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Abstract

We develop a method for the reconstruction of a perfectly reflecting rough surface from
phaseless measurements of a field arising from single frequency scattering at grazing angles.
Formulations are given for both Dirichlet and Neumann boundary conditions, and numerical
experiments are presented in which close agreement is found with the exact solution. The
approach is a marching method based on the parabolic integral equation, which recovers the
surface progressively in range, and is iterated a small number of times to produce the final
result. It is found that the approach is robust with respect to spatially localized perturbations
and to measurement noise.

1 Introduction

The recovery of surface profiles and environmental parameters is a central challenge in a diverse
range of applications [1–3]. These often occur in electromagnetic or acoustic wave scattering [4–8]
and it is natural to make use of knowledge of the scattered fields in the inverse problem. Such
treatments have introduced a variety of approaches including the Kirchhoff and small height FFT
approximations [9,10], iterative solutions such as [11], integral equation methods [12–15], minimal
target technique [16], time domain point source [17], multiple angles [18], and interferometry [19].
Doppler or backscattered multiple frequency radar measurements have also been used in sea state
and surface profile retrieval [20–23].

The idealised situation of noiseless and full phase-and-amplitude measurements is not always
attainable, and there is a significant need for robust methods in which missing phase information
can either be recovered or circumvented [24]. This was tackled in [25], where multiscale surfaces
were successfully recovered from phaseless multi-frequency data. The surfaces studied consisted
of superposition of typically 5 or 6 sinusoidal spatial components, and Landweber iteration was
employed. In another study [26] a recursive Newton iteration was used to recover two-scale and
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piecewise linear surfaces from intensities of multi-frequency far-field data. A somewhat related
problem of two-dimensional target characterization from diffracted intensity was tackled in [27].

In this paper an algorithm is developed for the reconstruction of rough surfaces h(x) from
phaseless data arising from a single-frequency incident field. Surfaces may have spatial variation on
many roughness scales, and assumptions on surface spectra are not imposed a priori. The method
is derived for both Dirichlet and Neumann boundary conditions, and exploits the properties of
grazing angle scatter. The approach is a marching method, which at the first stage reconstructs
the surface progressively in the propagation direction, and then improves the estimate by iterating
a small number of times. An analogous approach was previously described in [28] for Dirichlet
boundaries but in that case full complex scattered data was required.

For general incident angles the scattered field obeys the Helmholtz boundary integral equation
[4, 6, 29]. However, at low grazing angles most energy is forward-scattered and wave propagation
is well described by the parabolic equation [30]. Applying this to the governing Green’s function
allows the Helmholtz integral equations to be replaced by the parabolic integral equation method
[31,32]. Here we use both the Dirichlet [31,32] and the Neumann forms of the parabolic equation
Green’s function from Uscinski [33,34].

To derive the inversion algorithm the problem is in effect formulated as an integral equation
in the unknown surface field Φ (which may be the total field or its vertical derivative) treated as
a function of the surface. This surface field is in turn related to the amplitude of the scattered
data along a line parallel to the mean surface plane, via the introduction of a transformed variable
θ(h(x)). Using an expression relating h to Φ, this coupled system is solved directly by numerical
inversion. These equations are valid for moderate surface heights and the Volterra form of the
integral equation allows us to find the surface progressively along the propagation direction. The
incident wave is assumed known, together with scattered data along a line parallel to the mean
surface level.

The algorithm is applied here to several types of roughness spectra including rough surfaces
consisting of many scales as well as smoother examples with a small number of widely-spaced
sinusoidal components. Scattered data is obtained from solution of the full Helmholtz integral
equations. It is found that results are robust with respect to noise, and exhibit a type of self-
regularization; the resulting perturbations to the reconstructed surfaces are largely delta-correlated
and can be effectively filtered out, and noise in one part of the reconstruction does not significantly
contaminate results further along the surface as the marching algorithm progresses. Tests of
convergence are carried out with respect to initial guess, for different surfaces, boundary conditions
and surface autocorrelation lengths, and for multiple realisations.

In Section 2 the parabolic integral equation method is briefly reviewed. The recovery of the
surface field data Φ is described in Section 3 and the inversion algorithm is given in Section 4. In
Section 5 we apply to algorithm to a number of test cases, and examine there both the error and
the effect of adding white noise to the measurement data.

2 Mathematical formulation

Coordinate axes x and z are taken as in Fig. 1 where x is the horizontal and z is the vertical. We
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Figure 1: Schematic view of scattering configuration

consider scattering of a time-harmonic wavefield incident from the left on an extended perfectly
reflecting rough surface h(x) with mean plane lying along x = 0. We will assume the field is
incident at low grazing angles resulting in small angles of scatter. The total field E obeys the
Helmholtz equation

∇2E(x, z) + k2E(x, z) = 0 (1)

where k is the wavenumber. The 2-dimensional free space Green’s function G0 is the zero order

Hankel function of the first kind, G0(r, r′) = (1/4i)H
(1)
0 (k|r− r′|).

In what follows we will restrict attention to the region 0 ≤ x ≤ L for some L; the surface
in x ≥ L may be rough or flat but is assumed to be without edges or other strong sources of
backscatter. Since forward scattering dominates there exists a slowly varying part ψ defined by
ψ(x, z) = E(x, z) exp(−ikx) which satisfies the parabolic wave approximation [30]

∂ψ

∂x
− i

2k

∂2ψ

∂z2
= 0. (2)

Denote the incident and scattered wave as ψi and ψs, so that ψ = ψi+ψs is the total wave. Under
the small-angle, forward-scattering assumption the parabolic equation free space Green’s function
G(r, r′) can be derived directly from (2) or by approximation of G0 [31] (see also [33, 35]), given
by

G(x, z;x′, z′) =
α√
x− x′

exp

[
ik(z − z′)2

2(x− x′)

]
(3)

when x′ < x and G = 0 otherwise, where α = 1/2(i/2πk)1/2.

Coupled integral equations relating the field in the medium to the boundary may be derived
for this Green’s function by a procedure analogous to that for the Kirchhoff-Helmholtz equations
[29,31], by use of Green’s theorem together with the appropriate boundary condition.

If we assume first the Dirichlet boundary condition (corresponding to a transverse electric (TE)
field impinging on a perfectly conducting corrugated surface or acoustic scattering from a pressure
release surface) the scattered field obeys [31]

ψi(r) = −
∫ x

0

∂ψ(r′)

∂z
G(r, r′)dx′ (4)

where r = (x, h(x)) and r′ = (x′, h(x′)) both lie on the surface, and

ψs(r) =

∫ x

0

∂ψ(r′)

∂z
G(r, r′)dx′ (5)
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where r = (x, z) can now be any point in the media.

On the other hand, if we assume the Neumann boundary condition, corresponding to an acoustic
hard surface or transverse magnetic (TM) polarized field, the governing equations [33,34] become

ψi(r) =
φ(r)

2
+

∫ x

0

∂G(r; r′)

∂z′
φ(r′)dx′, (6)

where φ is the total field on the surface, both r = (x, h(x)), r′ = (x′, h(x′)) lie on the surface, and

ψs(r) = −
∫ x

0

∂G(r; r′)

∂z′
φ(r′)dx′, (7)

where r′ is again on the surface and r is now an arbitrary point in the medium. The surface
derivative and surface total wave field, ∂ψ(r′)/∂z and φ, are functions of h(x) and we can denote
them as ψ′(x) and φ(x) respectively. Note that the vertical derivative of the Green’s function
appearing here replaces the normal derivative (which appears in the full Helmholtz equations)
under the assumption of the dominance of forward scattering.

The incident wave is taken as a Gaussian beam parallel to the surface

ψi(x, z) =
w

(w2 + 2ix/k)1/2
exp

[
− (z − z0)2

w2 + 2ix/k

]
, (8)

where w is the initial width. The source is centred at (0, z0) with z0 > h(x), namely the incident
wave field amplitude on the surface near x = 0 is negligibly small. The illumination pattern along
the surface increases from nearly zero to a peak and decays with 1/

√
x. The motivation for

choosing a Gaussian beam is two-fold: Its closed form lends itself to the analysis here, and it is a
physically reasonable model of a source whose direction and width may be adapted.

3 Recovery of surface wavefield

The first step of the reconstruction is to recover the unknown fields at the surface. Depending on
the boundary condition this will be either the normal derivative of the total field or the field itself.
From this we will subsequently recover the surface itself, as detailed in section 4. The integral
domain [0, L] is discretized by N nodes with xn for n = 0, 1, · · · , N where x0 = 0 and xN = L.
Denote the spacing between each node as δ = xn+1 − xn. The surface field data is calculated via
the first integral equations, e.g. (4) and (6). In order to do this, an initial guess h(x) is needed.

3.1 Dirichlet boundary condition

The equation (4) is a Volterra integral equation in ψ′ = ∂ψ(r′)/∂z. The discretisation and
numerical solution of this equation forms the basis for the inversion algorithm, by allowing ψ′(x)
to be expressed explicitly in terms of h(x) at equally-spaced collocation points. This motivates the
use of a simple method, which is low-order in spatial step-size but at suitable resolution provides
satifactory solution of the direct problem in this regime. Equation (4) is first written as a sum of

4



n subintegrals for every point (xn, h(xn)),

ψi(xn, h(xn)) = −
n∑
l=1

∫ xl

xl−1

G(xn, h(xn);x′, h(x′))ψ′(x′)dx′.

We assume that the surface derivative varies slowly over each subinterval and thus the integral
becomes

ψi(xn, h(xn)) = −
n∑
l=1

ψ′(Xl)

∫ xl

xl−1

G(xn, h(xn);x′, h(x′))dx′

where Xl = (xl−1 +xl)/2. Remark: Throughout this paper we assume field quantities vary slowly
on the scale of the grid. The validity of this assumption derives from the scattering regime: For the
unreduced wave E, scales which govern the variation of the field in x are wavelength, surface height
and surface correlation length; if significant backscatter is present it introduces interference effects
which increase the x-variation, and adequate resolution for the full wave is dictated by the smaller
of wavelength and surface length scale. Here though we are concerned with the parabolic equation
regime, so backscattering is minimal, the fast-varying component exp(ikx) has been removed, and
slow variation of relevant functions may be ensured by choosing a grid sufficient to resolve the
rough surface. The Green’s function G(r, r′) nevertheless requires more careful treatment for small
values of |r− r′| where it varies rapidly.

For n = 1, 2, · · · , N , this form leads to a linear system

AΦ′ = Φi (9)

where

A(n, l) = −
∫ xl

xl−1

G(xn, h(xn);x′, h(x′))dx′, 1 ≤ l ≤ n ≤ N

Φ′ = [ψ′(X1), ψ′(X2), · · · , ψ′(XN )] ∈ CN

Φi = [ψi(x1, h(x1)), ψi(x2, h(x2)), · · · , ψi(xN , h(XN ))] ∈ CN .

Note that A is a lower triangular matrix1 whose inversion is much more efficient than a full matrix.
The integral in matrix A is evaluated in two cases. If l < n, we further assume that the exponential
term can also be treated as constant on each subinterval, and the integral becomes

αE(h(xn);n, l)I1(n, l)

where

E(z;n, l) = exp

[
ik

2

(z − h(Xl))
2

xn −Xl

]
and I1(n, l) =

∫ xl

xl−1

1√
xn − x′

dx′ = 2(
√
xn − xl −

√
xn − xl−1)

If l = n, there is a singularity in the integral. First we apply the Taylor expansion on the surface
with h(x′) ∼= h(xn) + h′(xn)(x′ − xn), so that the exponent reduces to

ik

2

(h(xn)− h(x′))2

xn − x′
=
ik

2
h′(xn)2(xn − x′).

1The system (9) is linear in Φ′ and Φi but of course not in h, upon which A depends

5



With a change of variable via ξ =
√
xn − x′ and dx′ = −2ξdξ, the integral takes the form∫ 0

√
δ

α exp
[ ik

2
h′(xn)2ξ2

]1
ξ

(−2ξ)dξ =

∫ √δ
0

2α exp
[ ik

2
h′(xn)2ξ2

]
dξ.

where again δ = xn+1 − xn is spatial step size. For computational convenience, we express the
above integral in terms of error function. Apply the formula∫

eax
2

dx = − i
2

√
π√
a

erf(ix
√
a), (10)

with a = ik
2 h
′(xn)2, the integral becomes

−α
√
π√
a
ierf(i

√
δa).

Therefore, the matrix A can be approximated by

A(n, l) = −

{
αE(h(xn);n, l)I1(n, l) l < n

−α
√
π√
a
ierf(i

√
δa) l = n

. (11)

3.2 Neumann boundary condition

The approach applied to Neumann boundary condition is similar to Dirichlet case. The small angles
of incidence ensures the dominance of the forward propagation. We define H(r; r′) = ∂G(r; r′)/∂z′

with

H(r; r′) = β
z − z′

(x− x′)3/2
exp

[
ik(z − z′)2

2(x− x′)

]
,

where β = −i/2
√
ik/2π. Eq. (6) is still written as a sum of n subintegrals for any node xn ∈

[x1, xN ],

ψi(xn, h(xn)) =

n∑
l=1

∫ xl

xl−1

(
H(xn;x′) +

δ(xn − x′)
2

)
φ(x′)dx′.

where δ is the Dirac δ-function. We again assume that the surface field φ varies slowly over each
subinterval. Thus the surface wavefield φ can be treated as constant and then taken out of the
subintegrals,

ψi(xn, h(xn)) =

n∑
l=1

φ(Xl)

∫ xl

xl−1

(
H(xn;x′) +

δ(xn − x′)
2

)
dx′.

N linear equations are again obtained for n = 1, 2, · · · , N , which results in a N ×N linear system.
Denote a vector of size N including the surface wavefield on each node with

Φ = [φ(X1), φ(X2), · · · , φ(XN )] ∈ CN

Hence the linear system is given by
BΦ = Φi (12)
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where

B(n, r) =

{∫ xl

xl−1
H(xn;x′)dx′ l < n∫ xn

xn−1
H(xn, h(xn);x′, h(x′))dx′ + 1

2 , l = n
. (13)

The matrix B is also lower triangular, which can be inverted efficiently. For l < n, under
the same assumption that the exponential term varies slowly and can be treated as constant, the
integral becomes

βE(h(xn);n, l)

∫ xl

xl−1

h(xn)− h(x′)

(xn − x′)3/2
dx′.

Apply the Taylor expansion on h with h(x′) = h(xl−1) + h′(xl−1)(x′ − xl−1), then the remaining
integral has the form∫ xl

xl−1

h(xn)− h(x′)

(xn − x′)3/2
dx′ =

∫ xl

xl−1

h(xn)− h(xl−1)− h′(xl−1)(x′ − xl−1)

(xn − x′)3/2

= [h(xn)− h(xl−1)]

∫ xl

xl−1

dx′

(xn − x′)3/2
− h′(xl−1)

∫ xl

xl−1

x′ − xn + xn − xl−1
(xn − x′)3/2

dx′

= L(h(xn);n, l)I2(n, l) + h′(xl−1)I1(n, l),

(14)

where
L(z;n, l) = z − h(xl−1)− h′(xl−1)(xn − xl−1)

I2(n, l) =

∫ xl

xl−1

dx′

(xn − x′)3/2
=

2√
xn − xl

− 2√
xn − xl−1

For l = n, to deal with the singularity, the Taylor expansion of h(x′) = h(xn) + h′(xn)(x′ − xn) is
still employed to transform the integral to∫ xl

xl−1

β
h′(xn)

(xn − x′)1/2
exp

[ ik
2
h′(xn)2(xn − x′)

]
dx′ (15)

Change of variable via ξ = (xn − x′)1/2, eq. (15) turns to∫ 0

√
δ

β
h′(xn)2

ξ
exp

[ ik
2
h′(xn)2ξ2

]
(−2ξ)dξ

=

∫ √δ
0

2βh′(xn) exp
[ ik

2
h′(xn)2ξ2

]
dξ.

Apply the formula (10), again with a = ik
2 h
′(xn)2, then the integral becomes

−βh′(xn)

√
π√
a
ierf(
√
a
√
δi).

Finally, the matrix B is given by

B(n, l) =

{
βE(h(xn);n, l)

[
L(h(xn);n, l)I2(n, l) + h′(xl−1)I1(n, l)

]
, l < n

−βh′(xn)
√
π√
a
ierf(
√
a
√
δi) + 1

2 , l = n
. (16)
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4 Surface reconstruction

After the surface wavefield data has been obtained, the surface reconstruction is carried out by
adapting the integral equations and making use of the known scattered wave amplitude.

Suppose that the amplitude |ψs(xn, Z)| of the scattered field is known at each node xn ∈ [x1, xN ]
along the plane at a fixed height Z. (The assumption that data points are evenly-spaced and
aligned parallel to the mean plane is a convenient simplification but is not central to the principles
of the method. In practice one would normally measure the total rather than the scattered field
amplitudes but this restriction can also be dropped. See comments and (25-28) below.) We assume
that Z > h(x) for all x. The reconstruction is based on a marching method in the propagation
(positive x) direction. The details for Dirichlet and Neumann conditions are given separately but
the key step for both cases is to define a new unknown

θn =
k(Z − h(Xn))2

δ
.

If θn can be obtained for all n, then the surface can be reconstructed easily

h(Xn) = Z −
√
θnδ

k
. (17)

4.1 Dirichlet case

We will describe here the Dirichlet boundary condition; Neumann case is given below. For xn ∈
[x1, xN ], the integral equation (5) is again a summation of subintegrals

ψs(xn, Z) =

n∑
l=1

∫ xl

xl−1

G(xn, Z;x′, h(x′))ψ′(x′)dx′.

Under the same assumption that ψ′ and the exponential terms can be taken outside the subintegral,
the equation becomes

ψs(xn, Z) =

n∑
l=1

αψ′(Xl)E(Z;n, l)I1(n, l). (18)

If we first consider n = 1, and make a further approximation that

E(Z; 1, 1) ∼ 1 +
ik

2

(Z − h(X1))2

x1 −X1
= 1 + iθ1,

then eq. (18) becomes
ψs(x1, Z)

αψ′(X1)I1(1, 1)
= 1 + iθ1.

This naive approximation is applied only initially and at x = 0 in place of an arbitrary guess;
subsequent iterations use the most recent iterate. and results beyond the first few nodes are
found to be insensitive to this value. This is consistent with the observation in §5 that localised
perturbations do not propagate significantly.
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Taking the modulus and squaring both sides, we recover the surface at node 1 from

θ1 =

√( |ψs(x1, Z)|
|αψ′(X1)I1(1, 1)|

)2 − 1. (19)

Here and below, the data |ψs| are fixed, whereas the surface-dependent values ψ′ in the denom-
inator of equation (19) and subsequent equations will change with iteration. For n ≥ 2, eq. (18)
can be written as

ψs(xn, Z) = Sn + αψ′(Xn)E(Z;n, n)I1(n, n), (20)

where

Sn =

n−1∑
l=1

αψ′(Xl)E(Z;n, l)I1(n, l).

Suppose that we have already obtained h(X1), h(X2), · · · , h(Xn−1), then Sn becomes known. Tak-
ing moduli and squaring both sides of (20), and applying the formula |z1 + z2|2 = |z1|2 + |z2|2 +
2<{z̄1z2}, we have

|ψs(xn, Z)|2 = |Sn|2 + |αψ′(Xn)I1(n, n)|2 + 2<{S̄nαψ′(Xn)E(Z;n, n)I1(n, n)}.

Expand the real part via the formula <{z1z2} = <{z1}<{z2} − ={z1}={z2} , we have

2<{S̄nαψ′(Xn)E(Z, n, n)I1(n, n)}
= 2<{S̄nαψ′(Xn)I1(n, n)}<{E(Z;n, n)} − 2={S̄nαψ′(Xn)I1(n, n)}={E(Z;n, n)}

We now apply Euler’s equation E(Z;n, n) = cos θn + i sin θn, to obtain the following equation

pn cos θn + qn sin θn = un, (21)

where
pn = 2<{S̄nαψ′(Xn)I1(n, n)}
qn = −2={S̄nαψ′(Xn)I1(n, n)}
un = |ψs(xn, Z)|2 − |Sn|2 − |αψ′(Xn)I1(n, n)|2

(22)

Rewrite the equation (21) applying trigonometric identities

sin(θn + γ) =
un√
p2n + q2n

, (23)

where the phase γ ∈ [0, 2π) can be uniquely determined by

cos γ =
qn√
p2n + q2n

, sin γ =
pn√
p2n + q2n

The solution to the equation has the form

θn = arcsin(
un√
p2n + q2n

)− γ. (24)
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Provided the data is sufficiently well-resolved, we can use the assumption of continuity to resolve
any phase ambiguities arising from this expression.

The use of ψs rather than the more physically realistic ψ is in order to simplify the algorithm; it
is straightforward to replace ψs by ψ throughout the analysis giving comparable results, as follows:
If we write ψs in terms of ψ then (20) becomes

ψ(xn, Z)− ψi(xn, Z) = Sn + αψ′(Xn)E(Z;n, n)I1(n, n) (25)

Take ψi on the rhs,

ψ(xn, Z) = ψi(xn, Z) + Sn + αψ′(Xn)E(Z;n, n)I1(n, n) (26)

Take modulus square both sides, we still get

pn cos θn + qn sin θn = un (27)

where
pn = 2<{(ψi(xn, Z) + Sn)αψ′(Xn)I1(n, n)}

qn = −2={(ψi(xn, Z) + Sn)αψ′(Xn)I1(n, n)}
un = |ψ|2 − |ψi + Sn|2 − |αψ′(Xn)I1(n, n)|2

(28)

4.2 Neumann case

The treatment of the Neumann problem is similar but with some significant differences of detail.
We again aim to obtain the equation of θn. Eq. (7) is written as a sum of subintegrals,

ψs(xn, Z) = −
n∑
l=1

∫ xl

xl−1

H(xn, Z;x′, h(x′))φ(x′)dx′.

Under the assumption that φ and the exponential terms can be treated as constant over each
subinterval, we get

ψs(xn, Z) = −
n∑
l=1

βφ(Xl)E(Z;n, l)

∫ xl

xl−1

z − h(x′)

(xn − x′)3/2
dx′. (29)

For n = 1, we apply the direct approximation to the integral, and take the modulus, then

|ψs(x1, Z)| = |βφ(X1)
(Z − h(X1))δ

( δ2 )3/2
|.

In this case, the initial height can be obtained directly as

h(X1) = Z − |ψs(x1, Z)|
|βφ(X1)|

√
δ

2
√

2
. (30)
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For n ≥ 2, suppose that we know the surface height to h(Xn−1), then we write equation (29) as

ψs(xn, Z) = Sn − βφ(Xn)E(Z;n, n)

∫ xn

xn−1

Z − h(x′)

(xn − x′)3/2
, (31)

where

Sn = −
n−1∑
l=1

βφ(Xn)E(Z;n, l)

∫ xl

xl−1

Z − h(x′)

(xn − x′)3/2
dx′.

Since for l ≤ n − 1, h(Xl) is known, we employ the same argument as in (14) to calculate the
integral, so that this sum becomes

Sn = −
n−1∑
l=1

βφ(Xl)E(Z;n, l)[L(Z;n, l)I2(n, l) + h′(xl−1)I1(n, l)].

For the integral on the right in equation (29), we again apply direct approximation, to obtain

ψs(xn, Z) = Sn − βφ(Xn)E(Z;n, n)
Z − h(Xn)√

δ/2
.

Again taking moduli and squaring both sides leads to

|ψs(xn, Z)|2 = |Sn|2 + |βφ(Xn)
Z − h(Xn)√

δ/2
|2 + 2<{−S̄nβφ(Xn)

Z − h(Xn)√
δ/2

E(Z;n, n)}.

We expand the real part and apply Euler’s equation, which gives

pn cos θn + qn sin θn = un, (32)

where

pn = 2<{−S̄nβφ(Xn)
Z − h(Xn)√

δ/2
}

qn = −2={−S̄nβφ(Xn)
Z − h(Xn)√

δ/2
}

un = |ψs(xn, Z)|2 − |Sn|2 −

∣∣∣∣∣βφ(Xn)
Z − h(Xn)√

δ/2

∣∣∣∣∣
2

.

(33)

There remains one term Z − h(Xn) containing the unknown surface height. We again employ the
initial guess h0 to compute the term. When we iterate the procedure as described below this will
be replaced by the reconstructed value from the previous step. Equation (32) is then equivalent
to the equation,

sin(θn + γ) =
un√
p2n + q2n

. (34)

The same approach as for Dirichlet case can now be used to evaluate the inverse sine function.
As described later we have found that the results are relatively insensitive the choice of initial
guess. When this produces a good approximation for the approximated surface values ψ′ and φ,
this in turn provides a good surface reconstruction. The reconstructed surfaces thus obtained can
substituted back into the algorithm successively, to improve the reconstruction via a small number
of iterations as described below.
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4.3 Successive improvement

Suppose that we have an initial guess h0, the surface data ψ′1 and φ1 are recovered via using h0.
The first surface reconstruction h1 can subsequently obtained by ψ′1 or φ1. This surface h1 can
then substituted back into the whole algorithm to generate new surface data ψ′2 and φ2, which
leads to the second surface reconstruction h2. This procedure can then be repeated.

In all cases we examined we found that only a few iterations (typically 3) leads to satisfactory
results, and that (with a few exceptions when there are very sharp spurious peaks) further iteration
does not appreciably change the shape of the reconstructed surface. Thus it may be considered a
multi-step rather than a fully iterative method.

The procedure is summarised in algorithm (1) below.

Remarks: Although numerical evidence suggests that this process is convergent, rigorous jus-
tification for this is lacking. Computationally we find that the residual l2 error decreases with
iteration and that the solution remains stable around the exact solution hexact, i.e. hexact is a fixed
point. If we denote the n-th iterate hn = h + εn, a heuristic argument to show that ||εn|| → 0
might go as follows:

The stability at hexact is reasonably apparent from (19)-(24) since, if hexact is the initial input,
then updated values of ψ′ (and consequently of h) would be unchanged to within numerical errors
determined by the discrepencies between exact and numerical solutions of the integral equations.

More generally, functions of hn appearing the denominator are continuous and bounded away
from zero in the regions of interest, so we may expect small perturbations to hn to give rise to
bounded perturbations in Ψ′ and thus in the solution. This may suggest a tractable route to
obtaining quantitative bounds.

Algorithm 1 Reconstruction of the surface height h(x)

1: Input: ν: number of iterations, ψi(x, z), ψs(xn, Z) for n = 1, 2, · · · , N
2: Set h0 as initial guess
3: for j = 1, · · · , ν do
4: Generate ψ′ from AΦ′ = Φi constructed by eq. (11) or φ from BΦ = Φi constructed by eq.

(16) using the iterative h
5: for n = 1, 2, · · · , N do
6: if n = 1 then
7: Calculate θ1 by eq. (19) or (30)
8: else
9: Generate the equation (23) by finding the coefficients in eq. (22) or (33)

10: Solve for θn via inverse sine function
11: end if
12: Reconstruct the surface h(Xn) from eq. (17)
13: end for
14: end for
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5 Numerical results

A range of numerical examples have been tested to validate the performance of the method, and the
procedures have been implemented in Python. The scattered data is obtained from direct solution
of the Helmholtz integral equations, as described for example in [36,37]. For this purpose the full
2-dimensional Green’s function G0 was used, which in contrast to the parabolic equation Green’s
function is symmetric and allows for arbitrary scattering angles. The computational domain was
extended to the right to minimise spurious edge effects. For computational convenience scattered
data were obtained at equally spaced grid points xi along a horizontal line.

Three specific examples are shown here; one is a smoothly varying deterministic 2-component
surface, and two are randomly rough surfaces with full roughness spectra. In each of these examples,
we take the range of x to be [0, 300] for surface and measurement plane and number of nodes
as N = 800. The wavenumber is set as k = 1 although by renormalising length scales this may
represent arbitrary wavelengths. The key scattering scales in the direct problem are the surface
height σ and autocorrelation length l with respect to wavelength λ (or equivalently l/σ and kσ). In
the inverse problem the incident wavelengths can in principle be tuned to optimize the algorithms.
On the other hand, the non-dimensional ratio of rms surface height to correlation length will be
determined by the particular physical regime. The typical surface ranges from about z = −0.10
to z = 0.10, and the height of the measurement plane is chosen in the results here to be Z = 1.0.
Note that as it propagates outwards from the surface, the amplitude pattern at each height shifts
towards the right (larger x) and the information it carries from the surface will move with it. Thus
it is expected that as Z increases we need to shift the measurement domain to examine scattered
field at larger x values in order to maintain accuracy. If instead we vary the height and/or the
width of the source, a similar issue arises, i.e. the optimal region over which information is carried
from the surface will vary. The initial guess is chosen as

h0 = sin(0.05x)/1000.

Example 1. We first take an example of smooth 2-scale surface given by

h(x) = (sin(0.2x) + sin(0.06x))/20. (35)

The reconstructed surfaces at the first and the third iteration are shown in Fig. 2 for Dirichlet
and Neumann cases.

The reconstructions fit well with the original surface and recaptures most of detailed features.
Moreover, the reconstruction improves significantly through iterations as the surface data ψ′ and
φ improve. By the third iterate, the surface is almost indistinguishable from the exact solution.

Note that the surface reconstructions for the Dirichlet case exhibited rapid transient oscillations
within the initial (far-left) region, occupying about 3− 4% of the overall domain. This was found
in all numerical experiments in Dirichlet case. For ease of plotting we have simply set the values
to zero, but no artificial damping was used in the calculations themselves.

This oscillation is in part due to the low order approximation eiθ ∼= 1+ iθ and is exacerbated by
the nearly zero amplitudes on the measurement plane around x = 0, due to the low scattering angles
and domain truncation. However, it is notable that this perturbation does not propagate beyond
this region; it is found that the reconstruction tends to stabilize automatically as it progresses
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(b) Dirichlet 3rd iteration
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(c) Neumann 1st iteration
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(d) Neumann 3rd iteration

Figure 2: Example 1: plots of reconstructed surfaces for Dirichlet case: (a). at the first iteration,
(b). at the third iteration; and Neumann case: (c). at the first iteration, (d). at the third iteration.

in range, in what appears to be a type of self-regularization. This is also found to be the case
when noise pollutes the measurements. We remark that a tapered incident field may be used (as for
example in [25]) to minimize leading-edge effects, but in our case if the source is located reasonably
far above the surface this is unnecessary.

The type of perturbation observed above does not feature in the Neumann case, although overall
the reconstruction for Dirichlet is better than the Neumann case since, for a given surface height, a
Neumann boundary condition produces stronger scattering. The disparity is related to the nature
of the singularity in the Neumann parabolic integral equations, which causes local surface values
to dominate and diminishes edge effects from domain truncation [36].

The next two examples are two types of random statistically stationary rough surface. The
random rough surface is generated by a given autocorrelation function (a.c.f.) ρ(η) for

ρ(η) = 〈h(x)h(x+ η)〉,

where η = x′− x. In practice, the surface is synthesized by the summation of Fourier modes, with
independent random phases chosen uniformly in [0, 2π) and a filter function depending on ρ.
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Example 2. We take a Gaussian type surface here with the Gaussian a.c.f. given by

ρ(η) = σ2(−η
2

l2
), (36)

where l = 8 is the surface correlation scale and ρ(0) = σ2 = 0.1 is the variance. The reconstructions
at the first and the third iteration are shown in Fig. 3 for Dirichlet and Neumann case.
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(a) Dirichlet 1st iteration
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(b) Dirichlet 3rd iteration
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(c) Neumann 1st iteration
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Figure 3: Example 2: plots of reconstructed surfaces for Dirichlet case: (a). at the first iteration,
(b). at the third iteration; and Neumann case: (c). at the first iteration, (d). at the third iteration.

Similar results are obtained as for Example 1, and the algorithm improves via iterations. The
highly oscillatory parts at the initial domain still occur in the experiments of the Dirichlet case.
Close agreement with the exact solution is found for both boundary conditions, although results are
marginally betters in the Dirichlet case. It is observed that even after 3 iterations in the Neumann
case, discrepancies in the reconstructed surface are visible in the vicinity of peaks although overall
the results remain very satifactory.

We also test the sensitivity of the algorithm to the addition of white noise to the scattered
data. More specifically, independent Gaussian-distributed random noise of complex values εr + iεr
were added to the full complex scattered data, before taking the amplitude. This noise was was
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added throughout the spatial domain, including initial regions where the original data was near
zero, where it might be expected to have a greatly disproportionate effect. The measurement noise
results in significant noisy perturbations across the whole domain. However, these components are
qualitatively similar to the white noise itself. In order to remove these oscillations, we applied a
simple filtering procedure by a five-point moving average. This is adequate provided the surface
is smooth enough on the smallest scale size of the grid. Comparison between actual and filtered
reconstructed surfaces for 1% and 3% noise added to Dirichlet and Neumann scattered data are
shown in Fig. 4.
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(b) Dirichlet filtered surface
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(c) Neumann actual surface
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Figure 4: Example 2: plots of the reconstructed surface at the third iteration for noise level of 1%
added to the Dirichlet scattered data: (a) actual surface, (c) filtered surface; and for noise level of
3% added to the Neumann scattered data: (a) actual surface, (c) filtered surface.

Before any filtering, the main surface variation is very clear although it is apparent particularly
in the region of surface peaks the noise-induced perturbation is also highly peaked. After filtering,
although the surface reconstruction retains some small scale inaccuracies, it is still able to capture
the features of the original surface in considerable detail.
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Example 3. We take a sub-fractal type random surface with an a.c.f. given by

ρ(η) = σ2(1 +
|η|
l

) exp(−|η|
l

). (37)

This is a relatively jagged surface with peaks on a small horizontal scale. The reconstructions at
the first and the third iteration are shown in Fig.5.
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(a) Dirichlet 1st iteration
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(b) Dirichlet 3rd iteration
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(c) Neumann 1st iteration

0 50 100 150 200 250 300

x

0.10

0.05

0.00

0.05

0.10

z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

(d) Neumann 3rd iteration

Figure 5: Example 3: plots of reconstructed surfaces for Dirichlet case: (a). at the first iteration,
(b). at the third iteration; and Neumann case: (c). at the first iteration, (d). at the third iteration.

The results are again similar to the previous examples. Except for the initial oscillatory regions,
the reconstruction for Dirichlet case works somewhat better than for the Neumann case. On the
other hand, the sub-fractal surface is much more complicated due to the rapid variation at small
scales. The method shows its ability to recapture all of these small peaks well especially at the third
iteration. The same noise test is used here. We again apply 1% noise to the Dirichlet scattered
and 3% noise to the Neumann scattered data. Comparison between actual and filtered surfaces
are shown in Fig. 6.

The surface reconstruction is obtained as before with a rapdily varying perturbation, although
the main surface details are again clear. As might be expected smaller-scale surface features
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(a) Dirichlet actual surface
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(b) Dirichlet filtered surface
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(c) Neumann actual surface

0 50 100 150 200 250 300

x

0.10

0.05

0.00

0.05

0.10

z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

(d) Neumann filtered surface

Figure 6: Example 3: plots of the reconstructed surface at the third iteration for noise level of 1%
added to the Dirichlet scattered data: (a) actual surface, (c) filtered surface; and for noise level of
3% added to the Neumann scattered data: (a) actual surface, (c) filtered surface.

are more difficult to resolve fully. After applying the simple filtering, the reconstruction closely
recaptures the main features, although it remains slightly oscillatory. Compared to the Gaussian-
type surface, the reconstruction for sub-fractal autocorrelation therefore performs marginally less
well.

We also present the relative error in l2 norm for the reconstructions, which is given by

ej =
‖hj − h̄‖l2
‖h̄‖l2

, (38)

where h̄ is the exact surface, and j refers to the number of iteration. First, Table 1 gives the
error for the examples shown above. Clearly, the error decreases through iterations. The error is
larger in Dirichlet case due to the initial oscillatory region (calculated but not shown). We further
tested the algorithm with respect to the different initial guesses h0(x). It is noted that this initial
function cannot be a constant due to the surface derivative in the denominator shown in the error
function term. We have tested different initial guesses varying the scale sizes of h0(x), and have
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Dirichlet example Neumann example
Iteration 1 2 3 1 2 3

e1 0.2990 0.3189 0.2565 0.3567 0.3576 0.3411
e2 0.2629 0.2374 0.1295 0.1409 0.1438 0.1297
e3 0.2236 0.1945 0.1215 0.0609 0.0643 0.0534

Table 1: Error of reconstructed surfaces in surface examples 1 to 3 (2-scale, Gaussian, sub-fractal)
where ej denotes the error at the j-th iteration

found that the results are relatively insensitive to this. Table 2 shows the error in the various
cases, where we have averaged Examples 2 and 3 (Gaussian and sub-fractal random surfaces) over
several realisations. The following initial functions are employed,

ha0 = sin(0.05x)/1000

hb0 = sin(0.05x)/10

hc0 = sin(0.1x)/1000

hd0 = sin(0.1x)/10

2-scale Dirichlet Neumann
Iteration a b c d a b c d

e1 0.299 0.474 0.299 0.590 0.357 0.562 0.357 0.617
e2 0.263 0.268 0.263 0.277 0.141 0.195 0.141 0.229
e3 0.224 0.224 0.224 0.224 0.0609 0.0743 0.0610 0.0921

Gaussian Dirichlet Neumann
Iteration a b c d a b c d
〈e1〉 0.272 0.347 0.250 0.358 0.378 0.633 0.363 0.586
〈e2〉 0.226 0.204 0.188 0.211 0.162 0.233 0.144 0.219
〈e3〉 0.194 0.179 0.162 0.183 0.0779 0.0989 0.0662 0.0911

Sub-fracal Dirichlet Neumann
Iteration a b c d a b c d
〈e1〉 0.272 0.340 0.260 0.372 0.359 0.565 0.339 0.597
〈e2〉 0.199 0.198 0.191 0.166 0.146 0.188 0.128 0.215
〈e3〉 0.195 0.196 0.187 0.161 0.0701 0.0713 0.0721 0.0872

Table 2: Error of reconstructed surfaces with respect to the initial guess (a,b,c, or d)

For different initial guesses, the reconstruction at the first iteration is influenced the most. The
error obtained at the third iteration is similar. With a smaller scale of initial guess, the method
produces a better result at the first iteration. There is no obvious trend of effects of different
wavelength of initial guess.

Finally we examined the capability of dealing with different surface correlation scales l. This
corresponds to varying the scattering regime, since this is determined by the ratio of horizontal scale
to surface height, and surface height to wavelength. As l increases, the surface becomes smoother.
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The sub-fractal surfaces (Example 3) are employed, which are also the most complicated. With
larger l, those peaks on small scales, on the contrary, become denser. The fig. 7 and 8 show the
reconstructions at the third iteration for different l.
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(b) l = 4
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(c) l = 8
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Figure 7: Example 3 Dirichlet case: plots of reconstructions at the third iteration with different
surface correlation scales

It is clear that the method works well for all of these surface correlation lengths, and in each
case by the third iteration these reconstructions recapture most features of the original surfaces.
The relative error for different correlation scales obtained in both Example 2 and Example 3 is
listed in Table 3.

6 Conclusions

We have developed an approach to recover rough surface profiles from single-frequency scattered
wave amplitudes, in the absence of phase information. This is applied when the incident wave field
is at low grazing angles to the surface so that forward scatter predominates. The approach is an
extension of an iterated marching method which was previously available only for full complex am-
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(b) l = 4
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(c) l = 8
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Figure 8: Example 3 Neumann case: plots of reconstructions at the third iteration for different
surface correlation scales

plitude measurements. Versions are derived for both Dirichlet and Neumann boundary conditions.
In this method, which makes use of the parabolic wave equation, starting from an initial guess,
surface values are obtained progressively along the propagation direction. This is iterated a small
number of times (typically three). An important and perhaps surprising finding is that errors at
the start of this domain do not significantly propagate to contaminate the later values, so that the
method shows a type of self-regularisation.

We have conducted numerical experiments for a number of different surface spectra, and exam-
ined the robustness with respect to measurement noise. The examples treated include smoothly
varying 2-scale surfaces and randomly rough surfaces with a many components over a range of
length scales. In all the cases considered good agreement has been obtained between exact and
reconstructed surfaces. Interesting differences emerge between Dirichlet and Neumann conditions.
In the Dirichlet case rapid oscillations occur in the initial reconstructions at the start of the range
which nevertheless allow accurate results over most of the range. This does not occur with Neumann
condition. The addition of random white noise to the measurements leads to noisy reconstructions,
in which the main surface features are clearly reproduced but with a rapidly varying perturbation.
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surface correlation scale Ex.2 Dirichlet Ex.2 Neumann Ex.3 Dirichlet Ex.3 Neumann
l=1 0.252 0.166 0.238 0.120
l=2 0.228 0.149 0.233 0.0997
l=4 0.207 0.101 0.204 0.0890
l=8 0.194 0.0779 0.195 0.0701
l=12 0.142 0.0747 0.162 0.0582
l=16 0.0848 0.0475 0.121 0.0478

Table 3: Averaged error at the third iteration for different surface correlation lengthscales

This perturbation has length scales small enough that it can be removed by simple filtering, so
that the filtered reconstruction agrees closely with the exact solution.

In order to simplify the algorithm the measurements were assumed to be at evenly spaced points
aligned parallel to the mean plane, but this is not needed for the basic principles of the method.
We do not yet have rigorous results for the convergence of iterates under this method; such results
are an aim of future work. Reconstruction of finite impedance or penetrable surfaces appears to be
beyond the scope of this approach, although work is in progress on the full 3-dimensional problem
in the perfectly reflecting case.
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