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On the formation of small-time curvature singularities in vortex sheets
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The Kelvin-Helmholtz model for the evolution of an infinitesimally thin vortex sheet in an inviscid fluid
is mathematically ill-posed for general classes of initial conditions. However, if the initial data, say
imposed at t = 0, is in a certain class of analytic functions then the problem is well-posed for a finite
time until a singularity forms, say at t = ts, on the vortex-sheet interface, e.g. as illustrated by Moore
(1979). However, if the problem is analytically continued into the complex plane, then the singularity,
or singularities, exist for t < ts away from the physical real axis. More specifically, Cowley et al. (1999)
found that for a class of analytic initial conditions, singularities can form in the complex plane at t = 0+.
They posed asymptotic expansions in the neighbourhood of these singularities for 0 < t � 1, and found
numerical solutions to the governing similarity differential equations. In this paper we obtain new exact
solutions to these equations, show that the singularities always correspond to local 3

2 -power singularities,
and determine both the number and precise locations of all branch points. Further, our analytical approach
can be extended to a more general class of initial conditions. These new exact solutions can assist in
resolving the small-time behaviour for the numerical solution of the Birkhoff-Rott equations.
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1. Introduction

A fundamental feature of shear flows at high Reynolds numbers is the Kelvin-Helmholtz instability of
a vortex sheet. A key aspect of this instability on an infinitesimally thin vortex sheet is that the problem
is ill-posed, since linear sinusoidal disturbances with a wavenumber k have a growth rate proportional
to k, e.g. see Saffman & Baker (1979). However, the vortex-sheet problem is well-posed for a finite time
if the initial data lies in a certain class of analytic functions, as noted by Sulem et al. (1981), Caflisch
& Orellana (1986) and Duchon & Robert (1988). Indeed, in a seminal paper, Moore (1979) showed
that the cumulative influence of nonlinear effects on the evolution of a small disturbance that is initially
sinusoidal, is such that a local 3

2 -power curvature singularity can develop after a finite time.
A characteristic of numerical solutions for a range of initial conditions, say imposed at t = 0, was

the formation of 3
2 -power curvature singularities, rather than other powers, e.g. Meiron et al. (1982),

Krasny (1986) and Pugh (1989). In an attempt to explain this, Cowley et al. (1999), hereinafter CBT,
used analytic continuation in the complex circulation plane based on the formulation of Moore (1985)
and Caflisch & Orellana (1986). In particular, CBT examined the small-time asymptotic solution at
key points in the complex plane away from the real physical axis and showed that, even for analytic
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initial conditions, singularities could form at time t = 0+ at isolated points. Once these singularities
had formed they could then move with time around the complex plane without changing their strength,
until at some finite time, say t = ts, one or more hit the real axis; at that time the physical vortex-sheet
problem would have a finite-time 3

2 -power curvature singularity. The character of the physical 3
2 -power

curvature singularity at t = ts is therefore apparently fixed by the form of the one or more singularities
that develop spontaneously at t = 0+ away from the real physical axis.

CBT determined the nature of the spontaneous singularities by deriving asymptotic series solutions
for 0 < t � 1 for one specific case, and two generic cases. For the generic cases, the solutions have
similarity form and are governed by ordinary differential equations in the complex plane. The form
of the singularities of these differential equations is what determines the form of the singularities of
the vortex-sheet problem. CBT showed that a 3

2 -power singularity was consistent with the differential
equations, and confirmed the existence of 3

2 -power singularities by solving the equations numerically.
However, tracking the branch cuts numerically was difficult, and an analytical solution of the equations
would be far more satisfactory. We present such an analytical solution here.

In §2 below the context of this new analytical solution is outlined, following the approach of CBT
and earlier work. This is illustrated in §3 on the first singular case considered by CBT, where the gov-
erning equations of the small-time similarity solution are restated and solved analytically. To obtain this
exact solution it is necessary to change independent variable but a prudent choice enables the solution
to be expressed in a readily-interpretable form. The properties of this solution are then examined, in
particular in comparison to the findings of CBT.

In §4 this exact analytical solution is extended to a broader class of initial conditions for which the
similarity solution matches at higher than second order. Broadly the same features remain present but
with a different number of singular points and branch cuts.

The key implications of these results are discussed in §5, in particular confirmation by analytical
means of the locations of all of the branch-point singularities in the small-time similarity solution, and
that the solution has a local 3

2 -power behaviour near those points. The existence of an analytical initial
condition should also assist in the accurate numerical solution of the problem in the full complex plane.

2. Formulation

In describing the evolution of an interface on the approach to a singularity at a finite time, a similar
formulation to that used by Caflisch & Orellana (1986) and CBT is used here. In particular, the position
(x,y) of a vortex sheet is represented parametrically in terms of a corresponding complex-valued func-
tion z(ξ , t) = ξ + s(ξ , t), where s is periodic in terms of the real variable ξ , for example over [0,2π].
The evolution of the position of the sheet, and hence s(ξ , t), can be determined from the Birkhoff-Rott
integro-differential equation (see for example Birkhoff (1962)). To help determine s(ξ , t) the param-
eter ξ is extended into the complex plane. CBT outline in more detail a suitable process for this,
introducing a second complex-valued function s∗ with

s∗(ξ , t) = s(ξ , t)

where the unknowns s and s∗ are determined by evaluating the coupled partial differential equations

∂ s∗

∂ t
=

σξ − sξ

2(1+ sξ )
+ J(ξ , t) and

∂ s
∂ t

=−
σξ − s∗

ξ

2(1+ s∗
ξ
)
+K(ξ , t). (2.1)

Here σ(ξ ) is a time-independent real-valued function that represents the periodic part of the normalised
circulation Γ (ξ ) = ξ +σ(ξ ) across the sheet, and J(ξ , t) and K(ξ , t) are integrals in the complex plane
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which here are assumed to be analytic for all (ξ , t) in the region of interest (and in particular close to
(ξ0,0) below).

The integration of (2.1) is commenced from an initial time t = 0, say, at which s0(ξ ) = s(ξ ,0)
is given. For simplicity it will be assumed here that both σ(ξ ) and s0(ξ ) are analytic functions at
and near ξ0 – even though that constraint may not be strictly necessary. Details of the other relevant
assumptions and constraints are provided in CBT.

A special case of this problem was identified by Meiron et al. (1982), by taking s0(ξ ) = 0 and
σ(ξ ) = ε sin(ξ ) when ε� 1. Using a series solution, following Moore (1979), they found that for small
times 0 < t� 1, singularities formed in s and s∗ at large values of | Im(ξ )|, i.e. ξ0± ∼±i ln(2/εt). CBT
extended this result to ε = O(1), using asymptotic analysis and demonstrated that 3

2 -power singularities
in s and s∗ formed spontaneously at t = 0+ at ξ0±, which then moved towards the real axis as t increased
until they collided on that axis and resulted in a physical curvature singularity.

CBT analyzed a broader set of initial conditions, in particular those with s0 non-zero, and proposed
that, more generally, s and s∗ could form 3

2 -power singularities ‘spontaneously’ at t = 0+ in the complex
plane (away from the real axis). These singularities could then move around the complex plane (without
changing strength), until one or more intersected with the real ξ axis generating a physical curvature
singularity. CBT’s analysis was based on a small-time asymptotic solution and covered two cases:
specifically they argued that singularities can form when either one or both of the ξ -derivatives s0ξ (ξ )
and/or s∗0ξ

(ξ ) were equal to −1 at some point ξ0 in the complex ξ -plane. Similarity solutions were
developed close to those points. However, CBT were unable to solve the coupled nonlinear ordinary
differential equations (ODEs) that described the local form of the developing singularities, and hence
resorted to numerical means to indicate the properties of the solutions. Although they were able to
do that with some confidence, a better approach would have been to find exact solutions of the ODEs,
which is what we do in this paper. These exact solutions clarify the developing solutions for small t.

3. Exact solution for singularity formation: Case 1

Following the approach of CBT, near a point ξ = ξ0 such that s0ξ (ξ0) = −1 but s∗0ξ
(ξ0) 6= −1, series

solutions for s(ξ , t) and s∗(ξ , t) at small times t are sought of the form

s = s00−ζ + 1
2 s02ζ

2 + · · ·+
[

1
2 +K00−

(1+σ01)

2(1+ s∗01)

]
t + . . . , (3.1a)

s∗ = s∗00 + s∗01ζ + 1
2 s∗02ζ

2 + · · ·+
[
(1+σ01)

2s02ζ
+ . . .

]
t + . . . , (3.1b)

where ζ = ξ −ξ0 and the other constants are as defined by CBT (e.g. K00 = K(ξ0,0)). This expansion
becomes ‘disordered’ once ζ ∼ t/ζ , or for ζ = O(t1/2), which suggests using a ‘similarity’ variable
η = ζ/ωt1/2 in terms of the constant

ω =

(
2(1+σ01)

s02(1+ s∗01)

)1/2

.

CBT proposed a small-time expansion of s and s∗ in terms of η and t with

s = s00−ηωt1/2 +

[
1
2 +K00−

(1+σ01)

2(1+ s∗01)
A(η)

]
t + . . . , (3.2a)

s∗ = s∗00 +[−η +(1+ s∗01)B(η)]ωt1/2 + . . . , (3.2b)
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where A and B satisfy the coupled nonlinear first-order ordinary differential equations

2A−ηAη =− 1
Bη

and B−ηBη =
1

Aη

(3.3)

in terms any complex-valued variable η . As ω may be complex-valued in general, note that the axes
of η are not necessarily oriented in the same direction as those for ξ . Note also that the real ξ axis,
where the solution has a physical meaning, is effectively well outside the η = O(1) domain.

To match with the initial conditions for s and s∗, for large values of η the third and second terms in
(3.1a) and (3.1b), respectively, must match with the bracketed terms in (3.2a) and (3.2b). Consequently
A∼ η2 and B∼ η for large η .

CBT were unable to find exact expressions for A(η) and B(η) so instead they sought to deduce
some of their properties using numerical integration. In particular, assuming a four-fold symmetry of
the solutions they demonstrated that both A and B appear to have (four) branch points, located at ±η0
and ±η0, and that properties of these solutions are consistent with each having a 3

2 -power singularity at
those branch points. By integrating from η = L+ i 0 and η = 0+ i L, for large L > 0, CBT identified
no other singular points in the first quadrant, although they noted the presence of other singular points
on “different Riemann sheets”. For example, when instead integrating into the first quadrant from
η = 0− i L they identified a singular point at η1 = 0.0829+ i 0.1240.

The analysis in this paper confirms the presence of up to eight branch points related to η0 and η1, and
identifies their exact positions. In §3.6 it is shown that the number of branch points that are present will
depend on how the branch cuts are configured, and in particular the assumed symmetry of the solutions.
The analysis also confirms that there are no other singular points in A or B at a finite value of η .

3.1 Integration of the coupled ODEs

The key to determining an exact solution of the coupled nonlinear ODEs (3.4) is that they can be written
in the equivalent form

(2−η
Aη

A
)(η

Bη

B
) =− η

AB
and η

Aη

A
(1−η

Bη

B
) =

η

AB
(3.4)

where both left-hand sides include logarithmic derivatives of logA and logB. This enables the pair of
equations to be rewritten into a single equation for C = AB/η , where C ∼ η2 for large η . For example,
introducing the new variable ρ = logη , and writing the derivative Ċ/C of logC with respect to it as

Ċ
C

=
Ȧ
A
+

Ḃ
B
−1, (3.5)

we can eliminate Ḃ/B from both of (3.4), and then Ȧ/A can be eliminated from both the resulting
equations to yield an equation for Ċ/C in terms of C of the form

(
Ċ
C
+1)2− 3C+1

C
(
Ċ
C
+1)+

3C−4
2C2 = 0.

After some simplification this becomes

Ċ
C

=
C+1

2C
± 3

2

√
1+

1
C2 ,
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where the positive root must be used so Ċ ∼ 2C for large C, based on the properties of C for large ρ

(or η). The resulting first-order nonlinear autonomous ODE for C(η) can rearranged into

logη =
∫ 2 dC

C+1+3
√

C2 +1
, (3.6)

within an arbitrary constant. Potential branch-point singularities are apparent where C =±i.

3.2 Change of independent variable

Although an explicit anti-derivative of the integrand of (3.6) is not available, an implicit solution can be
determined in terms of a new independent variable w(η), in place of C, where

C = w2− 1
4w2 . (3.7)

This Joukowski-type transformation is chosen to match the far-field solution, so that w∼ η for large η ,
and this ensures an appropriate periodicity. It also simplifies the evaluation of A and B across the entire
η plane, bearing in mind that C is not an ideal choice of independent variable for any function (as for
example it becomes large both as η → ∞ and as η → 0).

Replacing C by w allows (3.6) to be written as

logη =
∫ 2(4w4 +1) dw

w(8w4 +2w2 +1)
, (3.8)

which can be evaluated using partial fractions. The integrand of (3.8) signals the potential singular
points in the solution, as singularities w of η(w) can occur wherever its derivative is zero or infinite.
Among these are the four points w2

1± = (−1± i
√

7)/8 at which the denominator vanishes, given by

w1± =

√√
2− 1

2 ± i
√√

2+ 1
2 and −w1±.

It will be seen below that while ±w1± are not (finite) singular points of A or B, they play a key role in
their properties. Another potential singular point is at w = 0, and there are four other candidate points
where the numerator vanishes, at w0± = (1± i)/2 and −w0±. These latter four points correspond to
C =±i, so that

√
C2 +1 = 0 as identified below (3.6).

Evaluating (3.8) gives that

η = w2 (w2−w2
1+
)γ+ (w2−w2

1−
)γ− where γ± = 1

4 (−1±3i/
√

7), (3.9)

with the constant of integration chosen so that η ∼ w at large w. The factors in (3.9) must be evaluated
so that no branch cuts extend to infinity in w (since at t = 0 there are no branch cuts in the complex
plane for analytic initial data). To achieve this, the complex powers of the four factors (w±w1±) are
each evaluated using consistent argument ranges that preserve the symmetry of the far-field solution, for
example using radial branch cuts through w = 0. A well-defined and analytic function η(w) can then be
evaluated for any w away from these branch cuts, along with a corresponding unique value of C from
(3.7) and η(w) being one-to-one at larger values of w. The mapping is not bijective across that whole
region, however, as there is the possibility of multiple values of w (and hence C) at any given point η ,
located on different Riemann surfaces of η(w). Prior to determining A and B in terms of w it is therefore
prudent to examine the transformation between η (the original dependent variable) and w in more detail,
in particular to ensure that an appropriate w domain is defined for a one-to-one relationship.
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3.3 Properties of the transformation η(w)

First, note that while η ∼ w is one-to-one for large w, near w = 0 there are two possible values of w for
any given η , as η ∝ w2. As a result, only half of the points w near the origin will be within the domain
of the one-to-one mapping. Similar behaviour is anticipated near the four potential singular points at
w0± = (1± i)/2 and −w0± (where dη/dw = 0), as locally η will vary like (w−w0±)

2 for example.
Within the disk of radius |w|= 1/

√
2, there are also the four branch points where w2

1± = (−1± i
√

7)/8
for which η maps to infinity; for the given far-field conditions η ∼w these points must be excluded from
the desired domain. Combining this all suggests that one suitable w domain for a one-to-one function
η(w) can have an almost ‘clover-leaf pattern’ within |w|6 1/

√
2 as illustrated in Figure 1(a).

As a comparison with CBT, from (3.9) the point η0 that corresponds with w = w0+ = (1+ i)/2 is at

η0+ = η(w0+) = i
√

2
(

1+ i(4−
√

7)
)γ+
(

1+ i(4+
√

7)
)γ−

.

Using Principal branches this value concurs with η0 = 0.7359+ i 0.4920, at (2.33) of CBT, to all 4 dec-
imal places quoted. By conjugation η0− = η(w0−) = η0+ and the two other singularities corresponding
to −w0± are at −η0+ and −η0−. Note that changing the branches in any consistent manner that ensures
the correct matching at large w always yields one of these four η values, for example adding integer
multiples of 2πi to the argument of each factor.

To proceed further it is convenient to fix the branch cuts in the η-plane. There are multiple choices,
and some other possibilities are outlined in §3.6 below, but the simplest symmetry is to choose branch
cuts that extend radially from η = 0 to ±η0± in an ‘X-shaped’ formation, i.e. as given by η =±µη0±
for 0 6 µ 6 1. The boundary mapped out by these branch cuts in the w-plane could in principle be
determined analytically, if implicitly, by seeking w2 values in(3.9) for which η = µη0+ for 0 6 µ 6 1;
however, it was easier to calculate them numerically on either side of each cut and they map to a clover-
leaf boundary shape in the w domain, as illustrated in Figure 1(a).

The dots in Figure 1(a) are the mapped η-branch points η = ±η0±, while the crosses are the four
w-branch points at w2

1± = (−1± i
√

7)/8; at the latter points, w is mapped to infinity in the η-plane.
Since |w1±| = 2−3/4, these w-branch points are located slightly closer to the origin than the mapped
η-branch points. Moreover, since ±w1± are all within the clover leaf, as expected they are outside of
the domain required for a one-to-one mapping.

For illustration, surface plots of the real and imaginary parts of η(w) in the w-plane, based on this
w domain, are shown in Figure 1(b)-(c) and note the distortion near the branch point at w = 0.

Under some conditions (3.9) can also yield other possible η singular points closer to the origin. For
example, in §3.6 it will be seen that moving w clockwise across the branch cut near w1− will effectively
subtract 2π from the argument of that factor (alone) and yield another potential singularity at

η1+ = η(w0−) =−i
√

2
(

1− i(4+
√

7)
)γ+
(

1− i(4−
√

7)
)γ−

e−2πi γ− = η0−e−2πi γ− .

This point is rotated π/2 from η0−, and its position at η1+ = 0.0829+ i 0.1240 concurs with that noted
by CBT as being located on a different Riemann sheet. Correspondingly, there are three further potential
singular points at η1,−η1 and−η1 based on similar effects near w1+,−w1− and−w1+, respectively. It
is significant that they only need to be considered if the w domain contorts onto another Riemann sheet
near either of the four w-branch points. Technically, it is also possible for (3.9) to yield other points that
are further from the origin than η0+ but they are not relevant under the far-field condition on η(w).
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FIG. 1. (a) The domain of η in terms of the transformed variable w, with the grey-shaded region excluded and showing the branch
cuts from ±w1± that were used for most calculations in this paper. (b) Surface plot of the real part of η(w) in the w-plane,
matching with η ∼ w for large w and showing the singular points at ±w0±, and (c) the corresponding imaginary part of η(w).

3.4 Analytical expressions for A and B

Equations (3.4) can be written in terms of ρ = logη as(
2− Ȧ

A

)
Ḃ
B
=− 1

C
and

Ȧ
A

(
1− Ḃ

B

)
=

1
C
. (3.10)

Taking the difference and using (3.5) gives that

Ȧ
A
=

2
3

(
Ċ
C
+1
)
+

2
3C

=
C+1+

√
C2 +1

C
, (3.11)

and also that
Ḃ
B
=

1
3

(
Ċ
C
+1
)
− 2

3C
=

C−1+
√

C2 +1
2C

. (3.12)

Using C from (3.7), along with (3.8), to write these in terms of w gives that

logA =
∫ 8w(4w4 +1) dw

(2w2−1)(8w4 +2w2 +1)
and logB =

∫ 4w(4w4 +1) dw
(2w2 +1)(8w4 +2w2 +1)

,

which again can be evaluated explicitly using partial fractions in terms of w2.
Choosing the constant of integration to match with A∼ w2 for w� 1 gives that

A =
(
w2− 1

2

)(
w2−w2

1+
)α+ (w2−w2

1−
)α− and α± =±i/

√
7, (3.13)

and ensuring B∼ w for w� 1 gives

B =
(
w2 + 1

2

)(
w2−w2

1+
)β+ (w2−w2

1−
)β− and β± =− 1

4 (1± i/
√

7). (3.14)

As for (3.9), these expressions are evaluated within the w domain by using individual linear factors
within each complex power, and so that branch cuts do not extend to infinity in the w-plane. Here A at
large w repeats when arg(w) is increased by π , whereas (like η) the function B has period 2π . How A
and B behave for smaller w depends on the domain used, and hence the choice of branch cuts in η .
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Given that w is discontinuous across the excluded regions of the w-plane, for example across the
clover-leaf boundary in Figure 1 in the case of radial branch cuts in the η-plane, both A and B are
expected to have discontinuities across these four branch cuts as well. This is illustrated in Figures 2
and 3, which show plots of the real and imaginary parts of (A−η2 + 1

2 ) and (B−η), respectively. The
far-field behaviour is removed, to make their features more evident, and as expected from (2.29) in CBT
both functions approach constants at infinity. In all plots the solution is finite everywhere and typically
discontinuous across branch cuts, although Im(A−η2) is continuous with discontinuous derivative.

FIG. 2. Surface plots of the real and imaginary parts of (A−η2 + 1
2 ) in the η-plane, showing the four singular points at η0, η0,

−η0 and −η0 based on the radial branch cuts used here.

FIG. 3. Corresponding surface plots to Figure 2 for the real and imaginary part of (B−η) in the η-plane.

Other configurations of branch cuts for A and B can be used in the η-plane, for example extending
from η0− to η0+ and from −η0− to −η0+, and some options for this are outlined in §3.6.
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3.5 Properties of A and B

Although C is an analytic function of w near ±w0±, and A and B are also analytic functions of w away
from the branch cuts that extend from ±w0±, it is apparent above that each of the points ±w0± are
singularities of w(η). Expanding (3.8) about any such chosen point w0 =±w0± then (3.8) implies that

η−η0

η0
∼

16w2
0(w−w0)

2

8w4
0 +2w2

0 +1
+O(w−w0)

3 .

where η0 =±η0± is the corresponding η value. As a result, each of the four branch points η0 =±η0±
of w(η) corresponds to a 1

2 -power singularity in (η−η0). It follows that C, A and B are all potentially
singular functions of η at those branch points as well.

A simple way to clarify the form of these singularities in A and B is to write (3.6) for C(η) as

ηCη ∼ 1
2 (C0 +1)+ 3

2

√
2C0(C−C0)+O(C−C0)

near each branch point η = η0, where C0 = ±i is the corresponding C value. Upon integration locally
this gives that

(C−C0)∼ 1
2 (C0 +1)(η−η0)/η0 +

√
C0(C0 +1)(η−η0)3/η3

0 +O(η−η0)
2, (3.15)

near η0 and hence that C(η) has a 3
2 -power singularity in (η−η0).

The local forms of A and B can be deduced in a similar manner, using their expansions near the same
points η0. For example, expanding A in (3.11) first near C0 and then in terms η using (3.15) gives that

ηAη

A
=

C+1+
√

C2 +1
C

∼
C0 +1+

√
C0(C0 +1)(η−η0)/η0

C0
+O(η−η0). (3.16)

By evaluating (3.13) at the four singular points w0 =±w0± it is clear that A exists and is non-zero at each
point η0, and further that from (3.16) that its first derivative Aη exists and is finite there also. Integrating
(3.16) locally, as for (3.15), yields that A has a non-zero 3

2 -power singularity in (η−η0). The argument
for B is similar.

More broadly, Aη can be expressed in terms of w using (3.16) with (3.7), (3.9) and (3.13) and from
that it is apparent that |Aη | is both non-zero and finite everywhere in any relevant w domain, away from
±w1±. The value of (1+ sξ ) based on (3.2a) therefore becomes non-zero for all η once t > 0, and the
initial singularity in the first equation in (2.1) immediately vanishes. A similar argument applies to |Bη |
and the second equation in (2.1).

3.6 Other options for branch cuts

Radially-aligned branch cuts between w = 0 and each of±w1±, as used to represent η , A and B in terms
of w above, are arguably the simplest symmetric representation in terms of ζ = ηωt1/2 as the radius
increases with time t. However, they are not the only option for single-valued solutions, and other
symmetric branch-cut locations for A and B in terms of η include the ‘H-shaped’ (dotted) configuration
in Figure 4(a). Here the cuts extend between adjacent pairs of the branch points ±η0±, with a third
cut between those lines (ensuring that there are no w branch cuts extending to infinity). Alternatively,
‘N-shaped’ cuts can be used, illustrated in Figure 4(a) (dash-dotted) using branch cuts along circular
arcs. Either of these options align with the periodicity noted in CBT, and the corresponding w domains



10 of 15 M. A. PAGE AND S. J. COWLEY

FIG. 4. (a) Alternative branch-cut locations in the η plane for A and B, as discussed in §3.6. (b) The ‘H-shaped’ η(w) domain
(dashed, with grey-shaded region excluded) as well as the domain boundary for ‘N-shaped’ cuts (dash-dotted). Typical w-branch
cuts used with (3.8) between w = 0 and ±w1± are also shown (dotted). (c) Similar but for rotated ‘E-shaped’ cuts in η (dashed,
with dark grey-shaded regions excluded), and also the w boundary for curved ‘M-shaped’ cuts that join at η = 0 (dash-dotted).

are illustrated in Figure 4(b). Although these domain boundaries appear quite close to some of ±w1±,
those points all lie outside the w domain. For the ‘N-shaped’ case the domain boundary extends across
the illustrated w branch cuts (shown dotted), but this can be avoided using curved cuts in w.

Other options with the same symmetry include ‘I-shaped’ and ’Z-shaped’ configurations based on
pairs of horizontal cuts (with a third cut between them) and the w domains for these are broadly similar
to those in Figure 4(b) but rotated by 90◦.

Breaking from the symmetry implied in CBT, for example by raising the ‘cross-bar’ of the ‘H-
shaped’ cut (shown dashed) in Figure 4(a) so it lies above Im(η1+) = 0.12, reveals additional singular
points at η1+ and −η1−. The w domain corresponding to the resulting rotated ‘E-shaped’ branch cuts
is shown in Figure 4(c) when Im(η) = 0.15 along the ‘cross-bar’. These w values are not on a single
Riemann surface, as the domain extends under the branch cuts and into the lightly-shaded region (the
width of which increases as the ‘cross-bar’ is raised further). In the shaded region near w1− the argument
of (w−w1−) is 2πi less than in the central part of the domain, and hence w0− maps to η1+ rather than
η0−. Similarly, near −w1+ an increase by 2πi in the argument of (w+w1+) maps −w0+ on that sheet
to −η1−. These are precisely the two points observed by CBT when integrating numerically from
η = 0− i L. Similar effects occur if the cross-bar of an ‘H-shaped’ cut is lowered, but with singular
points at η1− and −η1+ sintead. Note, however, that such additional branch points do not arise for the
‘I-shaped’ ‘I-shaped’ or ’Z-shaped’ configurations, as for example the change in argument across the
cut near w1− has the opposite sign and so w0− is mapped outwards.

The domain for curved ‘M-shaped’ cuts in Figure 4(c) likewise breaks the quadrant-based periodicity
noted by CBT, but avoids η1+ and −η1−, as would a hybrid of ‘H’ and ‘M-shaped’ cuts that has no
symmetries at all. That said, a symmetrical orientation of the cuts is arguably the most obvious choice
in the absence of external factors.

In Figure 1(a) the excluded region of the w domain near the origin represents half of the local area,
with the four ‘clover leaves’ subtending an angle of 45◦ at w = 0. In contrast, both cases in Figure 4(b)
have two excluded regions, each subtending 90◦ at w = 0. These all ensure η(w) is one-to-one locally,
bearing in mind that η ∝ w2 near w = 0. A third possibility is illustrated by the rotated ‘E-shaped’
branch cuts in Figure 4(c), where a single region with Im(w)< 0 subtends 180◦ at w = 0. It is relevant
to observe here that, while w = 0 is a singularity for η(w), both A(η) or B(η) are regular at its image
point η = 0 when branch cuts are arranged to avoid that.
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Despite these various changes to the w domains of A and B within the rectangular region bounded
by ±η0±, their main features are as can be expected from their plots in Figures 2 and 3. In particular,
A and B each have discontinuities in values or gradients along the chosen η branch cuts but otherwise
their values are bounded and the altered features are unremarkable.

4. Exact solution for singularity formation: other analytic cases

CBT also considered functions s0 and s∗0 with both s0ξ (ξ0) = −1 and s∗0ξ
(ξ0) = −1 and performed a

similar type of small-time expansion about ξ0. They assumed that the O(ζ 2) term in both s0 and s∗0 were
non-zero, arguably the most common case, but with little effort a more general exact analysis can be
formulated. As a result, here it is assumed that the functions s0 and s∗0 are both analytic at ξ0 but with
first non-linear terms that are O(ζ m) and O(ζ n), respectively, where m > 2 and n > 2 are integers.

Again following the approach of CBT, series solutions for s(ξ , t) and s∗(ξ , t) at small values of
ζ = ξ −ξ0 and t are sought of the form

s = s00−ζ + 1
m! s0mζ

m + · · ·−
[
(n−1)!(1+σ01)

2s∗0nζ n−1 + . . .

]
t + . . . , (4.1a)

s∗ = s∗00−ζ + 1
n! s∗0nζ

n + · · ·+
[
(m−1)!(1+σ01)

2s0mζ m−1 + . . .

]
t + . . . , (4.1b)

As for (3.1a) and (3.1b), this expansion becomes ‘disordered’ once ζ k ∼ t, where k = m+n−1, or when
ζ = O(t1/k). A ‘similarity’ variable η = ζ/Ω t1/k is then suggested in terms of

Ω =

(
k m!n!(1+σ01)

2s0ms∗0n

)1/k

,

noting that Ω here differs slightly from that used by CBT when m = n = 2, by a factor of (3/2)1/3. A
small-time expansion of s and s∗ in terms of η and t can proceed in a similar form to (3.2a), with

s = s00−ηΩ t1/k + 1
m! s0mΩ

mA(η)tm/k + . . . , (4.2a)

and s∗ = s∗00−ηΩ t1/k + 1
n! s∗0nΩ

nB(η)tn/k + . . . . (4.2b)

Both m/k and n/k are strictly less than one so O(t) terms arising from (2.1) do not affect this leading-
order representation. Substituting (4.2a) and (4.2b) into (2.1) for small t yields the first-order ODEs

mA−ηAη =−1/Bη and nB−ηBη = 1/Aη , (4.3)

and matching for large η requires that A ∼ ηm and B ∼ ηn. As for §3.1, these can be combined into a
single equation for C = AB/η , and here the derivative Ċ of C with respect to ρ = logη satisfies

Ċ = m+n−2
2 C+ m−n

mn + m+n
2

√
C2 +4a2, where a = 1/mn. (4.4)

The positive root is used so Ċ ∼ 2C for large C, since C ∼ ηk for large η .
Potential branch-point singularities are apparent here when C =±2ai. As in §3.2, an implicit solu-

tion can be determined in terms of a new independent variable w, in place of C, where in this case

C = wk−a2/wk. (4.5)
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Replacing C by w allows (4.4) to be written as

logη =
∫ k(w2k +a2) dw

w(kw2k +(m−n)awk +a2)
, (4.6)

so that it can be evaluated explicitly using partial fractions. It follows that 2k of the potential singularities
of η(w) in the w-plane are at the k complex roots of each of wk

0± =±ai where the numerator vanishes;
as in §3, these lie on the boundary of the required domain. In addition, the denominator of (4.6) vanishes
at both w = 0 and the 2k branch points w with

wk = wk
1± =

a
2k

(−(m−n)±∆) where ∆ =
√

(m−n)2−4k.

Again, these latter points lie outside the domain of η(w) necessary for a one-to-one relationship but,
unlike in the k = 2 case here, ∆ may be real-valued if |m−n| is sufficiently large.

A solution of (4.6) with η ∼ w when w� 1 can be found by integration of (4.6), leading to

η = wk
(

wk−wk
1+

)γ+
(

wk−wk
1−

)γ−
where γ± =

1− k
2k
∓ m2−n2

2k∆
, (4.7)

where powers are evaluated so that no branch cuts extend to infinity. Cuts may be directed radially
inwards towards w = 0, or otherwise some of the cases in §3.6 can be generalised. Each term with
a complex power can be written as a product of k linear factors prior to evaluating (4.7), to ensure
appropriate argument choices, and that η matches the large w condition.

The corresponding points to wk = wk
0+ = ia in the η-plane are at

η0 = 2ik(a/2k)1/k ((m−n)−∆ +2ik)γ+ ((m−n)+∆ +2ik)γ− (4.8)

and at multiples of exp(2πi/k) times that, with the k points corresponding to wk
0− at their conjugates.

Analogues of the η1 values are also conceivable for non-symmetric branch cuts.
Following a similar approach to §3.3, expressions for A and B in this case can be obtained as

logA =
∫ mkwk−1(w2k +a2) dw

(wk−a)(kw2k +(m−n)awk +a2)
(4.9)

and

logB =
∫ nkwk−1(w2k +a2) dw

(wk +a)(kw2k +(m−n)awk +a2)
. (4.10)

These may be evaluated using partial fractions in terms of wk and, selecting the constants of integration
so that A∼ wm and B∼ wn for w� 1, this gives

A =
(

wk−a
)(

wk−wk
1+

)α+
(

wk−wk
1−

)α−
for α± =

1−n
2k
∓ 2m2 +mn+n2−3k−1

2k∆
, (4.11)

along with

B =
(

wk +a
)(

wk−wk
1+

)β+
(

wk−wk
1−

)β−
for β± =

1−m
2k
± m2 +mn+2n2−3k−1

2k∆
. (4.12)
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The same w domain as described above for (4.7) is used with (4.11), with each of the complex powers
evaluated using a product of individual linear factors. As noted in §3.6, in principle there is no reason
why the η branch cuts need extend radially from η = 0, nor that the branch cuts in w need be straight
lines. A plot of the w domain is not given here, but for m = n = 2 it broadly looks like Figure 1(a) but
with 2k = 6 excluded ‘clover leaves’ rather than four.

Properties of A and B for integers m > 2 and n > 2 follow in a similar way to §3, including that each
have 2k singular points in the η-plane, with associated branch cuts. The branch points are given by η0
in (4.8) and its conjugate, with a periodicity of k from both. For larger values of η the features of A and
B are dominated by their boundary condition at large η , with A ∼ ηm and B ∼ ηn and hence an m and
n-fold periodicity in the far field respectively. Higher-order terms in the expansions of the solutions for
large η will proceed in relative powers of ηk, in accordance with the dependencies on wk in (4.11) and
(4.12) and that η ∼ w for large w.

As for the k = 2 case in §3, the solutions near each of the branch points have 3
2 -power singularities,

since the square root term in (4.4) is always present and the transformation η(w) is always locally
quadratic in (w−w0) near each singular point w0. In fact, when evaluated at m = 2 and n = 1 the
solutions here are identical to those in §3, so it is only the differing details of the expansions (3.2a) and
(3.2b) compared with (4.2a) and (4.2b), that requires m > 2 and n > 2 here.

As a further point of comparison, the m = n = 2 case was considered in §2.4.2 of CBT, and the
properties of the solutions above for k = 3 match with the symmetry conditions that they list below their
(2.39). That said, the singular points from (4.8) here give that η0 = 31/3 exp(πi/6)/2, with the other
five singular points spaced by multiples of exp(πi/3). As a slightly different scaling has been used here
from CBT, the equivalent location of η0 in their scaling is (3/4)2/3 exp(πi/6) and so the right-hand
side of their (2.40) should be −81/256 ≈ −0.3164. The value given in CBT can be verified to be a
typographical error by using their numerical approach (and indeed the number in (2.40) happens to be a
sixth root of their |η0|).

5. Remarks

We have considered solutions to the nonlinear Kelvin-Helmholtz model for initial data such that the
problem is well-posed for a finite time. For such initial data, solutions can develop a physical singular-
ity after a finite time. Depending on the initial condition, singularities of varying forms can develop on
the interface, e.g. Duchon & Robert (1988); Caflisch & Orellana (1986); Caflisch & Semmes (1990).
However, for a broad class of initial data it is a 3

2 -power curvature singularity that is observed numeri-
cally. Since a local analysis near the singularity allows q-power singularities for 1 < q < 2, the question
arises why it is q = 3

2 that is so often observed; the local linear analysis near the singularity yields no
hint. CBT argued that the selection is determined at t = 0+, when 3

2 -power singularities can sponta-
neously form in the complex plane away from the real physical axis (by a nonlinear process). However,
CBT’s analysis depended on the numerical solution of certain ODEs.

We have revisited CBT’s analysis, and solved the relevant ODEs exactly. Our analysis confirms
the character of the 3

2 -power singularity in s and s∗, together with the number and precise locations of
the branch points. Further, the exact solutions demonstrate that there are no other singular points in
η for any symmetric choice of branch cuts, although a small number of additional singular points η1
can be present for more convoluted branch cuts. The same analytical approach enables these results
to be generalised to a wider class of analytic initial conditions than considered by CBT; yet again 3

2 -
power singularities spontaneously form at t = 0+. In addition, the analytical solution also demonstrates
that, having initially formed 3

2 -power singularities at points where (1+ sξ ) and/or (1+ s∗
ξ
) are zero,
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the denominators of (2.1) immediately become non-zero locally once t > 0; thereafter those singular
solutions are expected to move around in the complex plane, as also apparently happens with other
q-power singularities with 1 < q < 2 where those are present in the initial conditions.

An aspect of the solution that we have not investigated in detail is the time evolution of the branch
cuts. In order to match as η → ∞, the solution is required to be single valued, and so the cuts do not
extend to infinity (or at least not across the far-distant real ξ axis). The main results shown in this
paper are illustrated using radial branch cuts, but using cuts parallel with the real or imaginary η-axes is
also simple to implement (although less arguable, as the orientation of the η-axes relative to the ξ -axes
depends on an unknown constant). More generally, however, the cuts can be curved, and for t = O(1)
might be expected to evolve in time; although a constraint is that they should not intersect with the real
axis in advance of the singularities.

Similar assumptions to CBT have been used here, but more generally it is conceivable that the
solutions in §4 could be applied to non-integer values of m and/or n in an initial condition for which
(1+ sξ ) and/or (1+ s∗

ξ
) are zero, including fractional and perhaps irrational values. Higher-order terms

in the small-time expansions might also be considered, although it is probably unlikely that these will
shed significant further light on the problem (or yield exact analytical solutions).

The key implication of our exact solutions is that for a wide range of initial conditions 3
2 -power

singularities, and only 3
2 -power singularities, spontaneously form at t = 0+ for analytic initial data.

An important question remaining is how the vortex sheet evolves for times after the singularity has
formed on the real axis, i.e. for t > ts. In order to consider this issue, the Birkhoff-Rott model needs to
be ‘regularized’, e.g. by introducing viscosity, surface tension, so-called ‘blobs’ or a finite-width to the
vortex sheet. How these regularization change the formation of the singularities at t = 0+ is the subject
of current research.
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