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Abstract

We consider two independent Markov chains on the same finite state space, and study
their intersection time, which is the first time that the trajectories of the two chains
intersect. We denote by tI the expectation of the intersection time, maximized over
the starting states of the two chains. We show that, for any reversible and lazy chain,
the total variation mixing time is O(tI). When the chain is reversible and transitive,
we give an expression for tI using the eigenvalues of the transition matrix. In this case,
we also show that tI is of order

√
nE[I], where I is the number of intersections of the

trajectories of the two chains up to the uniform mixing time, and n is the number of
states. For random walks on trees, we show that tI and the total variation mixing time
are of the same order. Finally, for random walks on regular expanders, we show that
tI is of order

√
n.
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1 Introduction

Intersections of Markov chains have been intensively studied, partly due to their
connection with loop-erased walks and spanning trees. The 1991 book of Lawler [12]
focuses on intersections of random walks on lattices. In 1989, Fitzsimmons and Sal-
isbury [6] developed techniques for analysing intersections of Brownian motions and
Lévy processes. In 1996, Salisbury [20] adapted those techniques in order to bound
intersection probabilities for discrete time Markov chains. In 2003, Lyons, Peres and
Schramm [16] used Salisbury’s result to extend certain intersection probability estimates
from lattices to general Markov chains.
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Intersection and mixing times for reversible chains

In this paper we focus on finite Markov chains and study the intersection time, defined
as follows. Let P denote the transition matrix of an irreducible Markov chain on a finite
state space Ω, with stationary distribution π. Let X and Y be two independent Markov
chains with transition matrix P . Define

τI = inf{t ≥ 0 : {X0, . . . , Xt} ∩ {Y0, . . . , Yt} 6= ∅},

i.e. τI is the first time the trajectories of X and Y intersect. The key quantity will be the
expectation of the random time defined above, maximized over starting states:

tI = max
x,y∈Ω

Ex,y[τI ] .

This quantity was considered in [5], where it was estimated in many examples, in
particular random walks on tori Zd` for d ≥ 1.

We denote by tmix = tmix(1/4) the total variation mixing time; that is,

tmix = inf
{
t ≥ 0: ‖pt(x, ·)− π‖TV ≤ 1

4 for all x ∈ Ω
}
,

where pt(x, ·) is the distribution after t steps of the chain started from x, and ‖pt(x, ·)−
π‖TV = 1

2

∑
y∈Ω |pt(x, y)− π(y)| is the total variation distance between two distributions

in the same state space. Let thit = maxx,y Ex[τy] be the maximum hitting time, where for
all y

τy = inf{t ≥ 0 : Xt = y}.

In order to avoid periodicity and near-periodicity issues, in many places we consider
the lazy version of a Markov chain, i.e. the chain with transition matrix PL = (P + I)/2.

For functions f, g we will write f(n) . g(n) if there exists a universal constant c > 0

such that f(n) ≤ cg(n) for all n. We write f(n) & g(n) if g(n) . f(n). Finally, we write
f(n) � g(n) if both f(n) . g(n) and f(n) & g(n).

We define
tH = max

x∈Ω,A⊆Ω:π(A)≥3/8
Ex[τA] , (1.1)

where τA stands for the first hitting time of the set A.
Our first result shows that tI is an upper bound on tH for all chains.

Theorem 1.1. For all finite and irreducible Markov chains, we have

tH . tI .

In other words, there is a universal constant c > 0 such that for every n and every
irreducible Markov chain we have tH ≤ c tI .

Using the equivalence between mixing times and tH for lazy reversible chains (The-
orem 2.1), which was proven independently by [18] and [19], we obtain the following
corollary.

Corollary 1.2. For all finite, irreducible, reversible and lazy Markov chains, we have

tmix . tI .

For lazy weighted random walks on finite trees, we have

tmix � tI.

We prove Theorem 1.1 and Corollary 1.2 in Section 2, where we also state the
equivalence between mixing and hitting times.
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Intersection and mixing times for reversible chains

Remark 1.3. We recall the definition of the Cesaro mixing time

tCes = min

{
t : max

x∈Ω

∥∥∥∥∥1

t

t−1∑
s=0

ps(x, ·)− π

∥∥∥∥∥
TV

≤ 1

4

}
,

where ps(x, y) stands for the transition probability from x to y in s steps. Since tCes � tH
for all lazy and irreducible chains without assuming reversibility (see, for instance, [19,
Theorem 6.1 and Proposition 7.1]), it follows from Theorem 1.1 that tCes . tI.

Remark 1.4. We note that tI ≤ 2thit, since we can fix a state and wait until both chains
hit it. So Theorem 1.1 demonstrates that the intersection time can be sandwiched
between the mixing time and the maximum hitting time of the chain. Hence this double
inequality can be viewed as a refinement of the basic inequality stating that the mixing
time is upper bounded by the maximum hitting time, which is rather loose for many
chains.

We denote by tunif the uniform mixing time, i.e.

tunif = inf

{
t ≥ 0 : max

x,y∈Ω

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ ≤ 1

4

}
.

Note that tmix ≤ tunif . Benjamini and Morris [3] related tunif to intersection properties of
multiple random walks. Also, we say that a chain is transitive if, for any two x, y ∈ Ω,
there is a bijection ϕ : Ω → Ω such that ϕ(x) = y and p(z, w) = p(ϕ(z), ϕ(w)) for all
z, w ∈ Ω.

For transitive reversible chains, our next theorem gives an expression for the inter-
section time. We prove it in Section 3.

Theorem 1.5. Let X be a finite, transitive, irreducible, reversible and lazy chain on n
states. Let Q =

∑n
j=2(1− λj)−2, where (λj)j are the non-unit eigenvalues of the chain in

decreasing order. Then we have

tI �
√
Q and Q � n

tunif∑
i,j=0

pi+j(x, x)

for any state x.

Remark 1.6. Let X and Y be two independent copies of a finite, transitive, irreducible,
reversible and lazy chain starting from x ∈ Ω. We note that if I =

∑tunif
i=0

∑tunif
j=0 1(Xi = Yj),

then E[I] =
∑tunif

i,j=0 pi+j(x, x). So Theorem 1.5 can be restated by saying that

tI �
√
n · E[I].

Remark 1.7. When the Markov chains are lazy, simple random walks on Zd` , the local
central limit theorem implies that pt(x, x) � t−d/2 for each fixed d when t ≤ tunif � `2.
Thus the above theorem gives the intersection time in Zd` , for any d ≥ 1. In particular,
tI � `2 for d = 1, 2, 3, while tI �

√
n log n for d = 4 and tI �

√
n for d ≥ 5, where n = `d.

These estimates were derived in [5] by a less systematic method.

For a finite, irreducible and reversible Markov chain let 1 = λ1 ≥ λ2 ≥ λ3, . . . be its
eigenvalues in decreasing order. Let λ∗ = maxi≥2 |λi|, and define the relaxation time
trel = (1− λ∗)−1. Note that λ∗ = λ2 for lazy chains. We obtain the following result for all
regular graphs, which we prove in Section 4.

Proposition 1.8. Consider a lazy, simple random walk on a finite, connected, regular
graph G on n vertices. Then we have that tI .

√
n(t∗)

3
4 , where t∗ = min{trel(log trel +

1), tunif}. In particular, if G is a regular expander on n vertices, we have tI �
√
n.
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Intersection and mixing times for reversible chains

Remark 1.9. For any regular graph on n vertices, we have that tI &
√
n. Indeed, the

expected number of intersections by time t, which we denote by It, is given by

Eπ,π[It] = Eπ,π

 t∑
i,j=0

1(Xi = Yj)

 =
(t+ 1)2

n
.

Hence, taking t =
√
n/2 and using Pπ,π(It ≥ 1) ≤ Eπ,π[It] prove the claim.

The intersection time is related to basic sampling questions [10], testing statistical
properties of distributions [2] and testing structural properties of graphs, in particular
expansion and conductance [4, 8, 9]. Many of the approaches used in these works rely
on collision or intersections of random walks (or more generally, random experiments),
which is quite natural if one is interested in the algorithms which work even in sublinear
time (or space). In this context, it is particularly important to understand the relation
between these parameters and the expansion of the underlying graph, as done in our
result which relates the mixing time to the intersection time.

We further point out that there exists a seemingly related notion for single random
walks, called self-intersection time. This time plays an important role in the context of
finding the discrete logarithm using Markov chains [11]. However, we are not aware of
any direct connection between this parameter and the intersection time of two random
walks, as the self-intersection time will be just a constant for many natural classes of
graphs.

In the remainder of this work, all Markov chains under consideration are assumed to
be finite and irreducible.

2 Intersection time for reversible Markov chains

In this section we give the proof of Theorem 1.1. We start by stating a result proved
independently by Oliveira [18], and Peres and Sousi [19] that relates the total variation
mixing time to the maximum hitting time of large sets for lazy reversible Markov chains.

Theorem 2.1 ([18], [19]). Let X be a lazy reversible Markov chain with stationary
distribution π. Then we have

tmix � tH,

where tH was defined in (1.1).

For random walks on trees, mixing times are equivalent to hitting times of the
so-called “central nodes”.

Definition 2.2. A node v of a tree T is called central if each component of T − {v} has
stationary probability at most 1/2.

Theorem 2.3 ([19]). Let X be a lazy weighted random walk on a tree and let v be a
central node (which always exists). Then

tmix � max
x
Ex[τv] ,

where τv is the first hitting time of v.

Before proving Theorem 1.1 we introduce another notion

t∗I = max
x
Ex,π[τI ] .

Note that, instead of maximizing over all starting states, in t∗I we start one chain from
stationarity and maximize over the starting state of the other chain.
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Intersection and mixing times for reversible chains

Proposition 2.4. For all Markov chains we have

tH . t∗I .

Proof. Let X and Y be two independent Markov chains such that X0 = x and Y0 ∼ π.
Let A be a set with π(A) ≥ 3/8 and define

τA = inf{t ≥ 0 : Xt ∈ A}.

Then we claim that for all x we have

Px(τA ≤ 20t∗I) ≥ c > 0. (2.1)

First of all by Markov’s inequality we immediately get

Px,π(τI ≥ 10t∗I) ≤
1

10
. (2.2)

Let t = 10t∗I and for 0 ≤ k ≤ t we let

Mk = Pπ(Yt ∈ Ac | Y0, . . . , Yk) = Pπ(Yt ∈ Ac | Yk) ,

where the second equality follows by the Markov property. It follows from the definition of
M that it is a martingale, and hence applying Doob’s maximal inequality, we immediately
obtain

Pπ

(
max

0≤k≤t
Mk ≥

3

4

)
≤ 4

3
· Eπ[Mt] =

4

3
· Pπ(Yt ∈ Ac) ≤

5

6
, (2.3)

since π(A) ≥ 3/8. We now let

G =

{
max

0≤k≤t
Mk ≤

3

4
and τI ≤ t

}
.

By the union bound and using (2.3) and (2.2) we obtain

Px,π(Gc) ≤ 5

6
+

1

10
=

14

15
.

Letting σ = min{k : Xk ∈ Y [0, t]} ∧ t and B = {z : Pz(τA ≤ t) ≥ 1/4}, we now get

Px(τA ≤ 2t) ≥ Px,π(τA ≤ 2t, G) =
∑
z∈B

Px,π(τA ≤ 2t, G,Xσ = z) .

The last equality is justified, since on G if Xσ = z /∈ B, then ∃k such that Yk = z /∈ B, and
hence on this event we have

Pπ(Yt ∈ A | Yk) <
1

4
⇒ max

0≤k≤t
Mk >

3

4
⇒ Gc.

Therefore we deduce that

Px(τA ≤ 2t) ≥
∑
z∈B

Px,π(τA ≤ 2t | G,Xσ = z)Px,π(Xσ = z | G)Px,π(G)

≥
∑
z∈B

Pz(τA ≤ t)Px,π(Xσ = z | G)Px,π(G) ≥ 1

4
· 1

15
=

1

60
,

where the second inequality follows by the Markov property, since the events G and
{Xσ = z} only depend on the paths of the chains up to time t. This concludes the proof
of (2.1) and by performing independent geometric experiments, we finally get that

max
x
Ex[τA] . t∗I .
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Intersection and mixing times for reversible chains

Since A was an arbitrary set with π(A) ≥ 3/8, we get

tH . t∗I

and this finishes the proof.

Proposition 2.5. For all Markov chains we have

tI � t∗I .

Proof. Obviously we have t∗I ≤ tI, so we only need to prove that tI . t∗I . To do so, we
consider three independent chains, X, Y and Z such that X0 = x, Y0 = y and Z0 ∼ π.
We will denote by τX,YI the first time that X and Y intersect and similarly for τX,ZI .

Let t = 6t∗I . It suffices to show that for all x, y we have

Px,y

(
τX,YI ≤ 4t∗I

)
≥ c > 0, (2.4)

since then by performing geometric experiments, we would get that tI . t∗I . For all
0 ≤ k ≤ t we define

Mk = Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅ | Z0, . . . , Zk) = Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅ | Zk) ,

where the last equality follows from the Markov property. Then clearly M is a martingale.
By Doob’s maximal inequality we get

Py,π

(
max

0≤k≤t
Mk ≥

3

4

)
≤ 4

3
· Py,π(Y [0, 4t] ∩ Z[2t, 3t] = ∅)

≤ 4

3
· Py,π(Y [2t, 3t] ∩ Z[2t, 3t] = ∅)

≤ 4

3
·max

x
Px,π(τI ≥ t) ≤

4

3
· maxxEx,π[τI ]

t
=

4t∗I
3t

=
2

9
,

where in the final inequality we used Markov’s inequality. Next we define

G =

{
max

0≤k≤t
Mk ≤

3

4
and τX,ZI ≤ t

}
.

By the union bound and Markov’s inequality we obtain

Px,y,π(Gc) ≤ 2

9
+

1

6
=

7

18
. (2.5)

Writing σ = inf{k : Xk ∈ Z[0, t]} ∧ t and B = {w : Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅) ≥ 1/4},
then we have

Px,y

(
τX,YI ≤ 5t

)
≥ Px,y,π

(
τX,YI ≤ 5t, G

)
=
∑
w∈B

Px,y,π

(
τX,YI ≤ 5t, G,Xσ = w

)
.

For the last equality we note that on G if Xσ = w /∈ B, then ∃ ` ≤ t such that Z` = w /∈ B,
and hence on this event we have

Py,π(Y [0, 4t] ∩ Z[2t, 3t] 6= ∅ | Z`) = Py,π(Y [0, 4t] ∩ Z[2t, 3t] 6= ∅ | Z` = w)

= Py,w(Y [0, 4t] ∩ Z[2t− `, 3t− `] 6= ∅)

≤ Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅) <
1

4
=⇒ Gc.
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We now deduce

Px,y

(
τX,YI ≤ 5t

)
≥
∑
w∈B

Px,y,π

(
τX,YI ≤ 5t

∣∣∣ G,Xσ = w
)
Px,y,π(Xσ = w | G)Px,y,π(G)

≥
∑
w∈B

Pw,y

(
τX,YI ≤ 4t

)
Px,y,π(Xσ = w | G)Px,y,π(G)

=
∑
w∈B

Pw,y(Y [0, 4t] ∩X[0, 4t] 6= ∅)Px,y,π(Xσ = w | G)Px,y,π(G)

≥
∑
w∈B

Py,w(Y [0, 4t] ∩ Z[t, 3t] 6= ∅)Px,y,π(Xσ = w | G)Px,y,π(G)

≥ 1

4
· 11

18
,

The first inequality follows from the Markov property, since the events G and {Xσ = w}
only depend on the paths of the chains X and Z up to time t. The last inequality follows
from (2.5) and the definition of the set B and this concludes the proof of (2.4).

Proof of Theorem 1.1. Proposition 2.4 immediately gives that for all Markov chains
we have

tH . tI

and this finishes the proof.

Proof of Corollary 1.2. Combining Theorem 2.1 with Theorem 1.1 yields

tmix � tH . tI.

It remains to prove that for trees the two quantities, tmix and tI, are equivalent. Since
tmix . tI for all reversible Markov chains, we only need to show that tI . tmix. Let v be a
central node. Then if we wait until both chains X and Y hit v, this will give an upper
bound on their intersection time, and hence

Ex,y[τI ] ≤ Ex
[
τXv
]

+ Ey
[
τYv
]
≤ 2 max

x
Ex[τv]

Now Theorem 2.3 finishes the proof.

3 Intersection time for transitive chains

In this section we prove Theorem 1.5. We start by showing that for transitive chains
instead of considering one or two worst starting points, both chains can start from
stationarity. In particular, we have the following.

Lemma 3.1. Let X be a transitive Markov chain. Then

tI � Eπ,π[τI ] .

Proof. From Proposition 2.5 we have that for all chains

tI � max
x
Ex,π[τI ] .

By transitivity it follows that Ex,π[τI ] is independent of x. Therefore, averaging over all x
in the state space proves the lemma.

Definition 3.2. Let P be a general transition matrix. We define for all t > 0

gt(x, z) =

t∑
j=0

pj(x, z), Qt(x) =
∑
z

g2
t (x, z) and Qt = max

x
Qt(x).
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Intersection and mixing times for reversible chains

Remark 3.3. Note that if a chain is transitive, then Qt(x) = Qt for all x.

The next lemma gives a control on the first and second moment of the number of
intersections of two independent chains. It will be used in the proof of Theorem 1.5 and
Proposition 1.8. In this form it appeared in [16], but the idea goes back to Le-Gall and
Rosen [13, Lemma 3.1]. We include the proof here for the reader’s convenience.

Lemma 3.4. Let X and Y be two independent copies of a (not necessarily transitive)
Markov chain and It =

∑t
i=0

∑t
j=01(Xi = Yj) count the number of intersections up to

time t. Then for all x, y we have

Ex,x[It] = Qt(x) and Ex,y
[
I2
t

]
≤ 4Q2

t .

Proof. For the first moment of the number of intersections we have

Ex,x[It]=

t∑
i=0

t∑
j=0

Px,x(Xi=Yj)=
∑
z

t∑
i=0

t∑
j=0

Px(Xi=z)Px(Yj=z)=
∑
z

g2
t (x, z)=Qt(x).

For the second moment of It we have

Ex,y
[
I2
t

]
=

t∑
i,j,`,m=0

Px,y(Xi = Yj , X` = Ym) =
∑
z,w

t∑
i,j,`,m=0

Px(Xi = z,X` = w)Py(Yj = z, Ym = w)

≤
∑
z,w

(gt(x, z)gt(z, w) + gt(x,w)gt(w, z))(gt(y, z)gt(z, w) + gt(y, w)gt(w, z))

≤
∑
z,w

(
(g2
t (x, z)g2

t (z, w) + g2
t (x,w)g2

t (w, z)) + (g2
t (y, z)g2

t (z, w) + g2
t (y, w)g2

t (w, z))
)

≤ 4Q2
t .

For the second inequality we used that ab ≤ (a2 + b2)/2 and (a+ b)2 ≤ 2(a2 + b2).

Lemma 3.5. Let X be a transitive Markov chain starting from x, and let St(x) =∑t
j=0 gt(x,Xj). Then

Px

(
St(x) ≥ Qt

2

)
≥ 1

16
.

Proof. By Remark 3.3 we have that Qt(x) = Qt for all x, since the chain is transitive.
Let X and Y be two independent copies of the chain starting from x. We write

It =

t∑
j=0

t∑
`=0

1(Xj = Y`)

for the total number of intersections up to time t. We now observe that

St(x) = Ex[It | X0, . . . , Xt] ,

and hence we get

Ex[St(x)] = Ex,x[It] = Qt and Ex
[
S2
t (x)

]
≤ Ex,x

[
I2
t

]
.

From Lemma 3.4 we now obtain

Ex
[
S2
t (x)

]
≤ Ex,x

[
I2
t

]
≤ 4(Ex,x[It])

2 = 4Q2
t .

Applying the second moment method (Paley-Zygmund inequality) finally gives

Px

(
St(x) ≥ Qt

2

)
≥ 1

4
· (Ex[St(x)])2

Ex[S2
t (x)]

≥ 1

16

and this concludes the proof.
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Intersection and mixing times for reversible chains

The following proposition is the main ingredient of the proof of Theorem 1.5. We now
explain the key idea behind the proof which was used in [7, Theorem 5.1]. We define
a set of good points on the path of the chain X and show that conditional on X and Y
intersecting before time t, then they intersect at a good point with constant probability.

Proposition 3.6. Let X and Y be two independent copies of a transitive Markov chain
on n states started from stationarity. Let It denote the number of intersections of X and
Y up to time t. Then

(t+ 1)2

4nQt
≤ Pπ,π(It > 0) ≤ 27(t+ 1)2

nQt
.

Proof. For all t using the independence between X and Y we get

Eπ,π[It] =
∑
z

t∑
i,j=0

Pπ,π(Xi = z, Yj = z) =
(t+ 1)2

n
. (3.1)

For the second moment we have

Eπ,π
[
I2
t

]
=

t∑
i,j,`,m=0

∑
z,w

Pπ(Xi = z,Xj = w)Pπ(Y` = z, Ym = w)

≤ (t+ 1)2

n2

∑
z,w

(gt(z, w) + gt(w, z))
2 ≤ 4(t+ 1)2

n
Qt, (3.2)

where for the last equality we used transitivity. Using the second moment method we
obtain

Pπ,π(It > 0) ≥ (t+ 1)2

4nQt
.

We now turn to prove the upper bound. For every x = (x0, . . . , x2t) we define the set

Γt(x) =

r ≤ t :

t∑
j=0

gt(xr, xr+j) ≥
Qt
2

 .

Next we define
τ = min{j ∈ [0, t] : Xj ∈ {Y0, . . . , Yt}},

and τ =∞ if the above set is empty. Conditioned on (Ys)s≤t, we see that τ is a stopping
time for X. Thus using Lemma 3.5 and the strong Markov property we get that τ satisfies

Pπ,π(τ ∈ Γt(X) | τ <∞) ≥ 1

16
,

where to simplify notation we write Γt(X) for the random set Γt((Xs)s≤2t). Therefore

Pπ,π(It > 0) = Pπ,π(τ <∞) ≤ 16 · Pπ,π(τ ∈ Γt(X)) . (3.3)

It now remains to bound Pπ,π(τ ∈ Γt(X)). We define σ = min{` ∈ [0, t] : Y` ∈ ∪r∈Γt(X)Xr}
with σ =∞ if the above set is empty. We note that

Pπ,π(τ ∈ Γt(X)) ≤ Pπ,π(σ ∈ [0, t]) . (3.4)

Writing Ak = {Yσ = Xk, k ∈ Γt, k is minimal, σ ∈ [0, t]} for all k ≤ t we now have

Eπ,π[I2t | σ ∈ [0, t]] =

t∑
k=0

Eπ,π[I2t | Ak]Pπ,π(Ak | σ ∈ [0, t]) . (3.5)
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For every k ≤ t we obtain

Eπ,π[I2t | Ak]

≥
∑

x=(x0,...,x2t)
s.t. k∈Γt(x)

Eπ,π

 t∑
i,j=0

1(Yσ+i = Xk+j)

∣∣∣∣∣∣ (Xs)s≤2t = x,Ak

Pπ,π((Xs)s≤2t = x | Ak)

=
∑

x=(x0,...,x2t)
s.t. k∈Γt(x)

t∑
j=0

gt(xk, xk+j)Pπ,π((Xs)s≤2t = x | Ak) ≥ Qt
2
.

Substituting the above lower bound into (3.5) we deduce

Eπ,π[I2t | σ ∈ [0, t]] ≥ Qt
2
.

Using (3.1) and the above bound we finally get

Pπ,π(σ ∈ [0, t]) ≤ Eπ,π[I2t]

Eπ,π[I2t | σ ∈ [0, t]]
≤ (2t+ 1)2/n

Qt/2
≤ 23(t+ 1)2

nQt
.

This in conjunction with (3.3) and (3.4) gives

Pπ,π(It > 0) ≤ 27(t+ 1)2

nQt
,

and this concludes the proof of the upper bound.

The following lemma follows by the spectral theorem and will be used for the upper
bound in the proof of Theorem 1.5. Combined with the statement of Theorem 1.5 it
gives that for transitive and reversible chains tunif . tI, which is an improvement over
Corollary 1.2 which gives tmix . tI. Note that this is not true in general, if the chain is
not transitive. Take for instance two cliques of sizes

√
n and n connected by a single

edge.

Lemma 3.7. Let X be a reversible, transitive and lazy Markov chain on n states and let
(λj)j be the corresponding non-unit eigenvalues. Then

tunif ≤ 2
√
Q,

where Q =
∑n
k=2(1− λk)−2.

Proof. We start by noting that for a transitive, reversible and lazy chain the uniform
mixing time is given by

tunif = min

{
t ≥ 0 : pt(x, x) ≤ 5

4n

}
.

See for instance [17, equation (16)] or [15, Proposition A.1]. By the spectral theorem
and using transitivity of X we have

pt(x, x) =
1

n
·

t∑
k=1

λtk =
1

n
+

1

n
·
n∑
k=2

λtk.

Therefore tunif = min{t :
∑n
k=2 λ

t
k ≤ 1/4}. We now set εj = 1 − λj for all j. Since the

chain is lazy, it follows that εj ∈ [0, 1] for all j. So we now need to show

n∑
k=2

(1− εk)
2
√∑n

j=2 ε
−2
j ≤ 1

4
. (3.6)
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In order to prove (3.6) it suffices to show

n∑
k=2

exp

−2εk ·

√√√√ n∑
j=2

ε−2
j

 ≤ 1

4
.

Writing rk = εk ·
√∑n

j=2 ε
−2
j , we get rk ≥ 1 and

∑n
k=2 r

−2
k = 1. Since er ≥ r2 for all r ≥ 0,

we finally deduce

n∑
k=2

e−2rk ≤ 1

4
·
n∑
k=2

r−2
k =

1

4

and this finishes the proof.

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Since the chain is reversible and transitive, it follows that for
any state x we have

Qt =
t∑
i=0

t∑
j=0

pi+j(x, x).

Using the spectral theorem together with transitivity, we obtain

Qt =
1

n
·
n∑
k=1

t∑
i,j=0

λi+jk =
(t+ 1)2

n
+

1

n
·
n∑
k=2

(1− λt+1
k )2

(1− λk)2
. (3.7)

For t ≥ trel = (1− λ2)−1 ≥ − 1
log(λ2) we get

(
1− λt+1

2

)2 ≥ 1− 2λt+1
2 ≥ 1− 2λt2 ≥ 1− 2

e
.

Since for all j ≥ 2 we have λj ≤ λ2 using the above inequality we obtain for all j ≥ 2 and
t ≥ trel (

1− λt+1
j

)2 ≥ 1− 2

e
.

Therefore for all t ≥ trel we deduce

Qt ≥
(t+ 1)2

n
+

(
1− 2

e

)
· Q
n
. (3.8)

Using (3.8) together with Proposition 3.6 now gives for t ≥ trel

Pπ,π(τI ≤ t) ≤
27(t+ 1)2

(t+ 1)2 +
(
1− 2

e

)
Q
. (3.9)

We now claim that tI &
√
Q. Let C1 be a large constant to be specified later. If√

Q ≤ C1trel, then since tmix & trel (cf. [14, Theorem 12.4]) the claim follows from
Corollary 1.2. So we may assume that

√
Q ≥ C1trel. Setting t + 1 = C

√
Q ≥ trel for a

constant C ≥ 1/C1 to be determined we get

Pπ,π(τI ≤ t) ≤ 27 · C2Q

C2Q+
(
1− 2

e

)
Q
.
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If we take C so that C2 = (1− 2/e)/28 and we choose C1 = (1− 2/e)−1/2 · 24, then from
the above we obtain

Pπ,π(τI ≤ t) ≤
1

2

and this proves the claim that tI &
√
Q. It remains to show that tI .

√
Q. It suffices to

show that there are positive constants c1 and c2 such that for all x, y we have

Px,y

(
τI ≤ c1

√
Q
)
≥ c2. (3.10)

Indeed, by then performing independent experiments, we would get that tI .
√
Q.

From (3.7) we immediately get

Qt ≤
(t+ 1)2

n
+
Q

n
. (3.11)

This together with Proposition 3.6 gives that for all t we have

Pπ,π(τI ≤ t) ≥
1

4
· (t+ 1)2

(t+ 1)2 +Q
. (3.12)

Taking t =
√
Q in (3.12) gives

Pπ,π

(
τI ≤

√
Q
)
≥ 1

8
. (3.13)

From Lemma 3.7 we have tunif ≤ 2
√
Q. Setting s = 2

√
Q we now have for all x, y

Px,y

(
τI ≤ s+

√
Q
)
≥ Px,y

(
X[s, s+

√
Q] ∩ Y [s, s+

√
Q] 6= ∅

)
=
∑
x′,y′

ps(x, x
′)ps(y, y

′)Px′,y′
(
τI ≤

√
Q
)

≥ 9

16
·
∑
x′,y′

π(x′)π(y′)Px′,y′
(
τI ≤

√
Q
)

≥ 9

16
Pπ,π

(
τI ≤

√
Q
)
≥ 9

128
,

where for the last inequality we used (3.13). This proves (3.10). Finally, from (3.8),
(3.11) and since tunif ≤ 2

√
Q by Lemma 3.7 we obtain

Qtunif
=

tunif∑
i,j=0

pi+j(x, x) � Q

n
.

and this concludes the proof of the theorem.

Corollary 3.8. Let X be a transitive, reversible, lazy Markov chain. Then tI &
√
thit.

Proof. From [1, Proposition 3.13] for all reversible chains we have

Eπ[τπ] =

n∑
i=2

1

1− λi
,

where τπ is the first time X hits a state chosen according to the stationary distribution π.
Using that X is transitive we get

Eπ[τπ] ≤ thit ≤ 2Eπ[τπ] ,
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where the second inequality holds since for all states x, y we have Ex[τy] ≤ Ex[τπ]+Eπ[τy].
From Theorem 1.5 the intersection time is given by

t2I �
n∑
i=2

1

(1− λi)2
≥

n∑
i=2

1

1− λi

and this concludes the proof.

Remark 3.9. To see that the inequality of Corollary 3.8 does not hold for all regular
graphs start with a 3-regular expander with k4 vertices, remove 2 edges, say e1 and
e2 and replace them by a ladder of length k as in Figure 1. In this graph tI � k2 and
thit � k5.

3-regular expander on

k4 vertices

Figure 1: 3-regular expander on k4 vertices and ladder on k vertices

Remark 3.10. For transitive, reversible, lazy chains we know

tI �

√√√√ n∑
i=2

1

(1− λi)2
.

In what generality does this equivalence hold?

4 Intersection time for regular graphs

In this section we prove Proposition 1.8 which gives a bound on the intersection time
for random walks on regular graphs. In this section all random walks are assumed to be
simple and lazy. We start by stating some standard results about return probabilities for
random walks on regular graphs.

Lemma 4.1. Let G be a regular graph on n vertices and t ≤ n2. Then for all vertices x
the return probability to x satisfies

pt(x, x) .
1√
t
.

The proof of the above lemma follows for instance from [1, Proposition 6.16, Chap-
ter 6].
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Lemma 4.2. Let G be a regular graph on n vertices and λ2 the second eigenvalue of the
lazy simple random walk on G. Then for all vertices x and all t the return probability in t
steps satisfies

pt(x, x) .
1

n
+ λt2.

The statement of Lemma 4.2 follows from [14, inequality 12.11]. Using [14, inequal-
ity (19.8)] gives the following claim.

Claim 4.3. For all t ≥ 2tmix we have

pt(x, y) ≥ π(y)

4
.

Recall the definition of t∗ = min{trel(log trel + 1), tunif}.
Claim 4.4. For a lazy random walk on a regular graphs with n vertices we have tmix .√
n(t∗)

3/4.

Proof. Since for all regular graphs tunif . n2 we get

tmix ≤ tunif .
√
n(tunif)

3/4.

To prove that tmix .
√
n(trel(log trel + 1))3/4 we will consider cases depending on whether

trel ≥ n or trel < n. If trel ≥ n, then using that tmix . trel log n (cf. [14, Theorem 12.3]) we
get

√
n(trel log trel)

3/4 & (tmix)1/4(trel log n)3/4 & tmix.

If trel < n, then using again tmix . trel log n, it suffices to prove

(trel)
1/4 .

√
n

log n
(log trel + 1)3/4.

But this clearly holds by the assumption that trel < n.

Recall Definition 3.2 of Qt(x) and Qt from Section 3. The following lemma gives an
upper bound on Qt for all regular graphs.

Lemma 4.5. For all regular graphs on n vertices, for all times t we have

Qt . (t∗)
3/2 +

t2

n
.

Proof. For any x we have

Qt(x) =
∑
z

g2
t (x, z) =

t∑
i,j=0

∑
z

pi(x, z)pj(x, z) =

t∑
i,j=0

∑
z

pi(x, z)pj(z, x) =

t∑
i,j=0

pi+j(x, x),

where the third equality follows from the fact that G is regular. We thus obtain that

Qt(x) .
2t∑
k=0

kpk(x, x).

We now divide time into four intervals, A1 = [0, n2], A2 = (n2, t∗], A3 = (t∗, tunif ] and
A4 = (tunif , t]. Note that A2, A3 and A4 could also be empty. For k ∈ A1 we use Lemma 4.1
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and for k ∈ A3 we use Lemma 4.2. Since t∗ . n2 and pt(x, x) is decreasing as a function
of t, for k ∈ A2 we use that pk(x, x) . 1/n. We thus get

Qt(x) . (t∗)
3/2 +

tunif∑
k=t∗

kλk2 +
t2

n
, (4.1)

where we used that for k ≥ tunif the return probability to x satisfies pk(x, x) . 1/n. In
the case when t∗ = trel(log trel + 1), we get

tunif∑
k=t∗

kλk2 . t2rel(log trel)λ
t∗
2 ≤ t2rel(log trel) exp

(
− 1

trel
· trel(log trel)

)
. trel(log trel) ≤ t∗.

For the case t∗ = tunif , the second-term in the right-hand side of (4.1) is zero since A3 is
empty. Therefore, we deduce

Qt(x) . (t∗)
3/2 +

t2

n
.

Since this holds for all x the statement of the lemma follows.

Proof of Proposition 1.8. Let X and Y be two independent lazy simple random walks
on G. Recall It stands for the number of intersections up to time t. We define I ′t to be
the number of intersections between 2tmix and 2tmix + t, i.e.

I ′t =

2tmix+t∑
i,j=2tmix

1(Xi = Yj).

Using Claim 4.3 we obtain that

Ex,y[I ′t] ≥
1

16
Eπ,π[It] =

(t+ 1)2

16n
.

From Claim 4.3 again we get that the second moment of I ′t satisfies

Ex,y
[
(I ′t)

2
]
� Eπ,π

[
I2
t

]
. Q2

t ,

where the last inequality follows from Lemma 3.4.
Therefore, we obtain

Px,y(I ′t > 0) ≥ (Ex,y[I ′t])
2

Ex,y[(I ′t)
2]

&

(
t2

n

)2

Q2
t

.

Choosing t such that t2/n = (t∗)
3/2 or equivalently t =

√
n(t∗)

3/4 gives us Qt . t2/n

by Lemma 4.5, and hence the ratio above becomes of order 1. Since this bound holds
uniformly for all x and y we can perform independent experiments to finally conclude
that for regular graphs tI .

√
n(t∗)

3/4 + tmix. This together with Claim 4.4 concludes the
proof.

In the case when G is a regular expander graph, trel = O(1), and hence tI �
√
n,

using Remark 1.9 for the lower bound.
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