivity analysis (N=390 893) further excluded participants 
with specified medications affecting renal excretion (N=87 418).
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UAlb/UCr and T2D, while the association of UAlb/UCr with 
AF was mediated by SBP (Table S9).

Discussion

Principal Findings
We studied associations of urinary biomarkers, used as 
proxies for kidney function, with cardiometabolic disease 
in 478 311 individuals free of chronic kidney disease and 
CVD at baseline. We made 4 main findings. First, we found 

a positive association between UNa/UK and UAlb/UCr with 
blood pressure, as well as with adiposity-related measures 
(body fat percentage, BMI, or WHR). Second, we observed 
a direct association of UAlb/UCr with CVD incidence but an 
inverse association of UNa/UK with incident CVD and T2D 
in traditional observational analyses. Third, the strongest sex 
differences were observed for associations between UAlb/
UCr and T2D, and across urinary biomarkers and obesity 
traits. However, all associations were directionally consistent. 

Table 2. Observational and MR Analyses of Associations of UNa/UK and UAlb/UCr With Cardiovascular Outcomes

Outcomes

Observational Analyses  MR Analyses 

N HR/OR/β (95% CI) P Value N N SNP R2 β (95% CI) P Value

UNa/UK

    AF 9196 0.898 (0.879–0.917) <2×10−16 * 

    CAD 7375 0.962 (0.939–0.985) 0.001 * 

    HF 2775 0.960 (0.924–0.997) 0.034 * 

    HS 978 0.982 (0.920–1.049) 0.591 * 

    IS 1888 0.929 (0.886–0.973) 0.002 * 

    LIPID  0.940 (0.930–0.957) <2×10−16 *

    T2D  0.968 (0.951–0.984) 1.84×10−4 * 

    SBP  0.124 (0.121–0.127) <2×10−16 337 222 18 0.0034 2.630 (0.487–4.772) 0.026

    DBP  0.076 (0.073–0.079) <2×10−16 337 222 19 0.0034 2.053 (0.856–3.249) 0.003

    BF  0.026 (0.024–0.029) <2×10−16 * 

    BMI  0.049 (0.047–0.052) <2×10−16 339 224 11 0.0022 0.351 (0.118–0.583) 0.013

    WHR  0.044 (0.042–0.047) <2×10−16 210 082 17 0.0022 0.220 (0.052–0.388) 0.010

UAlb/UCr

    AF 9251 1.155 (1.130–1.180) <2×10−16 60 620 37 0.0063 0.105 (−0.064 to 0.274) 0.232

    CAD 7397 1.042 (1.017–1.067) 6.87×10−4 * 

    HF 2791 1.226 (1.181–1.272) <2×10−16 * 

    HS 979 1.153 (1.077–1.233) 3.90×10−5 * 

    IS 1895 1.059 (1.010–1.111) 0.018 * 

    LIPID  1.056 (1.045–1.068) <2×10−16 * 

    T2D  1.243 (1.222–1.265) <2×10−16 62 892 25 0.0034 0.282 (0.053–0.511) 0.023

    SBP  0.157 (0.154–0.160) <2×10−16 337 222 37 0.0064 2.753 (1.439–4.068) 2.06×10−4

    DBP  0.136 (0.133–0.139) <2×10−16 337 222 35 0.0064 0.848 (0.078–1.619) 0.038

    BF  −0.106 (−0.108 to −0.103) <2×10−16 *

    BMI  −0.170 (−0.173 to −0.167) <2×10−16 339 224 27 0.0039 −0.056 (−0.184 to 0.073) 0.402

    WHR  −0.062 (−0.064 to −0.059) <2×10−16 210 082 29 0.0039 0.187 (0.078–0.295) 7.36×10−4

Main analyses were performed excluding participants with kidney disease and cardiovascular disease at baseline. Estimates are from multivariable-adjusted linear 
(continuous risk factors), Cox proportional hazards models (cardiovascular outcomes) or logistic (lipid treatment and T2D) regression, and inverse variance weighted 
method after outlier exclusion if needed for MR. The estimates represent SD change in outcome variable per SD change in the urinary biomarker tested. Binary 
outcomes: AF, CAD, HF, HS, IS, LIPID, and T2D. Continuous outcomes: SBP, DBP, BF percentage, BMI, and WHR. Models were adjusted for age, sex, region of the UK 
Biobank assessment center, ethnicity, smoking, alcohol, physical activity, Townsend index, blood pressure (DBP and SBP), obesity (BMI, BF percentage, WHR), lipid 
medications, T2D, and medications affecting renal excretion. Significant P values (P≤4.17×10−3 for observational analyses and (P≤0.05 for MR analyses) are bold. R2; 
proportion of phenotypic variance explained by the instruments (tested in UK Biobank). MR analyses performed using publicly available consortia data, except for blood 
pressure where we performed a GWAS in UK Biobank (as the publicly available GWAS summary statistics were adjusted for BMI). AF indicates atrial fibrillation; BF, 
body fat; BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; HF, heart failure; HR, hazard ratio; HS, hemorrhagic stroke; IS, ischemic 
stroke; LIPID, lipid medications; MR, Mendelian randomization; OR, odds ratio; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism; T2D, type 2 diabetes 
mellitus; UAlb/UCr, urinary albumin-creatinine ratio; UNa/UK, urinary sodium-potassium ratio; and WHR, waist-to-hip ratio.

*No MR analyses performed for lack of genome-wide association studies available or too low statistical power.
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Lastly, using a MR approach, we provided evidence that 
higher UNa/UK is causally related with higher blood pressure, 
and we highlighted a causal feedback loop between albumin 
and hypertension and between albumin and T2D.

Comparison With Prior Observational Studies
Our results are consistent with previous literature that reported 
that high UAlb/UCr is associated with higher susceptibility to 
CVD8 and hypertension.10

Previous studies have shown inconsistent results between 
sodium excretion and the risk of CVD. Welsh et al22 did not 
detect significant associations between quintile of sodium ex-
cretion and cardiovascular outcomes in the UK Biobank. In 
contrast, our findings from observational analyses show an in-
verse association between UNa/UK excretion and AF, CAD, 
and IS. This discrepancy is likely due to different statistical 
modeling, specifically that they used the Kawasaki formula to 
convert spot sodium and potassium measurements into esti-
mated 24-hour excretion; that they analyzed quintiles of ex-
cretion rather than continuous variables; and that they adjusted 
their models for a different set of covariates compared with the 
ones used in our study. Indeed, exploratory analyses indicated 
a positive effect of UNa/UK on CAD risk when we adjusted 
our model only for sex, age, center, and ethnicity (Table S4B).

A recent observational study reported a positive associ-
ation between sodium excretion and stroke only in commu-
nities where mean sodium intake was >5 g/d, an association 
largely confined to China. By contrast, they found an inverse 

relation with myocardial infarction and mortality.7 The dis-
crepancies between our study and this prior study are likely to 
be explained by different study populations (Chinese versus 
British), baseline salt intake, different statistical approaches 
(linear versus categorical variables, adjustment for covariates).

We detected an inverse association between UNa/UK and 
hyperlipidemia in line with a previous meta-analysis of ran-
domized controlled trials which found that a low sodium was 
associated with an increase in cholesterol and triglycerides.20 
We also identified an inverse association between UNa/UK 
excretion and T2D in the UK Biobank cohort. To the best of 
our knowledge, the relationship between UNa/UK and inci-
dence of T2D has not been previously described. In contrast, 
the association between urine albumin and diabetes mellitus 
was already observed in previous studies,21 and it is consistent 
with the positive association detected by our study.

In addition, we also confirmed the well-established direct 
association between sodium and blood pressure5,6,22 (using uri-
nary sodium adjusted for creatinine), as well as the inverse as-
sociation between potassium and blood pressure5,6,23–25 (using 
urinary potassium adjusted for creatinine) in the UK Biobank 
cohort. Regarding UAlb/UCr and blood pressure, our results 
are consistent with a recent previous study10 which supported 
the existence of a bidirectional causal association between al-
buminuria and blood pressure.

We observed positive associations between UNa/UK and 
UAlb/UCr with obesity and adiposity-related risk factors 
(body fat percentage, BMI, and WHR). These results are 

Figure. Observational and Mendelian 
randomization (MR) analyses of urinary 
sodium-potassium ratio (UNa/UK) and urinary 
albumin-creatinine ratio (UAlb/UCr) with 
cardiovascular outcomes in UK Biobank. Binary 
outcomes: type 2 diabetes mellitus (T2D) and 
atrial fibrillation (AF). Continuous outcomes: 
systolic and diastolic blood pressure (SBP 
and DBP), body mass index (BMI), and waist-
to-hip ratio (WHR). Main analysis (N=478 311) 
excluding participants with diagnoses 
indicating decreased kidney function (N=7221) 
and cardiovascular disease at baseline 
(N=17 087). Associations were performed 
using multivariable-adjusted linear, logistic, 
and Cox proportional hazards models in main 
observational analyses and inverse variance 
weighted method for MR. The betas from linear 
regression represent SD change in outcome 
variable per SD change in urinary sodium and 
potassium. The hazard and odds ratios are 
given per SD change in urinary sodium and 
potassium. Model adjustment: age, sex, region 
of the UK Biobank assessment center, ethnicity, 
smoking, alcohol, physical activity, Townsend 
index, blood pressure (DBP and SBP), obesity 
(BMI, body fat percentage, WHR), lipid 
medications, T2D, and medications affecting 
renal excretion. MR analyses performed using 
publicly available consortia data, except for 
blood pressure where we performed a genome-
wide association studies (GWAS) in UK Biobank 
(as the publicly available GWAS summary 
statistics were adjusted for BMI). HR indicates 
hazard ratio; and OR, odds ratio.D
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consistent with previous studies that have suggested albumi-
nuria26 and sodium27,28 as independent risk factor for obesity. 
One possibility for this association would be that it reflects 
higher intake of sugar-sweetened soft drinks (resulting in 
increased sodium excretion and at the same time, obesity). 
However, there are also other potential physiological expla-
nations for why high sodium excretion could contribute to 
obesity, independently of energy intake or soft drink con-
sumption.27 One such possible mechanism includes direct 
effects of sodium on adipose tissue, supported by the ob-
servation that rats fed a high-salt diet had a higher levels of 
plasma leptin (presumably reflecting fat mass), as well as 
excessive accumulation of white adipose fat compared with 
rats with lower salt intake.29 Further, another recent study 
in mice showed that high intake of salt activates the aldose 
reductase-fructokinase pathway in the liver and hypothal-
amus, leading to endogenous fructose production with the 
development of leptin resistance and hyperphagia that cause 
obesity, insulin resistance, and fatty liver.30

Our MR results mirror and extend findings from previous 
randomized interventional trials23,24 that have established so-
dium as a risk factor for hypertension. In addition, we high-
light a causal feedback loop between albumin and T2D, and 
we also replicate the existence of a bidirectional causal as-
sociation between albuminuria and blood pressure that was 
reported by a recent MR study.10

The Potential Causal Role of Urinary Biomarkers in 
Blood Pressure and T2D
The incidence and prevalence of hypertension continue to rise, 
presumably due to an aging population, increasing obesity, 
and physical inactivity.31 Substantial evidence from clinical 
trials have demonstrated that high sodium and low potassium 
are significantly associated with elevated blood pressure.23,24 
Previous studies also show that reducing dietary sodium in 
individuals with prehypertension decreases the risk of cardio-
vascular events and overall mortality.32–34

In this study, we explore the association of urinary bio-
markers with cardiometabolic outcomes using genetic data 
by means of a MR approach. We confirm a causal role of 
high sodium and low potassium excretion in higher suscepti-
bility for increased blood pressure. Endothelial dysfunction 
probably plays an important role to modulate the influence 
of high sodium on blood pressure, although the exact mecha-
nisms remain elusive.35

We also observe a bidirectional causal association of al-
bumin with blood pressure. The causal association of albumin 
with blood pressure was already highlighted in a recent study 
that suggested the existence of a feed-forward loop where el-
evated blood pressure leads to increased albuminuria, which 
in turn further increases blood pressure.10 The presence of 
albuminuria is a powerful predictor of renal and cardiovas-
cular risk in patients with T2D and hypertension. Multiple 
studies have shown that decreasing albuminuria reduces the 
risk of adverse renal and cardiovascular outcomes. The path-
ophysiology is not definitively known, but also in this case, 
it is hypothesized to be related to endothelial dysfunction, 
inflammation, and abnormalities in the renin-angiotensin-
aldosterone system.36

Glomerular endothelial dysfunction is also implicated in 
the link between albuminuria and T2D.37,38 Our data suggest an 
independent causal association between T2D and albumin not 
mediated by blood pressure. Urine albumin arises primarily 
from the increased passage of albumin through the glomerular 
filtration barrier that is insufficiently reabsorbed by tubular 
epithelium. The filtration barrier is comprised of the endothe-
lium, glomerular basement membrane, and podocytes. T2D 
can lead to disruption of each of these components including 
the endothelium in which disruption of the endothelial glyco-
calyx through dysregulation by the diabetic milieu.37 Indeed, 
diabetic patients have decreased systemic glycocalyx volume, 
and this is correlated with the presence of albuminuria.39

Strengths and Limitations
Our study is the largest and most comprehensive study of 
causal associations of urinary biomarkers with cardiovascular 
risk factors, T2D, and CVD to date. Strengths of our study 
include the large sample size, the robustness of our findings, 
the most recent and powerful GWAS summary statistics as 
outcomes, and several sensitivities analyses to decrease the 
risk of pleiotropy.

Our study also has several limitations. First, we were lim-
ited to using measures available in the UK Biobank. As a result, 
we used random spot measurements of urine samples, although 
multiple day 24-hour urine collection is recommended as the 
gold standard method for assessing sodium intake.40 The sto-
chasticity of these spot urine samples may lower statistical 
power due to the introduction of random variation; however, it 
is unlikely to introduce systematic biases causing false positives 
but rather drive associations towards the null. Second, the UK 
Biobank did not collect detailed information about the urine 
sample collections. Consequently, we do not have information 
about the time of the day when they were collected and the diet 
of the individuals before collection. Third, the vast majority of 
participants were of European ancestry despite the inclusion 
of several non-European ethnicities. Hence, our results may 
not be generalizable to other race/ethnic groups with signifi-
cantly different diets, prevalence and predispositions to cardio-
metabolic disease. Finally, statistical power to detect potentially 
causal relationships through our MR studies was limited for 
some traits, at least for smaller effects, including some of those 
observed in our traditional epidemiological analyses.

Conclusions
Our comprehensive study of urinary biomarkers performed 
using state-of-the-art analyses of causality mirrors and 
extends findings from randomized interventional trials which 
have established UNa/UK as a risk factor for hypertension. In 
addition, we detect a causal feedback loop between albumin 
and hypertension, and our finding of a bidirectional causal as-
sociation between albumin and T2D reflects the well-known 
nephropathy in T2D.

Perspectives

Causal Association of Urinary Biomarkers 
and Cardiometabolic Outcomes
Urine biomarkers related with kidney function are strongly as-
sociated with several common diseases including CVD and 
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diabetes mellitus, but it is unknown whether these associa-
tions are causal.

Our results indicate that higher UNa/UK, used as proxy 
for kidney function, is causally related with higher blood 
pressure. We highlight a causal feedback loop between 
UAlb/UCr and hypertension and between UAlb/UCr and 
T2D. In addition, our results indicate that the causal associ-
ation between T2D and urinary albumin is not mediated by 
blood pressure.

The knowledge about the causality of these associations 
arising from our work may shed light on pathophysiolog-
ical mechanisms underlying the development of CVD. These 
results improve the biological understanding of the connec-
tion between kidney function and CVD and point to new ther-
apeutic strategies to prevent common diseases.
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What Is New?
•	Using the largest sample sizes to date for exposures and outcomes and 

several sensitivities analyses to minimize the risk of pleiotropy, we inves-
tigated the potential causal role of urinary biomarkers, used as proxies 
for kidney function, for development of hypertension, and other cardio-
vascular traits.

What Is Relevant?
•	Our study mirrors and extends findings from randomized interventional 

trials which have established urine sodium-potassium ratio as a risk fac-

tor for hypertension. In addition, our findings suggest causal feedback 
loops between urinary albumin and hypertension, and urinary albumin 
and type 2 diabetes mellitus.

Summary

Our study improves the biological understanding of connections 
between kidney function and hypertension and other cardiovascu-
lar traits and point to new therapeutic strategies to prevent these 
common diseases.

Novelty and Significance
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