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Abstract 23 

 24 

Establishing the cues or constraints that influence avian timing of breeding is key to accurate prediction 25 

of future phenology. This study aims to identify the aspects of the environment that predict the timing 26 

of two measures of breeding phenology (nest initiation and egg laying date) in an insectivorous 27 

woodland passerine, the blue tit (Cyanistes caeruleus). We analyse data collected from a 220km, 40-28 

site transect over three years and consider spring temperatures, tree leafing phenology, invertebrate 29 

availability and photoperiod as predictors of breeding phenology. We find that mean night-time 30 

temperature in early spring is the strongest predictor of both nest initiation and lay date and suggest this 31 

finding is most consistent with temperature acting as a constraint on breeding activity. Birch budburst 32 

phenology significantly predicts lay date additionally to temperature, either as a direct cue or indirectly 33 

via a correlated variable. We use cross-validation to show that our model accurately predicts lay date 34 

in two further years, and find that similar variables predict lay date well across the UK national nest 35 

record scheme. This work refines our understanding of the principal factors influencing the timing of 36 

tit reproductive phenology, and suggests that temperature may have both a direct and indirect effect.  37 
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Introduction 38 

 39 

Global climate change is leading to increased ambient air temperatures and causing an advance of spring 40 

phenological events (seasonal natural phenomena) [1,2] across the northern hemisphere, by an average 41 

of 2.6 days per °C in the UK [3]. The timing of phenological events is often critical to the organisms 42 

involved, influencing whether key life history stages (e.g. reproduction) coincide with favourable 43 

environmental conditions. These conditions could be purely abiotic, such as temperature, but often 44 

involve temporal synchrony with organisms at other trophic levels, be they resources or consumers 45 

[4,5]. Individuals that mistime such phenological events may incur considerable fitness costs [6,7]. Not 46 

all organisms or trophic levels are advancing their phenologies at the same pace in relation to climate 47 

change, however, as each may respond to different environmental cues or to similar cues dissimilarly 48 

[3,8,9]. This variation in response can cause trophic mismatch, whereby consumer phenology becomes 49 

asynchronous with an important resource [4,5]. 50 

 51 

Predicting how phenology will affect populations in the future requires detailed knowledge of the 52 

aspect(s) of the environment that species use to schedule their phenological events, and the magnitude 53 

of their responses to these environmental variables [10]. These environmental predictors might act as 54 

cues, signalling favourable future conditions, or constraints, prohibiting advancing phenology until 55 

certain conditions are met. A model terrestrial system for studying phenology and trophic mismatch is 56 

the deciduous tree – folivorous caterpillar – insectivorous passerine bird (e.g. tits Paridae) food chain 57 

[4,11,12], hereafter referred to as the focal system. In this system, there is an ephemeral superabundance 58 

of caterpillars in late spring, which consume young leaves before the trees impart defensive chemicals 59 

[13]. Adult birds that synchronise the peak demand of their offspring to coincide with this caterpillar 60 

peak fledge more young of higher quality [7,12]. Initiation of nest building occurs over a month before 61 

peak offspring resource demand; in the intervening period a clutch is laid, incubated and the chicks are 62 

partially reared [4,14]. Birds must therefore determine the timing of egg-laying in response to aspects 63 

of the environment that are informative of the timing of the future resource peak [15]. 64 
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 65 

Despite the popularity of the focal system among researchers, the environmental variables that affect 66 

the reproductive phenology of the birds are only partially understood. One contributing predictor is 67 

photoperiod, whereby increasing daylight hours indicate approaching favourable breeding conditions 68 

[16]. The role of photoperiod has been demonstrated experimentally, as sustained exposure of blue tits 69 

(Cyanistes caeruleus) to artificially inflated photostimulation caused them to breed three months early 70 

when supplied with unlimited food [17]. Photostimulation operates through rapidly stimulating gonadal 71 

and follicular growth and signalling song production [18,19]. While there is an interval of 72 

approximately eight weeks between the onset of gonadal development and egg laying in wild tits, this 73 

can be reduced to five weeks under artificial photostimulation [17,19]. Such plasticity indicates that, 74 

while photostimulation is necessary to initiate reproduction, it is not in itself sufficient, and other stimuli 75 

act to fine-tune timing [20]. In addition, whilst variable laying dates among populations can be 76 

explained by locally adapted photoperiodic responses [21], photoperiod is consistent inter-annually and 77 

therefore cannot be responsible for substantial in situ variation in phenology (which can be several 78 

weeks) [22]. 79 

 80 

The average temperature during a period of spring has been shown to be a strong negative correlate of 81 

clutch initiation in woodland passerines [10,11,23]. For tit species a rise of 1°C elicits a 3.5-5 day 82 

advancement in clutch initiation [4,22,24], but the mechanism whereby average temperature affects 83 

birds is unknown [25]. A direct effect of temperature on breeding phenology is often interpreted as 84 

being a cue that predicts the timing of the peak caterpillar resource several weeks later [26]. 85 

Alternatively, low temperatures might act as a constraint, limiting the onset of energetically costly 86 

processes such as egg production and incubation [27], although cue and constraint scenarios need not 87 

be mutually exclusive. In the space of about two weeks a female blue tit can lay a clutch of eggs 88 

weighing in excess of 150% of her body weight [14]. In support of the temperature constraint 89 

hypothesis, cooling nestboxes delays egg formation in starlings (Sturnus vulgaris) [28], and reduces 90 

egg volume in blue tits [29,30]. All previous observational studies have used daily average 91 

temperatures, but it is possible that temperatures at different times of day may act via different 92 
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mechanisms. For instance, rising daytime temperatures may provide a cue of advancing conditions, 93 

whereas thermoregulation costs associated with low night-time temperatures may act as a constraint on 94 

egg-laying or a short-term cue of the predicted costs of incubation. 95 

 96 

Whether temperature acts directly or via an indirect pathway, such as tree phenology or invertebrate 97 

abundance, is yet to be fully established. Tree leafing phenology, most frequently oak (Quercus sp) or 98 

birch (Betula sp), correlates positively with forest passerine lay date over time [31,32] and  across space 99 

at the site [33] and UK-wide level [34]. As some of these studies omitted temperature as a predictor, it 100 

is possible that such phenological correlations arise because plants, invertebrates and birds all respond 101 

directly to temperature. A clear mechanism whereby vegetation phenology would affect bird breeding 102 

phenology has not been established, although it is possible that birds derive chemical cues from buds 103 

or visually assess tree phenology. Bud consumption is minimal and temporally consistent however [35] 104 

and inserting leafing branches into aviaries has no effect on lay date [36]. Artificial supplementary 105 

feeding of passerines has been found to advance lay dates by a few days to a week [37,38], including 106 

in woodland insectivores [39]. Manipulation of resources has been found to elicit greater responses in 107 

years [39] and territories [40] with lower food resource levels, indicating a possible alleviation of an 108 

environmental nutrient/energy constraint [41]. As far as we are aware no previous analysis has tested 109 

the role of natural food resource availability as a phenological driver of breeding phenology in the focal 110 

system. 111 

 112 

The aim of this study is to separate the effects of different putative predictors of breeding phenology 113 

(temperature, tree phenology, food availability and photoperiod), establishing which factors are most 114 

important in generating spatiotemporal variation in blue tit reproductive phenology. We analyse data 115 

collected from a 220km transect of 40 woodlands across Scotland [42]. In contrast to typical single-site 116 

approaches to studying woodland bird phenology, by considering spatial and temporal variation this 117 

study design somewhat uncouples covariation between the putative predictors. In addition, whilst 118 

previous studies primarily focus solely on lay date as a measure of avian reproductive phenology, we 119 

also examine the predictors of an earlier phenological phase, nest building initiation date, as different 120 
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environmental aspects may control the timing of each and permit fine-tuning of phenology throughout 121 

the breeding season [43,44]. We then assess the robustness of our predictions in two ways. Firstly, we 122 

conduct a cross-validation in which we test the performance of our model in predicting lay dates in two 123 

subsequent years. Secondly, we examine the generality of our predictions by combining three national 124 

datasets to test the performance of two key predictors with respect to blue tit lay dates across a long-125 

term (47-year) UK-wide dataset incorporating 36,839 records. 126 

 127 

Methods 128 

Study system 129 

 130 

This study was conducted along a 220km transect from Edinburgh (55°98’N, 3°40’W) to Dornoch 131 

(57°89’N, 4°08’E) in Scotland, incorporating 40 deciduous woodland sites (Fig A1) which varied in 132 

elevation (8 – 440 m.a.s.l) [42]. Each site had six nestboxes (26mm hole Schwegler 1B) used by 133 

breeding blue tits during 2014-2018. All dates used in this study are ordinal dates counted from January 134 

1st. Temperature was monitored by two Thermachron iButtons (DS1922L-F5), which were installed at 135 

opposite ends of each site from mid-February until mid-June every year. They were secured 1.5m high 136 

on the north side of a tree, to avoid direct sunlight, in a waterproof white plastic film cartridge with a 137 

20mm-diameter hole in the bottom to allow ambient air circulation and temperatures were recorded 138 

every hour on the hour to a sensitivity of 0.0625°C. Invertebrate availability was monitored over four 139 

day intervals using two caged, double-sided yellow sticky traps (245 x 100 mm) at each site, hung at ca 140 

1.75m [42]. Invertebrates over 3mm in length were counted [42] and flying invertebrates captured using 141 

this technique are important dietary items during early spring [45,46]. 142 

 143 

Habitat surveys were conducted at all 40 sites as detailed in [42]. Tree phenology was studied on 6 – 144 

10 locally representative focal trees per site per year, with the focal tree selection protocol detailed in 145 

Appendix A and focal tree taxa and coverage in Table A1. On each visit (every other day), each focal 146 

tree was visually inspected using binoculars. The phenology of each focal tree was tracked, recording 147 
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the dates of: (i) budburst – when the green leaf first emerges from the earliest bud on any part of the 148 

tree, and (ii) leafing – when the first leaf on any part of the tree is fully unfurled and looks to be the 149 

correct shape, if not eventual full size, for the leaf of that tree species [33]. 150 

 151 

All nestboxes at intensively studied sites were checked every other day throughout the breeding season. 152 

The nest initiation date reflected the earliest day on which either the entire floor of the nestbox was 153 

covered with nesting material, or the nesting material had built up to ≥45mm depth at the front of the 154 

nestbox (measured from the bottom of the exterior of the nestbox to the top of the nesting material 155 

bulk). Lay date was defined as the date at which the first egg was laid in a lined nest, calculated as the 156 

previous day if two eggs were found as blue tits lay one egg per day, generally early morning [14]. One 157 

second brood occurred and was excluded from analyses. 158 

 159 

Statistical Analyses 160 

Individual predictor models 161 

 162 

To establish the best predictor belonging to each putative predictor block (temperature, tree phenology, 163 

invertebrate availability) of blue tit reproductive phenology, each measure of each predictor (detailed 164 

below) was first modelled individually in a linear mixed model (LMM) [47], with site and year as 165 

random effects, using maximum likelihood. We assume that the effects of all variables on phenology 166 

are similar across space and time [22], meaning that we interpret the slope as indicative of plasticity 167 

with respect to the environmental predictor. Akaike Information Criteria (AIC) were then used for 168 

model comparison [48], and the model with the lowest AIC within each predictor block was selected. 169 

All models were also compared with a null model which included all random terms but only the 170 

intercept as a fixed effect, and marginal R2 values (representing the variance explained by fixed factors) 171 

and conditional R2 values (representing the variance explained by the entire model) were calculated for 172 

each model [49]. 173 

 174 
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We considered five measures of temperature as predictors of blue tit phenology (24hr, day-time, night-175 

time, daily maximum and daily minimum) to examine whether bird phenology is sensitive to 176 

temperatures at particular times of the day or temperature extremes. Each temperature predictor was 177 

calculated as a mean over a thermal sensitivity period, which was different for nest initiation and lay 178 

date. The use of a sliding window [10,22] to identify this thermal sensitivity period proved to be 179 

ineffective with our dataset due to the very high among-day correlation between mean temperatures 180 

estimated over different sliding windows, a consequence of most of our replication being spatial rather 181 

than temporal (i.e. high elevation sites are typically colder than low elevation sites). We therefore used 182 

the sensitivity period for lay date (days 75-128) estimated by an earlier study for blue tits across the UK 183 

[22]. As there are no published estimates of the sensitivity period available for nest initiation, we 184 

subtracted the mean lag between nest initiation and lay date in our dataset (n = 20 days) from the period 185 

used for lay date (days 55 – 108). Day-time was defined as those hours after sunrise and before sunset 186 

throughout the entire sensitivity period (0800 – 1700hrs for nest initiation, 0700 – 1800hrs for lay date), 187 

with night-time the hours always after sunset and prior to sunrise (2000 – 0500hrs for nest initiation, 188 

2100 – 0400hrs for lay date). In a post-hoc test of the importance of day-time versus night-time 189 

temperature, we included both fixed terms in a single LMM and report these results in Appendix A Fig 190 

A2. 191 

 192 

We considered six measures of tree phenology (mean budburst/leafing, foliage-weighted 193 

budburst/leafing, birch budburst/leafing). Firstly, the mean budburst of all focal trees was calculated for 194 

each site in each year. Secondly, a weighted budburst was calculated using Equation A1 that considered 195 

the composition of the habitat at each site given the coverage offered by the focal trees. Thirdly, mean 196 

birch budburst was calculated for each site containing birch in each year, as birch is the commonest tree 197 

genus on the transect [42], has early phenology, and has been previously linked to bird phenology [32]. 198 

Where we lacked birch phenology data (n = 4), birch budburst was taken from the geographically 199 

nearest site. Identical measures as detailed above were also taken to create mean leafing, weighted 200 

leafing and birch leafing per site per year. Leafing was not considered as a predictor of nest initiation 201 

as it occured on average 19 days later. 202 
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 203 

To establish the measure of invertebrate availability, total invertebrate numbers were logged (log x+1) 204 

for each sticky trap due to the log normal distribution of abundances and mean totals per site collection 205 

day were calculated. To obtain a number per day the exponent (exp x-1) of these totals was then divided 206 

by four (as sticky traps were collected every four days) and logged again (log x+1). A sliding window 207 

approach [10,22] was then used to identify the time period during which mean invertebrate availability 208 

best predicted nest initiation and lay date across all sites and years. For the sliding window, starting 209 

dates 82-100 and durations of 10-60 days were considered, with a cut-off end date representing the 210 

mean of the respective blue tit phenology. 211 

 212 

Combined predictor models 213 

 214 

A full model (lmer) was generated [47] to analyse the predictors of blue tit reproductive phenology 215 

simultaneously. Nest initiation and lay date were the responses, in separate models, with the best 216 

temperature measure predictor, the best tree phenology predictor, the best invertebrate availability 217 

predictor (all respective for each response) and latitude (as a proxy for photoperiod) included as fixed 218 

effects, and site and year as random effects. The same models were run using the spaMM package [50], 219 

with the inclusion of a Matern spatial autocorrelation term to a) determine the extent of spatial 220 

autocorrelation and b) assess the sensitivity of results to the effects of spatial autocorrelation, allowing 221 

for an exponential decay (nu = 0.5). A null model, containing no fixed predictors of each response and 222 

site and year as random effects, was also created for comparison. 223 

 224 

Robustness of predictions 225 

 226 

The predictive performance of the significant terms from the full lay date model were assessed in two 227 

ways (nest initiation predictions were not assessed due to poor model performance). First, we employed 228 

a cross-validation approach and tested the ability of our estimated model coefficients to predict lay date 229 

in two subsequent years (2017-18) at the same sites. For this, a new full model was created identical to 230 
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that described above (lmer), but without invertebrate availability, as these data were not collected in 231 

2017-18. Based on latitude, mean night-time temperature (days 75-128) and mean birch budburst, this 232 

model predicted lay date for each nestbox in 2017-18. This prediction was then compared with the 233 

observed lay date at each nestbox during each year and the root-mean-square-error and out of sample 234 

cross-validated R2 were calculated. 235 

 236 

To assess whether the drivers we identified are able to predict phenology on a considerably larger spatial 237 

and temporal scale we combined three national databases. We used blue tit lay date from the British 238 

Trust for Ornithology nest record scheme [51], including records from the period 1970-2016 for which 239 

the uncertainty in lay date was ≤ 10 days (n = 36,839). Our temperature measure was mean 24hr 240 

temperature for days 75-128 for each matched 5km grid square in each year, derived from daily 241 

interpolations from UK weather stations [52]. We used birch leafing dates from across the UK as 242 

recorded by the Woodland Trust’s Nature’s Calendar citizen science scheme for the period 1998–2014 243 

(n = 14,892), using leafing rather than budburst as these are subject to less measurement error by citizen 244 

scientists [53]. We analysed these data as a trivariate response in a Bayesian GLMM [54], treating lay 245 

date as censored Gaussian [55] and the other variables as Gaussian. We included 50km grid cell, year, 246 

50km grid cell: year interaction, 5km grid cell and residual as random terms, using parameter expanded 247 

priors except for the residual (inverse Wishart, nu = 0.002) [56]. For each random term other than the 248 

residual we can estimate the variance-covariance of lay date, temperature and birch phenology 249 

(Appendix A: trivariate model matrix) and from this coefficients of bird phenology regressed on tree 250 

phenology and temperature can be calculated (see Appendix A, [56]); for the residual we only estimated 251 

the variance of each of the response terms. Model convergence was assessed via inspection of trace 252 

files and all effective sample sizes for focal parameters exceeded 1000. 253 

 254 

Results 255 

Individual predictor models 256 

 257 
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All temperature predictors for blue tit reproductive phenology returned a negative slope, and all but one 258 

were a significant improvement on their respective null models (ΔAIC > 2, Table A2). The best 259 

temperature predictor for both nest initiation and lay date was mean night-time temperature over their 260 

respective time sensitivity periods, which significantly outperformed all other temperature predictors 261 

(Table A2) and showed similar responses for both nest initiation (-2.43 ± 0.83 days/°C) and lay date (-262 

2.87 ± 0.56 days/°C). In a post-hoc test that included both mean day-time and mean night-time 263 

temperate predictors, the slope for mean night-time temperature was consistent with the slope in the 264 

original model, whereas the slope for mean day-time temperature was far shallower, consistent with 265 

night-time temperature being the stronger predictor (Fig A2). Temperature predictor models for lay date 266 

consistently captured more variance (Table A2, marginal R2 = 0.19) than those for nest initiation (Table 267 

A2, marginal R2 = 0.05). For nest initiation, site variance was much more pronounced than year 268 

variance, and mean night-time temperature explained approximately a third of each (Table A2). For lay 269 

date, site and year variance were more similar in magnitude and mean night-time temperature explained 270 

more than four-fifths of inter-annual variance, and over a third of site variance (Table A2). 271 

 272 

The slopes of all models using tree phenology as a predictor of blue tit reproductive phenology reveal 273 

that later tree phenology predicts later reproductive phenology (Table A3). The best tree phenology 274 

predictor of both nest initiation and lay date was birch budburst (Table A3). Whilst birch budburst was 275 

not a significant predictor of nest initiation (b = 0.17 ± 0.11, ΔAIC = 0.4, marginal R2 = 0.01), it was a 276 

significant predictor of lay date (b= 0.35 ± 0.07, ΔAIC = 18.6, marginal R2 = 0.11). 277 

 278 

Using sliding windows we found the best mean invertebrate availability predictors of blue tit phenology 279 

were between days 82 and 95 for nest initiation and days 93-123 for lay date. Invertebrate availability 280 

significantly predicted nest initiation (Table A4), but captured very little variance in either nest initiation 281 

or lay date (marginal R2 = 0.01 – 0.03), and the effect sizes were small, such that nest initiation and lay 282 

date were predicted to occur just four and five days earlier, respectively, when invertebrate availability 283 

was at its highest value compared to its lowest (Fig 1C & 1F). 284 

 285 
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Combined predictor models 286 

 287 

In the full models, that included the best predictor from each single predictor model and latitude as a 288 

proxy for photoperiod, nest initiation was not significantly predicted by any single predictor variable 289 

and the full model performs rather poorly in explaining the variance (Table 1, marginal R2 = 0.06, 290 

conditional R2 = 0.25). In comparison, lay date was significantly predicted by both night-time 291 

temperature (b = -1.65 ± 0.69) and birch budburst (b = 0.22 ± 0.09), explaining a substantial proportion 292 

of the variance (marginal R2 = 0.20, conditional R2 = 0.44), capturing approximately 39% of site 293 

variance and 93% of inter-annual variance (Table 1). Latitude was a non-significant predictor of both 294 

responses. Models that estimated spatial autocorrelation returned very similar results and revealed 295 

spatial autocorrelation to be negligible, with the range at which autocorrelation drops to 0.1 being less 296 

than 0.01° for both nest initiation and lay date, equating to distances within a site [42]. 297 

 298 

Robustness of predictions 299 

 300 

The cross-validation model using data collected in the subsequent two years was found to provide an 301 

accurate (root-mean-square-error = 6.05 days) and unbiased (Fig 2) prediction of lay date, with the 302 

explanatory power very similar to that of the original model (out-of-sample cross-validated R2 = 0.21). 303 

 304 

Across the UK (50x50km grid cells) the regression coefficients for mean 24hr temperature as a predictor 305 

of lay date were negative but non-significant (b = -2.070, 95% credible interval [CI] = -7.186 – 3.550), 306 

whereas over time the equivalent slope was significant (b = -2.059, 95% CI = -3.370 – -0.858) (Fig A3). 307 

Similarly, birch leafing was a positive but non-significant predictor of lay date across the UK but 308 

significant across years (b = 0.311, CI = 0.092 – 0.516), with the slope similar to that obtained for our 309 

transect (Fig A3). On average birch leafing occurred 11.7 days (95% CI = 11.08 – 12.33) before blue 310 

tit lay date in the UK. The slope estimates obtained for temperature and birch as predictors of lay date 311 

do not differ significantly over space versus time and are similar to those obtained for our transect. 312 

 313 
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Discussion 314 

 315 

In this study, we aimed to gain a clearer understanding of the proximate environmental drivers of the 316 

breeding phenology of a passerine bird by testing multiple putative drivers (temperature, tree 317 

phenology, prey abundance and photoperiod) both independently and then together. Mean night-time 318 

temperature in early spring and the budburst phenology of birch trees are the most important predictors 319 

of blue tit breeding phenology, with elevated night-time temperatures and earlier birch budburst 320 

significantly predicting earlier lay dates across sites and years. These predictors performed well in cross-321 

validation using data for two additional years, and using variants on these predictors we found that they 322 

generalise to a considerably larger spatial scale (UK) and over a much longer timescale. These results 323 

concur with previous studies suggesting that temperature is a strong causal predictor of lay dates in 324 

woodland passerines [22,23], but advance our understanding by identifying night-time temperatures as 325 

most predictive. From this we infer that warmer night-time conditions may remove a constraint on 326 

breeding rather than providing a cue [27]. A striking result emerging from our work is that birch 327 

phenology outperformed both mean tree phenology, and mean tree phenology weighted for local tree 328 

abundance, indicating that blue tits may be sensitive to the seasonality of particular tree species within 329 

the landscape. 330 

 331 

Spring temperatures are well known to be a strong negative correlate of woodland passerine laying 332 

dates, though the mechanism through which it acts is unknown [25]. The multiple regression slope we 333 

estimate is shallower than that we obtain in the single predictor models and estimates from other blue 334 

tit studies [22,24] and this discrepancy arises because analyses that consider temperature as the sole 335 

driver of breeding phenology will estimate a slope that combines both direct and indirect effects of 336 

temperature, whereas our analyses include variables that represent proximate drivers arising via two 337 

indirect pathways (birch phenology and invertebrate availability). This is the first study to identify 338 

night-time temperatures as the most important temperature predictor and we suggest that increasing 339 

night-time temperatures may lift a thermal energetic constraint on producing and incubating eggs 340 
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[27,57]. This would also explain why female yolk development [58] – but not male gonadal 341 

development [59] – correlates with laying dates. It remains possible that our finding that night-time 342 

temperatures are more important than day-time temperatures arises due to instances of direct sunlight 343 

contributing to measurement error of the latter. Nonetheless we suggest that the hypothesis that night-344 

time temperatures are a constraint warrants further exploration. 345 

 346 

Tree phenology was a poor predictor of nest initiation, both in individual and combined predictor 347 

models, but birch budburst was a strong and significant predictor of lay date in all models. This is 348 

consistent with birds responding to certain tree genera more than others, as has been suggested for birch 349 

in northern Europe previously [32]. In the UK national dataset used in this study, birch leafing is 350 

strongly positively correlated with the more widely reported and relatable oak leafing across both space 351 

(r = 0.973) and time (r = 0.909) but occurs on average 13.8 days earlier (see Appendix A for further 352 

details). We suggest that this early phenology of birch provides an indicator of future environments 353 

earlier in the year than other genera, coinciding with the bird’s requirement for information; this is 354 

supported by budburst predicting lay date better than later leafing. As tree phenology was a very poor 355 

predictor of nest initiation but a significant predictor of first egg date, this could indicate that it provides 356 

a supplementary cue between the two phenological phases allowing for fine-tuning of the timing of egg 357 

laying after nest building. Such a cue could be visual or chemical [35], or possibly indirect through 358 

invertebrate availability on, or in, birch buds, food resources shown via faecal metabarcoding to be 359 

heavily utilised by blue tits in Scotland in early spring but not captured by the sticky traps [45]. In 360 

addition, if the effect of temperature proves to be indirect via tree phenology or invertebrate availability 361 

then the reliability of assuming that temperature has a direct causal effect [22,60] will depend on the 362 

linearity of temperature effects on tree and invertebrate phenology. Birch, for instance, is delayed by 363 

warmer conditions during a chilling period in the early winter [53], such that a focus only on the spring 364 

period may overestimate the advance that this species will show. 365 

 366 

Flying invertebrate abundance was a significant predictor of nest initiation when tested in isolation, but 367 

captured relatively little of the variation and was not a significant predictor of either phase of blue tit 368 
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reproductive phenology in the combined models. We note that the predicted effect size of a few days 369 

difference in lay dates between high and low prey availability is of similar magnitude to the responses 370 

to artificial feeding observed in other studies [39,40] and could reflect the maximum amount that 371 

females can plastically shift laying due to food availability, which would presumably alleviate energetic 372 

constraints like increasing night-time temperatures. However, sticky trap derived estimates of food 373 

availability may provide an incomplete estimate of the resource available to blue tits, due to the 374 

variability inherent in catching insects on sticky traps and not recording non-flying taxa. Thus, we 375 

cannot exclude the possibility that average nightly temperature and birch phenology provide a better 376 

predictor of the true available prey abundance than our sampling yields. 377 

 378 

Previous research has demonstrated that photostimulation is fundamental in commencing temperate 379 

passerine reproductive phenology [17,18], but we found no evidence that it explains the spatial variation 380 

observed on the scale of our study. This supports the idea that photostimulation opens a ‘window’ for 381 

possible breeding beyond which other supplementary cues refine the exact timing, and these processes 382 

give rise to the observed variation. 383 

 384 

The breeding phenology of many avian species across the temperate northern hemisphere is advancing 385 

at a similar rate to that noted in this study in response to warming temperatures [24,61] and it is possible 386 

that other species in this region utilise a similar set of environmental predictors. In the temperate 387 

southern hemisphere avian breeding phenology is also associated with vegetation productivity and food 388 

resources, but the productive period extends for longer and its timing is less predictable [62]. Moreover, 389 

conversely to the north, physiological stress from high temperatures rather than low appears to constrain 390 

breeding, suggesting that our insights may not generalise here [63]. 391 

 392 

In summary, mean night-time temperatures and birch budburst phenology are significant predictors of 393 

lay date in Scottish blue tits, consistent with temperature having both a direct and indirect effect and 394 

acting as a thermal constraint rather than a cue. Our models performed well in cross-validation and as 395 

the effects we estimated in Scotland could be generalised to the national scale over a longer time period 396 
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this gives a degree of confidence in the robustness and generality of our inferences, and highlights their 397 

value for predicting future variation in blue tit breeding phenology. This will enable more accurate 398 

prediction of the effects of trophic mismatch in this focal system [10,22]. 399 
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Tables and figures 
 
 
 
Table 1 Summary of model outputs from LMM’s incorporating all predictors of nest initiation and lay date. Significance asterisks show p values (0.05 * 0.01 
** 0.001 ***). Temperature shows the slope for the best temperature predictor found for each response in Table A2 (mean night-time temperature for both 
responses), tree phenology shows the slope for the best tree phenology predictor for each response in Table A3 (birch budburst for both responses), invertebrate 
availability shows the slope for the best invertebrate availability predictor for each response in Table A4 (mean availability between days 82-95 for nest 
initiation, days 93-123 for lay date) and photoperiod shows the slope for latitude as a proxy for photoperiod. Random effect variances for each model are also 
shown (site, year and residual). In spaMM models nu was fixed at 0.5 to constrain the spatial autocorrelation to follow an exponential decay. 
 

Response Model Intercept Temperature Tree 
phenology 

Invertebrate 
availability 

Photoperiod 
proxy 

Site 
variance 

Year 
variance 

Residual 
variance 

R2 
marginal 

R2 
conditional 

Nest 
initiation 

Null 104.5 ± 1.5     28.2 4.1 97.9 0.00 0.25 
lmer 139.8 ± 

102.7 
-2.00 ± 1.27 0.07 ± 0.14 -1.18 ± 1.63 -0.59 ± 1.74 22.9 3.1 98.3 0.06 0.25 

spaMM 127.6 ± 99.6 -1.86 ± 1.16 0.07 ± 0.14 -1.25 ± 1.57 -0.39 ± 1.69 28.7 1.7 89.8  rho = 283.5 
Lay date Null 123.2 ± 2.4     17.2 16.2 34.2 0.00 0.49 

lmer 139.7 ± 67.2 -1.65 ± 0.69 * 0.22 ± 0.09 * -1.50 ± 1.07 -0.50 ± 1.15 10.5 1.2 33.6 0.20 0.44 
spaMM 129.0 ± 67.9 -1.48 ± 0.69 * 0.23 ± 0.08 * -1.29 ± 1.04 -0.37 ± 1.16 14.3 1.4 29.7  rho = 267.3 
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Fig 1 Relationship between the best individual environmental predictor variables and two measures of 
blue tit reproductive phenology (A-C: nest initiation, D-F: lay date). A Mean night-time (2000 – 0500 
hrs) temperature during the period 24th February – 18th April B Mean birch budburst date C Mean 
invertebrate availability during the period 23rd March – 5th April D Mean night-time (2100 – 0400 hrs) 
temperature during the period 16th March – 8th May E Mean birch budburst date F Mean invertebrate 
availability during the period 3rd April – 3rd May. All slopes shown are taken from the best predicting 
models summarised in Tables A2-A4 and significant slopes are marked with an asterisk. 
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Fig 2 The relationship between predicted and observed lay dates during the validation years 2017 (green 
points) and 2018 (blue points) on the Scottish transect. The dashed line is the 1:1 relationship. Note that 
observed lay date varies more than predicted lay date because predictions are made for site means. 
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Contents: 
 
1. Fig A1 Map of field sites in Scotland 
2. Focal tree selection protocol 
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Fig A1 Map of Scotland illustrating the locations of all 40 sites along the transect (green stars) with 
selected cities as location indicators.  
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Focal tree selection protocol 
In 2014, six focal trees were selected (the nearest deciduous tree with a trunk diameter ≥ 20cm to each 
nestbox) and identified to genus level at each site. If oak (Quercus sp) or birch (Betula sp) were present 
at a site but not represented in this selection, up to six of each relevant species present were numbered 
and one of each present selected by the random roll of a die, resulting in six to eight focal trees per site. 
In subsequent years (2015-16) the same individual focal trees were used wherever possible (consistency 
2014-15 = 80%, 2015-16 = 97%), and additional trees were added so that each site contained 8-10 focal 
trees. These extra trees were selected by using the method described above for oak and birch but 
extending this to sycamore (Acer pseudoplatanus) and willow (Salix sp). If there were fewer than eight 
focal trees at the site by this stage, the selection method described above was used on randomly selected 
deciduous trees of species typical of the surrounding habitat, leaving each site with at least eight locally 
representative focal trees. 
 
 
Table A1 Detailing the number of focal trees studied of each taxon each year, with the percentage of 
intensively studied sites (2014 n=30, 2015 n=35, 2016 n=37) with at least one focal tree of this taxon 
(site coverage), ordered by focal tree number in 2016, followed by site coverage in 2016. Total focal 
tree n=186 in 2014 (mean 6.2/site), 293 in 2015 (mean 8.4/site) and 313 in 2016 (mean 8.5/site). Species 
within each tree taxon along the transect are detailed in [1]. 
 

Tree Taxon (Genus) 
2014 2015 2016 

Focal 
Trees Sites (%) Focal 

Trees Sites (%) Focal 
Trees Sites (%) 

Birch (Betula) 85 93 118 97 123 97 
Oak (Quercus) 19 40 48 57 53 57 

Sycamore (Acer) 29 47 30 37 33 38 
Willow (Salix) 7 13 20 31 22 32 
Alder (Alnus) 15 30 22 31 22 30 
Beech (Fagus) 13 27 17 23 17 22 
Ash (Fraxinus) 7 20 10 20 11 19 
Elm (Ulmus) 2 3 7 17 8 19 

Rowan (Sorbus) 6 17 8 14 8 14 
Aspen (Populus) 2 3 6 9 7 11 
Hazel (Corylus) 3 10 5 14 4 11 
Cherry (Prunus) 0 - 2 3 2 3 

Chestnut (Castanea) 0 - 0 - 2 3 
Lime (Tilia) 0 - 0 - 1 3 

 
 
 
Equation A1 Calculation to obtain weighted site mean budburst at a single site in a single year, where 
𝑓𝑓 = frequency of tree at site (percentage), 𝑏𝑏 = mean budburst of tree species at site per year and 1-14 
denote tree taxa. Weighted site mean leafing was calculated identically. 
 

∑ 𝑓𝑓𝑖𝑖𝑛𝑛=14
𝑖𝑖=1 𝑏𝑏𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝑛𝑛=14
𝑖𝑖=1
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Trivariate model matrix in space and time 
 
Blue tit first egg date (F), temperature (T) and birch phenology (P) from across the UK were included 
in a mixed model with a trivariate response. Then for each random term included in the model we were 
able to estimate a 3 x 3 variance-covariance matrix: 
 

 �
𝜎𝜎𝐹𝐹2 𝜎𝜎𝐹𝐹,𝑇𝑇 𝜎𝜎𝐹𝐹,𝑃𝑃

𝜎𝜎𝐹𝐹,𝑇𝑇 𝜎𝜎𝑇𝑇2 𝜎𝜎𝑇𝑇,𝑃𝑃

𝜎𝜎𝐹𝐹,𝑃𝑃 𝜎𝜎𝑇𝑇,𝑃𝑃 𝜎𝜎𝑃𝑃2
� 

 
From this matrix we can define A as the 2 x 2 variance-covariance matrix of predictors (T and P) and 
B as a vector of the covariance of predictors and response. Then A-1B returns the equivalent to the 
multiple regression coefficients across levels of a focal random term [2]. We use this approach to obtain 
separate estimates of the effect of temperature and birch leafing on blue tit lay date over space (50km 
grid cells) and time (years). If the predictor variables are causative and there is no local adaptation we 
predict that responses over space and time should be the same [3]. 
 
 
 
 
 
 

 
 

Fig A2 The slopes of a linear model with A nest initiation and B lay date as the response variable and 
both mean day-time (green) and mean night-time (purple) temperatures as the predictor variables, with 
site and year as random effects. Whilst the slope for night-time temperature remains consistent with 
that when it is used a single predictor (Table A2), the slope for day-time temperature is much reduced 
(Table A2), highlighting night-time temperature as the better predictor of both nest initiation and lay 
date. 
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Table A2 Temperature predictors of nest initiation and lay date, with slopes (b) and their associated standard errors (se) estimated from LMM’s (see methods), 
together with the AIC value of each for comparison, and the random effect variances (site, year and residual). The best temperature predictors of nest initiation 
and lay date respectively are presented in bold. 
 

Response Predictor Intercept ± se b ± se AIC Site 
variance 

Year 
variance 

Residual 
variance 

R2 
marginal 

R2 
conditional 

Nest 
initiation 

Null 104.5 ± 1.4  3145.6 28.3 3.0 96.2 0.00 0.25 
24hr 118.2 ± 5.2 -2.33 ± 0.86 3141.1 21.6 1.9 96.6 0.04 0.23 

Mean day-time 118.2 ± 6.5 -1.75 ± 0.82 3143.7 22.7 2.0 96.9 0.03 0.22 
Mean night-time 114.7 ± 3.7 -2.43 ± 0.83 3139.9 21.9 2.0 96.2 0.05 0.24 
Mean maximum 111.4 ± 7.5 -0.65 ± 0.70 3146.9 26.2 2.4 96.6 0.00 0.23 
Mean minimum 109.4 ± 1.9 -2.21 ± 0.74 3140.7 23.6 0.7 96.3 0.05 0.24 

Lay date Null 123.3 ± 2.1  2464.5 18.1 11.6 33.9 0.00 0.47 
24hr 146.8 ± 4.6 -3.23 ± 0.62 2440.2 11.2 1.6 34.5 0.17 0.40 

Mean day-time 142.7 ± 6.4 -2.14 ± 0.69 2448.3 13.1 4.0 34.7 0.07 0.38 
Mean night-time 138.1 ± 3.1 -2.87 ± 0.56 2437.2 11.3 2.3 34.1 0.19 0.42 
Mean maximum 128.3 ± 6.9 -0.40 ± 0.53 2454.2 17.2 9.8 34.2 0.00 0.44 
Mean minimum 130.3 ± 2.1 -2.21 ± 0.52 2440.9 11.8 3.9 34.2 0.15 0.42 
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Table A3 Tree phenology predictors of nest initiation and lay date, with their slopes (b) and associated standard errors (se) estimated from LMM’s (see 
methods), together with the AIC value of each for comparison, and the random effect variances (site, year and residual). The best tree phenology predictors of 
nest initiation and lay date respectively are presented in bold. BB = budburst, LF = leafing. 
 

Response Predictor Intercept ± se b ± se AIC Site 
variance 

Year 
variance 

Residual 
variance 

R2 
marginal 

R2 
conditional 

Nest 
initiation 

Null 103.7 ± 1.2  2698.6 24.6 1.8 91.8 0.00 0.22 
Mean BB 89.4 ± 12.6 0.13 ± 0.11 2699.3 22.6 2.0 92.0 0.01 0.22 

Weighted BB 91.1 ± 11.0 0.11 ± 0.10 2699.3 22.4 1.9 92.1 0.01 0.22 
Birch BB 85.9 ± 11.4 0.17 ± 0.11 2698.2 22.9 1.7 91.7 0.01 0.22 

Lay date Null 123.2 ± 2.0  2367.9 18.5 10.6 33.9 0.00 0.46 
Mean BB 97.2 ± 9.1 0.23 ± 0.08 2362.7 13.8 7.4 34.2 0.05 0.41 

Weighted BB 98.9 ± 7.8 0.21 ± 0.07 2360.8 14.3 7.8 33.9 0.05 0.43 
Birch BB 86.0 ± 7.9 0.35 ± 0.07 2349.3 13.3 5.8 33.0 0.11 0.44 
Mean LF 103.0 ± 8.0 0.16 ± 0.06 2364.9 13.3 7.0 34.5 0.04 0.40 

Weighted LF 101.2 ± 7.2 0.18 ± 0.06 2361.9 13.1 7.0 34.3 0.06 0.41 
Birch LF 99.2 ± 6.8 0.20 ± 0.06 2359.2 12.3 6.0 34.2 0.07 0.40 

 
 
 
Table A4 Invertebrate abundance predictors of nest initiation and lay date, with slopes (b) and associated standard errors (se) taken from LMM’s (see 
methods), along with null models and AICs for comparison, and the random effect variances (site, year and residual). 
 

Response Start Date Intercept ± se b ± se AIC Site 
variance 

Year 
variance 

Residual 
variance 

R2 
marginal 

R2 
conditional 

Nest 
initiation 

Null 104.5± 1.4  3145.6 28.3 3.0 96.2 0.00 0.25 
82 – 95 106.2 ± 1.8 -2.16 ± 1.56 3106.5 24.8 2.4 98.2 0.01 0.22 

Lay date Null 123.3 ± 2.1  2350.2 17.3 11.3 34.3 0.00 0.45 
93 – 123 126.7 ± 2.4 -2.30 ± 1.21 2348.7 15.0 6.8 34.5 0.03 0.41 
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Fig A3 The relationship between lay date and spring temperature (A, C) and birch leafing date (B, D) 
over time (A, B) and space (C, D) across UK-wide datasets. Predicted slopes correspond to the mean 
posterior multiple regression slopes, with black and grey lines corresponding to significant and non-
significant slopes, respectively. Green points are mean values in a year and blue points are mean values 
in a grid cell (over space). Only years and grid cells with a minimum of 50 observations are included 
as points. 
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Correlation of birch leafing phenology to oak leafing phenology 
 
Methods 
First leafing data for pedunculate oak (Quercus robur, n = 11285) and silver birch  (Betula pendula, n 
= 14892) for the period 1998 – 2014 were obtained from the Woodland Trust’s Nature’s Calendar 
citizen science scheme. The two phenological measures were included as a bivariate response in a 
general linear mixed model with 50km grid cell, year and 5km grid cell included as random terms. 
Models were fit using MCMCglmm [4] and run for 110,000 iterations with the first 10,000 removed as 
burn-in. Priors were inverse-Wishart for the residual term and parameter-expanded for the other random 
terms. Based on the model posteriors we assessed the correlation and major axis regression between 
birch and oak over space and time. 
 
Results 
Across the UK silver birch leafing is strongly positively correlated with pedunculate oak leafing across 
50km grid cells (r = 0.973, 95% HPD  = 0.946 – 0.992) and years (r = 0.909, 0.783 – 0.977). On average 
oak leafing occurs 13.803 days (11.121 – 14.438) after birch. Across grid cells the major axis slope 
reveals that for every days delay in oak leafing there is a smaller delay in birch leafing (b = 0.657, 0.594 
– 0.728). Across years phenology of birch and oak leafing is not significantly different from a 1:1 
relationship (b = 0.999, 0.748 – 1.250). 
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