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ONLINE CONTAINERS FOR HYPERGRAPHS, WITH

APPLICATIONS TO LINEAR EQUATIONS

DAVID SAXTON AND ANDREW THOMASON

Abstract. A set of containers for a hypergraph G is a collection C of vertex
subsets, such that for every independent (or, indeed, merely sparse) set I of G
there is some C ∈ C with I ⊂ C, no member of C is large, and the collection
C is relatively small. Containers with useful properties have been exhibited
by Balogh, Morris and Samotij [6] and by the authors [39, 40, 41], along with
several applications.

Our purpose here is to give a simpler algorithm than the one used in [40],
which nevertheless yields containers with all the properties needed for the
main container theorem of [40] and its consequences. Moreover this algorithm
produces containers having the so-called online property, allowing the colouring
results of [40] to be extended to all, not just simple, hypergraphs. Most of the
proof of the container theorem remains the same if this new algorithm is used,
and we do not repeat all the details here, but describe only the changes that
need to be made. However, for illustrative purposes, we do include a complete
proof of a slightly weaker but simpler version of the theorem, which for many
(perhaps most) applications is plenty.

We also present applications to the number of solution-free sets of linear
equations, including the number of Sidon sets, that were announced in [40].

1. Introduction

Let G be an r-uniform hypergraph with vertex set V (G) and edge set E(G). Very
often we shall assume that V (G) is the set [n] = {1, . . . , n}. A subset I ⊂ V (G)
is independent if it contains no edge. A set of containers for G is a collection C
of subsets of V (G), such that, for every independent set I, there is a container
C ∈ C with I ⊂ C. To be useful, each container should be not much bigger than an
independent set can be, but the number of containers should be much smaller than
the number of independent sets. A collection C can sometimes serve as a substitute
for the collection of independent sets in simple expectation arguments, the small
size of |C| rendering the argument effective where an expectation instead over all
independent sets would yield nothing worthwhile.

Saphozhenko [34, 35] seems to have been the first to explicitly consider contain-
ers for ordinary graphs, in his studies of the number of independent sets in regular
graphs, and he coined the phrase “container method” (see [37]). The usefulness of
containers for a particular 3-uniform hypergraph was highlighted by Green [17] in
his solution to the Cameron-Erdős problem: see §1.3 for more on this. Containers
for simple regular hypergraphs were introduced in [39] (extended to non-regular
in [41]). More recently, however, the containers constructed by Balogh, Morris and
Samotij in [6] (inspired originally by the graph methods of Kleitman and Win-
ston [22]) and by the authors in [40] have been especially effective in addressing
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certain questions of extremal combinatorics, due to the small size (essentially opti-
mal) of the collection C. In consequence, the method has been adopted more widely,
as in for example [7, 11, 27, 30].

The purpose of the present paper is to describe an algorithm for container con-
struction that is similar to, but different from, the algorithm in [40]. The algorithm
here is more straightforward (it passes through the vertex set only once instead
of multiple times), and so it is more transparent and comprehensible. It has the
further advantage that it has the so-called online property; the algorithm in [40]
had this property only when applied to simple hypergraphs. The online property is
needed for applications where the number of vertices |C| of a container C is impor-
tant (many applications care instead about the number of edges inside C). This is
described a little more in §1.1, and an application to list colourings is given in §1.2.

The paper [40] has a fair amount of discussion of the container method and of
the motivation behind that algorithm. Essentially all of what is written there is
relevant here too, so rather than reproduce it we refer the reader to [40] for fuller
information. The statement of the main container results here, Theorem 1.1 and
its corollaries, stated in §1.1, are the same as in [40] (apart from the replacement
of tuples (Tr−1, . . . , T0) by single sets T — see Remark 2.2). Indeed, the proofs
from [40] carry over word for word, once some straightforward degree calculations
have been carried out verifying that the present algorithm performs as least as well
as the old one. For this reason we do not give the full proofs, but restrict ourselves
just to carrying out these degree calculations and explaining why the rest of the
proof is identical apart from purely cosmetic differences. This approach means the
present paper is not completely self-contained, but it avoids excessive duplication.

Having said that, much of the complexity of the proofs in [40] arose from an
effort to establish a good bound on the measure µ(C) of each container (stated in
Theorem 1.1 (d)). For most applications, it is enough that µ(C) is bounded merely
by some constant less than one. It is much easier to prove such a weaker result,
and so, for illustrative purposes, we include a full proof of a slightly weaker version
of the main container theorem; this is Theorem 1.2.

During its operation, the algorithm used here monitors certain quantities (subset
degrees), and takes certain actions when these quantities reach a certain thresh-
old. These thresholds are specified by threshold functions θs, discussed in §2.3. The
threshold functions are evaluated before the algorithm starts (this is a crucial differ-
ence between the present algorithm and that in [40]). The values of these functions
determine how small the containers are and, more importantly, what conditions on
the hypergraph are needed in order to build the containers. To obtain Theorem 1.1
we need to choose θs quite carefully, so that the action of this algorithm emulates
the one in [40]. But, if a weaker result is acceptable, then such delicacy is not nec-
essary, and a more straightforward choice is enough to give the (still very effective)
Theorem 1.2. More explanation can be found in §2.3 and §3.

At the same time as giving the new algorithm, we take the opportunity to de-
scribe some applications concerning solution-free sets for linear equations: see §1.3.
These were announced in [40] but no proofs were given.

1.1. Containers. The main container theorem is Theorem 1.1 below. We define
here the terms needed, but for more discussion of them we refer the reader to [40].

The fundamental point of the construction is that there is a function C : P [n] →
P [n], defined by means of an algorithm, which, given any small set T as input,
produces some larger set C(T ). The algorithm also ensures that, for every inde-
pendent set I, there is some small T ⊂ I with I ⊂ C(T ). This gives a collection of
containers C = {C(T ) : T is small}, where C is relatively small because there are
few small sets T .
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Of course, the terms all need to be quantified. We measure set sizes using degree
measure, the measure of S ⊂ [n] being µ(S) = (1/nd)

∑

u∈U d(u). Here d(u) is the
degree of the vertex u in G and d is the average degree. When the graph is regular
then degree measure agrees with the uniform measure |S|/n, but for non-regular
graphs degree measure is more useful.

The reason for using degree measure is that, in a general r-uniform hypergraph
of average degree d, the size of an independent set can be arbitrarily close to 1 in
uniform measure, and so uniform measure will give no useful bound on container
sizes. However (as is easily shown) the degree measure of an independent set is at
most 1−1/r, and so there is hope of bounding the degree measure of the containers
away from 1. This is the import of Theorem 1.1 (d). The algorithm is thus designed
with degree measure in mind. Consequently the sets T it produces have µ(T ) small
(Theorem 1.1 (b)). But for |C| to be relatively small we need to ensure |T | is
small for these sets T . The algorithm achieves this by the simple expedient of not
placing vertices of very small degree into T : thus µ(T ) small implies |T | is small
(Theorem 1.1 (c)).

As usual we define [n](s) = {σ ⊂ [n] : |σ| = s} and [n](≤s) =
⋃

t≤s[n](t). The

degree d(σ) of a subset σ, where |σ| ≤ r, is the number of edges of G that contain σ.
We make frequent use of the definition d(j)(σ) = max{d(σ′) : σ ⊂ σ′ ∈ [n](j)},
though usually we write d(j)(v) instead of d(j)({v}).

A parameter τ appears in all the theorems and in the algorithm. Roughly speak-
ing, τ is the measure of the sets T , and the smaller τ is, the smaller is C. In
Theorem 1.1, how small τ can be is determined by the co-degree function δ(G, τ),
defined by

δ(G, τ) = 2(r

2)−1
r
∑

j=2

2−(j−1

2 )δj where δj τ
j−1nd =

∑

v

d(j)(v) , 2 ≤ j ≤ r .

This function is identical to the one in [40]. Note that δ(G, τ) is decreasing in τ ,
and hence the condition δ(G, τ) ≤ ζ, which appears in Theorem 1.1, is really a
lower bound on τ . The parameter ζ can be chosen to suit, a typical value being
ζ = 1/12r!. The function δ(G, τ) depends on the quantities d(j)(v); the larger the
subset degrees are in G then the larger d(j)(v) is likely to be, and hence τ must
be larger to achieve the bound δ(G, τ) ≤ ζ. The relationship between the subset
degrees and τ is thus implicit in the function δ(G, τ).

We now state the main theorem.

Theorem 1.1. Let G be an r-graph with vertex set [n]. Let τ, ζ > 0 satisfy
δ(G, τ) ≤ ζ. Then there is a function C : P [n] → P [n], such that, for every
independent set I ⊂ [n] there exists T ⊂ I with

(a) I ⊂ C(T ),
(b) µ(T ) ≤ 2rτ/ζ,
(c) |T | ≤ 2rτn/ζ2, and
(d) µ(C(T )) ≤ 1 − 1/r! + 4ζ + 2rτ/ζ.

Moreover C(T ) ∩ [w] = C(T ∩ [w]) ∩ [w] for all T ∈ P [n] and w ∈ [n].
Indeed, the above holds for all sets I ⊂ [n] such that either G[I] is ⌊τr−1ζe(G)/n⌋-

degenerate or e(G[I]) ≤ 2rτre(G)/ζ.

As stated previously, this theorem is nearly the same as [40, Theorem 3.4]. The
numerical expressions that appear are exactly the same. The two differences are
that a tuple (Tr−1, . . . , T0) has been replaced by a single set T (which, though not
a strengthening, does make the theorem easier on the eye; see Remark 2.2), and
that the online property now holds for all r-graphs rather than just for simple ones.
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The online property is the statement that C(T ) ∩ [w] = C(T ∩ [w]) ∩ [w] for all
w ∈ [n]. One way to think of it is like this. Suppose the labelling of the vertices
was hidden initially, but was then revealed one vertex at a time. If the algorithm
which has to build a container C(T ) from T has the online property, then it will
decide which members of [w] will lie in C(T ) just from knowing the set T ∩ [w]. To
this extent the algorithm is behaving like an online algorithm, though it needs to be
remembered that the whole graph is known before the vertex labelling is revealed.

The online property is needed when the number of vertices |C| in a container is
what matters. The main theorem gives a bound on µ(C), and this readily supplies
a bound on the number of edges e(G[C]) in the container. If G is regular, then this
in turn leads to a bound on |C|, but there is no useful bound of this kind in general.
What can be inferred, however, is that each container C can name some v ∈ [n] for
which |C∩[v]| is bounded, and the number of containers naming any given v is small
relative to v. This arcane statement is expressed precisely in [40, Theorem 3.7];
we don’t restate the theorem here but point out only that, as a consequence of the
algorithm here, the theorem holds for all, not just simple, graphs (and with the
tuple replaced by a single set).

We now state a somewhat weaker theorem than Theorem 1.1, but one which
is just as good if the exact dependence of constants on the parameter r is not an
issue. The theorem has the twin advantages of being easier to comprehend and
being easier to prove.

As mentioned before, the algorithm makes use of threshold functions θs. The
form of θs used to prove Theorem 1.1 (given by Definition 2.4) is carefully tuned
to yield Theorem 1.1 (d); this form of θs in turn leads to the constraint δ(G, τ) ≤ ζ
needed to make the theorem hold. For the weaker theorem we use more straight-
forward functions θs (given by Definition 2.5). Likewise we need not be so careful
about the constraints on G, resulting in a more transparent necessary condition.
Here is the weaker theorem.

Theorem 1.2. Let r ∈ N. Then there is a constant c = c(r) > 0 such that the
following holds. Let G be an r-graph with average degree d and vertex set [n]. Let
0 < τ ≤ 1 be chosen so that

d(σ) ≤ cdτ |σ|−1 holds for all σ, |σ| ≥ 2 . (†)
Then there is a function C : P [n] → P [n], such that, for every independent set
I ⊂ [n] there exists T ⊂ I with

(a) I ⊂ C(T ),
(b) µ(T ) ≤ τ ,
(c) |T | ≤ τn, and
(d) µ(C(T )) ≤ 1 − c.

Moreover C(T ) ∩ [w] = C(T ∩ [w]) ∩ [w] for all T ∈ P [n] and w ∈ [n].
Indeed, the above holds for all sets I ⊂ [n] such that either G[I] is ⌊cτr−1d⌋-

degenerate or e(G[I]) ≤ cτre(G).

The necessary condition in Theorem 1.2 is stronger than that in Theorem 1.1,
because it involves a bound on every d(σ), whereas the bound implicit in the func-
tion δ(G, τ) involves some kind of averaging. This makes no difference, though, for
the applications presented here.

Most applications do not use the main theorem directly, but an iterated form
of it, resulting in much smaller containers. Given an independent set I, the main
theorem applied to G supplies an initial container C1 for I. A further application
to G[C1] supplies a smaller container C2 ⊂ C1, yet another application to G[C2]
supplies C3 ⊂ C2, and so on, successive applications resulting in a container C that
is very sparse. This is how [40, Corollary 3.6] was obtained, and we can derive the
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same corollary from Theorem 1.1, but with tuples replaced by single sets. If the
precise dependence of the constants on r is not important, though, Theorem 1.2
can be used multiple times instead, which produces the following corollary.

Corollary 1.3. Let r ∈ N and let ǫ > 0. Then there is a constant c = c(r, ǫ) for
which the following holds. Let G be an r-graph of average degree d on vertex set [n].
Let 0 < τ ≤ 1 be chosen so that

d(σ) ≤ cdτ |σ|−1 holds for all σ, |σ| ≥ 2 .

Then there is a function C : P [n] → P [n], such that, for every independent set
I ⊂ [n] there exists T ⊂ I with

(a) I ⊂ C(T ),
(b) |T | ≤ τn, and
(c) e(G[C]) ≤ ǫe(G).

Indeed, the above holds for all sets I ⊂ [n] such that either G[I] is ⌊cτr−1d⌋-
degenerate or e(G[I]) ≤ cτre(G).

We include a full proof of this corollary. It will be applied later to prove Theo-
rem 4.2, from which nearly all our results on linear equations will be derived. The
only exception to this is a theorem about the number of Sidon sets, for which we
need a more technical version of the corollary, Theorem 5.1. This version is very
close to [40, Theorem 6.3] and so we shall not prove it.

1.2. List colouring. Given an assignment L : V (G) → P(N) of a list L(v) of
colours to each vertex v, we say G is L-chooseable if each vertex v can choose a
colour f(v) ∈ L(v), such that there is no edge in which all the vertices choose
the same colour. The minimum number k such that G is L-choosable whenever
|L(v)| ≥ k for every v is called the list-chromatic number of G, denoted by χl(G).
This notion was introduced for graphs by Vizing [48] and by Erdős, Rubin and
Taylor [13]. It was studied for Steiner systems by Haxell and Pei [20], for simple
regular 3-graphs by Haxell and Verstraëte [21] and for certain r-graphs by Alon
and Kostochka [3, 4]. The case of the next theorem for simple graphs was stated
as [40, Theorem 2.1]; it strengthens and extends a theorem of Alon [2] for 2-graphs.
It is possible to obtain a lower bound on χl(G) for a non-simple hypergraph by
applying [40, Theorem 2.1] to a randomly chosen simple subgraph, but the theorem
here gives a better bound.

Theorem 1.4. Let r ∈ N be fixed. Let G be an r-graph with average degree d.
Suppose that d(j)(v) ≤ d(r−j)/(r−1)+o(1) for every v ∈ V (G) and for 2 ≤ j ≤ r,
where o(1) → 0 as d → ∞. Then

χl(G) ≥ (1 + o(1))
1

(r − 1)2
logr d .

Moreover, if G is regular then

χl(G) ≥ (1 + o(1))
1

r − 1
logr d .

The proof of [40, Theorem 2.1] illustrates how to prove theorems of this kind
and so we do not prove Theorem 1.4 here. We remark only that it uses [40, The-
orem 3.7], which can now be applied to all r-graphs and not just simple ones,
due to the online property mentioned above in §1.1. For readers keen to check
the details, we note that, given the choice of ζ, τ and k in the proof, the con-
dition d(j)(v) ≤ d(r−j)/(r−1)ζ−1 implies that δ(G, τ) ≤ ζ as needed, and that
d(2)(v) ≤ d(r−2)/(r−1)ζ−1 implies d(v) ≤ nd(r−2)/(r−1)ζ−1 from which µ([k]) ≤
(1/nd)knd(r−2)/(r−1)ζ−1 ≤ ζ5 ≤ ζ/2r! follows. The rest of the proof is identical.
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1.3. Linear equations. A subset S ⊂ [n] is said to be sum-free if there is no
solution to x + y = z with x, y, z ∈ [n]. Cameron and Erdős conjectured that
the number of sum-free sets is O(2n/2), and this conjecture is prominent in the
history of the container method. Alon [1], Calkin [9], and Erdős and Granville
(unpublished) each proved there are at most 2n/2+o(n) sum-free sets. Green [17] and
Sapozhenko [38] proved the conjecture. Sapozhenko’s proof makes use of containers
for 2-graphs. Green’s argument is of interest here because he highlighted what was,
in effect, the usefulness of containers for 3-uniform hypergraphs. The argument
in [17] is explicitly split into two parts. In the first part, a collection C of sets
is found such that each sum-free set is a subset of a member of C, each C ∈ C
has very few solutions x + y = z with x, y, z ∈ C, and C is small, specifically,
|C| = 2o(n). In the present terminology C is simply a set of containers for the 3-
uniform hypergraph whose edges are the triples {x, y, z} with x + y = z. (Indeed
we have changed Green’s notation F to our C for consistency.) In the second part
of the argument, a detailed inspection of the containers leads to a proof of the
conjecture.

Green produced his containers by the granularization technique developed by
Green and Ruzsa [19]. The containers are small perturbations of unions of arith-
metic progressions, and a container is found for each sum-free set by means of
Fourier techniques. The method perhaps gives more containers than what is given
by the method of [41] or the present method, but that is irrelevant in the context.

Here we are interested in more general systems of linear equations, of the form
Ax = b, where A is a k × r matrix with entries in F , x ∈ F r and b ∈ F k; F
itself might be either a finite field or the set of integers [N ]. We include also the
possibility that F is an abelian group: in this case, A should have integer entries,
where integer-group multiplication ax, a ∈ Z, x ∈ F , is a copies of x, x + · · · + x;
or −a copies of −x if a is negative. We call a triple (F,A, b) of this kind a k × r
linear system.

Definition 1.5. For a k× r linear system (F,A, b), a subset I ⊂ F is solution-free
if there is no x ∈ Ir with Ax = b.

It takes little imagination to think that a container theorem for solution-free
sets might come in handy. Such a theorem can be obtained if we write down some
r-graph G whose edges represent solutions and whose independent sets represent
sum-free sets. Then Corollary 1.3 will supply containers; all we need do is to com-
pute the subset degrees d(σ). These degrees, and hence the number of containers,
depend on a parameter mF (A) discussed by Rödl and Ruciński [31]; we defer the
details (Definition 4.1). The definition requires A to satisfy a mild condition, but
a necessary one (see §4).

Definition 1.6. We say that A has full rank if given any b ∈ F k there exists
x ∈ F r with Ax = b. We then say that A is abundant if it has full rank and every
k × (r − 2) submatrix obtained by removing a pair of columns from A still has full
rank.

(This definition of full rank might be non-standard.) The resultant container
theorem, for systems with abundant matrices, is Theorem 4.2. We illustrate it
with two applications, one to the number of solution-free subsets and the other to
the size of solution-free subsets in sparse randomly chosen sets. The first requires
only that the number of containers be 2o(n), but the second needs a much smaller
collection.

The containers produced by Theorem 4.2 are not solution-free but are nearly
so. For the applications, it is necessary that this property implies the containers
C are not much larger than maximum solution free sets. Roughly speaking, we
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would like to say if Cr contains o(|F |r−k) solutions to the system (F,A, b) then
|C| ≤ ex(F,A, b) + o(|F |), where ex(F,A, b) is the maximum size of a solution-free
subset for the linear system (F,A, b). To make this precise we use the following
definition. A null function f : R+ → R

+ is one such that f(x) → 0 as x → 0.

Definition 1.7. Let f : R+ → R
+ be null. The k× r linear system (F,A, b) is said

to be f -supersaturated if, whenever X ⊂ F contains at most η|F |r−k solutions to
Ax = b, then |X | ≤ ex(F,A, b) + f(η)|F |, where ex(F,A, b) is the maximum size of
a solution-free subset for (F,A, b).

Obviously every system, being finite, is f -supersaturated for some null f , so the
definition has content only when f does not depend on (F,A, b) directly. Systems
of interest are often supersaturated but the verification generally requires a removal
lemma. More is said about this in §4.1. Our first application of containers to linear
systems is to estimate the number of solution-free sets, in a similar way to the weak
versions of the Cameron-Erdős conjecture; if (F,A, b) is supersaturated and A is
abundant, then there are 2ex(F,A,b)+o(|F |) solution-free sets. There are several results
of this nature in the literature: we mention only that Sapozhenko [36] obtained one
by a container argument applied with a theorem of Lev,  Luczak and Schoen [28]
(see [37]).

Theorem 1.8. Let k, r ∈ N, let f : R+ → R
+ be null and let ǫ > 0. Then there

exists c = c(k, r, f, ǫ) (or c = c(A, f, ǫ) in the case F = [N ]) such that, if (F,A, b)
is a k× r f -supersaturated linear system with |F | > c, and A is abundant, then the
number of solution-free subsets of F is 2ex(F,A,b)+λ|F |, where 0 ≤ λ < ǫ.

Our second application is to the size of solution-free subsets within randomly
chosen subsets X ⊂ F . Let the elements of X be chosen independently at random
with probability p. Clearly one might expect to find a solution-free subset of size at
least p ex(F,A, b) within X , and it turns out that if p is not too small then this is the
largest that a solution-free subset of X can be. In a proof of this by the container
method, the size of C is the factor that determines how small a p the proof holds
for. The full statement appears in Theorem 4.8, and it requires that (F,A, b) has
the supersaturation property. Nevertheless we state a special case here, because in
this case supersaturation is easily verified by a simple density argument (no removal
lemma is needed). For ℓ = 3 the theorem was proved by Kohayakawa,  Luczak and
Rödl [24].

Theorem 1.9 (Conlon and Gowers [12], Schacht [42]). Let ℓ ≥ 3 and ǫ > 0. There
exists a constant c > 0 such that for p ≥ cN−1/(ℓ−1), if X ⊂ [N ] is a random subset
chosen with probability p, then with probability tending to 1 as N → ∞, any subset
of X of size ǫ|X | contains an arithmetic progression of length ℓ.

Note that the bound on p here is best possible (up to the value of c), as indicated
by the fact that if p = o(N−1/(ℓ−1)) then X contains (in expectation) many fewer
than |X | arithmetic progressions and hence contains a large subset free of them.

As well as these two applications of Theorem 4.2, we prove a bound on the
number of Sidon sets, which are sets S ⊂ [n] for which every sum of two elements
is distinct, i.e., there are no solutions to w + x = y + z with {w, x} 6= {y, z}. Erdős
and Turán [15] proved that |S| ≤ (1 + o(1))

√
n, and Cameron and Erdős [10] raised

the question of how many Sidon sets there are.

Theorem 1.10. There are between 2(1.16+o(1))
√
n and 2(55+o(1))

√
n Sidon subsets

of [n].

In particular there are more than 2(1+o(1))
√
n Sidon sets. The upper bound comes

from a direct application of a standard container argument: Kohayakawa, Lee, Rödl
and Samotij [23] have a finer argument (with a better constant).
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2. The algorithm

We remark at the outset that the construction nowhere makes use of the fact that
I is independent. Indeed we shall take advantage of this fact to build containers
for sparse sets. The independence, or sparsity, comes into play only later, in the
calculation of the number of containers required and of their sizes.

As in [40, Section 4], the process for constructing containers can be described in
terms of an algorithm with two slightly different modes, “prune” mode and “build”
mode. In prune mode, the algorithm takes as input a set I and outputs a subset
T ⊂ I. In build mode, the algorithm takes as input some set T and outputs a set C.
The set C is thus a function of T and we can emphasise this by writing C = C(T ).
The two modes of the algorithm should co-operate in the following sense, that if
the set T input to build mode is the one output by prune mode with input I, then
I ⊂ C(T ) must hold.

Both modes of the algorithm have available the hypergraph G together with an
enumeration, or labelling, of the vertex set, which we take to be [n]. As far as
the algorithm is concerned, there is nothing special about the enumeration; chang-
ing the enumeration might change which sets actually become containers, but the
properties of them, as described in Theorem 1.1, remain the same. This comment
covers the online property also. (Note, however, that the only application to date
of the online property is [40, Theorem 3.7], described in §1.1; this application uses
the containers produced when the enumeration is by order of decreasing degree.)

2.1. General properties of the algorithm. Prune mode initialises T = ∅ and
build mode initialises C = [n]. Both modes of the algorithm then run through the
vertices one by one in order, and check, for each vertex v, whether v satisfies a
membership rule; the same rule must be used in each mode of the algorithm. If the
rule is not satisfied, neither mode takes any action and the algorithm moves on to
the next vertex. If, however, the rule is satisfied then prune mode adds v to T if
v ∈ I, whereas build mode removes v from C if v /∈ T .

It can be seen that, whatever rule is used, prune mode outputs the set T of
members of I that satisfy the rule, and build mode outputs the set C comprising T
together with all vertices not satisfying the rule. So plainly, if T is the set output
by prune mode with input I, then I ⊂ C(T ), as required.

Notice that, at the point when the vertex v is inspected, both modes of the
algorithm know the set T ∩ [v − 1], this being the members of T that lie in the
range 1, . . . , v − 1 of vertices that have been examined so far. It is permissible,
therefore, for the membership rule to depend on this set, because both modes of
the algorithm will be able to evaluate the rule in the same way. We shall express
this dependence as follows. There will be some data structure D (say, a collection
of sets or hypergraphs), that is initialised at the start of the algorithm and which
is updated whenever a vertex v is added to T . The rule can then depend on D.
To be more precise, when v is inspected, D is a function of T ∩ [v − 1], and the
membership rule is a function of D and of v. We remind the reader here that
complete knowledge of the hypergraph G is available throughout the procedure.

The general form of such an algorithm is set out in Table 1. Note that D is
updated with v only if the rule is passed and v ∈ T ; in the case of prune mode, this
is after v has been added to T .

2.2. Comments on the general form. Before describing the particular mem-
bership rule which will be used in the actual container algorithm, we make one or
two observations that apply generally.

Remark 2.1. The online property. It is immediate that an algorithm of the kind
described will produce containers with the online property: that is, given any initial
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Input

r-graph G on vertex set [n]
in prune mode a subset I ⊂ [n]
in build mode a subset T ⊂ [n]

Output

in prune mode a subset T ⊂ [n]
in build mode a subset C ⊂ [n]

Initialisation

initialise data structure D
in prune mode put T = ∅
in build mode put C = [n]

for v = 1, 2, . . . , n do:
let Rule(v) be some condition on v depending on D
if Rule(v) is satisfied
in prune mode if v ∈ I, add v to T
in build mode if v /∈ T , remove v from C
if v ∈ T

update D using v

Table 1. The general form of the online algorithm

ordering of the vertices, then for all w ∈ [n], C(T ) ∩ [w] = C(T ∩ [w]) ∩ [w] holds.
This is simply because the algorithm has already determined C(T )∩[w] by the time
it has inspected v = 1, 2, . . . , w, and for this range of v the decisions made depend
only on which elements of [w] are contained in the input, that is, on T ∩ [w].

Remark 2.2. Over-specifying the input to build mode. It will be helpful, in order
to make the presentation cleaner, to observe that if I is a set for which prune mode
outputs T , then C(S) = C(T ) for any set S such that T ⊂ S ⊂ I. This is because
T is the subset of I for which the rule is satisfied: hence for any v ∈ S \ T the rule
is not satisfied, and both forms of the algorithm pass over v without further action.
(In particular, D is not updated when v ∈ S \ T .) This observation was made by
Balogh, Morris and Samotij [6] in their algorithm.

The advantage of over-specifying comes when the container theorem is iter-
ated, as mentioned regarding the proof of Corollary 1.3. Each of the containers
C1, C2, C3, . . . is determined by some subset T1, T2, T3, . . . of I. We could instead
give as input to build mode the set T = T1 ∪ T2 ∪ T3 ∪ · · · at every iteration of the
algorithm, and the sets C1, C2, C3, . . . would be output correctly. Hence the final
container C is determined by T .

Remark 2.3. Changing the vertex order. Rather than process the vertices one
by one in the order supplied, that is, rather than test the rule in the order v =
1, 2, . . . , n, the algorithm could be changed so that it decides for itself in which order
to process the vertices. For example, having processed vertices v = v1, v2, . . . , vk−1,
it could inspect each of the remaining vertices and choose as vk the one which
maximises some potential function that depends on D. A feature like this is used
in [6]. Note that the algorithm here will still work under this dynamic re-ordering,
which is to say the fact that I ⊂ C(T ) is preserved. However it will break the
online property, because C ∩ [w] no longer depends just on T ∩ [w]. For this reason,



10 DAVID SAXTON AND ANDREW THOMASON

and because the rest of our analysis appears to gain no advantage from it, we do
not use this feature.

2.3. The actual container algorithm. The main features of the algorithm are
described in [40, Section 4], so we do not dwell on them here. We make use of
auxiliary multisets of edges Pr, Pr−1, . . . , P1. Here Ps is a multiset of s-sets in [n];
in [40] Ps was an s-uniform multi-hypergraph but here it is more convenient to
use the same symbol for the edge set of such a hypergraph, the difference being
purely one of notation. We take Pr = E(G), but for s < r the multisets Ps will
grow during the course of the algorithm, being initialised to the empty set. Any
set added to Ps comes from a set in Ps+1 after removing its first (in the ordering
of [n]) vertex v; if this happens, it does so when it is v’s turn to be processed by
the algorithm, and then only if v ∈ T . It follows that each set f ∈ Ps comes from
some set t ⊂ T , |t| = r − s, such that t ∪ f ∈ E(G), and f comprises the last s
vertices of the edge t∪f . For each set σ ∈ [n](≤s), we denote by ds(σ) the degree of
σ in Ps, that is, ds(σ) is the number of edges in Ps that contain σ. Thus the value
of ds(σ) is initially zero, and it grows during the run of the algorithm as Ps grows.
Finally, Γs is the set of elements σ ∈ [n](≤s) whose degree ds(σ) has reached some
predetermined threshold. The data structure D, on which the membership rule is
based, comprises Pr, Pr−1, . . . , P1 together with Γr−1,Γr−2, . . . ,Γ1.

The algorithm of [40] involves two parameters, τ and ζ, and these are used here in
the same way; roughly speaking, τ is the measure of T and ζ is a smallish constant.
In particular, if d is the average degree of G then we denote by B the set of vertices
of low degree, that is, B = {v ∈ [n] : d(v) < ζd}.

The final thing needed for the algorithm is the threshold function used to deter-
mine entry into Γs. As has been said before, we make use of two different threshold
functions; we call these a strong function for the proof of Theorem 1.1 and a weak
function for the proof of Theorem 1.2. Both functions depend on the input param-
eter τ and on the graph G itself. But it is important to note that their values can
be computed at the start of the algorithm and they do not change during running.

Definition 2.4. For s = 2, . . . , r and σ ∈ [n](≤s), the strong threshold functions θs
are given as follows.

θs(σ) = τr−sd(v) for σ = {v}, i.e. |σ| = 1

θs(σ) = 2(r
2)τr−s

r−s
∑

ℓ=0

2−(s+ℓ
2 )τ−ℓd(|σ|+ℓ)(σ) for |σ| ≥ 2

The definition of the weak threshold function makes use of a real number δ. This
is not the co-degree function δ(G, τ), which plays no part in Theorem 1.2, but it is
a kind of weak echo of this function, and so we use the same letter.

Definition 2.5. For s = 2, . . . , r and σ ∈ [n](≤s), the weak threshold functions θs
are given as follows, where δ is the minimum real number such that d(σ) ≤ δdτ |σ|−1

holds for all σ, |σ| ≥ 2.

θs(σ) = τr−sd(v) for σ = {v}, i.e. |σ| = 1

θs(σ) = δdτr−s+|σ|−1 for |σ| ≥ 2

The way the threshold functions are used in the algorithm means that the de-
grees ds(v) are bounded, as shown in Lemma 3.3 for the strong functions and
in Lemma 3.5 for the weak versions. These lemmas form the foundation of the
proofs of the container theorems. The strong versions have an extra consequence
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Input

an r-graph G on vertex set [n], with average degree d
parameters τ, ζ > 0
in prune mode a subset I ⊂ [n]
in build mode a subset T ⊂ [n]

Output

in prune mode a subset T ⊂ [n]
in build mode a subset C ⊂ [n]

Initialisation

put B = {v ∈ [n] : d(v) < ζd}
evaluate the thresholds θs(σ), σ ∈ [n](≤s), 1 ≤ i ≤ r
put Pr = E(G), Ps = ∅, Γs = ∅, s = 1, 2, . . . , r − 1
in prune mode put T = ∅
in build mode put C = [n]

for v = 1, 2, . . . , n do:
for s = 1, 2, . . . , r − 1 do:

let Fv,s = {f ∈ [v + 1, n](s) : {v} ∪ f ∈ Ps+1, and 6 ∃σ ∈ Γs , σ ⊂ f }
[here Fv,s is a multiset with multiplicities inherited from Ps+1]

if v /∈ B, and either |Fv,s| ≥ ζτr−s−1d(v) for some s or v ∈ Γ1

in prune mode if v ∈ I, add v to T
in build mode if v /∈ T , remove v from C
if v ∈ T then for s = 1, 2, . . . , r − 1 do:

add Fv,s to Ps

for each σ ∈ [v + 1, n](≤s), if ds(σ) ≥ θs(σ), add σ to Γs

Table 2. The container algorithm

for ds−1(σ), stated in Lemma 3.1, which is needed to establish the bound on µ(C)
in Theorem 1.1 (d).

The container algorithm is set out in Table 2. The membership rule test is the
line that begins “if v /∈ B . . . ”. The two lines before that are merely to define the
multisets Fv,1, . . . , Fv,r−1 that are used in the test.

As in [40], the aim is to build up the multisets Ps as quickly as possible, whilst
keeping the degrees in Ps of each set σ below its target value θs(σ). The set Γs

comprises those σ that have reached their target degree in Ps. Hence the multiset
Fv,s is the potential contribution of v to Ps; it is the edges of Ps+1 that contain v
(with v then removed), but which don’t contain anything from Γs. If Fv,s is large
for some s then v makes a substantial contribution to that Ps, and we place v in T ,
updating all Ps and Γs accordingly.

If every vertex that enters T does so because one of the sets Fv,s is substantial,
then T will be small, because the size of each Ps is bounded (this is why we cap
its degrees) and so it cannot be increased often. Observe, though, that there is
another reason for placing v in T , other than that one of the Fv,s is large, namely,
that v ∈ Γ1. This will never happen if I is an independent set, since it means that
{v} is an edge of P1, which, as mentioned earlier, means t ∪ {v} is an edge of I
for some t ∈ T (r−1) ⊂ I(r−1). If, however, I is not independent then some vertices
might enter T for this reason, but provided I is sparse this will be a rare occurrence
and T will still be small, as required.



12 DAVID SAXTON AND ANDREW THOMASON

2.4. Differences from previous algorithm. The container algorithm used in [40]
was similar to the one here, except that the sets Pr−1, . . . , P1 were built consec-
utively by r − 1 passes of the algorithm, rather than in parallel during one pass
as here. In other words, Ps was constructed after Ps+1 had been fully built. The
construction of Ps produced a set Ts (in prune mode) and so the whole algorithm
produced a tuple (Tr−1, . . . , T1, T0) rather than a single set T . However this is not
the essential difference between the algorithms, since for the reason given in Re-
mark 2.2 the tuple could have been replaced by the set Tr−1 ∪ · · · ∪ T1 ∪ T0. (The
set T0 was defined to be I ∩ Γ1, which is incorporated into the set T in the present
algorithm by means of the membership rule.)

The main difference between this and the previous algorithm is the condition
for entry into Γs. In [40] the condition depended on knowledge of the whole of Ps.
Here, it depends on θs(σ), which is available from the start of the algorithm. It
is this that allows the sets Ps to be computed in parallel. These sets will not be
exactly the same as those in [40] due to the difference in detail, but they will be
similar.

3. Analysis of the algorithm

We now analyse the behaviour of the algorithm when using the strong threshold
functions and when using the weak threshold functions, and so establish the bounds
on µ(T ) and µ(C) claimed in Theorems 1.1 and 1.2. In both cases, we need to obtain
bounds on the degrees ds(u) of vertices. In the case of the strong form, which we
begin with, the bounds obtained are the same as those in [40]. Fortunately this
means we can then make direct use of the arguments used in [40] to bound µ(T )
and µ(C), without repeating the details. In the case of the weak form, we derive
corresponding bounds on the degrees ds(u), and then give proofs of bounds on µ(T )
and µ(C) which follow from these. Note that, in the statements of the lemmas, ds(u)
and ds(σ) refers to the final degrees in Ps, after the algorithm has completed.

The lemmas in this section all make claims about the output of the algorithm,
given certain inputs. It is worth emphasising that the values of τ and ζ that appear
in the lemmas are the values of the parameters which are input to the algorithm.
In particular, we re-iterate the remark made just prior to Definition 2.4, that the
threshold functions are evaluated during the initialisation phase of the algorithm,
and the definitions of these functions is in terms of the parameter τ that is input to
the algorithm. Consequently, the value of δ(G, τ), mentioned in Lemma 3.3 where
the strong threshold functions are being used, and the value of δ, appearing in the
lemmas of §3.2 where the weak threshold functions are in use, are determined by
the value of τ input to the algorithm. (The value of δ(G, τ) is defined prior to
Theorem 1.1, and the value of δ is defined by Definition 2.5.)

3.1. Strong thresholds and the proof of Theorem 1.1. The following funda-
mental lemma gives bounds on subset degrees in Ps.

Lemma 3.1. Let the algorithm be run using the strong threshold functions. Then
for s = 2, . . . , r and 2 ≤ |σ| ≤ s, we have

ds(σ) ≤ 2(r
2)τr−s

r−s
∑

ℓ=0

2−(s+ℓ
2 )+ℓτ−ℓd(|σ|+ℓ)(σ)

and for 2 ≤ |σ| ≤ s− 1 with σ ∈ Γs−1, we have

ds−1(σ) ≥ 2s−1τds(σ) .

Remark 3.2. During the algorithm, σ is placed into Γs as soon as ds(σ) is at least
θs(σ), and the degree will not thereafter increase. The degree can be greater than
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θs(σ) but the first inequality of the lemma shows that the excess over θs(σ) is not
large. The second inequality, on the other hand, is one which was built into the
original algorithm. The lemma shows that the inequality is valid in the present
setup too, enabling us to copy over earlier proofs without change. The definition
of θs(σ) was made with this in mind.

Proof. We prove the first inequality for s = r, r − 1, . . . , 2 in order. For s = r
the inequality asserts that dr(σ) ≤ d(|σ|)(σ), which is true. Suppose then that the
corresponding inequality for ds+1() holds. If σ ∈ Γs then σ entered Γs after some
vertex v was inspected and the set Fv,s was added to Ps. Before this addition,
ds(σ) ≤ θs(σ) was true. The increase in ds(σ) resulting from the addition is the
number of s-sets in Fv,s that contain σ. By definition of Fv,s, these come from edges
of Ps+1 that contain both v and σ; the number of these is at most ds+1({v} ∪ σ).
The value of ds(σ) remains unchanged after the addition, and so at the end we have
ds(σ) ≤ θs(σ)+ds+1({v}∪σ) (for some v depending on σ). This inequality trivially
holds if σ /∈ Γs, and so it holds for all σ ∈ [n](≤s). The induction hypothesis supplies
an upper bound for ds+1(), and so, bearing in mind that d(j)({v}∪σ) ≤ d(j)(σ) for
all j by definition, we obtain

ds(σ) ≤ θs(σ) + ds+1({v} ∪ σ)

≤ θs(σ) + 2(r

2)τr−s−1
r−s−1
∑

ℓ=0

2−(s+1+ℓ

2 )+ℓτ−ℓd(|σ|+1+ℓ)({v} ∪ σ)

≤ θs(σ) + 2(r

2)τr−s−1
r−s−1
∑

ℓ=0

2−(s+1+ℓ

2 )+ℓτ−ℓd(|σ|+1+ℓ)(σ)

= θs(σ) + 2(r
2)τr−s

r−s
∑

ℓ=1

2−(s+ℓ
2 )+ℓ−1τ−ℓd(|σ|+ℓ)(σ)

= 2(r
2)τr−s

(

2−(s
2)d(σ) +

r−s
∑

ℓ=1

2−(s+ℓ
2 ) [1 + 2ℓ−1

]

τ−ℓd(|σ|+ℓ)(σ)

)

≤ 2(r

2)τr−s
r−s
∑

ℓ=0

2−(s+ℓ

2 )+ℓτ−ℓd(|σ|+ℓ)(σ) ,

since 1 + 2ℓ−1 ≤ 2ℓ for ℓ ≥ 1. This finishes the verification of the first inequality of
the lemma.

To prove the second inequality, note that if σ ∈ Γs−1 then ds−1(σ) ≥ θs−1(σ),
and so, using the first inequality, it is enough to show that

θs−1(σ) ≥ 2s−1τ2(r
2)τr−s

r−s
∑

ℓ=0

2−(s+ℓ
2 )+ℓτ−ℓd(|σ|+ℓ)(σ)

holds, i.e., that

r−s+1
∑

ℓ=0

2−(s−1+ℓ
2 )τ−ℓd(|σ|+ℓ)(σ) ≥ 2s−1

r−s
∑

ℓ=0

2−(s+ℓ
2 )+ℓτ−ℓd(|σ|+ℓ)(σ)

holds. For this, it suffices that −
(

s−1+ℓ
2

)

≥ s− 1 −
(

s+ℓ
2

)

+ ℓ for 0 ≤ ℓ ≤ r − s. But
this inequality holds identically, and the proof of the lemma is complete. �

Using Lemma 3.1 we can immediately prove the next lemma, which is identical
to [40, Lemma 5.2] (apart from trivial changes of wording due to the different
algorithm here).
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Lemma 3.3. Let G be an r-graph on vertex set [n] with average degree d. Let
Pr = E(G) and let Pr−1, . . . , P1 be the multisets constructed during the algorithm
using the strong threshold functions, either in build mode or in prune mode. Then

∑

u∈U

ds(u) ≤ (µ(U) + 41−sδ(G, τ)) τr−s nd

holds for all subsets U ⊂ [n] and for 1 ≤ s ≤ r.

Proof. Let u ∈ U . Just as in the proof of Lemma 3.1, we have ds(u) ≤ θs(u) +
ds+1({v, u}) for some v. By the definition of θs(u), and by Lemma 3.1 applied to
σ = {v, u}, we have

ds(u) ≤ τr−sd(u) + 2(r
2)τr−s−1

r−s−1
∑

ℓ=0

2−(s+1+ℓ
2 )+ℓτ−ℓd(2+ℓ)({v, u}) .

By definition we have d(2+ℓ)({v, u}) ≤ d(2+ℓ)(u), and so

∑

u∈U

ds(u) ≤
∑

u∈U

τr−sd(u) + 2(r
2)τr−s−1

r−s−1
∑

ℓ=0

2−(s+1+ℓ
2 )+ℓτ−ℓ

∑

u∈U

d(2+ℓ)(u)

= τr−sµ(U)nd + 2(r
2)−1τr−s

r−s+1
∑

j=2

2−(s+j−2

2 )−s+1τ1−j
∑

u∈U

d(j)(u) .

Now τ1−j
∑

u∈U d(j)(u) ≤ τ1−j
∑

u∈[n] d
(j)(u) = δjnd. Therefore

∑

u∈U

ds(u) ≤ τr−sµ(U)nd + τr−snd 2(r
2)−1

r−s+1
∑

j=2

2−(s+j−2

2 )−s+1δj

= τr−sµ(U)nd + τr−snd 2(r
2)−1

r−s+1
∑

j=2

2−(s−1

2 )−(s−1)j−(j−1

2 )δj

≤ τr−sµ(U)nd + 41−sτr−snd δ(G, τ)

because
(

s−1
2

)

+ (s− 1)j ≥ 2(s− 1), and this establishes the lemma. �

We can now move quickly to complete the proof of Theorem 1.1. Consider a run
of the algorithm in prune mode, for some set I. For 1 ≤ s ≤ r− 1, let Ts be the set
of vertices v ∈ I that satisfy v /∈ B and |Fv,s| ≥ ζτr−s−1d(v), and let T0 comprise
those v ∈ I that satisfy v /∈ B and v ∈ Γ1. Then T = Tr−1 ∪ · · · ∪ T1 ∪ T0. The
sets Tr−1, . . . , T1, T0, which need not be disjoint, are almost identical to the ones so
named in [40]; the properties of them that we need are identical, and they hold for
identical reasons. So [40, Lemma 5.3] shows how the inequality µ(Ts) < 2τ/ζ for
s ≥ 1 is easily obtained; it is because each v ∈ Ts contributes at least ζτr−s−1d(v)
to |Ps|, whereas |Ps| = (1/s)

∑

u∈[n] ds(u), which is bounded by Lemma 3.1. (When

applying the lemma, note that the conditions of Theorem 1.1 imply δ(G, τ) < ζ,
and we may assume that ζ < 1, indeed that ζ < 1/4r!, else the theorem is trivial.)
Almost as direct is [40, Lemma 5.4], which shows µ(T0) < 2τ/ζ under either of
the sparsity constraints on G[I] stated at the end of Theorem 1.1 (recall that if
I is independent then T0 = ∅). The properties used are that if v ∈ T0 then
d1(v) ≥ τr−1d(v), because v ∈ Γ1, and for each {v} ∈ P1 there is some (r − 1)-set
t ⊂ T with t ∪ {v} ∈ E(G[I]). As already noted, the same properties hold here.
Thus we have µ(Ts) ≤ 2τ/ζ for all s, and so µ(T ) < 2rτ/ζ. This in turn implies
|T | < 2rτn/ζ2, because d(v) ≥ ζd for every v ∈ T as v /∈ B. Consequently we
obtain properties (b) and (c) of the theorem.

To obtain property (d), we refer to [40, Lemma 5.5], which bounds the degree
measure of the containers produced by the algorithm there. Exactly the same bound
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holds here, as we now explain. The argument there is a little intricate because of the
desire to obtain a good bound on µ(C), but the whole of it is valid here. We need
only point out some slight differences of notation. The sets Tr−1, . . . , T1, T0 have
already been mentioned. The container built from T , which here we have denoted
C(T ), is there denoted C(G, T, τ, ζ). In [40], the set Cs is defined, for 1 ≤ s ≤ r−1,
to comprise B together with those vertices v /∈ B for which |Fv,s| < ζτr−s−1d(v)
when the algorithm is run in build mode. We can define Cs in the same way here.
Likewise C0 is there defined to be [n]−(Γ1\B), and we do so here. Bearing in mind
that T = Tr−1 ∪ · · · ∪ T1 ∪ T0, we see that the container produced by the present
algorithm is C(T ) = (Cr−1 ∩ · · · ∩ C1 ∩ C0) ∪ Tr−1 ∪ · · · ∪ T1 ∪ T0. The container
C(G, T, τ, ζ) in [40] is defined in precisely this way. The proof of [40, Lemma 5.5],
which gives a bound on µ(C(G, T, τ, ζ)), uses properties of Cr−1, . . . , C1, C0 and
of Γr−1, . . . ,Γ1, together with Lemma 3.3 (it makes no use of Tr−1, . . . , T1, T0).
The properties of Cr−1, . . . , C1, C0 are precisely those just stated, so they hold too
in the present context, as does Lemma 3.3. Finally, regarding Γr−1, . . . ,Γ1, the
properties used are that ds(v) ≥ τr−sd(v) if v ∈ Γs, which holds here by definition
of θs({v}), and that ds−1(σ) ≥ 2s−1τds(σ) if |σ| ≥ 2 and σ ∈ Γs−1, which holds
here by Lemma 3.1. We conclude that the proof of [40, Lemma 5.5] carries over
verbatim to give a bound on µ(C(T )).

The main theorem of [40] is really just a summary of the bounds µ(C(G, T, τ, ζ))
and on µ(Tr−1), . . . , µ(T0), as pointed out at the end of [40, §5], and Theorem 1.1
follows in exactly the same way.

3.2. Weak thresholds and the proof of Theorem 1.2. We begin with ana-
logues of Lemmas 3.1 and 3.3.

Lemma 3.4. Let the algorithm be run using the weak threshold functions. Then,
for 1 ≤ s ≤ r, we have

ds(u) ≤ τr−s(d(u) + rδd) for all u ∈ [n], and

ds(σ) ≤ rδdτr−s+|σ|−1 for all σ ⊂ [n], 2 ≤ |σ| ≤ r.

Proof. We prove the bounds by induction on r − s; in fact we show ds(σ) ≤ (r −
s + 1)δdτr−s+|σ|−1 for |σ| ≥ 2. For s = r the bounds hold by the definition
of δ in Definition 2.5. Exactly as in the proof of Lemma 3.1, we have ds(σ) ≤
θs(σ) + ds+1({v} ∪ σ) for some v /∈ σ. So for |σ| ≥ 2 we have, by applying the
induction hypothesis to {v} ∪ σ,

ds(σ) ≤ δdτr−s+|σ|−1 + (r − s)δdτr−s−1+|σ| = (r − s + 1)δdτr−s+|σ|−1

as claimed. For σ = {u} we apply the induction hypothesis to σ = {v, u} to obtain

ds(u) ≤ τr−sd(u) + (r − s)δdτr−s−1+2−1 ≤ τr−s(d(u) + rδd)

again as claimed. This completes the proof. �

Lemma 3.5. Let G be an r-graph on vertex set [n] with average degree d. Let
Pr = E(G) and let Pr−1, . . . , P1 be the multisets constructed during the algorithm
using the weak threshold functions, either in build mode or in prune mode. Then

∑

u∈U

ds(u) ≤ (µ(U) + rδ) τr−s nd

holds for all subsets U ⊂ [n] and for 1 ≤ s ≤ r.

Proof. The inequalities
∑

u∈U

ds(u) ≤
∑

u∈U

τr−s(d(u) + rδd) ≤ (µ(U) + rδ) τr−snd

follow immediately from Lemma 3.4 and the definition of µ. �
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We now turn to bounds on T . The argument is essentially identical to the one
in §3.1, which in turn is that in [40], but we give details for completeness.

Lemma 3.6. Let T be produced by the algorithm in prune mode, using weak thresh-
old functions. Then µ(T \ Γ1) ≤ (r − 1)(τ/ζ)(1 + rδ).

Proof. For 1 ≤ s ≤ r − 1, let Ts = {v ∈ T : |Fv,s| ≥ ζτr−s−1d(v)}. From the
operation of the algorithm we see that (T \Γ1) ⊂ T1∪· · ·∪Tr−1 (the sets here need
not be disjoint). For each s, the sets Fv,s for v ∈ Ts are added to Ps and, because
Ps is a multiset, we obtain

ζτr−s−1ndµ(Ts) = ζτr−s−1
∑

v∈Ts

d(v) ≤ |Ps| =
1

s

∑

u∈[n]

ds(u) ≤ 1

s
τr−snd(1 + rδ)

by Lemma 3.5 with U = [n]. Thus µ(Ts) ≤ (τ/ζ)(1 + rδ), and µ(T \ Γ1) ≤
µ(T1) + · · · + µ(Tr−1) ≤ (r − 1)(τ/ζ)(1 + rδ). �

Lemma 3.7. Let T be produced by the algorithm in prune mode, with input I and
using weak threshold functions. If G[I] is ⌊(ζ/r)τr−1d⌋-degenerate, or if e(G[I]) ≤
(r/ζ)τre(G), then µ(T ∩ Γ1) ≤ (τ/ζ)(1 + rδ).

Proof. Write T0 = T ∩Γ1. For each v ∈ T0, d1(v) ≥ θ1(v) = τr−1d(v) holds because
v ∈ Γ1. We noted earlier, in §2.3, that each set f ∈ Ps comes from some set t ⊂ T ,
|t| = r − s, such that t ∪ f ∈ E(G), and f comprises the last s vertices of the edge
t ∪ f . In particular, each set {v} in the multiset P1 comes from an edge t ∪ {v}
where t ⊂ T and v is the last vertex of t ∪ {v}. So if v ∈ T0 then the edge t ∪ {v}
lies inside T . Moreover there are d1(v) such edges with last vertex v. Hence

τr−1ndµ(T0) = τr−1
∑

v∈T0

d(v) ≤
∑

v∈T0

d1(v) ≤ e(G[T ]) .

Consider first the case that G[I] is b-degenerate, where b ≤ (ζ/r)τr−1d. Then
e(G[T ]) ≤ b|T |, and thus τr−1ndµ(T0) ≤ e(G[T ]) ≤ b|T | ≤ (ζ/r)τr−1d|T |, meaning
rndµ(T0) ≤ ζd|T |. Now if v ∈ T then v passes the membership rule and so v /∈ B;
consequently d(v) ≥ ηd, and hence |T |ζd ≤ ∑

v∈T d(v) = ndµ(T ). We thus have
rndµ(T0) ≤ ζd|T | ≤ ndµ(T ), that is, rµ(T0) ≤ µ(T ). But µ(T ) = µ(T ∩ Γ1) +
µ(T \ Γ1) = µ(T0) + µ(T \ Γ1). and so (r − 1)µ(T0) ≤ µ(T \ Γ1). The bound
µ(T0) ≤ (τ/ζ)(1 + rδ) now follows from Lemma 3.6.

Now consider the case that e(G[I]) ≤ (r/ζ)τre(G) = τrnd/ζ. Then we have
directly that τr−1ndµ(T0) ≤ e(G[T ]) ≤ e(G[I]) ≤ τrnd/ζ, so µ(T0) ≤ τ/ζ ≤
(τ/ζ)(1 + rδ). �

We come now to the bound on the measure µ(C) of the containers; this bound
comes from the following lemma.

Lemma 3.8. Let C be the set produced by the algorithm in build mode, using weak
thresholds. Let D = ([n] − C) ∪ T ∪B. Define es by the equation |Ps| = esτ

r−snd
for 1 ≤ s ≤ r. Then

es+1 ≤ r2ses + µ(D) + ζ + 2rδ for r − 1 ≥ s ≥ 2

es+1 ≤ 2µ(D) + ζ + 3rδ for s = 1.

Remark 3.9. Bounding µ(C) above is equivalent to bounding µ(D) from below.
The lemma captures the spirit behind the algorithm, as discussed in [40], that either
all Ps are large, in which case Γ1 is substantial and so D is also (this is what lies
behind the second inequality), or, for some s, Ps+1 is large but Ps is small, which
makes D substantial by the first inequality.



ONLINE CONTAINERS FOR HYPERGRAPHS, WITH APPLICATIONS 17

Proof. The way the algorithm builds C means that T∪B ⊂ C. Let C′ = C−(T∪B),
so D = [n]−C′. Again, by the operation of the algorithm, if v ∈ Γ1 \ (T ∪B) then
v /∈ C, which means that Γ1 ⊂ D.

For v ∈ [n] let fs+1(v) be the number of sets in Ps+1 for which v is the first
vertex in the vertex ordering. Then

|Ps+1| =
∑

v∈[n]

fs+1(v) =
∑

v∈C′

fs+1(v) +
∑

v∈D

fs+1(v) for 1 ≤ s < r. (1)

By definition of |Fv,s|, of the fs+1(v) sets in Ps+1 beginning with v, fs+1(v)−|Fv,s|
of them contain some σ ∈ Γs. If v ∈ C′ then v /∈ Γ1, v /∈ B and v /∈ T and so,
since v ∈ C, we have |Fv,s| < ζτr−s−1d(v). Therefore, writing PΓ for the multiset
of edges in Ps+1 that contain some σ ∈ Γs, we have

∑

v∈C′

fs+1(v) − ζτr−s−1d(v) < |PΓ| ≤
∑

σ∈Γs

ds+1(σ) . (2)

By definition, if σ ∈ Γs and |σ| ≥ 2, then ds(σ) ≥ θs(σ) = δdτr−s+|σ|−1. Using
Lemma 3.4, we then see that ds+1(σ) ≤ rδdτr−s+|σ|−2 ≤ (r/τ)ds(σ). Similarly,
if σ = {u} ∈ Γs then ds(σ) ≥ τr−sd(u) and ds+1(σ) ≤ τr−s−1(d(u) + rδd) ≤
(1/τ)ds(σ) + rδdτr−s−1. Therefore, for s ≥ 2, we obtain

∑

σ∈Γs

ds+1(σ) ≤ r

τ

∑

σ∈Γs

ds(σ) +
∑

{u}∈Γs

rδdτr−s−1 ≤ r

τ
2s|Ps| + rδndτr−s−1 . (3)

For s = 1 the possibility |σ| ≥ 2 does not arise, and we obtain

∑

σ∈Γs

ds+1(σ) ≤
∑

{u}∈Γ1

(

1

τ
d1(u) + rδdτr−2

)

≤ τr−2nd(µ(Γ1) + rδ) + rδndτr−2 by Lemma 3.5

≤ τr−2ndµ(D) + 2rδndτr−2 since Γ1 ⊂ D. (4)

Finally, making use of (1) and (2) together with Lemma 3.5, we have

es+1τ
r−s−1nd = |Ps+1| =

∑

v∈C′

fs+1(v) +
∑

v∈D

fs+1(v)

≤
∑

v∈C′

ζτr−s−1d(v) +
∑

σ∈Γs

ds+1(σ) +
∑

v∈D

ds+1(v)

≤ ζτr−s−1nd +
∑

σ∈Γs

ds+1(σ) + τr−s−1nd(µ(D) + rδ) ,

The bounds (3) and (4) for
∑

σ∈Γs
ds+1(σ) now give the result claimed. �

Proof of Theorem 1.2. We begin by choosing the constant c = c(r). Let γ =

(1/25)r−2r2−r2 and c = γr. Let G be as in the theorem and let τ be chosen so that
(†) is satisfied. Let ζ =

√
2rγ. For later use, we note c ≤ γ ≤ ζ/2r ≤ 2rζ ≤ 1.

As might be expected, we prove the theorem by using the containers C and the
sets T supplied by the algorithm, using the weak threshold functions. However, the
input parameters we supply to the algorithm are not τ and ζ as just defined, but
instead τ∗ = γτ and ζ.

The reason for using slightly different parameters is to obtain as clean a statement
of Theorem 1.2 as possible, subject to not worrying about the best value of c. For
example, assertion (b) of the theorem states µ(T ) ≤ τ , whereas the corresponding
assertion of Theorem 1.1 states µ(T ) ≤ 2rτ/ζ. What, in effect, we achieve by using
τ∗ instead of τ is that we shall obtain µ(T ) ≤ 2rτ∗/ζ, which (as we shall check)
implies µ(T ) ≤ τ . In a similar manner, all the other constants that might otherwise
appear in the statement of the theorem are absorbed into the small constant c.
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We therefore remind the reader that the values of τ and ζ appearing in the
lemmas above are those values input to the algorithm. This was highlighted at the
start of §3. Hence in the present case, where we are using inputs τ∗ and ζ, the
conclusions of the lemmas hold with τ∗ in place of τ . Again, as highlighted earlier,
the value of δ in the lemmas is that supplied by Definition 2.5 with τ∗ in place of τ .
Explicitly, δ is (by definition) minimal such that d(σ) ≤ δdτ∗(|σ|−1) for all σ. Now
τ was chosen to satisfy (†), so we know that d(σ) ≤ cdτ (|σ|−1). Since c = γr this
implies we know, for all σ, that d(σ) ≤ γrdτ (|σ|−1) ≤ γdτ∗(|σ|−1), because γ ≤ 1
and |σ| ≤ r. Consequently, by the minimality of δ, we have δ ≤ γ.

What remains is to verify the claims of the theorem. Condition (a) follows from
the general properties of the algorithm, as discussed in §2.1, and the online property
follows too, as explained in Remark 2.1.

We know that either G[I] is ⌊cτr−1d⌋-degenerate or e(G[I]) ≤ cτre(G). Now
cτr−1 = γτr−1

∗ ≤ (ζ/r)τr−1
∗ , and cτr = τr∗ ≤ (r/ζ)τr∗ . Hence the conditions of

Lemma 3.7 are satisfied. So, by Lemmas 3.6 and 3.7, µ(T ) = µ(T \ Γ1) + µ(T ∩
Γ1) ≤ (rτ∗/ζ)(1 + rδ) ≤ 2rτ∗/ζ = 2rγτ/ζ = ζτ , easily establishing condition (b).
Moreover T ∩B = ∅, so |T |ζd ≤∑v∈T d(v) = ndµ(T ) ≤ ndζτ , giving condition (c).

To show that condition (d) holds, note that 2rδ ≤ 2rγ ≤ ζ, and so by Lemma 3.8
we comfortably have

es+1 ≤ r2ses + µ(D) + 2ζ for r − 1 ≥ s ≥ 2

es+1 ≤ 2µ(D) + 4ζ for s = 1.

Dividing the bound for es+1 by rs+12(s+1

2 ) and adding over s = 1, . . . , r − 1, we
obtain

er

rr2(r

2)
≤ (µ(D) + 2ζ)

{

1

r2
+

1

r3
1

23
+

1

r4
1

26
+ · · ·

}

≤ (µ(D) + 2ζ)
2

r2
.

Recall that ernd = |Pr| = e(G) = nd/r so er = 1/r. Hence µ(D)+2ζ ≥ r−r2−(r2) =
5γ1/22r/2 ≥ 5ζ. So µ(D) ≥ 3ζ. By definition, D = [n] − (C − (T ∪ B)). Thus
µ(C) ≤ 1 − µ(D) + µ(T ) + µ(B). We showed previously that µ(T ) ≤ ζτ , so
µ(T ) ≤ ζ because τ ≤ 1. Moreover µ(B) ≤ ζ by definition of B. Therefore
µ(C) ≤ 1 − 3ζ + ζ + ζ = 1 − ζ ≤ 1 − c, completing the proof. �

We finish with a proof of Corollary 1.3.

Proof of Corollary 1.3. Write c∗ for the constant c(r) from Theorem 1.2. We prove
the corollary with c = ǫℓ−rc∗, where ℓ = ⌈(log ǫ)/ log(1 − c∗)⌉. Let G, I and τ
be as stated in the corollary. We shall apply Theorem 1.2 several times. Each
time we apply the theorem, we do so with with τ∗ = τ/ℓ in place of τ , with the
same I, but with different graphs G, as follows (we leave it till later to check
that the necessary conditions always hold). Given I, apply the theorem to find
T1 ⊂ I and I ⊂ C1 = C(T1), where |T1| ≤ τ∗n and µ(C1) ≤ 1 − c∗. It is easily
shown that e(G[C1]) ≤ µ(C1)e(G) ≤ (1 − c∗)e(G) (this is [40, inequality (1)]).
Now I is sparse in the graph G[C1] so apply the theorem again, to the r-graph
G[C1], to find T2 ⊂ I and a container I ⊂ C2. We have |T2| ≤ τ∗|C1|, and
e(G[C2]) ≤ (1 − c∗)e(G[C1]) ≤ (1 − c∗)2e(G). By Remark 2.2, we note that, in
the first application, the algorithm in build mode would have constructed C1 from
input T1 ∪ T2, and would likewise have constructed C2 from input T1 ∪ T2 in the
second application. Thus C2 is a function of T1 ∪ T2. We repeat this process k
times until we obtain the desired container C = Ck with e(G[C]) ≤ ǫe(G). Since
e(G[C]) ≤ (1 − c∗)ke(G) this occurs with k ≤ ℓ. Put T = T1 ∪ · · · ∪ Tk. Then C is
a function of T ⊂ I.
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We must check that the requirements of Theorem 1.2 are fulfilled at each ap-
plication. Observe that, if dj is the average degree of G[Cj ] for j < k, then
|Cj |dj = re(G[Cj ]) > rǫe(G) = ǫnd, and since |Cj | ≤ n we have dj ≥ ǫd. The con-

ditions of Corollary 1.3 mean that d(σ) ≤ cdτ |σ|−1 = ǫℓ−rc∗dτ |σ|−1 < c∗djτ
|σ|−1
∗ ;

since the degree of σ in G[Cj ] is at most d(σ), this means that (†) is satisfied every
time Theorem 1.2 is applied.

Observe that, because dj ≥ ǫd, e(G[Cj ]) > ǫe(G) and c = ǫℓ−rc∗, then G[I] is
⌊c∗τr−1

∗ dj⌋-degenerate if it is ⌊cτr−1d⌋-degenerate, and e(G[I]) ≤ c∗τr∗ e(G[Cj ]) if
e(G[I]) ≤ cτre(G). Therefore the theorem is being applied correctly each time.

Finally condition (c) of the theorem implies |Tj| ≤ τ∗|Cj | ≤ τ∗n = τn/ℓ, and
so |T | ≤ kτn/ℓ ≤ τn, giving condition (b) of the corollary and completing the
proof. �

4. Linear equations

Recall from §1.3 the definitions of a linear system (F,A, b), of ex(F,A, b), of full
rank and of abundant.

Often one wishes to discount solutions to an equation Ax = b where the vector
x contains repeated values. For example, in forbidding a 3-term arithmetic pro-
gression, we take A = (1, 1,−2) and b = (0) and discount solutions of the form
x + x− 2x = 0. To accommodate this setup, we let Z ⊂ F r be a set of discounted
solutions. We then call (F,A, b, Z) a k× r linear system. A solution to this system
is a vector x ∈ F r − Z such that Ax = b, and a set I ⊂ F is solution-free if there
is no x ∈ Ir − Z such that Ax = b.

In order to state the main theorem about linear systems, we need to define the
following parameter, following Rödl and Ruciński [31].

Definition 4.1. If F is a finite field or [N ], and A is an abundant k × r matrix
over F , then we define

mF (A) = max
J⊂[r], |J|≥2

|J | − 1

|J | − 1 + rank(AJ) − k
,

where the matrix AJ is the k×(r−|J |) submatrix of A obtained by deleting columns
indexed by J . If F is an abelian group, and A is an abundant k× r integer matrix,
then let t be the maximum value of j for which AJ has full rank whenever |J | = j,
and define

mF (A) =
k + t− 1

t− 1
.

It can readily be checked that if A is abundant then the denominators appearing
in the definition of mF (A) are strictly positive. The separate definition of mF (A)
when F is an abelian group is necessary since the rank of an integer matrix over an
abelian group is not well-defined; in general, when the pair (F,A) could either be
considered a finite field or an abelian group with A integer valued, the value of the
second definition is at least as big as the value of the first definition. This is since
rank(AJ ) = k when |J | ≤ t, and is otherwise at least max{0, k + t− |J |}.

From our point of view, the parameter mF (A) plays a role for solution-free sets
very similar to the role that the parameter m(H) plays for H-free graphs. Our main
theorem here about linear systems, Theorem 4.2, gives containers for solution-free
subsets, and the number of containers depends on mF (A); in like manner, our
main theorem about H-free graphs, [40, Theorem 2.3], gives containers for H-free
graphs and the number of them depends on m(H). All our further results about
linear systems, for example Theorem 4.8 about sparse systems, are applications of
Theorem 4.2, in the same way that all the results in [40] about H-free graphs, such
as [40, Theorem 2.12] for sparse graphs, are applications of [40, Theorem 2.3].
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To understand why the parameter m(H) takes the form it does, it is easiest to
look at the application to sparse graphs, where a simple argument shows that [40,
Theorem 2.12] is best possible, and so, by implication, the number of containers in
[40, Theorem 2.3] must depend on m(H). To illuminate the form of the parameter
mF (A), a similar argument can be put forward for sparse linear systems, showing
that Theorem 4.8 is best possible. However, it does not apply in every case, be-
cause sometimes extra conditions are needed (discussed by Rödl and Ruciński [31]).
Fortunately, these extra conditions play no part in Theorem 4.2.

The argument is as follows. Assume, for simplicity, that the system is Ax = 0
and that F is a finite field. We show that, when a random subset X ⊂ F is selected
by choosing elements each with probability p, and p is substantially smaller than
|F |−1/mF (A), then there is (almost surely) a solution-free subset X∗ ⊂ X which
is nearly as large as X . In this sense Theorem 4.8 is best possible. Let AJ be a
maximizing submatrix in the definition of mF (A) and let BJ be the k×|J | submatrix
deleted from A to form AJ . Write 〈AJ 〉, 〈BJ〉 for the spaces spanned by the columns
of AJ , Bj respectively, and let their dimensions be α = rank(AJ ) and β = rank(BJ).
Let W = 〈AJ 〉 ∩ 〈BJ 〉. Since the sum 〈AJ〉 + 〈BJ 〉 is the space spanned by the
columns of the full rank matrix A, it has dimension k, and so dim(W ) = α+β− k.
For each x ∈ F r, let x′ be its projection onto the coordinates indexed by J . If
Ax = 0 then BJx

′ ∈ 〈AJ 〉, and so BJx
′ ∈ W . For each vector w ∈ W there are at

most |F ||J|−β solutions x′ to BJx
′ = w (see Fact 4.4), so if V = {x′ : Ax = 0} then

|V | ≤ |F ||J|−β|W | = |F ||J|−β+dim(W ) = |F ||J|+α−k. Let X be chosen randomly as
just described, with p much smaller than |F |−1/mF (A). Then |X | will likely be near
p|F |, and the number of vectors x′ ∈ V lying within Xk is unlikely to be much
larger than p|J||F ||J|+α−k. Since mF (A) = (|J | − 1)/(|J | − 1 +α− k), this number
is much smaller than |X | ≈ p|F |, and by removing from X an element of each
such x′, we obtain a subset X∗ ⊂ X , with |X∗| close to |X |, such that X∗ contains
no solution x′ with BJx

′ ∈ W and so X∗ is solution-free for the system Ax = 0.
After all these preliminaries, we now state the main theorem on linear systems.

Theorem 4.2. Let (F,A, b, Z) be a k × r linear system with A abundant and
|Z| ≤ |F |r−k/2. Given ǫ > 0 there is a constant c, depending on A, ǫ in the case
F = [N ], and depending only on k, r, ǫ otherwise, such that if |F | ≥ c then there
exists C ⊂ PF satisfying

(a) for every solution-free subset I ⊂ F there exists T ⊂ I such that I ⊂ C =
C(T ) ∈ C, and |T | ≤ c|F |1−1/mF (A),

(b) for every C ∈ C, the number of solutions to Ax = b with x ∈ Cr − Z is at
most ǫ|F |r−k,

(c) log |C| ≤ c|F |1−1/mF (A) log |F |.
The theorem is just a straightforward consequence of Corollary 1.3. It is neces-

sary only to construct a suitable hypergraph that encodes solutions to the linear
system, and then to check its parameters so that the corollary can be applied. The
hypergraph in question is the following.

Definition 4.3. Let (F,A, b, Z) be a k × r linear system. The r-partite r-graph
G = G(F,A, b, Z) has vertex set V (G) = X1 ∪ · · · ∪Xr, where the Xis are disjoint
copies of F , and edge set E(G) = {x = (x1, . . . , xr) ∈ X1 × · · · ×Xr −Z : Ax = b}.

In order to apply Corollary 1.3 to G(F,A, b, Z) we need to estimate the quantities
d(σ), which we now proceed to do.

Fact 4.4. Let F be a finite field or abelian group, let A be a k × ℓ matrix and
let b ∈ F k. If A has full rank then there are |F |ℓ−k solutions to Ax = b. More
generally if F is a finite field, there are at most |F |ℓ−rank(A) solutions to Ax = b.
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Proof. If A has full rank, then for every b1, b2 ∈ F k there exists x ∈ F ℓ with
Ax = b2 − b1. Thus if x1 is a solution to Ax1 = b1 then A(x1 + x) = b2, so by
symmetry every b ∈ F k has |F |ℓ/|F |k solutions to Ax = b. The case when F is a
finite field is standard. �

Lemma 4.5. Let (F,A, b, Z) be a k×r linear system where F is a finite field or an
abelian group, A is an abundant matrix and |Z| ≤ |F |r−k/2. Let G = G(F,A, b, Z),
γ ≤ 1 and τ = |F |−1/mF (A)/γ. Then d(σ) ≤ 2γdτ |σ|−1 holds for every σ ⊂ V (G)
with 2 ≤ |σ| ≤ r, where d is the average degree of G.

Proof. The number of edges in G is the number of solutions to Ax = b not in Z.
The matrix A has full rank, so by Fact 4.4 the number of edges of G is |F |r−k−|Z| ≥
|F |r−k/2. Since G has r|F | vertices, its average degree d satisfies d ≥ |F |r−k−1/2.

Let σ ⊂ V (G) where 2 ≤ |σ| ≤ r. Put j = |σ|. If σ contains two vertices in the
same part Xi then there are no edges containing σ. Otherwise, we may suppose
that σ = {y1, . . . , yj}, where yℓ ∈ Xiℓ for ℓ = 1, . . . , j. Let J = {i1, . . . , ij}. Then
d(σ) is at most the number of solutions to Ax = b with xiℓ = yℓ for ℓ = 1, . . . , j,
and there is some b∗ ∈ F k for which this is the number of solutions x∗ ∈ F r−j to
AJx

∗ = b∗. We now split the proof into two cases depending on whether F is a
finite field or an abelian group.

When F is an abelian group: Recall Definition 4.1, and in particular that
mF (A) = (k + t − 1)/(t − 1). Write f = |F |−1/mF (A), so τ = f/γ. Note that
|F |f ≥ 1. If j ≤ t then AJ has full rank by assumption, and so Fact 4.4 implies the
number of solutions is at most |F |r−j−k. Hence for 2 ≤ j ≤ t we have

d(σ)

dτ |σ|−1
≤ 2|F |r−j−k−(r−k−1)τ1−j = 2|F |1−jτ1−j = 2γj−1(|F |f)1−j ≤ 2γ ,

since γ ≤ 1 and |F |f ≥ 1. When t + 1 ≤ j ≤ t + k, we can say d(σ) ≤ d(σ′) for
some σ′ ⊂ σ with |σ′| = t, so

d(σ)

dτ |σ|−1
≤ d(σ′)

dτ j−1
≤ 2|F |1−tτ1−j ≤ 2γ|F |1−tf1−j ≤ 2γ|F |1−tf1−t−k = 2γ ,

here using γ ≤ 1 and the definition of f . When t + k < j ≤ r, the crude bound
d(σ) ≤ |F |r−j (recall we are counting solutions x∗ ∈ F r−j) is enough. Using γ ≤ 1
and |F |f ≥ 1 we have

d(σ)

dτ |σ|−1
≤ 2|F |r−j−(r−k−1)τ1−j ≤ 2γ|F |k(|F |f)1−j < 2γ|F |k(|F |f)1−t−k = 2γ .

Therefore d(σ)/dτ |σ|−1 ≤ 2γ for all j, as claimed.
When F is a finite field: By Fact 4.4 the number of solutions to AJx

∗ = b∗ is at
most |F |r−j−rank(AJ ). Hence

d(σ) ≤ max
J⊂[r], |J|=j

|F |r−j−rank(AJ ).

Using τ = γ−1|F |−1/mF (A) and γ ≤ 1, this implies that

d(σ)

dτ |σ|−1
≤ 2γ max

J⊂[r], |J|=j
|F |1−j+k−rank(AJ )+(j−1)/mF (A).

The exponent is at most 0 by definition of mF (A), so d(σ)/dτ |σ|−1 ≤ 2γ. �

Proof of Theorem 4.2. We may assume that F is a finite field or abelian group.
Indeed, [N ] can be embedded into the finite field Zp for a sufficiently large prime p.
Taking p in the range 4k!|A|kN ≤ p ≤ 8k!|A|kN , where |A| is the sum of the
absolute values of the entries of A, guarantees that A is still abundant in Zp and
that a solution to Ax = b (mod p) is also a solution to Ax = b (provided, say,
|bi| ≤ p/2; but we may assume this since otherwise there are no solutions to Ax = b
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in [N ]). Then the result of this theorem for (Zp, A, b, Z) implies the result for
([N ], A, b, Z), since p/N is bounded by a constant depending only on A.

Let c′ = c(r, ǫ) be the constant asserted by Corollary 1.3. Choose γ ≤ 1 so that
2γ ≤ c′, and put c = max{(1/γ)k, 2r/γ}. We claim this c works in the theorem.

To see this, apply the corollary to the r-graph G = G(F,A, b, Z), with τ =
|F |−1/mF (A)/γ. If |F | ≥ c then |F | ≥ (1/γ)mF (A) and so τ ≤ 1. By Lemma 4.5,
the requirements of Corollary 1.3 are then satisfied. So we obtain a collection of
sets D covering the independent sets of G. For D ∈ D, let πi(D) = D ∩Xi ⊂ F be
the part of D in the ith copy of F and let

C = {CD : D ∈ D} ⊂ PF where CD = π1(D) ∩ · · · ∩ πr(D).

We claim that C satisfies the conditions of the theorem.
Condition (a): consider a solution-free set I ⊂ F . The subset J of V (G) formed

by taking a copy of I in each Xi is an independent set in G. In particular, it is
contained in some D ∈ D, hence I ⊂ CD. Moreover, there exists a set T ′ ⊂ J ,
such that D = D(T ′) and |T ′| ≤ τ |G|. Let T = π1(T ′) ∪ · · · ∪ πr(T ′); then
|T | ≤ |T ′| ≤ (r/γ)|F |1−1/mF (A) < c|F |1−1/mF (A). Now let S′ be the subset of
V (G) formed by taking a copy of T in each Xi; clearly T determines S′. By
definition of J we have T ⊂ I and T ′ ⊂ S′ ⊂ J . By Remark 2.2, which describes
the iterative process leading from Theorem 1.2 to Corollary 1.3, we know that
D(S′) = D(T ′) = D, and therefore T determines CD. This verifies condition (a).

Condition (b): consider C ∈ C. Each solution to Ax = b with x ∈ Cr − Z
corresponds to an edge of G[D], of which there are at most ǫe(G) = ǫ|F |r−k.

Condition (c): putting q = (r/γ)|F |1−1/mF (A), so |T | ≤ q, we have |C| ≤
∑

t≤q |F |t ≤ (q + 1)|F |q < |F |2q. Thus log |C| ≤ 2q log |F | ≤ c|F |1−1/mF (A) log |F |,
completing the proof. �

4.1. Supersaturation. Condition (b) of Theorem 4.2 provides containers C that
contain few solutions. Our applications require a bound on |C| itself. We obtain
such a bound from condition (b) via the notion of supersaturation, as given in
Definition 1.7. The name is taken from the supersaturation theorem of Erdős and
Simonovits [14], which proves a similar property for hypergraphs and other discrete
structures by a simple averaging argument.

For some linear systems (F,A, b) it is possible to prove supersaturation by an
averaging argument of this kind. For example, consider arithmetic progressions
of length ℓ in F = [N ]; these are solutions to Ax = 0 for some ((ℓ − 2) × ℓ)-
matrix A. Szeméredi’s theorem [46] shows that ex(F,A, 0) = o(|F |), from which
Varnavides [49] derived (for l = 3, but it works in general) that |X | < ǫN if
X ⊂ [N ] contains fewer than δ(ǫ)N2 arithmetic progressions. That is, (F,A, 0) is
f -supersaturated for some null f not depending on F .

Such a simple averaging argument does not usually work, and we might then
turn to a removal lemma. This is stronger than the supersaturation condition: it
says that if X ⊂ F contains at most η|F |r−k solutions to Ax = b then there is a
subset X ′ ⊂ X , |X ′| < ǫ|F |, such that X −X ′ is solution-free. The archetype for
such lemmas is the Triangle Removal Lemma of Ruzsa and Szemerédi [33].

Green [18] proved a removal lemma for single linear equations over abelian
groups. He conjectured a similar lemma for systems over a finite field, which was
proved by Shapira [43] and by Král’, Serra and Vena [25]. These proofs use removal
lemmas for hypergraphs such as those of Austin and Tao [5], Gowers [16], Nagle,
Rödl and Schacht [29] and Tao [47]. In fact, Szegedy [45] pointed out that, subject
to certain symmetry conditions, hypergraph removal lemmas can lead directly to
algebraic removal lemmas.
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Král’, Serra and Vena [26] also give a version for systems over abelian groups.
The statement involves the determinantal of a k × r integer matrix, which is the
greatest common divisor of the determinants of its k × k submatrices; note that
if A has determinantal coprime to |F | then in particular A has full rank. We do not
quote the removal lemma exactly, but rather its consequence for supersaturation.

Proposition 4.6 (Král’, Serra and Vena [25, 26]). Let k, r ∈ N. Then there
is a null function f : R

+ → R
+ such that, if (F,A, b) is a k × r linear system

where F is a finite field or abelian group and A has full rank, and if further A has
determinantal coprime to |F | in the case that F is an abelian group, then (F,A, b)
is f -supersaturated.

We thus have a wide class of f -supersaturated linear systems where f depends
only on k and r.

4.2. A couple of applications. We begin with a strengthened version of Theo-
rem 1.8 which takes into account a set Z of discounted solutions.

Theorem 4.7. Let k, r ∈ N and let f : R+ → R
+ be null. Let (F,A, b, Z) be a k×r

linear system with A abundant and (F,A, b) f -supersaturated. Given ǫ > 0, there
exists c = c(k, r, f, ǫ) (or c = c(A, f, ǫ) in the case F = [N ]) and η = η(f, ǫ) > 0,
such that, if |F | > c and |Z| < η|F |r−k, then the number of solution-free subsets of
F is 2ex(F,A,b)+λ|F |, where 0 ≤ λ < ǫ.

Proof. There is a set of size ex(F,A, b) containing no solution to the system (F,A, b)
and therefore certainly no solution to the system (F,A, b, Z). Every subset of this
set is a solution-free subset for the system (F,A, b, Z), so we obtain 2ex(F,A,b) such
subsets. This proves λ ≥ 0.

To obtain the upper bound λ < ǫ, let η > 0 be such that f(2η) < ǫ/2, which
exists because f is null. Let c be the constant supplied by Theorem 4.2 when η
is used in place of ǫ. Then (F,A, b, Z) satisfies the conditions of the theorem (we
can of course assume η < 1/2) so we obtain a collection C of containers for the
solution-free subsets.

By increasing c if necessary, condition (c) of the theorem implies log |C| ≤
(ǫ/2)|F | log 2 (because 1/mF (A) > 0). Thus |C| ≤ 2(ǫ/2)|F |.

Let C ∈ C. By condition (b), the number of solutions in Cr to the system
(F,A, b) is at most η|F |r−k + |Z| < 2η|F |r−k. Since (F,A, b) is f -supersaturated,
the definition of η means that |C| ≤ ex(F,A, b) + (ǫ/2)|F |.

The total number of solution-free subsets is at most |C|2maxC∈C |C|. The inequal-
ities just proved mean this is at most 2ex(F,A,b)+ǫ|F |, as claimed. �

If A is not abundant, then the conclusion of Theorem 1.8 need not hold. For
example, let A = (1, 1), b = (0), and consider the cyclic group Cn for n odd.
Observe that the pairs (x, y) such that x + y = 0 and x 6= y partition Cn \ {0}.
Therefore ex(Cn, A, b) = (n + 1)/2. However, one can construct a solution-free
set by including either x or y or neither for each pair (x, y), so there are at least
3(n−1)/2 solution-free sets. There are similar examples with larger values of k and
r > k + 2.

Additionally, when F = [N ], the condition that A is fixed as |F | = N → ∞
is necessary. For example, for the equation w + x + (10N)y − (10N)z = N , the
maximum size of a solution-free subset of [N ] is N/2 (since for every pair w, x ∈ [N ]
with w + x = N , a solution-free set can include at most one of w or x), but there
are at least 3(N−1)/2 solution free sets, since for every w, x ∈ [N ] with w + x = N
and w 6= x, we can include either w or x or neither to form a solution-free set.

We now turn to solution-free subsets within randomly chosen subsets X ⊂ F , as
mentioned in §1.3. Here is the main result.
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Theorem 4.8. Let k, r ∈ N and let f : R+ → R
+ be null. Let (F,A, b, Z) be a k×r

linear system with A abundant and (F,A, b) f -supersaturated. Given ǫ > 0, there
exists c = c(k, r, f, ǫ) (or c = c(A, f, ǫ) in the case F = [N ]) and η = η(f, ǫ) > 0,
such that, if |F | > c and |Z| < η|F |r−k, p ≥ c|F |−1/mF (A), and X ⊂ F is a
random subset with each element included independently with probability p, then
the following event holds with probability greater than 1 − exp{−ǫ3p|F |/512}:

every solution-free subset has at most p(ex(F,A, b) + ǫ|F |) elements.

As sketched earlier, when F is a finite field the condition p ≥ c|F |−1/mF (A) in
Theorem 4.8 is tight up to the value of the constant c appearing, at least under
some mild restrictions on (F,A, b, Z). See Rödl and Ruciński [31] for more detail.

To prove Theorem 4.8 we use the following probabilistic lemma from [40]. A
very straightforward expectation argument applied to Theorem 4.2 will give The-
orem 4.8 with just a slightly worse bound on p, namely p ≥ c|F |−1/mF (A) log |F |;
the point of the next lemma is that it allows us to take advantage of condition (a)
of Theorem 4.2, namely that T ⊂ I, to remove the extra log factor and obtain a
best possible result. The lemma is stated in a generality that is not needed for the
present application, but we quote it as it appears in [40], apart from replacing a
tuple (T1, . . . , Ts′) by a single set T . The proof of the lemma is just a combination
of a Chernoff bound and the union bound.

Lemma 4.9 ([40, Lemma 10.3]). Given 0 < ν < 1 there is a constant φ = φ(ν)
such that the following holds. Let L be a set, |L| = n, and let I ⊂ PL. Let t ≥ 1,
let φt/n ≤ p ≤ 1 and let νn/2 ≤ d ≤ n. Suppose for each I ∈ I there exists both
TI ⊂ I and D = D(TI) ⊂ L, such that |TI | ≤ t and |D(TI)| ≤ d. Let X ⊂ L be a
random subset where each element is chosen independently with probability p. Then

P (|D(TI) ∩X | > (1 + ν)pd for some I ⊂ X, I ∈ I) ≤ exp{−ν2pd/32}.
Proof of Theorem 4.8. Let L = F and let I be the set of solution-free sets for the
system (F,A, b, Z). Let η > 0 be such that f(2η) < ǫ/4, which exists because f
is null. Let c′ be the constant supplied by Theorem 4.2 when η is used in place
of ǫ. Then (F,A, b, Z) satisfies the the conditions of the theorem (assuming as
ever that η < 1/2) so we obtain a collection C of containers for I. For I ∈ I, let
T = TI , C = C(T ) be as given by the theorem. Our aim is to apply Lemma 4.9
with D(T ) = C(T ) and

ν = ǫ/2, d = ex(F,A, b) + ǫ|F |/4, t = c′|F |1−1/mF (A) .

Note that, by condition (b) of Theorem 4.2, for each C = C(T ), Cr−Z has at most
η|F |r−k solutions to Ax = b, and so Cr has at most 2η|F |r−k solutions, and hence
|C(T )| ≤ d holds by the supersaturation property. Condition (a) implies |TI | ≤ t.
The conditions of Lemma 4.9 then hold with n = |F |, noting that d ≥ νn/2 and
that p ≥ c|F |−1/mF (A) ≥ φt/n if c is large enough. Finally, note that each solution-
free set I ∈ I is contained in C(TI) and (1 + ν)pd ≤ p(ex(F,A, b) + ǫ|F |), so the
concluding inequality of the lemma means that the property of the theorem fails
with probability bounded by

exp{−ν2pd/32} ≤ exp
{

−ǫ3p|F |/512
}

,

completing the proof. �

Proof of Theorem 1.9. Let ([N ], A, b, Z) be the (ℓ−2)×ℓ linear system correspond-
ing to forbidding an ℓ-term arithmetic progression in [N ]. For example if ℓ = 3 then
A = (1, 1,−2), b = (0) and Z is the set of solutions of the form x + x − 2x = 0
that are discounted, so |Z| = N . As mentioned in §4.1, Varnavides’ theorem shows
this system is f -supersaturated for some f not depending on N . It can readily be



ONLINE CONTAINERS FOR HYPERGRAPHS, WITH APPLICATIONS 25

checked that m[N ](A) = ℓ − 1. Since ex(F,A, b) = o(N), the result immediately
follows by applying Theorem 4.8. �

5. Sidon sets

In this section we prove Theorem 1.10. We begin with the simple construction
giving the lower bound.

Proof of Theorem 1.10, lower bound. Suppose that n = 4p(p−1) for some prime p.
Ruzsa [32] shows that there is a set S ⊂ [p(p− 1)] of size p− 1 such that every sum
of two elements of S is distinct modulo p(p − 1). Thus for any U1, U2, U3, U4 ⊂ S
satisfying Ui ∩ Uj = ∅ for i 6= j, the set

U1 ∪ (U2 + p(p− 1)) ∪ (U3 + 2p(p− 1)) ∪ (U4 + 3p(p− 1))

is a Sidon subset of [4p(p − 1)], where V + x := {v + x : v ∈ V }. This gives

5p−1 =
√

5
(1+o(1))

√
n

> 2(1.16+o(1))
√
n Sidon subsets of [n] = [4p(p − 1)]. The

general case follows by embedding [4p(p− 1)] into [n], where p is the largest prime
such that 4p(p − 1) < n, and using the fact that the ratio of successive primes
tends to 1. (We note that any construction for large modular Sidon sets could
have been used here; this includes the classical constructions of Singer [44] and of
Bose [8].) �

To prove the upper bound we construct, in the natural way, the hypergraph
representing the solutions to w + x = y + z in a subset S ⊂ [n]. We then apply an
iterated version of Theorem 1.1 to this hypergraph in an entirely mechanical way;
all that is needed is to set appropriate values and to check the conditions.

Corollary 1.3 is an iterated version of Theorem 1.2 but it is a bit too crude for
use here. Only a constant number of iterations are involved (of the order log(1/ǫ))
whereas here the number of iterations is a function of n, as the containers shrink
from size n to order

√
n. Moreover we need to take account of a change in behaviour

of the codegree function when the size of the container drops below n2/3, as the
dominant contribution then comes from δ2 rather than δ4 (see equation (5) below);
Kohayakawa, Lee, Rödl and Samotij [23] noticed an interesting behavioural change
at the same point, for a closely related problem.

The version we need is the following. It is identical to [40, Theorem 6.3], but
with a tuple (T1, . . . , Ts) replaced by a single set T .

Theorem 5.1. Let G be an r-graph on vertex set [n]. Let e0 ≤ e(G). Suppose
that, for each U ⊂ [n] with e(G[U ]) ≥ e0, the function τ(U) satisfies τ(U) < 1/2
and δ(G[U ], τ(U)) ≤ 1/12r!. For e0 ≤ m ≤ e(G) define

f(m) = max{−|U |τ(U) log τ(U) : U ⊂ [n], e(G[U ]) ≥ m}
τ∗ = max{ τ(U) : U ⊂ [n], e(G[U ]) ≥ e0}

Let k = log(e0/e(G))/ log(1− 1/2r!). Then there is a collection C ⊂ P [n] such that

(a) for every independent set I there exists T ⊂ I with I ⊂ C(T ) ∈ C and
|T | ≤ 288(k + 1)r!2rτ∗n,

(b) e(G[C]) ≤ e0 for all C ∈ C,
(c) log |C| ≤ 288r!2r

∑

0≤i<k f(e0/(1 − 1/2r!)i).

Proof of Theorem 1.10, upper bound. Let G be the 4-graph on vertex set [n], where
{w, x, y, z} ∈ [n](4) is an edge whenever w + x = y + z. Sidon sets correspond to
independent sets in G (although the converse is not always true, since solutions to
w + x = y + z where w = x or y = z do not correspond to edges of G).

Let U ⊂ [n] and u = |U |. For i ∈ [n− 1], let ti = |{{x, y} ∈ U (2) : x < y, y− x =
i}|. Note that

∑

i ti =
(

u
2

)

. Each pair of sets {w, z} 6= {y, x} with w − z = y − x
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corresponds to an edge with w + x = y + z, and each such edge corresponds to the
two pairs {w, z} 6= {y, x} and {w, y} 6= {x, z}. Hence, for large u, the number of
edges in G[U ] satisfies

m = e(G[U ]) =
1

2

n−1
∑

i=1

(

ti
2

)

≥ n− 1

2

( 1
n−1

∑

i ti
2

)

≥ u4/20n.

We shall apply Theorem 5.1 to the graph G. To this end, let β = 3 × 1014, let
e0 = β4n/20, and consider U ⊂ [n] where e(G[U ]) ≥ e0. Since the bound we are
proving is an asymptotic one, we may assume that n is large: this in turn means
that e0 is large, so m is large and (since m ≤

(

u
4

)

) u is also large; in particular the

inequality u ≤ (20nm)1/4 always holds.
Let k = 12r! = 288. Now put

τ = τ(U) = max{24ku2/m, (4ku/m)1/3}.
To apply Theorem 5.1 we must check that τ ≤ 1/2 and that δ ≤ 1/12r!. For
convenience we shall verify τ ≤ 1/12 (in fact τ is far smaller).

Recall the definition of d(j)(w). In G[U ], observe that d(2)(w) ≤ u/2+u = 3u/2,
since for x ∈ U , the number of solutions of the form w + x = y + z is at most
u/2 and the number of solutions of the form w + y = x + z is at most u; similarly
d(3)(w) ≤ 3 and d(4)(w) ≤ 1.

Hence

δ2 ≤ 3u2

8τm
δ3 ≤ 3u

4τ2m
δ4 ≤ u

4τ3m
,

and (since τ < 1/12, as we shall check shortly)

δ = 32δ2 + 16δ3 + 4δ4 ≤ 12u2

τm
+

2u

τ3m
. (5)

Then both terms on the right hand side of (5) are less than 1/2k, so δ ≤ 1/12r! is
satisfied.

If τ ≤ 24ku2/m, then the constraint τ ≤ 1/12 holds comfortably (since u ≤
(20nm)1/4 and m ≥ e0), and furthermore

uτ log(1/τ) ≤ (24ku3/m) log(m/(24ku2))

≤ 203/448k
√
n
( n

m

)1/4

log
(m/n)1/4

(24k)1/2(20)1/4

=: f1(m),

where the first inequality holds since τ log(1/τ) is an increasing function of τ when
τ < 1/e, and the second inequality holds since u3 log(m/(24ku2)) is an increasing

function of u when u ≤ e−1/3
√

m/24k, and u ≤ (20nm)1/4 which is less than

e−1/3
√

m/24k because m ≥ e0.

Alternatively, if τ ≤ (4ku/m)1/3 then the constraint τ ≤ 1/12 is easily satisfied,
and also

uτ log(1/τ) ≤ (4ku4/27m)1/3 log(m/4ku)

≤ 6k1/3n1/3 logn

=: f2(m) when m ≤ e(G),

where the second inequality holds because u4/3 log(m/4ku) is an increasing function
of u for u ≤ e−3/4m/4k (which is larger than (20nm)1/4), together with the bound
m ≤ n4. Let f2(m) = 0 for m > e(G).

Therefore the conditions of Theorem 5.1 are satisfied. Moreover, since f1 and f2
are non-increasing functions of m, we have f(m) ≤ max{f1(m), f2(m)} for m ≥ e0.
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So let C be the collection of containers given by Theorem 5.1 for the graph G,
where each C ∈ C satisfies e(G[C]) ≤ e0. Writing α = 1 − 1/2r! and mi = e0/α

i =
β4n/20αi, we have log |C| ≤ 288rr!2

∑

i≥0 f(mi).

Note that
∑

i≥0 γ
i = 1/(1 − γ) and

∑

i≥0 iγ
i = γ/(1 − γ)2, so

288rr!2
∑

i≥0

f1(mi) = 288rr!2203/448k
√
n
∑

i≥0

(20αi)1/4

β
log

β

αi/4
√

480k

= 288rr!2
960k

√
n

β

(

α1/4 log(1/α)

4(1 − α1/4)2
+

log(β/
√

480k)

1 − α1/4

)

<
7
√
n

2
.

Observe that mi ≥ n4 > e(G) when i ≥ 3 logn/ log(1/α) (and hence f2(mi) = 0),
so

∑

i≥0

f2(mi) = o(
√
n).

Each Sidon set in [n] is a subset of size at most (1+o(1))
√
n of some C ∈ C, where

|C| ≤ u0 = β
√
n (because if |C| > u0 then e(G[C]) ≥ 20u4/n > e0). The number

of such subsets is at most
( β

√
n

(1+o(1))
√
n

)

. Using the standard inequality
(

n
k

)

≤
(

en
k

)k
,

the number of these subsets is at most exp{(1 + logβ + o(1))
√
n}. Letting S be the

collection of Sidon subsets of [n],

log |S|√
n

≤ 1 + log β + o(1) +
288rr!2√

n

∑

i≥0

f1(mi) +
288rr!2√

n

∑

i≥0

f2(mi)

< 1 + log β + 7/2 + o(1) < 55 log 2 + o(1),

which completes the verification. �
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[33] I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in

Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc.
János Bolyai, 18, North-Holland (1978), pp. 939–945.

[34] A.A. Sapozhenko, On the number of connected subsets with given cardinality of the boundary
in bipartite graphs. (in Russian) Metody Diskret. Analiz. 45 45 (1987), 42–70, 96.

[35] A.A. Sapozhenko, On the number of independent sets in extenders, Discrete Math. Appl. 11
(2001), 155–161.

[36] A.A. Sapozhenko, On the number of sum-free sets in Abelian groups, Vestnik Moskovskogo
Universiteta, ser. Math., Mech. 4 (2002), 14–18.

[37] A.A. Sapozhenko, Systems of containers and enumeration problems, in SAGA 2005, Lecture
Notes in Computer Science, Springer (2005), 1–13.
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[46] E. Szemerédi, On sets of integers containing no k terms in arithmetic progression, Acta Arith.
27 (1975), 199–245.

[47] T. Tao, A variant of the hypergraph removal lemma, J. Combinatorial Theory (Ser. A)113
(2006), 1257–1280.

[48] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz No. 29,
Metody Diskret. Anal. v Teorii Kodov i Shem 101 (1976), 3–10, 101 (in Russian).

[49] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358–360.

Department of Pure Mathematics and Mathematical Statistics, Centre for Mathe-

matical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

E-mail address: dwsaxton@gmail.com

E-mail address: a.g.thomason@dpmms.cam.ac.uk


	1. Introduction
	1.1. Containers
	1.2. List colouring
	1.3. Linear equations

	2. The algorithm
	2.1. General properties of the algorithm
	2.2. Comments on the general form
	2.3. The actual container algorithm
	2.4. Differences from previous algorithm

	3. Analysis of the algorithm
	3.1. Strong thresholds and the proof of Theorem 1.1
	3.2. Weak thresholds and the proof of Theorem 1.2

	4. Linear equations
	4.1. Supersaturation
	4.2. A couple of applications

	5. Sidon sets
	References

