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Abstract

Bose-Einstein condensation is a unique phase transition in that it is not driven by inter-particle

interactions, but can theoretically occur in an ideal gas, purely as a consequence of quantum

statistics. This chapter addresses the question ‘How is this ideal Bose gas condensation modified

in the presence of interactions between the particles?’ This seemingly simple question turns out

to be surprisingly difficult to answer. Here we outline the theoretical background to this question

and discuss some recent measurements on ultracold atomic Bose gases that have sought to provide

some answers.
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I. INTRODUCTION

Unlike the vast majority of phase transitions, Bose-Einstein condensation (BEC) is not

driven by inter-particle interactions but can theoretically occur in an ideal (non-interacting)

gas, purely as a consequence of quantum statistics. However, in reality, interactions are

needed for a Bose gas to remain close to thermal equilibrium. It is thus interesting to

discuss if something close to ideal gas BEC can be observed in a real system and what

happens in the vicinity of the BEC transition in the presence of inter-particle interactions.

These simple questions have not been easy to answer, either theoretically or experimentally.

The theoretical foundations for studying the effect of interactions on Bose condensed

systems were laid over half a century ago by Bogoliubov [1], Penrose and Onsager [2], and

Belieav [3], among others. These works initially focused on zero-temperature properties and

were extended to nonzero temperature in the pioneering papers of Lee, Huang and Yang

[4–7]. At that time the main experimental system was liquid He-4 in which the inter-particle

interactions are strong, making connections with theory difficult. The realisation in 1995

of BEC in weakly interacting ultracold atomic gases [8, 9] thus opened up the possibility

to experimentally revisit some of these long-discussed questions. This was further aided

by, among other advances, the use of Feshbach resonances to tune the interaction strength

in atomic gases [10, 11]. Thus, in the last 20 years the study of ultracold Bose gases has

been very successful. However, the fact that, until recently, ultracold atoms were confined

using harmonic potentials has hindered the study of the BEC transition itself. This is due

to the resulting inhomogeneous density distribution which often masks the most interesting

interaction effects and also makes direct comparison with theory challenging.

In this chapter we review some recent experimental investigations using atomic Bose

gases that have sought to study the role of interactions on BEC. We will mainly focus on

measurements in harmonic traps, paying particular attention to how these results relate to

the physics in a homogeneous system. We also discuss some of the first measurements on

a homogeneous atomic Bose gas and the possibilities that such measurements present in

the future. Note that we will focus here on three dimensional systems close to the BEC

transition temperature. Some parts of the present chapter were also discussed in a previous

chapter written by the author [12].

The outline of the chapter is as follows. In section 2 we recap some theoretical background
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related to homogenous Bose gases in the presence of repulsive contact interactions and

outline how these results may be applied to a harmonically trapped system using the local

density approximation (LDA). Then in sections 3, 4 and 5 we focus on the experimental

investigations of three aspects of the BEC transition in the presence of interactions: (i) the

statistical mechanism of the BEC transition, (ii) the transition temperature, and (iii) the

critical behaviour near the transition.

II. THEORETICAL BACKGROUND

In this section we provide the key theoretical points necessary to understand and interpret

the experimental results presented in the rest of the chapter. The treatment we give here

is by necessity brief and we refer the interested reader to more comprehensive reviews [13–

16]. We first outline the expected behaviour for an ideal homogeneous gas before going on

to consider the effect of weak interactions on such a gas. Finally, we consider how these

homogeneous results may be applied to a harmonically trapped gas.

A. Homogeneous ideal Bose gas

In a gas of bosons of massm in equilibrium at temperature T the occupation of momentum

state p is given by the Bose distribution function,

fp =
1

e(p2/2m−µ)/kBT − 1
, (1)

where µ is the chemical potential. The total particle number N can be found by summing

over all possible momentum states,

N =
∑
p

gp
e(p2/2m−µ)/kBT − 1

, (2)

where gp is the number of states with a given p. The requirement for all terms in the

sum to be real positive numbers constrains µ ≤ p20/2m, where p0 is the momentum of the

ground state. As µ approaches p20/2m from below (which is achieved by adding particles)

the ground state occupation can become arbitrarily large (see Eq. (1)) whereas the sum of

the remainder of the states (the excited states) tends to a finite number. This helps us to

understand the mechanism for Bose-Einstein condensation, namely the statistical saturation
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FIG. 1. Ideal Bose gas condensation. (a) Thermal n′ (black line) and condensed n0 (grey line)

density plotted versus the total density n, at a fixed temperature. As atoms are added n′ = n and

n0 = 0 until the critical atom density nc is reached. At this point the excited states of the system

saturate, and for n > nc we have n′ = nc and n0 = n − nc ∝ −t grows linearly. (b) The density

as a function of βµ close to the critical density. (c) The correlation length diverges as t−ν as we

approach the transition from above with ν = 1; below Tc the correlation length remains infinite.

of excited states. Saturation can be graphically represented as shown in Fig. 1(a) by plotting

both the ground state population and excited state population versus the total atom number

for a fixed temperature. As particles are added to the system they initially populate excited

states until a critical atom number is reached above which the excited state population is

saturated and any additional particles must enter the ground state.

In the thermodynamic limit, in which both the volume of the system and total atom

number become large, we may use the semiclassical approximation. That is, we replace the

sum over excited states by an integral in order to calculate the critical atom number (or

density). The excited state density n′, which we also call the thermal density, is given by:

n′ =

∫
dp

(2πh̄)3
1

e(p2/2m−µ)/kBT − 1
=
g3/2(e

µ/kBT )

λ3
, (3)

where λ = [2πh̄2/(mkBT )]1/2 is the thermal wavelength and g3/2(x) =
∑∞

k=1 x
k/k3/2 is a

polylogarithm function. Note that in this limit p0 → 0 and so now µ ≤ 0. We can re-express

this result in terms of the phase space density D = nλ3 as

D′ ≡ n′λ3 = g3/2(e
βµ) , (4)

where β = 1/kBT . The maximum value that D′ can take is reached when µ = 0 and occurs
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when the total density reaches a critical value D0
c = n0

cλ
3 = g3/2(1) = ζ(3/2) ≈ 2.612 (where

ζ is the Riemann function). Here the superscript 0 refers to the fact this is an ideal gas

result. We can also invert this result to give the BEC transition temperature for a fixed

density:

kBT
0
c =

2πh̄2

m

(
n

ζ(3/2)

)2/3

. (5)

In this largeN limit the transition to a BEC is a well defined second-order phase transition

and is thus characterised by a set of critical exponents which describe how various quantities

diverge when approaching the transition. Here we focus on three exponents as summarised

in Fig. 1.

(i) The growth of the condensate density n0 below the transition temperature is described

by n0 = n− nc ∝ (−t)1 where t is the reduced temperature given by t = (T − Tc)/Tc.

(ii) Above Tc the dependence of n on βµ can be found by expanding Eq. (4) for small βµ;

up to first-order this expansion (at constant volume) gives D = Dc − 2
√
π
√
−βµ and thus

n−nc ∝ (µc−µ)1/2 where µc is the critical chemical potential (for an ideal gas µc = 0). The

dependence of n on µ is particularly important when discussing inhomogeneous systems.

(iii) The correlation length ξ quantifies the range over which fluctuations in the gas are

correlated and its divergence, described by the critical exponent ν, is defined by ξ ∼ |t|−ν .

The correlation length can defined by the first-order two-point correlation function, g1(r) ∝

〈Ψ̂†(r)Ψ̂(0)〉, where Ψ̂(r) is the Bose field. This correlation function is formally related to the

Fourier transform of the momentum distribution. Far from the BEC transition (βµ� −1)

the Bose momentum distribution (Eq. (1)) is approximately gaussian and thus g1(r) is short

ranged and given by a gaussian of width λ/
√

2π. As we approach the transition long-range

correlations begin to develop and for r > λ we can approximate the correlation function as

[17],

g1(r) ∝
1

r
exp(−r/ξ) . (6)

For an ideal gas ξ/λ =
√

1/(4πβ|µ|); combining this result with the expansion from (ii) and

the fact that for small t we can write (Dc − D)/Dc ≈ 3
2
t gives ξ/λ = 2

3Dc
t−1. Thus, for an

ideal gas BEC transition (at constant volume) ν = 1.
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FIG. 2. Effects of interactions on a Bose gas. Illustrated for a/λ = 0.03; the critical region (here

defined by |t| < 5a/λ) is shown in gray; the solid lines in (a) and (b) are based on Classical Field

Monte-Carlo results [18] within the critical region and an extrapolation onto the Popov approx-

imation outside it. (a) Interactions both shift the critical point and also modify the condensed

and thermal densities for n > nc. (b) The dependence of n − n0c on (µ − µc) in the presence of

interactions. MF theory (dashed line) predicts n − n0c ∝ β(µ − µc) and an erroneous first-order

transition whereas beyond-MF theory (solid line) predicts a second order transition with an ex-

ponent between the ideal and MF values. (c) Interactions change the correlation length critical

exponent from ν = 1 to ν ' 0.67.

B. Interacting homogeneous Bose gas

For a dilute atomic gas the effective low-energy interaction between two atoms at r and

r′ can be approximated as a contact interaction gδ(r− r′) with g = 4πh̄2a/m where a is the

s-wave scattering length. Note that the dimensionless parameter which usually defines the

relative strength of interactions, a/λ, is typically ∼ 10−2 for ultracold atomic gases.

A simple theoretical framework in which to understand the effects of contact interactions

on a Bose gas is the Hartree-Fock (HF) approximation [13]. In this mean-field (MF) model

one treats the thermal atoms as a “non-interacting” gas of density n′ that experiences a MF

interaction potential

Vint = g(2n0 + 2n′) , (7)

where n0 is the condensate density. Thus, p2/2m in Eq. (1) is replaced by p2/2m + Vint.
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Meanwhile the condensed atoms feel an interaction potential

V 0
int = g(n0 + 2n′) , (8)

where the factor of two difference in the condensate self-interaction comes about due to the

lack of the exchange interaction term for particles in the same state. This HF approach does

not take into account the modification of the excitation spectrum due to the presence of the

condensate, which is included in more elaborate MF theories such as those of Bogoliubov [1]

and Popov [19]. However, it is often sufficient to give the correct leading order MF results.

In a homogeneous system, above Tc, the MF interaction potential leads to a uniform energy

offset which is simply compensated for by a shift in the chemical potential and thus makes

no physical difference to the system. The effects of interactions on a homogeneous system

at a MF-level only result from the factor of two difference in the condensate self-interaction

and therefore only arise when a condensate is present (or about to appear). All these MF

theories are expected to break down as we approach Tc and should only provide a good

description outside the critical region (|t| � a/λ). Within the critical region we must revert

to beyond mean-field descriptions.

Figure 2 summarises the effect of interactions on Bose-Einstein condensation. A compar-

ison of figures 2 and 1 allows us to highlight several notable differences:

1. The gas is no longer saturated after passing through the transition but rather the

excited state density decreases as we continue to increase n above nc. This can be

understood at a mean-field level, and is due to the factor of two reduction in the

condensate self-interaction which means that an atom can lower its interaction energy

by an amount gn0 by entering the condensate.

2. Condensation occurs at a phase space density below the ideal gas critical value of

2.612. Qualitatively this can be understood to be due to the same effect as in point 1

- that interactions favour the occupation of the condensed state. However MF-theory

predicts an erroneous first-order transition and cannot predict the shift quantitatively.

Theoretically calculating the shift proved notoriously difficult and took several decades

for consensus to be reached (for an overview see e.g. [16, 20–22]). It is now generally

accepted that the shift is given by [20, 23]:

∆n

nc
≈ −2.7

a

λ
, (9)
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where ∆n = nc − n0
c . Equivalently, the Tc shift at constant n is

∆Tc
T 0
c

≈ −2/3
∆nc
n0
c

≈ 1.8
a

λ
. (10)

3. The critical exponents of the transition are also modified. In fact, the addition of

interactions results in a change of universality class to that of the so-called 3D XY-

model. The beyond-MF critical exponents expected in this universality class have

been calculated to high accuracy [24, 25]. Most notably the correlation length critical

exponent changes from ν = 1 to ν ' 0.67.

C. Bose gas in a harmonic potential

Our approach to tackling inhomogeneous potentials is to apply the local density approx-

imation (LDA). The effect of a potential V (r) is to change the energy (e.g. in Eq. (3)) from

p2/2m to p2/2m + V (r). Within the LDA we subsume V (r) within the chemical potential

such that we have a local chemical potential,

µ(r) = µ− V (r) , (11)

and then assume that the density and momentum distribution of the gas at a point r is that

of a homogeneous system with chemical potential µ(r).

The LDA is generally valid if V (r) is changing slowly relative to any other relevant

lengthscales. For an ideal thermal gas well above Tc the only relevant lengthscales are the

thermal wavelength λ and the interparticle spacing d < λ. This suggests the LDA should

be good for a thermal gas as long as kBT � h̄ω. However the soundness of LDA becomes

less clear as ξ diverges upon approaching the transition. Within LDA the critical point is

reached when the maximal local D reaches the critical phase space density. However, it

usually makes sense to define the critical point in terms of the critical total particle number

Nc (as the local density is harder to measure than the total atom number in the trap).

For an ideal Bose gas in a harmonic potential, V (r) =
∑

(1/2)mω2
i r

2
i , we can calculate

Nc by inserting Eq. (11) with this potential into Eq. (4), setting µ = 0 and integrating over

all space to give,

N0
c = ζ(3)

(
kBT

h̄ω̄

)3

, (12)
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where ω̄ is the geometric mean of the trapping frequencies and ζ(3) ≈ 1.202. Equivalently

for a fixed particle number the transition temperature is given by,

kBT
0
c = h̄ω̄

(
N

ζ(3)

)1/3

. (13)

In a similar fashion to the ideal homogeneous case if we increase the total atom number

N at constant temperature then for N < N0
c no condensate is present and the thermal atom

number N ′ = N . However for N > N0
c the thermal component is saturated at N ′ = N0

c .

Thus for an ideal gas the basic mechanism of saturation of excited states leading to a BEC

transition remains.

However, the difference between homogeneous and harmonically trapped gases is much

more fundamental than a simple change in the expression for Tc might suggest. Even for an

ideal gas the inhomogeneous density distribution means that as we approach the transition

only the central region of the cloud is close to critical density and so the critical behaviour

of the gas is quite different. For example the divergence of ξ is constrained by a short

lengthscale determined by the trap. In the presence of interactions the differences become

even more manifold due to two important factors.

Firstly, unlike in a homogeneous system, when we apply LDA in a trapped system we

are no longer under the constraint of constant n but of constant µ. This is because we are

only free to vary the global chemical potential to fix the total atom number N and then

locally the chemical potential is set by Eq. (11). Therefore the chemical potential shifts that

we could dismiss in the case of a homogeneous system can now have large effects and so

a trapped system can display large mean-field effects which were completely absent in the

homogeneous case. In fact, as we will see, these effects often go in the opposite direction to

those in a homogenous gas.

Secondly, in a trapped system only a small region (at the trap centre) is in the critical

regime. This means that the magnitude of any beyond-MF effects are significantly reduced

as compared to the homogeneous case. Also, due to our first point above, the beyond-MF

effects that we do see are more likely to be related to beyond-MF shifts in µ rather than the

homogeneous system density shifts.
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FIG. 3. Lack of saturation of the thermal component in a quantum degenerate Bose gas with

a/λ = 0.01. Thermal atom number N ′ (black points) and condensed atom number N0 (grey

points) are plotted versus the total atom number N for a fixed T . The predictions for a saturated

gas are shown by black and grey solid lines. Figure adapted from [26].

III. STATISTICAL MECHANISM OF BEC IN AN INTERACTING BOSE GAS

In this section, we discuss the concept of the saturation of the excited states as the under-

lying mechanism driving the BEC transition, and how interactions modify this saturated-gas

picture. For superfluid 4He, which is conceptually associated with BEC, strong interactions

preclude direct observation of purely statistical effects expected for an ideal Bose gas. This

is generally thought to be in contrast to weakly interacting atomic gases in which close-to-

textbook ideal BEC is expected. One might therefore expect that the saturation inequality

N ′ ≤ N0
c should be essentially satisfied in these systems. However, careful examination [26]

revealed that this is far from being the case for a harmonically trapped gas as shown in

Fig. 3. The drastic violation of the saturation inequality seen in Fig. 3, which is at first

sight surprising, results from the combination of repulsive interactions and harmonic trap-

ping. To first-order it can be explained in a simple MF picture in which we just consider the

interaction of the thermal atoms with the condensate and not with other thermal atoms.

This approximation works because, due to the harmonic trap, as a condensate is formed and

grows, the change in the density of the condensed atoms is much larger than the change of

the thermal density. Within the LDA this leads to a spatially varying interaction potential

Vint(r) = 2gn0(r) and results in a uniform chemical potential shift everywhere outside the
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FIG. 4. Quantifying the lack of saturation. (a) Here N ′ is plotted as a function of N
2/5
0 for data

in Fig. 3. The horizontal dotted line is the saturation prediction N ′ = Nc. The two black lines

show the initial slope S0 and the slope S for 0.1 < µ0 / kBT < 0.3. (b) The non-saturation slope

S is plotted versus the dimensionless interaction parameter X ∝ T 2a2/5 (see text). A linear fit

(black line) gives dS/dX = 2.6± 0.3 and an intercept S(0) = −20± 100, consistent with complete

saturation in the ideal-gas limit. Figures adapted from [26].

condensate of,

µ0 = gn0(r = 0) =
h̄ω̄

2

(
15N0

a

aho

)2/5

, (14)

where N0 is the condensed atom number and aho = (h̄/mω̄)1/2 is the spatial extension of the

ground state of the harmonic oscillator. This shift in chemical potential effects the density

everywhere and by integrating over the whole trap one can predict a linear variation of

N ′/N0
c with the small parameter βµ0:

N ′

N0
c

= 1 + α (βµ0) , (15)

with α = ζ(2)/ζ(3) ≈ 1.37. Using Eq. (14) we can equivalently write,

N ′ = Nc + S0N
2/5
0 , (16)

where S0 = αX with X being the dimensionless interaction parameter:

X =
ζ(3)

2

(
kBT

h̄ω̄

)2(
15 a

aho

)2/5

. (17)

This first-order non-saturation result is identical to that obtained in more elaborate MF

approximations, which only modify higher order terms.
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FIG. 5. Saturation of the thermal component in a partially condensed gas of 87Rb atoms. In

the box trap the gas follows the ideal-gas prediction N ′ = Nc, whereas in the harmonic trap the

thermal component is strongly non-saturated. Figure adapted from [27].

Guided by this theory, Fig. 4(a) shows N ′ as a function of N
2/5
0 for the data shown in

Fig. 3. The initial growth ofN ′ withN
2/5
0 is seen to agree well with this mean-field prediction.

Similar agreement of the initial slope, dN ′/dN
2/5
0 |N0→0, with S0 was observed for a wide

range of interaction strength and temperature [26]. Fig. 4(a) also shows an increase of the

slope for higher N0 which was quantified by a course grained slope S = ∆[N ′]/∆[N
2/5
0 ] for

0.1 < µ0 / kBT < 0.3 [26] and Fig. 4(b) summarises this non-saturation slope S depends on

the interaction parameter X.

The first and most important thing to notice is that both non-saturation slopes, S0 and

S, tend to zero for X → 0. These experiments thus confirmed the concept of a saturated

Bose gas, and Bose-Einstein condensation as a purely statistical phase transition in the

non-interacting limit.

They also highlighted the large effects that an inhomogeneous trapping potential can

introduce in the presence of MF interactions (compare Figs. 2(a) and 3). While the majority

of the observed non-saturation could be explained by MF theory a significant discrepancy

still remained for larger N0 [12], the origin of which is still an open question.

We have seen that in a harmonic trap the dominant non-saturation effect is “geometric”,

arising from an interplay of the mean-field repulsion and the inhomogeneous potential. More

recently, the achievement of BEC in a uniform box potential [28] allowed the concept of

saturation to be checked for a homogeneous system where this geometric effect is absent.
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Figure (5) directly compares the harmonically trapped and homogeneous cases and clearly

shows that the saturation inequality is much more closely obeyed for a homogeneous gas.

The weak interaction strength (a/λ = 0.006) for these homogeneous measurements means

that the expected reduction in N ′ seen in Fig. 2 is not expected to be visible over this range.

In the future it would be very interesting to examine the issue of saturation in more strongly

interacting homogeneous gases.

IV. TRANSITION TEMPERATURE OF AN INTERACTING BOSE GAS

Having considered the effect of interactions on the saturation of the thermal component

we now consider the location of the critical point itself.

The problem of the Tc shift in a harmonically trapped gas is even more complex than

for the homogeneous case that we have already discussed. Now, as well as the expected

(within LDA) reduction of the critical density which would act to increase the transition

temperature[29] we also have an additional mean-field geometric effect that reduces Tc [30].

This negative Tc shift is due to the broadening of the density distribution by repulsive

interactions. It arises due to the fact that while the chemical potential is shifted across the

whole trap by Vint(r = 0) = 2gnc, the interaction potential itself decreases with the density

for r > 0. To second order it can be calculated analytically using MF theory [30, 31] to give

∆TMF
c

T 0
c

≈ −3.426
a

λ0
+ 12.9

(
a

λ0

)2

, (18)

where ∆Tc = Tc − T 0
c and λ0 is the thermal wavelength defined at T 0

c . The two opposing

effects of repulsive interactions on the critical point of a trapped gas are visually summarised

in Fig. 6(a), where we sketch the density distribution at the condensation point for an ideal

and an interacting gas at the same temperature. For weak interactions the MF effect is

dominant, making the overall interaction shift ∆Nc(T ) positive, or equivalently ∆Tc(N)

negative.

The dominance of the negative MF shift of Tc over the positive beyond-MF one goes

beyond the difference in the numerical factors in Eqs. (10) and (18). In a harmonic trap, at

the condensation point only the central region of the cloud is close to criticality; this reduces

the net effect of critical correlations so that they affect Tc only at a higher order in a/λ0.

The MF result of Eq. (18) should therefore be exact at first order in a/λ0. The higher-order
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FIG. 6. Interaction shift of the critical temperature. (a) Opposing effects of interactions on the

critical point of a Bose gas in a harmonic potential. Compared to an ideal gas (dotted line) at the

same temperature, repulsive interactions reduce the critical density, but also broaden the density

distribution (solid line). Mean-field theory (dashed line) captures only the latter effect, and predicts

an increase of the critical atom number Nc at fixed T , equivalent to a decrease of Tc at fixed N .

(b) Measured interaction shift of the critical temperature. The solid line shows a second-order

polynomial fit to the data (see text). Figures adapted from [37].

beyond-MF shift is still expected to be positive, but the theoretical consensus on its value

has not been reached [32–36].

Since the early days of atomic BECs there have been several measurements of the inter-

action Tc shift in a harmonically trapped gas [38–40]. These experiments nicely confirmed

the theoretical prediction for the linear MF shift of Eq. (18), but could not discern the

beyond-MF effects of critical correlations.

More recent measurements [37] shown in Fig. 6, which employed a Feshbach resonance,

were able to discern the beyond-MF Tc-shift in a trapped atomic gas. The MF prediction

agrees very well with the data for a/λ0 <∼ 0.01, but for larger a/λ0 there is a clear deviation

from this prediction. All the data are fitted well by a second-order polynomial

∆Tc
T 0
c

≈ b1
a

λ0
+ b2

(
a

λ0

)2

, (19)

with b1 = −3.5±0.3 and b2 = 46±5. The value of b1 is in agreement with the MF prediction

of −3.426 whereas b2 strongly excludes the MF result and its larger magnitude is consistent

with the expected effect of beyond-MF critical correlations.
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In order to make a connection between the experiments on trapped atomic clouds and the

theory of a uniform Bose gas we also need to consider the effect of interactions on the critical

chemical potential µc. In a uniform gas the interactions differently affect Tc (or equivalently

nc) and µc at both MF and beyond-MF level. The simple MF shift βµMF
c = 4 ζ(3/2) a/λ0

has no effect on condensation. To lowest beyond-MF order we have [41]:

βµc ≈ βµMF
c +B2

(
a

λ0

)2

. (20)

We see that there is a qualitative difference between Eqs. (10) and (20). Specifically,

we have nMF
c − nc ∝ a/λ0, but µMF

c − µc ∝ (a/λ0)
2. This difference highlights the non-

perturbative nature of the problem - near criticality the equation of state does not have a

regular expansion in µ, otherwise one would get ∆nc ∝ µc − µMF
c .

For a harmonic trap, within LDA the uniform-system results for nc and µc apply in the

centre of the trap, and elsewhere the local µ(r) is given by Eq. (11). The result for the Tc

shift however does not carry over easily to the non-uniform case. Examination of Eqs. (19)

and (20) reveals that the experimentally observed Tc shift qualitatively mirrors the expected

shift in µc. This similarity can be explained as follows: (i) The interaction shift of µc affects

the density everywhere in the trap, (ii) Outside the small critical region the local density

shift is simply proportional to the local µ shift. (iii) The Nc (or Tc) shift from the non-critical

region is thus proportional to the µc shift and greatly outweighs the contribution from the

nc shift within the critical region. So the beyond-MF Tc shift observed in a trapped gas

is directly related to the quadratic beyond-MF µc shift rather than the linear nc shift. We

are thus still lacking a direct measurement of the historically most debated nc shift. The

achievement of homogeneously trapped gases has now brought such a measurement within

reach.

V. CRITICAL EXPONENTS OF AN INTERACTING BOSE GAS

Having discussed the location of the critical point we now briefly discuss the critical

behaviour around that point.

The smallness of the critical region for a harmonically trapped gas places limitations

on the critical behaviour that can be measured in these systems. This issue can be partly

overcome by performing local measurements; such an approach was put to beautiful effect
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FIG. 7. Critical exponents of the interacting BEC transition. (a) The average size of the domains

formed on crossing the critical point depends on the cooling rate. (b) Scaling of domain size (∝ l)

with quench time τQ. The data shows the expected Kibble-Zurek scaling l ∼ tbQ with b = 0.35(4)

(solid line). This is in agreement with the beyond-MF prediction of b ≈ 1/3, corresponding to

ν ≈ 0.67 and z = 3/2. Figures adapted from [43].

by Donner et al [42] who used an RF out-coupling technique to measure the divergence of

the correlation length close to Tc and obtained the critical exponent ν = 0.67 ± 0.13, in

agreement with the expected beyond-MF exponent for the 3D XY model.

The advent of homogeneous atom traps has opened up many more possibilities for the

measurement of critical phenomena. The first of these measurements for a 3D atomic Bose

gas focused on the dynamics of spontaneous symmetry breaking at the BEC transition [43].

As we approach a second order transition the relaxation time (τ), required to establish the

diverging correlation length, also diverges. This divergence is described by τ ∼ ξz ∼ |t|−νz

where z is the dynamical critical exponent. The consequence of this diverging τ is that

as the transition is approached at any finite rate the system cannot adiabatically follow

the diverging equilibrium ξ. As a result the transition is crossed at a finite value of ξ,

leading to the formation of domains with independent choices of the symmetry breaking

order parameter as shown in Fig. 7(a). In a Bose gas this results in domains each of which is

characterised by a wavefunction with a different phase. Kibble-Zurek theory describes how

the length-scale l associated with these domains scales with the speed of the quench, and

predicts that l ∼ τ bQ where τQ defines the quench rate across the transition via ṫ = 1/τQ

and b = ν/(1 + νz). Beyond-MF dynamical critical theory [44] predicts z = 3/2; combining
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this with the established ν = 0.67 gives b ≈ 1/3. Measurements on a homogeneous Bose

gas of 87Rb atoms with a/λ = 0.008 shown Fig. 7 give b = 0.35 ± 0.04 in agreement with

this expected scaling. This work not only confirmed the expected critical exponents for the

BEC transition but also provided one of the first quantitative tests for Kibble-Zurek theory.

VI. CONCLUSION AND OUTLOOK

In this chapter we have explored the effects of weak repulsive interactions on the con-

densation of atomic Bose gases. We have seen that the consequences of interactions depend

strongly on whether we have a homogeneous system or one that is harmonically trapped. In

general, the presence of a harmonic trapping potential tends to magnify the effect of mean-

field interactions while making the more interesting beyond-MF critical behaviour harder to

observe. This makes the recent advances in studying Bose gases in homogeneous potentials

particularly exciting. These advances promise the ability to study, in greater depth than has

so far been possible, many interesting effects of interactions on both the thermodynamics

and dynamics of Bose-Einstein condensation.

We have focused in this chapter on weak interactions, but a very interesting open question

is what happens in the other extreme when interactions are as strong as possible. This

regime, known as the unitary regime, happens when the scattering length a tends to infinity

and thus ceases to be a relevant scale in the problem. At this point the behaviour of the gas

should be universal - only depending on the density. Experimental studies in this unitary

regime are more difficult due to the rapid 3-body losses that occur for large a, and only

recently are any results beginning to emerge [45–47].
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Behavior of a Trapped Interacting Bose Gas. Science, 315(5818), 1556–1558.

[43] Navon, Nir, Gaunt, Alexander L., Smith, Robert P., and Hadzibabic, Zoran. 2015. Critical

dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science, 347(6218),

167–170.

[44] Hohenberg, P. C., and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev.

Mod. Phys., 49, 435–479.

[45] Rem, B. S., Grier, A. T., Ferrier-Barbut, I., Eismann, U., Langen, T., Navon, N., Khaykovich,

L., Werner, F., Petrov, D. S., Chevy, F., and Salomon, C. 2013. Lifetime of the Bose Gas

20



with Resonant Interactions. Phys. Rev. Lett., 110, 163202.

[46] Fletcher, Richard J., Gaunt, Alexander L., Navon, Nir, Smith, Robert P., and Hadzibabic,

Zoran. 2013. Stability of a Unitary Bose Gas. Phys. Rev. Lett., 111, 125303.

[47] Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A., and Jin, D. S. 2014. Universal

dynamics of a degenerate unitary Bose gas. Nature Physics, 10, 116–119.

21


