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Trivariate mover-stayer counting process
models for investigating joint damage in
psoriatic arthritis
Sean Yiu,*† Brian D. M. Tom and Vernon T. Farewell

In psoriatic arthritis, many patients do not develop permanent joint damage even after a prolonged follow-up.
This has led several authors to consider the possibility of a subpopulation of stayers (those who do not have the
propensity to experience the event of interest), as opposed to assuming the entire population consist of movers
(those who have the propensity to experience the event of interest). In addition, it is recognised that the damaged
joints process may act very differently across different joint areas, particularly the hands, feet and large joints.
From a clinical perspective, interest lies in identifying possible relationships between the damaged joints processes
in these joint areas for the movers and estimating the proportion of stayers in these joint areas, if they exist.
For this purpose, this paper proposes a novel trivariate mover-stayer model consisting of mover-stayer truncated
negative binomial margins, and patient-level dynamic covariates and random effects in the models for the movers
and stayers, respectively. The model is then extended to have a two-level mover-stayer structure for its margins
so that the nature of the stayer property can be investigated. A particularly attractive feature of the proposed
models is that only an optimisation routine is required in their model fitting procedures. © 2016 The Authors.
Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: intermittent observations; longitudinal count data; mover-stayer model; psoriatic arthritis; random
effects

1. Introduction

Psoriatic arthritis (PsA) is an inflammatory arthritis associated with the skin condition psoriasis. A basic
measure of disease progression in PsA is the attained number of permanently damaged joints. Since its
inception in 1978, the University of Toronto PsA clinic has established the largest and most comprehen-
sively studied cohort of PsA patients in the world. A notable feature of this cohort is the large number
of patients whose disease process does not progress to permanent joint damage, even after a prolonged
follow-up. Thus, when characterising the rate of accumulating damaged joints, there is generally a greater
amount of zeros than is predicted from a standard count distribution. Several authors have considered
mover-stayer damaged joints counting process models in order to understand the damage process at the
total joint level (all joints, Aguirre-Hernández and Farewell [1]) or with regard to the joints in the hands
(Cook et al. [2], Solis-Trapala and Farewell [3], and O’Keeffe et al. [4]). These models estimate the pro-
portion of stayers (those who do not have the propensity to experience the event of interest), through a
binary component, and describe the counting process of the movers (those who have the propensity to
experience the event of interest) with regard to the occurrence of clinical joint damage over time. Sutrad-
har and Cook [5] provided an extension by developing a bivariate mover-stayer damaged joints counting
process model for the situation where two damaged joints counting processes are of interest. A multi-
nomial distribution was specified for the joint binary component, whilst a random effect was used to
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correlate the rates for the movers. Their model was clinically motivated by distinguishing between clin-
ical and radiological damage at the total joint level. Note that these works have focused on two or less
damaged joints counting processes with one stayer population being associated with each process.

In the present setting, the clinical aims are to identify possible relationships between accumulating
damaged joints in the hands, feet and large joints for the movers, which may be asymmetric, and to esti-
mate the stayer proportions in each joint area. Hence, three processes are now of interest. This would
provide further understanding of the damage joints counting process in each joint area (hands, feet and
large joints), which are expected to be different, and contribute new understanding of the possibly global
nature of damage. In addition, it would also be of interest to investigate the nature of the stayer prop-
erty, particularly to distinguish between patients who are inherent stayers (true stayers) or attain the
stayer property through management/treatment strategies employed by the clinic (clinic-induced stayers).
These clinical considerations motivate the need for the development of new methodology that allows the
relationship between three damaged joints counting processes to be investigated whilst simultaneously
allowing for the possibility that there could be two stayer populations associated with each process.

In the count data setting, mover-stayer models are referred to as zero-inflated models, and these are
commonly used when count data sets display a large number of zeros. The zero-inflated Poisson (ZIP)
model was first considered by Lambert [6]. Böhning [7] and Ridout et al. [8] provide a comprehen-
sive review of this methodology, whilst Böhning et al. [9] demonstrate various applications to the public
health and social science settings. When the study design also results in clustered observations, a popular
modification is to incorporate cluster-specific random effects. These models can however be computa-
tionally intensive, primarily because of the required integration over the random effects. Hall [10] used
the expectation-maximization (EM) algorithm to fit a ZIP model which included a random effect in the
Poisson and not the binary component of the model. The ZIP model of Hur et al. [11] contained distinct
random effects in both components of the model, although these authors chose to use numerical quadra-
ture and a Newton-Ralphson solution to simultaneously estimate the parameters of their model. They
state the advantages of this routine over the EM algorithm are easily obtainable standard errors and a
quicker convergence rate. Lee et al. [12] and recently, Morgan et al. [13] extended these models to allow
for a further level of clustering. This was performed by incorporating two separate random effects into
each component. The former utilised the EM algorithm, whilst the latter took a Bayesian approach in the
model fitting procedure. We note that marginal models have been proposed to handle clustering. These
models have been constructed through generalised estimating equations that allow a working correlation
matrix to be incorporated into the model fitting procedure, see Dobbie and Welsch [14] for an example.

Motivated by the aforementioned clinical considerations, we develop a novel trivariate model with
mover-stayer truncated negative binomial margins, as a flexible alternative to ZIP models, and incorporate
patient-level dynamic covariates and random effects in the models for the movers and stayers, respec-
tively. The dynamic covariates allow asymmetric relationships to be identified, whilst the random effects
provide information across processes to estimate the stayer proportions. We then extend this model to
have a two-level mover-stayer structure for its margins so that inherent and clinic-induced stayers can
be investigated for each marginal process. Patient-level random effects are again incorporated in each
stayer/binary component. In contrast to the literature where the logit link function and the distributional
assumption of normal random effects are usually specified for the binary component, we consider the
complementary log-log link function, and this allows a closed form marginal likelihood to be obtained if
the distributional assumption of the random effects is chosen to have a closed form Laplace transform.
Thus, computationally intensive techniques such as numerical integration, EM algorithm and MCMC
are not required in the model fitting procedure. This is particularly useful for the implementation of the
extended model because it contains two patient-level random effects that must be integrated out for each
patient’s likelihood contribution.

The next section introduces the PsA data on which this analysis is undertaken.

2. Psoriatic arthritis data

This analysis focuses on a longitudinal data set containing the follow-up history of 1194 patients from
the University of Toronto PsA clinic. At each clinic visit, which were scheduled 6–12 months apart,
various clinical measurements including the active (swollen and/or painful) and damaged joints counts
were obtained. In particular, joint counts are recorded at the individual joint level, therefore allowing the
damaged joints counting processes to be examined for the 28 hand joints (14 in each hand), 20 foot joints
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Figure 1. The joints considered in these analyses are the right and left jaw, sterno-clavicular, shoulder, elbow,
wrist, hip, hand, knee, ankle and foot. Joints are listed from top to bottom as they are displayed in the figure.

Figure 2. Venn diagram containing the frequencies of the 1194 psoriatic arthritis patients who remained damage
free in the various combinations of joint areas.

(10 in each foot) and 16 large joints. The large joints consist of the left and right jaw, sterno-clavicular,
shoulder, elbow, wrist, hip, knee and ankle. Figure 1 displays the location of these joints.

Of the 1194 patients, 997 had more than one clinic visit. At clinic entry, the mean age was 37 years,
with standard deviation of 13 years and 4 months, whilst the mean disease duration was 7 years with
standard deviation of 8 years and 3 months. The mean follow-up time for those who had more than a

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5701–5716

5703



S. YIU, B. TOM AND V. FAREWELL

single clinic visit was 9 years and 5 months, with interquartile range of 11 years and 1 month, and their
mean and median inter-visit times were 10 and 6 months, with standard deviation of 1 year and 2 months.

As mentioned, a notable feature of this data set is the large proportion of patients who did not develop
damaged joints in these joint areas. There were 698 (58%), 683 (57%) and 801 (67%) patients who
remained damage free in the hands, feet and large joints, respectively. Figure 2 provides more details by
displaying the frequencies of patients who remained damage free in the different combination of joint
areas. For example, of the 801 patients who remained damage free in the large joint locations, 450 patients
did not develop any damage in the hand or foot joints, 122 did not develop any damage in the hand joints
but did so in the foot joints, 101 did not develop any damage in the foot joints but did so in the hand
joints, and 128 developed damage in both the hand and foot joints.

In the next section, a trivariate mover-stayer damaged joints counting process model is developed for
the hands, feet and the large joints.

3. Model for trivariate mover-stayer damaged joints counting processes

3.1. Model

Let Nk
ij be random variables representing the total number of damaged joints that patient i has accumulated

in joint area k up to the time of the jth clinic visit tij. Then, Dk
ij = Nk

ij+1 − Nk
ij represents the number of

damaged joints developed in joint area k between tij and tij+1 with j = 0,… ,mi − 1 and k = h, f and l
denoting the hands, feet and large joints, respectively. Here, mi represents the number of clinic visits for

patient i. Suppose that Dk
ij is independent of
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where Tk = 28, 20 and 16 for k = h, f and l, respectively. Here, Tk specifies the number of joints in the
kth joint area,
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where 𝜆k
0 is a constant baseline intensity,

(
zk

i1(tij),… , zk
ip−3(tij)

)
are covariates evaluated at tij and(

𝛽k
1 ,… , 𝛽k

p

)
are regression coefficients.

To reflect the possibility that a subpopulation of stayers may exist, a partially observable binary variable
Ck

i1, where Ck
i1 = 0 if patient i is a stayer in joint area k and Ck

i1 = 1 otherwise, can be incorporated into
the model. These variables are partially observable because they are known for a particular joint area of a
patient if damage has occurred, that is Ck

i1 = 1, otherwise, they are unknown. The probability that patient
i is a stayer in joint area k conditional on a patient-level random effect Ui = ui can then be estimated as

𝜋k
i1 ∶= 𝜋k

i1

(
𝛼k

1|zk
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)
= P
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i1 = 0|zk
i⋆, ui

)
= 1 − exp

(
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(
𝛼k′
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,

where zk
i⋆ and 𝛼k

1 are column vectors of time-invariant covariates and regression coefficients, respectively.
The random effect Ui, which is incorporated at the patient-level, reflects the characteristic that the stayer
probabilities across locations are likely to be more similar within patients.
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Furthermore, if the stayer property is inherent (immune to damage before and after clinic entry), the
information obtained between arthritis onset and clinic entry will contribute towards estimation of the
stayer proportions, and thus, this information must be accounted for in the analysis. Let Dk

i0∗ be the
number of damaged joints patient i developed in area k in this period. A model for Dk

i0∗ given that no
damaged joints at arthritis onset is possible, that is Nk

i0∗ = 0, can again be specified as a negative binomial
distribution with mean Λk

i0 =
(
ti0 − ti0∗

)
𝜆k0

0 and dispersion parameter 𝜃k0 and having again the relevant
truncation. Here, 𝜆k0

0 is a constant baseline intensity, and ti0∗ is the time of arthritis onset for patient i.
That is

P
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Note that inferences from these models are not of primary interest; their use is to provide information
towards the estimation of the stayer proportions.

Under this formulation, the conditional likelihood contribution from patient i in joint area k (given the
patient-level random effect Ui = ui and the dynamic covariates, the total number of damaged joints in

each joint area
{
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where dk
ij = nk

ij+1 − nk
ij for j = 0,… ,mi − 1. The likelihood contribution Li(Θ) (where all unknown

parameters are contained in the vector Θ) from patient i can then be derived by assuming that conditional
on the random effect Ui and dynamic covariates Nh

i , Nf
i and Nl

i , the mover-stayer damaged joints counting
processes within an individual are independent. Hence,
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by taking the product of all conditional likelihood contributions from each patient. The next subsection
provides details on how the integration over the random effects can be computed analytically.

3.2. Computing the likelihood analytically

Firstly, the conditional likelihood contribution from patient i in joint area k can be rearranged as
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where the form of the third line can be seen by comparing terms when ck
i∗ = 1 and 0, respectively. The

conditional likelihood contribution from patient i is then
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From this parametrisation, it is evident that the marginal likelihood contribution from patient i can be
computed analytically if the distributional choice for Ui has a closed form Laplace transform. In this
paper, as suggested by Conaway [15], the gamma distribution with unit mean and variance 𝛾 is considered
for Ui. Its Laplace transform is given by

E(exp(−sui)) =
(

1
1 + 𝛾s

) 1
𝛾

.

Under this distributional assumption, the marginal form for 𝜋k
i1 (integrating out ui) is then
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1
𝛾

.

This function, which is similar to the one used by Pregibon [16], contains the logit link when 𝛾 = 1 and
the complementary log-log link as 𝛾 → 0. It can therefore be used to validate the suitability of these
particular link functions as well as to offer greater flexibility.
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4. Application

The model described in Section 3, which will be denoted the full model, was fitted to the 1194 PsA patients
described in Section 2. In addition to the dynamic covariates, the attained number of damaged joints in
each location; the current number of active joints in the hands, feet and large joints were also considered
as covariates in the truncated negative binomial components. In a preliminary analysis, gender, age and
arthritis duration were demonstrated to be not statistically and significantly related to the risk of damaged
joints (results not shown). For the binary components, intercept only models were considered so that the
marginal stayer proportions could be more simply investigated.

Parameter estimation for this and all other subsequent models in this paper were achieved using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [17] optimisation algorithm in the statistical package R [18].
Other methods might be used and be more appropriate in some situations. The reported confidence inter-
vals for all parameters are 95% Wald intervals obtained from evaluating and then inverting the observed
information matrix at the maximum likelihood estimates.

Table I displays the results from the full model. Of primary interest is the relationship between dam-
age progression in the hand and foot joints. The table indicates that the number of damaged hand joints
is strongly and positively associated with damage progression in the foot joints, and that the reverse rela-
tionship (number of damaged foot joints on damage progression in the hand joints) is not statistically
significant. This asymmetric relationship could be of clinical interest, especially as the strength of associ-
ations of the number of damaged hand joints (0.083) and active foot joints (0.1) when modelling damage
progression in the foot joints are comparable in magnitude. Additionally, the attained number of damaged
large joints demonstrates a significant positive association with damage foot joints progression, whilst lit-
tle association with damage hand joints progression is seen. In contrast, the number of active joints only
seems to have a local effect. The significant associations are only really seen within joint areas for these
variables, except for the possibly counter intuitive negative association between the number of active foot
joints and damage progression in the large joints. Because of the large joints category being composed of
many different types of joints, it is not possible to draw any specific conclusions regarding this counter
intuitive result. It is, however, interesting to note the positive association between the attained number
of damaged hand joints and damage progression in the large joints. These results might prompt further
investigation into the large joints category, and further highlights the importance of understanding the
damaged hand joints process.

Table I. Parameter estimates related to associations with damaged joint counts, and stayer prob-
ability estimates obtained from fitting the full model to 1194 psoriatic arthritis patients. The
P(Stayer) estimates were calculated as 𝜋k∗

1 (�̂�1, �̂�) for k = h, f and l. Standard errors for these
quantities were calculated using the delta method.

Damage progression Hand joints Foot joints Large joints

Attained number of
damaged hand joints 0.099 (0.074, 0.12) 0.083 (0.042, 0.12) 0.033 (0.013, 0.053)
Current number of
active hand joints 0.11 (0.083, 0.14) 0.013 (−0.025, 0.051) 0.0031 (−0.027, 0.034)
Attained number of
damaged foot joints −0.0045 (−0.023, 0.014) 0.036 (0.0015, 0.071) 0.012 (−0.011, 0.035)
Current number of
active foot joints −0.0088 (−0.038, 0.021) 0.1 (0.058, 0.15) −0.05 (−0.088, −0.013)
Attained number of
damaged large joints −0.0076 (−0.064, 0.048) 0.11 (0.017, 0.21) 0.0068 (−0.056, 0.07)
Current number of
active large joints 0.019 (−0.044, 0.081) 0.039 (−0.044, 0.12) 0.31 (0.24, 0.38)
𝜆0 0.15 (0.13, 0.18) 0.22 (0.18, 0.27) 0.058 (0.046, 0.72)
𝜆0

0 0.65 (0.48, 0.87) 0.54 (0.39, 0.76) 0.088 (0.07, 0.11)
𝜃 7.96 (7.07, 8.97) 13 (11.6, 14.5) 7.81 (6.29, 9.69)
𝜃0 4.7 (3.91, 5.64) 6.5 (5.38, 7.85) 3.88 (2.87, 5.24)
P(Stayer) 0.37 (0.33, 0.41) 0.31 (0.26, 0.35) 0.29 (0.22, 0.35)

𝛾 3.9 (2.76, 5.51)
Log-likelihood −13 532.86

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5701–5716
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In all three joint areas, there is strong evidence of a subpopulation of stayers as the confidence interval
for each of the relevant estimated probabilities are far from zero. The marginal stayer proportion estimates
are 0.37 (0.33, 0.41), 0.31 (0.26, 0.35) and 0.29 (0.22, 0.35) for the hands, feet and large joints, respec-
tively. Table I suggests, on average, the large joints experience the slowest damage progression rate. This
may explain why the large joints category has the smallest estimated stayer proportion even though most
patients remained damage free in this area. There is also evidence from Table I that a gamma distributed
patient-level random effect is required, and that the link function for the marginal binary components is
neither the logit or complementary log-log functional form (�̂� =3.9 (2.76, 5.51)).

The inverse Gaussian distribution was also considered for Ui, which is comparable to the normality
assumption that is commonly employed in the literature. The resulting parameter estimates and corre-
sponding confidence intervals (the regression coefficients in the truncated negative binomial components
and the true stayer proportion estimates in each joint area together with their corresponding confi-
dence intervals) were similar to those displayed in Table I. Comparison of likelihood values suggested
a preference towards a gamma distributional assumption for Ui, hence demonstrating its usefulness in
this context.

For comparative purposes, trivariate models with truncated negative binomial (𝜋k
1 ∶= 0 ∀k, TNB

model) and mover-stayer truncated Poisson (𝜃k = 𝜃k
0 ∶= 0 ∀k, TM-SP model) margins were also fitted.

Tables II and III displays the results from the TNB and TM-SP models, respectively. Rather reassuringly,
the TNB model demonstrates similar results to the full model regarding the direction and significance of
associations between covariates and outcomes. However, the effect sizes corresponding to the significant
associations from the TNB model are generally inflated in comparison with the full model. The estimated
values of 𝜃k and 𝜃k0 for each k are also seen to be larger in the TNB model, which is unsurprising because
these parameters now also reflect the variability from the existence of stayers. In contrast, the results
from the TM-SP model are less similar to the full model. Specifically, the number of active large joints
are now seen to be strongly and positively associated with damage progression in all three joint areas and
the number of damaged large joints is strongly and negatively associated with damaged large joints pro-
gression. The strong association between the number of damaged hand joints and damage progression
in all three joint areas has also been greatly attenuated, whilst the stayer proportion estimates are greatly
inflated. It is also interesting to note that �̂� takes a smaller value in the TM-SP model (in comparison with
the full model), which suggest that there is less correlation between the distribution of stayers in the dif-
ferent joint areas when heterogeneity is not taken into account in the damage progression models, after
adjusting for covariates. The log-likelihood values strongly indicate, even after accounting for the 4 less
parameters from the TNB model and the 6 less parameters from the TM-SP model, that the full model is
to be preferred.

Table II. Parameter estimates related to associations with damaged joint counts and stayer
probability estimates obtained from fitting the TNB model to 1194 psoriatic arthritis patients.

Damage Progression Hand Joints Foot Joints Large Joints

Attained number of
damaged hand joints 0.19 (0.15, 0.22) 0.17 (0.098, 0.24) 0.038 (0.018, 0.059)
Current number of
active hand joints 0.11 (0.08, 0.14) 0.015 (−0.023, 0.052) 0.004 (−0.026, 0.034)
Attained number of
damaged foot joints 0.0084 (−0.013, 0.029) 0.14 (0.085, 0.19) 0.022 (−0.0013, 0.045)
Current number of
active foot joints −0.003 (−0.033, 0.027) 0.12 (0.069, 0.16) −0.056 (−0.093, −0.019)
Attained number of
damaged large joints 0.026 (−0.043, 0.095) 0.15 (0.033, 0.28) 0.065 (−0.0016, 0.13)
Current number of
active large joints 0.018 (−0.045, 0.081) 0.043 (−0.041, 0.13) 0.32 (0.25, 0.4)
𝜆0 0.076 (0.065, 0.088) 0.11 (0.092, 0.13) 0.037 (0.031, 0.044)
𝜆0

0 0.41 (0.31, 0.54) 0.37 (0.27, 0.51) 0.065 (0.052, 0.081)
𝜃 11.19 (10.01, 12.52) 17.55 (15.89, 19.4) 10.27 (8.4, 12.53)
𝜃0 8.27 (7.04, 9.72) 10.1 (8.51, 12) 5.88 (4.52, 7.65)

Log-likelihood −13738.69
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Table III. Parameter estimates related to associations with damaged joint counts and stayer probability
estimates obtained from fitting the TM-SP model to 1194 psoriatic arthritis patients. The P(Stayer) esti-
mates were calculated as 𝜋k∗

1 (�̂�1, �̂�) for k = h, f and l. Standard errors for these quantities were calculated
using the delta method.

Damage progression Hand joints Foot joints Large joints

Attained number of
damaged hand joints 0.048 (0.04, 0.057) 0.049 (0.042, 0.056) 0.027 (0.013, 0.04)
Current number of
active hand joints 0.073 (0.063, 0.082) −0.0031 (−0.013, 0.0063) −0.0049 (−0.024, 0.014)
Attained number of
damaged foot joints 0.0029 (−0.0056, 0.011) −0.041 (−0.051, −0.031) 0.012 (−0.0032, 0.028)
Current number of
active foot joints −0.0051 (−0.017, 0.0072) 0.055 (0.046, 0.064) −0.04 (−0.065, −0.015)
Attained number of
damaged large joints −0.0027 (−0.028, 0.022) 0.059 (0.035, 0.083) −0.077 (−0.12, −0.033)
Current number of
active large joints 0.032 (0.0062, 0.057) 0.068 (0.047, 0.09) 0.21 (0.18, 0.25)
𝜆0 0.21 (0.19, 0.22) 0.35 (0.33, 0.37) 0.094 (0.082, 0.11)
𝜆0

0 0.36 (0.34, 0.38) 0.32 (0.31, 0.34) 0.099 (0.089, 0.11)
P(Stayer) 0.52 (0.49, 0.55) 0.51 (0.47, 0.54) 0.51 (0.47, 0.55)
𝛾 1.26 (1.04, 1.53)

Log-likelihood −19550.19

5. Simulation study

This section evaluates the empirical performance of the full model through simulation studies. The sim-
ulation studies consist of simulating data from the full model and then refitting the same model structure
to the simulated data. This will determine if the parameters of interest can be reasonably estimated.
Specifically if the regression coefficients corresponding to the dynamic covariates, that is the relation-
ship between the damaged joints counting processes, and the stayer proportions can be well estimated.
In the simulation studies, 400 data sets were generated from the full model with each data set containing
patients with 18 clinic visits and 6 months inter-visit time, thus reflecting the average patient in the PsA
data. For simplicity, all patients are assumed to have entered the clinic with no damaged joints (in any
joint area), and therefore, the models for Dk

i0∗ are not applicable. Furthermore, the number of currently
active joints are not considered. Simulations were performed with the number of patients in each data set
being fixed at 200, 500 and 800.

Simulation from the full model was performed as follows. Firstly, a value us
i was simulated from a

gamma distribution with unit mean and variance 𝛾 for each patient. Then for each joint area, a Bernoulli
variable Cks

i was simulated with success probability exp
(
−us

i exp(𝛼k)
)

to determine if that simulated
patient was a stayer (Cks

i = 0) or a mover (Cks
i = 1) in joint area k. Simulated stayers in joint area k

were such that their simulated outcomes nks
ij = 0 for all time intervals, whilst for movers nks

ij+1 = dks
ij + nks

ij

and nks
i0 = 0. The damage joints increment dks

ij were obtained by simulating from a negative binomial

distribution with mean 0.5𝜆k
0 exp

(
𝛽k

hnhs
ij + 𝛽k

f nfs
ij + 𝛽

k
l nls

ij

)
and dispersion parameter 𝜃k

0, which had been

truncated so that 0 ⩽ dks
ij ⩽ Tk − nks

ij . Simulating from such a distribution was performed by simulating

from a multinomial distribution with categories
{

0,… ,Tk − nks
ij

}
, where the category probabilities were

calculated from the specified truncated negative binomial distribution.
Table IV displays the true values and results of the simulation studies for the parameters of interest.

The other true parameter values were set as 𝜆h
0 = 0.37, 𝜆f

0 = 0.61, 𝜆l
0 = 0.14, 𝜃h = 8, 𝜃f = 13, 𝜃l = 8

and 𝛾 = 3.9. Parameter values were chosen to reflect similar characteristics to those observed in Table I
(results from fitting the full model to our PsA data). When there are 500 or 800 patients in each data
set, Table IV demonstrates that the model fitting procedure produces little empirical bias because mean
estimated parameters are similar to their true values. More empirical bias is observed when only 200
patients are in each data set, although the bias is generally not substantial. The mean estimated standard
error and the standard deviation for each estimated parameter is seen to be similar in all three scenarios,
which indicate the reasonableness of asymptotic approximations even with relatively small sample sizes.
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Table IV. Simulation results displaying mean parameter estimates (mean estimated standard error,
standard deviation) for the scenarios where the number of patients in each data set are 200, 500
and 800, respectively. Only the parameters of interest are reported, although 𝜆k

0, 𝜃k and 𝛾 were also
estimated for each k.

True 200 Patients 500 Patients 800 Patients

Hand joints
𝛽h

h 0.1 0.094 (0.037, 0.04) 0.098 (0.023, 0.023) 0.099 (0.018, 0.018)
𝛽h

f 0 −0.00064 (0.022, 0.022) 0.00025 (0.013, 0.014) −0.00073 (0.011, 0.01)
𝛽h

l 0 −0.0079 (0.089, 0.09) −0.0019 (0.055, 0.056) −0.0029 (0.043, 0.042)
𝜋h

1 0.37 0.37 (0.045, 0.044) 0.37 (0.028, 0.027) 0.37 (0.022, 0.023)

Foot joints
𝛽

f
h 0.08 0.087 (0.056, 0.06) 0.081 (0.034, 0.036) 0.08 (0.027, 0.027)
𝛽

f
f 0.04 0.044 (0.043, 0.046) 0.042 (0.026, 0.028) 0.04 (0.021, 0.019)

𝛽
f
l 0.1 0.11 (0.13, 0.13) 0.1 (0.075, 0.074) 0.098 (0.059, 0.058)
𝜋

f
1 0.31 0.3 (0.041, 0.042) 0.3 (0.026, 0.024) 0.3 (0.02, 0.021)

Large joints
𝛽 l

h 0.03 0.023 (0.042, 0.046) 0.029 (0.025, 0.025) 0.027 (0.02, 0.02)
𝛽 l

f 0 −0.0028 (0.027, 0.028) −0.00042 (0.017, 0.017) 0.00092 (0.013, 0.013)
𝛽 l

l 0 −0.03 (0.11, 0.18) −0.011 (0.069, 0.071) −0.0056 (0.054, 0.057)
𝜋l

1 0.29 0.29 (0.062, 0.069) 0.29 (0.04, 0.04) 0.29 (0.031, 0.031)

6. Model for trivariate mover-clinic-induced stayer-true stayer damaged joints
counting processes

In the previous sections, the stayer property was thought of as inherent. It is plausible to think that this
property could also have arisen from entry into the clinic; possibly through treatment/management strate-
gies employed by the clinicians. Such patients would therefore be susceptible to damage before clinic
entry and ‘immune’ thereafter (clinic-induced stayers). Hence, information before clinic entry would not
contribute towards estimating these patients’ clinic-induced stayer probabilities. To distinguish between
these subgroups, true stayers (patients who are inherent stayers) and clinic-induced stayers are considered
separately.

6.1. Model

Let Ck
i1 be again the partially observable binary variable such that Ck

i1 = 0 if patient i is a true stayer in
joint area k and Ck

i1 = 1 otherwise. If this patient in this joint area is a mover before clinic entry, that is
Ck

i1 = 1, let Ck
i2 be another partially observable binary variable such that Ck

i2 = 0 if this patient becomes a
clinic-induced stayer in joint area k and Ck

i2 = 1 otherwise. These variables are again partially observable
for reasons previously discussed. The probability of these events can then be estimated as

𝜋k
i1 ∶= 𝜋k

i1

(
𝛼k

1|zk
i⋆, ui

)
= P

(
Ck

i1 = 0|zk
i⋆, ui

)
= 1 − exp

(
−ui exp

(
𝛼k′

1 zk
i⋆

))
,

and

𝜋k
i2 ∶= 𝜋k

i2

(
𝛼k

2|zk
i∗, vi

)
= P

(
Ck

i2 = 0|Ck
i1 = 1; zk

i∗, vi

)
= 1 − exp

(
−vi exp

(
𝛼k′

2 zk
i∗
))
,

where again zk
i⋆, zk

i∗ and 𝛼k
1, 𝛼

k
2 are column vectors of covariates and regression coefficients, respectively,

and ui, vi are realisations of patient-level random effects Ui, Vi, which are assumed independent. Note
that Vi is only relevant in joint area k if patient i is not a true stayer in this joint area. These random
effects again represent the characteristic that the stayer probabilities in the different joint areas, both true
and clinic-induced, are likely to be more similar within patients. The likelihood contribution Lk

i (Θ|ui, vi)
from patient i in joint area k, is firstly, if nk

imi
= 0;
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P

(
Nk

i0 = 0,… ,Nk
imi

= 0|Nk
i0∗ = 0; ui, vi

)
= P

(
Dk

i0∗ = 0,… ,Dk
imi−1 = 0|Ck

i1 = 0
)
P
(
Ck

i1 = 0|ui

)
+ P

(
Dk

i0∗ = 0,… ,Dk
imi−1 = 0|Ck

i1 = 1
)
P
(
Ck

i1 = 1|ui

)
= P

(
Dk

i0∗ = 0,… ,Dk
imi−1 = 0|Ck

i1 = 0
)
P
(
Ck

i1 = 0|ui

)
+ P

(
Dk

i0∗ = 0,… ,Dk
imi−1 = 0|Ck

i2 = 0,Ck
i1 = 1

)
P
(
Ck

i2 = 0|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
+ P

(
Dk

i0∗ = 0,… ,Dk
imi−1 = 0|Ck

i2 = 1,Ck
i1 = 1

)
P
(
Ck

i2 = 1|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
= 𝜋k

i1 +
(
1 − 𝜋k

i1

)
P
(
Dk

i0∗ = 0|Nk
i0∗ = 0

){
𝜋k

i2 +
(
1 − 𝜋k

i2

) mi−1∏
j=0

P

(
Dk

ij = 0| {Nk
ij = nk

ij

}
k=h,f ,l

)}
.

Secondly, if nk
imi

≠ 0 and nk
imi

= nk
i0;

P

(
Nk

i0 = nk
i0,… ,Nk

imi
= nk

i0|Nk
i0∗ = 0; ui, vi

)
= P

(
Dk

i0∗ = nk
i0,D

k
i0 = 0,… ,Dk

imi−1 = 0|Ck
i1 = 0

)
P
(
Ck

i1 = 0|ui

)
+ P

(
Dk

i0∗ = nk
i0,D

k
i0 = 0,… ,Dk

imi−1 = 0|Ck
i1 = 1

)
P
(
Ck

i1 = 1|ui

)
= P

(
Dk

i0∗ = nk
i0,D

k
i0 = 0,… ,Dk

imi−1 = 0|Ck
i2 = 0,Ck

i1 = 1
)
P
(
Ck

i2 = 0|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
+ P

(
Dk

i0∗ = nk
i0,D

k
i0 = 0,… ,Dk

imi−1 = 0|Ck
i2 = 1,Ck

i1 = 1
)
P
(
Ck

i2 = 1|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
=
(
1 − 𝜋k

i1

)
P
(
Dk

i0∗ = nk
i0|Nk

i0∗ = 0
){

𝜋k
i2 +

(
1 − 𝜋k

i2

) mi−1∏
j=0

P

(
Dk

ij = 0| {Nk
ij = nk

ij

}
k=h,f ,l

)}
,

and finally, if nk
imi
> nk

i0;

P

(
Nk

i0 = nk
i0,… ,Nk

imi
= nk

imi
|Nk

i0∗ = 0; ui, vi

)
= P

(
Dk

i0∗ = nk
i0,D

k
i0 = dk

i0,… ,Dk
imi−1 = dk

imi−1
|Ck

i1 = 0
)
P
(
Ck

i1 = 0|ui

)
+ P

(
Dk

i0∗ = nk
i0,D

k
i0 = dk

i0,… ,Dk
imi−1 = dk

imi−1
|Ck

i1 = 1
)
P
(
Ck

i1 = 1|ui

)
= P

(
Dk

i0∗ = nk
i0,D

k
i0 = dk

i0,… ,Dk
imi−1 = dk

imi−1
|Ck

i2 = 0,Ck
i1 = 1

)
P
(
Ck

i2 = 0|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
+ P

(
Dk

i0∗ = nk
i0,D

k
i0 = dk

i0,… ,Dk
imi−1 = dk

imi−1
|Ck

i2 = 1,Ck
i1 = 1

)
P
(
Ck

i2 = 1|Ck
i1 = 1; vi

) (
1 − 𝜋k

i1

)
=
(
1 − 𝜋k

i1

) (
1 − 𝜋k

i2

)
P
(
Dk

i0∗ = nk
i0|Nk

i0∗ = 0
) mi−1∏

j=0

P

(
Dk

ij = 0| {Nk
ij = nk

ij

}
k=h,f ,l

)
.

By then assuming independence between the damaged joints counting processes given the patient-level
random effects and dynamic covariates, the likelihood contribution from patient i is

Li(Θ) = ∫
∞

0 ∫
∞

0
Lh

i (Θ|ui, vi)L
f
i (Θ|ui, vi)Ll

i(Θ|ui, vi)g(ui|𝛾1)g(vi|𝛾2) dui dvi,

where g(ui|𝛾1) and g(vi|𝛾2) are random effect densities with unit means and variances 𝛾1 and 𝛾2, respec-
tively. A closed form solution to the integrations in Li(Θ) can again be achieved by using the technique
of Section 3.2; see Appendix A for more details. Note that the model of Section 3 is retained if 𝜋k

i2 = 0
for all i and k.
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6.2. Exploring the existence of a clinic-induced and true stayer subpopulation

Intercept only models for 𝜋k
i1 and 𝜋k

i2 were fitted in order to investigate the existence of a true and clinic-
induced stayer subpopulation in each joint area. Initially, the random effects Ui and Vi were assumed
gamma distributed. The resulting marginal estimates 𝜋k∗

2

(
�̂�k

2, �̂�2

)
(after integrating out vi but still condi-

tional on Ck
i1 = 1) were small for each k. There was also a lot of uncertainty about the estimate �̂�2, which

therefore transfered to 𝜋k∗
2

(
�̂�k

2, �̂�2

)
. When 𝛾2 > 1, g(vi|𝛾2) → ∞ as vi → 0, hence, small values of 𝜋k

2
are likely to result from 𝛼k

2 ≈ −∞ or vi ≈ 0. It is therefore unsurprising that identifiability issues arose.
An alternative for Vi is the inverse Gaussian distribution with unit mean and variance 𝜓 . In this case,
g(vi|𝜓) → 0 as vi → 0, hence, small values of 𝜋k

2 are less likely to result from vi ≈ 0. The model was
then fitted for this distributional assumption of Vi, and this produced a similar likelihood value to the case
when Vi was assumed gamma distributed. Note that marginally

𝜋k∗
2 ∶= 𝜋k∗

2

(
𝛼k

2, 𝜓
)
= 1 − exp

(
1
𝜓

(
1 −

√
1 + 2𝜓 exp

(
𝛼k

2

)))
.

Figures 3 and 4 display the profile log-likelihood for 𝛼h
2, 𝛼f

2, 𝛼l
2 and log(𝜓). These plots suggest that

the optimisation procedure was able to identify the parameters 𝛼h
2, 𝛼l

2 and log(𝜓) as it converged at the
maximum of their respective profile log-likelihoods. From Figure 3, it is also clear that the maximum of
the profile log-likelihood for 𝛼f

2 occurs at a large negative value. It is therefore likely that a clinic-induced
subpopulation does not exist in the foot joints. The maximum likelihood estimates for 𝜋h∗

2 and 𝜋l∗
2 were

0.03 (SE = 0.0228) and 0.0498 (SE = 0.0508), respectively. The standard errors were approximated

Figure 3. Plots of the profile log-likelihood for 𝛼k
2, k = h, f and l. The cross indicates the point at which the

numerical optimisation procedure converged.
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Figure 4. Plot of the profile log-likelihood for log(𝜓). The cross indicates the point at which the numerical
optimisation procedure converged.

using the delta method. Because there is large uncertainty associated with these parameter estimates,
there is no convincing evidence to suggest clinic-induced stayer subpopulations exist in the hand and
large joints. In contrast and similarly to the previous results, the estimates and corresponding confidence
intervals for 𝜋k∗

1 were 0.36 (0.313, 0.407), 0.308 (0.264, 0.352) and 0.267 (0.193, 0.341) for k = h, f and
l, respectively. As all of the confidence intervals are again far from zero, there is reasonable evidence to
suggest that a subpopulation of true stayers exist in all three joint areas.

7. Discussion

This research was clinically motivated by the need to understand the relationship between damage pro-
gression in the hands, feet and large joints, under the assumption that the stayer property is inherent,
and then relaxing this assumption by allowing for the possibility of a clinic-induced stayer population.
For these purposes, this paper proposed novel trivariate (two-level) mover-stayer models consisting of
mover-stayer/mover-clinic-induced stayer-true stayer truncated negative binomial margins, and patient-
level dynamic covariates and random effects to account for within-patient correlation. These models are
appealing because the measures of associations between the counting processes are captured using regres-
sion coefficients, and the marginal likelihood can be computed analytically even when random effects
are used to correlate the stayer components. The former allows asymmetric associations to be accommo-
dated, whilst the latter facilitates the model fitting procedure. When applied to the PsA data, asymmetric
associations between the three damaged joints counting processes resulted. A particular interesting obser-
vation was the significant positive associations between the attained number of damaged hand joints and
damage progression in all three damaged joints areas. Confirmatory evidence of the local effect of active
joints was also seen. Furthermore, little evidence was found for the existence of clinic-induced stayer
populations in any of the three joint areas.

In the proposed methodology, a clinic-induced stayer was investigated by assuming ‘immunity’ to
damage occurred at the point of clinic entry. Whilst this may be a reasonable approximation for patients
who have a controllable amount of disease activity, it is likely to be inaccurate for patients who have
severe disease activity at clinic entry. A fairer assessment of a clinic-induced stayer population might
therefore allow such patients to gain ‘immunity’ to damage at other time points whilst in the clinic. This
can most conveniently be achieved by modelling, for each patient, the rate of becoming a clinic-induced
stayer, as opposed to modelling the explicit proportion of such a population. Such an analysis would
however have to account for the uncertainty of not knowing if, in addition to when, a patient has become
a clinic-induced stayer, and therefore, is likely to require the development of substantially new statistical
methodology.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 5701–5716
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Appendix A

We demonstrate how the marginal likelihood of the trivariate mover-clinic-induced stayer-true stayer
counting process model can be computed analytically. Let ck

i1∗ = 0 if nk
imi

= 0 and ck
i1∗ = 1 otherwise. If

ck
i1∗ = 1, let ck

i2∗ = 0 if nk
imi

= nk
i0 and ck

i2∗ = 1 otherwise. The likelihood contribution from patient i in
joint area k can again be rearranged as

Lk
i (Θ|ui, vi) =

{
1 − exp

(
−ui𝜔

k
i1

) {
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}}1−ck
i1∗

×
{

exp
(
−ui𝜔

k
i1

)
Pk

i1

{
1 − exp

(
−vi𝜔

k
i2

) (
1 − Pk

i2

)}1−ck
i2∗
{

exp
(
−vi𝜔

k
i2

)
Pk

i2

}ck
i2∗
}ck

i1∗
,

where
Pk

i1 = P
(
Dk

i0∗ = nk
i0|Nk

i0∗ = 0
)

Pk
i2 =

mi−1∏
j=0

P

(
Dk

ij = dk
ij| {Nk

ij = nk
ij

}
k=h,f ,l

)
𝜔k

i1 = exp
(
𝛼k′

j zk
i⋆

)
𝜔k

i2 = exp
(
𝛼k′

j zk
i∗

)
.

When ck
i1∗ = 1 for each k,

Li(Θ|ui, vi) =
∏

k=h,f ,l

exp
(
−ui𝜔

k
i1

)
Pk

i1

{
1 − exp

(
−vi𝜔

k
i2

) (
1 − Pk

i2

)}1−ck
i2∗
{

exp
(
−vi𝜔

k
i2

)
Pk

i2

}ck
i2∗

=

[∏
k=h,f ,l

Pk
i1

]
exp

(
−ui

∑
k=h,f ,l

𝜔k
i1

) ∏
k=h,f ,l

{
1− exp

(
−vi𝜔

k
i2

)(
1 − Pk

i2

)}1−ck
i2∗
{

exp
(
−vi𝜔

k
i2

)
Pk

i2

}ck
i2∗

=

[ ∏
k=h,f ,l

Pk
i1

] 1−ch
i2∗∑

rh=0

1−cf
i2∗∑

rf =0

1−cl
i2∗∑

rl=0

(−1)rh+rf +rl

[ ∏
k=h,f ,l

{
Pk

i2

}ck
i2∗
{

1 − Pk
i2

}rk(1−ck
i2∗)

]

× exp

(
−ui

∑
k=h,f ,l

𝜔k
i1 − vi

∑
k=h,f ,l

𝜔k
i2

(
ck

i2∗ + rk

(
1 − ck

i2∗
)))

.

Without loss of generality, let ch
i1∗ = 0 and cf

i1∗ = cl
i1∗ = 1, then

Li(Θ|ui, vi) =
{

1 − exp
(
−ui𝜔

h
i1

) {
1 − Ph

i1 + Ph
i1

(
1 − Ph

i2

)
exp

(
−vi𝜔

h
i2

)}}
×

[∏
k=f ,l

Pk
i1

] 1−cf
i2∗∑

rf =0

1−cl
i2∗∑

rl=0

(−1)rf +rl

[∏
k=f ,l

{
Pk

i2

}ck
i2∗
{

1 − Pk
i2

}rk(1−ck
i2∗)

]

× exp

(
−ui

∑
k=f ,l

𝜔k
i1 − vi

∑
k=f ,l

𝜔k
i2

(
ck

i2∗ + rk

(
1 − ck

i2∗
)))

=

[∏
k=f ,l

Pk
i1

] 1−cf
i2∗∑

rf =0

1−cl
i2∗∑

rl=0

(−1)rf +rl

[∏
k=f ,l

{
Pk

i2

}ck
i2∗
{

1 − Pk
i2

}rk(1−ck
i2∗)

]

× exp

(
−vi

∑
k=f ,l

𝜔k
i2

(
ck

i2∗ + rk

(
1 − ck

i2∗
))){

exp

(
−ui

∑
k=f ,l

𝜔k
i1

)

−(1 − Ph
i1) exp

(
−ui

∑
k=h,f ,l

𝜔k
i1

)
− Ph

i1

(
1 − Ph

i2

)
exp

(
−ui

∑
k=h,f ,l

𝜔k
i1 − vi𝜔

h
i2

)}
.
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Similarly, without loss of generality, let ch
i1∗ = cf

i1∗ = 0 and cl
i1∗ = 1, then

Li(Θ|ui, vi) =
∏
k=h,f

{
1 − exp

(
−ui𝜔

k
i1

) {
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}}
× exp

(
−ui𝜔

l
i1

)
Pl

i1

{
1 − exp

(
−vi𝜔

l
i2

) (
1 − Pl

i2

)}1−cl
i2∗
{

exp
(
−vi𝜔

l
i2

)
Pl

i2

}cl
i2∗

=
1∑

rh=0

1∑
rf =0

(−1)rh+rf exp

(
−ui

∑
k=h,f

rk𝜔
k
i1

) ∏
k=h,f

{
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}rk

× exp
(
−ui𝜔

l
i1

)
Pl

i1

1−cl
i2∗∑

rl=0

(−1)rl
{

Pl
i2

}cl
i2∗
{

1 − Pl
i2

}rl(1−cl
i2∗) exp

(
−vi𝜔

l
i2

(
cl

i2∗ + rl

(
1 − cl

i2∗
)))

=
1∑

rh=0

1∑
rf =0

1−cl
i2∗∑

rl=0

(−1)rh+rf +rl exp

(
−ui

(∑
k=h,f

rk𝜔
k
i1 + 𝜔

l
i1

))
Pl

i1

{
Pl

i2

}cl
i2∗
{

1 − Pl
i2

}rl(1−cl
i2∗)

×
rh∑

r′h=0

rf∑
r′f =0

∏
k=h,f

{[
1 − Pk

i1

]1−r′k
[
Pk

i1

(
1 − Pk

i2

)]r′k
}rk

exp

(
−vi

(∑
k=h,f

r′k𝜔
k
i2 + 𝜔

l
i2

(
cl

i2∗ + rl

(
1 − cl

i2∗
))))

.

Finally, when ck
i1∗ = 0 for each k,

Li(Θ|ui, vi) =
∏

k=h,f ,l

{
1 − exp

(
−ui𝜔

k
i1

) {
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}}
=

1∑
rh=0

1∑
rf =0

1∑
rl=0

(−1)rh+rf +rl exp

(
−ui

∑
k=h,f ,l

rk𝜔
k
i1

) ∏
k=h,f ,l

{
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}rk
,

where ∏
k=h,f ,l

{
1 − Pk

i1 + Pk
i1

(
1 − Pk

i2

)
exp

(
−vi𝜔

k
i2

)}rk

=
rh∑

r′h=0

rf∑
r′f =0

rl∑
r′l=0

∏
k=h,f ,l

{[
1 − Pk

i1

]1−r′k
[
Pk

i1

(
1 − Pk

i2

)]r′k
}rk

exp

(
−vi

∑
k=h,f ,l

r′k𝜔
k
i2

)
.

For each
{

ck
i1∗

}
k=h,f ,l

and
{

ck
i2∗

}
k=h,f ,l

, it is now evident that the resulting likelihood contribution can be
computed analytically if the distributional choice of Ui and Vi have closed form Laplace transforms,
because ui and vi only appear as a exp(−bui − cvi), where a, b, c are constants with respect to ui and vi,
for each likelihood contribution.
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