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Abstract 

 

Since the introduction of the UK MenC vaccine programme in November 
1999 there has been a 97% decrease in the number of confirmed group C 
meningococcal disease cases. However, in the year of introduction and the 
subsequent two years an increase in the numbers of group B cases was 
noted.  
 

Meningococcal infection may be microbiologically confirmed by culture and 
non culture methods. The introduction by the Meningococcal Reference Unit 
(MRU) of diagnostic polymerase chain reaction (PCR) testing in 1996 
dramatically increased the number of cases ascertained solely by PCR, 
currently over 50%. Routinely cases determined by PCR only are confirmed 
to serogroup level and are not characterised further. 
 
This study was carried out to investigate whether the application of non 
culture DNA sequence typing which had recently been developed by the 
Heath Protection Agency could improve surveillance of meningococcal 
disease, and to determine if the increase in the number of observed group B 
cases was associated with particular meningococcal clones.  
 
The non culture DNA sequence typing of the porA antigen gene and of the 
seven genes of the Multilocus sequence typing (MLST) scheme was 
undertaken. Archived samples from one year before and two years following 
the immunisation programme, 96 samples in total, were analyzed using 
nested amplification and DNA sequence typing. The non culture group B 
fatal case data were also compared to other available molecular typing 
datasets. 
 
Results showed that there was no significant change in predominating group 
B clones and therefore no significant epidemiological shift in the 
meningococci causing group B disease, including fatalities, in the years 
1999-2001. It was found by the combination of culture and non culture data 
that the two predominating clonal complexes causing fatal disease were 
ST41/44 lineage3 (36.3% pre and 30.8% post immunisation) and ST269 
(22.4% pre and 31.9% post immunisation). This provided reassurance that 
the epidemiology of group B meningococcal disease was not impacted by 
the group C immunisation programme, and in particular that there was no 
noted proliferation of the hyper invasive ST11 clonal complex among group 
B disease (there were no fatal ST11 group B cases pre and 4.4% post 
immunisation). The porA and MLST data is important for group B vaccine 
development, which is informed by the monitoring of population shift among 
group B meningococci. 
 
In addition the non culture sequence typing methods described here have 
subsequently been applied to case cluster and outbreak investigation by the 
MRU. Incidents involving patients diagnosed by both non culture and culture 
methods are now able to be resolved. 
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INTRODUCTION 

 
1.1 Meningococcal disease 

Meningococcal disease is caused by invasive infection in the human 

population by the bacterium Neisseria meningitidis. This organism is carried 

in the nasopharynx of between 10 and 20% of the population in an 

asymptomatic carrier state (Caugant et al, 1994; Cartwright, 1995). It can 

cause invasive disease in some individuals by entering the bloodstream, 

causing bacteraemia. The spectrum of disease progression can then vary 

considerably from transient bacteraemia to fulminant septicaemia with or 

without meningitis, or meningitis alone (Steven and Wood, 1995). 

 

Fulminant or invasive meningococcal disease can cause serious clinical 

sequelae with mortality and morbidity rates of between 5% and 13%. For 

meningococcal disease caused by N. meningitidis serogroup C, which 

caused approximately 40% of the disease in the United Kingdom prior to 

introduction of conjugate vaccine, the mortality rate was between 10 and 

13%, whilst for group B disease, which caused 60% of disease prior to and 

>90% post immunisation, mortality was between 5 and 7% (Goldacre et al, 

2003; Jensen et al, 2006). 

 

Traditional microbiological confirmation of meningococcal infection is by 

isolation of the organism from blood culture, cerebrospinal fluid (CSF) or 

other sites such as throat swab or joint fluid. Commercially produced latex 

agglutination kits such as the PastorexTM Meningitis (BIO-RAD, France) may 

be used for the direct detection of meningococcal polysaccharide antigen 
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from clinical samples. Since the early 1980’s, the Meningococcal Reference 

Unit (MRU) in Manchester has offered a national service of phenotypic 

characterisation of isolates, involving ascertainment of serogroup, serotype 

and serosubtype. Microbiology laboratories throughout England and Wales 

submit isolates identified biochemically as N. meningitidis to the MRU. The 

isolates are phenotypically characterised using both co-agglutination and 

enzyme-linked immunosorbent assay (ELISA) methods. This information is 

used in the epidemiological study of the disease including case cluster, 

outbreak investigation and endemic disease monitoring. 

 

1.2   Neisseria meningitidis 

The organism is a Gram negative diplococcus which is oxidase positive.  

Neisseria sp. can be isolated from a range of both animal and human hosts, 

some as harmless commensals (Neisseria lactamica) or as exclusive human 

pathogens (N. meningitidis and Neisseria gonorrhoeae). N. meningitidis can 

cause invasive disease such as meningitis and septicaemia but can also be 

found colonising the nasopharyngeal mucous membranes in asymptomatic 

carriage in 10-20% of the population. Occasionally N. meningitidis can be 

isolated from sites such as the urethral mucosa and the eye (Cartwright, et 

al 1987). 
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1.3 Antigenic characterisation of N. meningitidis 

The meningococcus has several surface structures which can be used for 

serological characterisation and typing of the organism (Figure 1.1). The 

extracellular polysaccharide capsule and outer membrane proteins are 

characterised by the MRU using dot-blot ELISA for all submitted isolates. 

The serogroup of meningococci is determined by the polysaccharide 

capsule produced extracellularly. The capsule is an important pathogenic 

determinant of the meningococcus and may be characterised as one of 13 

serogroups: A, B, C, D, X, Y, Z, 29E, W135, H, I, K and L which have been 

described (Davis et al, 1980). Groups B, C, Y and W135 are responsible for 

invasive disease in the UK, whilst group A is responsible for the majority of 

disease globally. The other groups rarely cause invasive disease. Sialic acid 

is found in the polysaccharide capsule of all meningococcal serogroups 

apart from serogroup A, which contains mannosaminephosphate (Poolman 

et al, 1995). 

 

The differing chemical composition of the polysaccharide capsule enables 

the serological classification of meningococci into one of the thirteen 

serogroups. Serogroup is routinely determined in the MRU using dot blot 

ELISA assays for serogroup A, B, C and W135, if negative in these assays, 

co-agglutination reagents produced in-house are used to further test by co-

agglutination. 
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Figure 1.1 Diagram of meningococcal cell structure 

 

This diagram of the cell structure shows the polysaccharide capsule and 
outer membrane proteins (OMP) used in phenotypic characterisation in the 
MRU. (personal communication, Dr S.J. Gray) 
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Reagents for co-agglutination serogroup testing are made using polyclonal 

anti-polysaccharide antibodies raised in rabbits which are bound to killed 

Staphylococcus aureus cells. Serogroup A, B, C, X, Y, Z, 29E and W135 

can be ascertained (Eldridge et al, 1978). Serotype and serosubtype of 

meningococci are determined by antigenic outer membrane proteins of 

various classes expressed in the bacterial cell membrane. Serotype is 

determined by class 2 or class 3 porB proteins and sero sub-type by class 1 

porA proteins. 

 

Dot blot ELISA assays are used in the MRU to screen for the more 

commonly expressed porA and porB proteins but the great diversity of 

protein epitopes, particularly in group B organisms, and limited monoclonal 

antibody reagent panel leads to many isolates being reported as “not 

typeable” (NT) by phenotypic means. The phenotypic data (Table 1.1) is 

used for the epidemiological monitoring of meningococcal disease in 

England and Wales. 
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Table 1.1 N. meningitidis serogroups, serotypes and serosubtypes 
identified by dot blot ELISA. 
 
     

 porA-sero-subtypes, VR1, 2 and 3. porB 

     

Serogroup VR1 VR2 VR3 Sero-types 
     

A P1.5 P1.1 P1.6 3.1 
     

B P1.7 P1.2  2.2a 
     

C P1.12 P1.3  2.2b 
     

W135 P1.19 P1.4  3.4p 
     

  P1.9  3.4z 
     

  P1.10  2.11 
     

  P1.13  3.14 
     

  P1.14  3.15 
     

  P1.15  3.21 
     

  P1.16  2.22 
 
Table 1.1 illustrates the four serogroups, 15 serosubtypes (VR1, VR2 and 
VR3) and 10 serotypes which can be identified by dot blot ELISA used to 
serologically phenotype all N. meningitidis isolates received at the MRU 
(HPA, Manchester, UK). 
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1.4 Laboratory diagnosis of meningococcal disease 

In routine microbiology laboratories confirmation of meningococcal disease 

is by culture of the meningococcus from normally sterile sites such as the 

CSF, blood or synovial fluid. The organism can be isolated from nose or 

throat swabs in a patient with disease, but if isolated from the throat the 

organism’s presence may indicate asymptomatic carriage. Meningococci 

may also be isolated incidentally from other sites such as the genito-urinary 

tract and the respiratory tract. (Cartwright,1995). 

 
Microbiology laboratories identify isolates as N. meningitidis using 

biochemical identification systems such as API NH (Biomerieux, France) 

and carry out antibiotic susceptibility testing to assist clinicians in the acute 

treatment of the patient. Some laboratories will also ascertain the serogroup 

of the organism using commercially produced latex agglutination kits such 

as Pastorex™ Meningitis (Bio-Rad Marnes-la-Coquette, France). 

 

Public health action such as contact tracing, administration of prophylactic 

antibiotics, or immunisation of contacts, will be informed by the serogroup of 

an organism in a case of disease and is undertaken by the local Health 

Protection Unit (HPU) (Stuart et al, 2002). All laboratories in England and 

Wales submit isolates to the MRU for characterisation. These isolates are 

then included in the national culture archive to enable epidemiological 

monitoring of the disease, and to provide material for vaccine development. 
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1.5 Molecular detection of N. meningitidis 

In the mid 1990s a greater awareness of meningococcal disease, clinical 

reluctance to perform lumbar puncture (LP) in infants due to the possibility of 

coning (brain damage caused by rapid release of high intracranial pressure) 

(Nadel, 2001), and the much earlier administration of antibiotics (Cartwright 

et al, 1992; Strange and Paugh, 1992) led to a decrease in laboratory 

confirmed cases. Notification of possible or probable cases remained at 

similar levels (Ragunathan et al, 2000), and the inability to grow the 

causative organism led to the consideration of non-culture methods. The 

development of polymerase chain reaction (PCR) based assays was 

undertaken in order to microbiologically confirm those cases where no 

isolate was available (Corless et al, 2001). Samples can be rendered sterile 

very rapidly following instigation of antibiotic therapy, in a matter of hours for 

CSF (Kanegaye et al, 2001) and case ascertainment by PCR would allow 

cases without culture confirmation to be included in surveillance of the 

disease (Hackett et al, 2002a). 

 

Following trials of the PCR testing on a national basis the service was 

offered as a case confirmation service for England and Wales in 1996 

(Kaczmarski et al, 1998). The sample types suitable for analysis include 

peripheral whole ethylenediaminetetraacetic acid (EDTA) blood, CSF, joint 

fluids, serum from clotted blood and other liquid samples. The proportion of 

cases ascertained solely by PCR detection has risen to around 50% (Figure 

1.2). 
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Diagnosis by PCR testing involves an initial nucleic acid extraction process 

followed by PCR testing for a deoxyribonucleic acid (DNA) target specific to 

meningococci. The first chosen target was an insertion sequence, IS1106, of 

which there are several copies in the meningococcal genome, enhancing 

sensitivity of the assay. However following a small number of false positives 

(Borrow et al, 1998b) caused by IS1106 occasionally being found in other 

bacterial species, a PCR test for the meningococcal specific capsule 

transfer gene (ctrA) was developed and put into routine use by the MRU 

(Guiver et al, 2000). 

 

Samples which tested positive using this meningococcal DNA screening 

PCR assay were further tested to ascertain the serogroup B or C which 

were the most common serogroups in the UK. The serogroup specific PCR 

assays target the sialic acid synthesis gene (siaD) responsible for 

polysaccharide capsule production (Borrow et al, 1997). Assays for the 

ascertainment of group Y and group W135 have also been introduced 

(Borrow et al, 1998a), and are used when samples are positive for 

meningococcal DNA but negative for group B and C. An assay for 

confirmation of serogroup A is also available. 
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Figure 1.2 Laboratory confirmed cases 1984 onwards, all serogroups. 

 

Figure 1.2 shows laboratory confirmed cases of meningococcal disease 1984-2007 with significant events highlighted. 
Data for groups B and C in appendices H and I. (Produced by Mr Richard Mallard from MRU data).
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1.6 Molecular characterisation of N. meningitidis. 

Several methods for molecular characterisation of meningococci have been 

described (Yakubu et al, 1994; Yakubu and Pennington, 1995; 

Swaminathan et al, 1996) including restriction endonuclease analysis (REA) 

and pulsed field gel electrophoresis (PFGE). These methods involve sizing 

cleaved DNA fragments separated by gel electrophoresis and comparison 

by fingerprint patterns using fragment sizing software programmes. The 

fragments can be hybridised with specific gene probes to allow greater 

discrimination of the patterns obtained. Multi locus enzyme electrophoresis 

(MLEE) was used to designate meningococci into clonal complex groups for 

population epidemiology, where organisms are related irrespective of their 

phenotypic properties. Such techniques have not been employed by the 

MRU for routine characterisation of meningococci due to the complex nature 

of the procedures involved. 

 

In 1998, multi locus sequence typing (MLST) was described as a portable 

approach to designating pathogenic micro organisms into clonal complexes 

for epidemiological study (Maiden et al, 1998). The scheme includes 

methodology for meningococci, and uses DNA sequence analysis of a 

series (seven) of constitutive gene loci. For meningococci these loci are a 

putative ABC transporter (abcZ), adenylate kinase (adk), shikimate 

dehydrogenase (aroE), fumarate hydratase (fumC), glucose-6-phosphate 

dehydrogenase (gdh), pyruvate dehydrogenase subunit (pdhC) and 

phosphoglucomutase (pgm). The target genes are distributed over the 



 24 

whole meningococcal genome and are not under immune selective 

pressure. 

 

The PCR primers for amplification of these loci are described and products 

are processed in sequencing reactions. The fragments of the seven loci 

produced for MLST sequence analysis vary in size from 433 to 501 base 

pairs (bp). Sequence data are processed using DNA sequence editing 

software packages such as SequencherTM and the base sequences 

submitted to the website www.mlst.net. For each organism a seven number 

code relating to the seven loci is produced which can then be allocated a 

sequence type and clonal complex on the website (Figure1.3). 

 

Surface antigen genes which are under immune selective pressure may also 

be used for molecular typing; porA sequence typing is used for molecular 

characterisation of meningococci (Jolley et al, 2007; Russell et al, 2004). 

The limited panel of monoclonal antibodies in the dot-blot ELISA for typing 

and sub-typing means some isolates are reported as “not typeable”. 

Sequence typing commonly gives a result and hence more data for isolates 

where the ELISA method does not give a complete phenotype. The MRU 

targets variable regions one (VR1) and two (VR2) and data can be 

submitted on the website www.neisseria.org to obtain results after software 

analysis of the base sequence data. 

 

 

 

http://www.mlst.net/
http://www.neisseria.org/
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Figure 1.3 mlst.net website allelic profile enquiry. 

 

Figure 1.3 shows the pubmlst website being used to designate sequence 
type and clonal complex by submitting a seven locus allelic profile. 
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1.7 Non-culture molecular characterisation 

Approximately 50% of cases of meningococcal disease are ascertained by 

PCR testing alone (Figure 1.2). In these patients no isolate is available for 

phenotypic characterisation and therefore serogroup is the only available 

epidemiological information. For study of possible case clusters, outbreaks 

and for longer term epidemiological study of the disease, it is important to 

have more information available (Caugent, 1998; Taha, 2002). Assays using 

enhanced DNA amplification from clinical samples have been reported on a 

limited number of samples (Kriz et al, 2002; Diggle and Clarke, 2003; Diggle 

et al, 2003). The MRU have previously designed assays in house to provide 

DNA sequence typing data direct from clinical samples (Birtles et al, 2005). 

These nested PCR assays have been applied in this study. 

 

If laboratory diagnosis of meningococcal disease was by PCR alone, the 

new assays could be used to provide additional epidemiological data. Two 

rounds of amplification with different primer sets were carried out (Birtles et 

al, 2005). DNA products for subsequent DNA sequencing reactions for the 

seven gene targets of the MLST scheme, and for porA regions of the 

genome were produced. The sequence data could then be used along with 

phenotypic and genotypic data from isolated organisms in order to provide 

more complete surveillance data using both culture confirmed and non-

culture cases. 

 

In the epidemiological investigation of possible clusters and outbreaks of 

meningococcal disease cases may be related by close contact between 
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patients, such as in a school, nursery or tertiary education setting, or by 

close geographical relatedness. The information described can show 

whether the cases are caused an indistinguishable organism or to be 

unrelated sporadic cases of disease. The appropriate public health action 

can then be taken by Health Protection Unit infection control staff informed 

by the results from the MRU. 

 

In clusters or outbreaks of group B disease the only action possible is the 

administration of prophylactic oral antibiotics to case contacts. The 

prophylaxis, with oral rifampicin or ciprofloxacin, eliminates nasopharyngeal 

carriage of meningococci in close contacts of a case or cases, and removes 

the infective organism from the at risk population. The risk of further cases is 

reduced by this action, but at the present time immunisation is not available 

as there are no polysaccharide group B vaccines available and 

multicomponent group B vaccines suitable for the diversity of UK group B 

infection are at the development stage only (Lewis et al, 2009). 

 

For contacts of group C, Y or W135 cases immunisation is offered in 

addition to prophylaxis. Either the conjugate group C vaccine or the 

quadrivalent A.C.Y.W135 polysaccharide vaccine is given as appropriate 

(on a named patient basis). 
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1.8 Notification of meningococcal disease. 

Meningococcal disease is notifiable, so clinicians treating a patient 

presenting with possible or probable meningococcal infection have a 

statutory duty to notify a “Proper Officer” under the Public Heath legislation 

of 1988. Notification is to the Health Protection Unit covering the area of the 

patient’s home post code, or to the HPU local to where the patient presents. 

This enables the Health Protection team, Consultants in communicable 

disease control (CCDC’s) and infection control specialist nursing staff, to 

take appropriate measures such as contact tracing (Stuart et al, 2002). 

Contacts of a case would be considered for antibiotic prophylaxis or 

immunisation, dependent upon laboratory confirmation of meningococcal 

disease and further epidemiological information provided by the MRU. 

 

Cases of disease thought to have a link or connection to others by close 

“kissing” contact or geographical proximity may be further investigated both 

by the HPU and MRU to ascertain if public health action is necessary. For 

instance more than one case in a school or nursery would be investigated to 

see if the causative organisms were distinguishable, and several cases 

within a close geographical area may be investigated to look for the 

possibility of endemic disease. 

 

As group C disease was the cause of a majority of the case clusters prior to 

the success of the immunisation campaign there have been fewer 

investigations in the recent past. Case clusters or related cases with group B 

disease are less common, but investigations are still called for. In any 
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investigation the proportion of cases which are confirmed microbiologically 

by PCR detection alone will be approximately 50%, and without non-culture 

sequence typing data on these cases only the serogroup will be known. 

Further information is important to inform public health action in dealing with 

case clusters. 

 

Both the Health Protection Agency (HPA) and the Office of National 

Statistics (ONS) are involved in the collection of data for meningococcal 

disease nationally. This includes laboratory confirmed versus reported 

cases, distribution of cases by serogroup, mortality and morbidity rates and 

disease by age group.  

 

1.9 Meningococcal vaccination programmes. 

Before the development and introduction of the conjugate group C vaccine 

in the UK only plain polysaccharide meningococcal vaccines were available 

(Frasch, 1995). The success of the programme in the UK (Miller et al, 2001; 

Balmer et al, 2002; Trotter et al, 2002) has led to national vaccination 

programmes in other countries such as Holland (De Greef et al, 2003) and 

Canada (Bettinger  et al, 2009). Conjugation had previously proved 

successful for Haemophilus influenzae type b (Hib) in many countries (Laval 

et al, 2003) and subsequently for Streptococcus pneumoniae (Trotter et al, 

2008). Some adjustments have been made to the programmes following 

surveillance to optimise long term protection (Cameron and Peabody, 2006). 
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Other areas of the World have problems with epidemic group A, W135 and 

X meningococcal disease, particularly in the African meningitis belt where 

epidemics can reach very high incidence (Harrison et al, 2009). Vaccination 

with group A (Marc Laforce et al, 2009) and quadrivalent (A, C, Y and 

W135) conjugate vaccines (Zimmer and Stephens 2004; Pace et al, 2009) 

may prove effective if successfully introduced. 

 

Meningococcal group B polysaccharide is not a suitable candidate for 

immunisation, even when conjugated. This is largely due to its low 

immunogenicity; it is chemically very similar to human neuro cell adhesion 

molecule (NCAM) (Lewis et al 2009). This has led to the study of other 

antigens as possible vaccine candidates for immunisation against group B 

disease. In New-Zealand epidemic group B disease caused by a particular 

clone (Martin et al, 1998) has been addressed using a vaccine incorporating 

antigens from the prevalent strain (Ameratunga et al, 2005; Dyet et al, 

2005). Other work includes study of the possibility of using Neisseria 

lactamica as a vaccine candidate (Gorringe et al, 2005). 

 

In the UK, disease causing group B meningococci are antigenically diverse, 

and vaccines using combinations of outer membrane proteins are under trial 

at the present time (Lewis et al 2009). Studies being undertaken includes 

ascertaining if any cross protection against other clones is instigated (Morley 

et al, 2001). At the present time there is still no group B vaccine programme 

in the UK. 
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1.10 Surveillance of meningococcal disease. 

Following the licensing and introduction of the new conjugated group C 

(MenC) vaccines in November 1999 (Salisbury, 2001; Trotter et al, 2002), a 

marked fall in group C cases was noted (Figure 1.4). Prior to immunisation 

the burden of group C disease had been estimated to inform the strategy 

(Davison et al, 2002). The vaccine was introduced into the infant 

immunisation programme with three doses at 2, 4 and 6 months, following 

which a catch up programme for up to age 17 years was also implemented. 

This was then extended up to age 25 years. One dose of the vaccine is 

sufficient to provide protection in immunocompetent children and adults 

(Miller et al, 2001). 

 

Any laboratory confirmed group C cases in patients in the target age range 

were followed up to ascertain immunisation history and any underlying 

immunological pathology. This would enable immunisation failures to be 

identified and the efficacy of the vaccine to be informed. The enhanced 

surveillance was carried out by the communicable disease surveillance 

centre CDSC (Shigematsu et al, 2002). In the same timescale, an increase 

in the numbers of group B meningococcal disease cases was noted (Figure 

1.5). The increase may have been the result of the emergence of more 

invasive or hyper virulent clones of group B meningococci or by increased 

use of non-culture detection methods.
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Figure 1.4 Meningococcal cases by serogroup 1997-2008 

 

 
Figure 1.4 shows the five week moving averages for serogroup B and C laboratory confirmed meningococcal disease 
cases from 1997 to 2008 in England and Wales. The marked reduction of serogroup C cases following the immunisation 
programme is demonstrated (Produced by Mr Richard Mallard from MRU data). 
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Figure 1.5 Group B cases by calendar Year 1998-2006 
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Figure 1.5 shows the increase in group B cases following introduction of MenC vaccine in November 1999, MRU data. 
(Appendix E)
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A reason for the perceived increase in group B cases has yet to be 

ascertained. The possibility of capsular switching (Swartley et al 1997, 

Stefanelli et al 2003,Tsang et al 2005, Lancellotti et al 2006) which could 

lead to such a population shift was considered in the lead up to the 

immunisation programme. 

 

 
1.11 Impact of surveillance on group B meningococcal        
vaccination. 
 
Group B meningococcal genotypes and antigenic types tend to show cycling 

over time even without such factors as immunisation pressure (Russell et al, 

2008). For instance the endemic group B disease in the Stroud area in the 

1980’s, which led to the formation of the “meningitis” charities, was caused 

by clonal complex sequence type (ST) 32/ electrophoretic type (ET) 5 group 

B meningococci. This clone has become less common over time whilst 

others (particularly ST41/44Lineage3 and ST269) have increased (Gray et 

al, 2006). Herd immunity (where a population is protected against an 

infectious disease by the immunity of some individuals causing less spread 

of the infectious agent) against common antigenic types may be responsible 

for these phenomena. There is a contrast with group C disease which was 

largely caused by the hyper invasive ST11/ET37 complex, phenotypically 

group C, type 2a, subtype P1.5; P1.2. As shown in Figure 3.5 the group C 

isolates in the year prior to immunisation were largely ST11/ET37 (78.5%), 

with only ST8clusterA4 complex having any significant number (15.3%) 

apart from this. Within the ST11/ET37 complex 91% were sequence type 

ST11. In contrast the diversity of group B isolates is shown. Three clonal 
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complexes contributed significantly (ST 41/44lineage3 complex being 37.6% 

and ST269 complex 22.0%. ST32/ET5 complex showed 14.2%) but a wide 

range of clonal complexes were found. Within these major complexes there 

was great diversity of sequence type, for 1998-1999 among the 

ST41/44Lineage3 complex 110 distinct sequence types were identified. 

Different sequence types within a clonal complex may differ by as little as 

one base pair, and for this reason ST is not used epidemiologically. 

 

The difference in epidemiology impacts significantly upon group B vaccine 

design (Urwin et al, 2004) particularly as group B polysaccharide is not a 

suitable vaccine candidate. Group C polysaccharide has been successfully 

conjugated and the vaccine is effective against all Group C strains, whilst 

group B vaccine research is ongoing (Perrett and Pollard, 2005; Lewis et al, 

2009), with no introduction in the UK to date. To cover a significant 

proportion of group B meningococcal disease in the UK multicomponent 

vaccines are being researched and trialled (Holst et al, 2009; Lewis et al, 

2009).  

 

There has been some use of narrower spectrum group B vaccines 

particularly in New Zealand where a national immunisation campaign with a 

vaccine (MeNZB™) against a particular epidemic strain of the ST41/44 

lineage3 complex has been implemented (Ameratunga et al, 2005; Dyet et 

al, 2005). This New Zealand epidemic strain has a phenotype of B:4:P1.4 

and a porA genotype of VR1 7-2,VR2 4. The vaccine consists of outer 

membrane vesicles and is not conjugated. A different vaccine has been 
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used in the Seine-Martime department in France where an ST32/ET5 

complex epidemic strain with the phenotype B:14:P1.7,16 and a porA 

genotype of VR1 7, VR2 16 was targeted (Rouaud et al, 2006). The vaccine 

used in this programme was the MenBvac® which was developed and used 

in Norway (Bjune et al, 1991; Hoiby et al, 1991) in the late 1980s to address 

a high incidence of group B meningococcal disease (120/100,000) with a 

case fatality ratio of 10%. This was the highest incidence of meningococcal 

disease in Europe at the time, and was due to an ST32/ET5 group B 

organism with a phenotype of B:15:P1.7,16. This meningococcus differs in 

phenotype from the French epidemic strain by serotype (14 rather than 15). 

The French programme of immunisation followed initial antibiotic prophylaxis 

of 8000 people as a control measure for one particular case cluster, and an 

increase to 3.4/100,000 in the incidence of meningococcal disease for the 

area (Rouaud et al, 2006). Assessment of the impact of the programme is 

awaited.   

 

This Msc study of fatal serogroup B cases was instigated due to a rise in 

group B cases subsequent to the group C immunisation programme. One 

thousand four hundred and seventy five cases were seen in 1999, 1659 in 

2000 and 1710 in 2001. There was concern that this rise could be 

attributable to a shift in the epidemiology of group B disease and possibly 

emergence of more hyper virulent clones of group B meningococci (Urwin et 

al, 2004). The plasticity of the meningococcal genome does lead to 

antigenic shift, but this usually takes place over extended time periods 

(Morelli et al, 1997;Kyaw et al, 2002). An event such as the MenC 



 37 

immunisation programme, having such an impact, could alter disease 

epidemiology. Capsule switching among meningococci has been proposed 

(Swartley et al, 1997; Vogel et al, 2000a; Stefanelli et al, 2003; Tsang et al, 

2005; Lancellotti et al, 2006), although a single organism with the capability 

to produce more than one polysaccharide capsule has yet to be found. A 

particular concern in the lead-up to the immunisation programme was that 

capsular switching from C to B among the ST11/ET37 complex would, if it 

became apparent, significantly undermine the programme. This form of 

group B has been seen historically in the UK (Russell et al, 2008) but is 

uncommon, only 0.7% (1998-99) and 1.0% (2000-01) of the group B isolates 

included in figure 3.5 were ST11/ET37 complex.  

 

A factor which could impact upon immunisation for meningococcal disease 

is the global transport of strains unfamiliar to the indigenous population, and 

hence not covered by national immunisation policy. This was observed in 

2000 and 2001 when serogroup W135 meningococcal disease of 

ST11/ET37 complex was disseminated from Mecca in Saudi Arabia 

following the Hajj pilgrimage (WHO 2001; Hahne et al, 2002). This organism 

causes disease in the African meningitis belt (Nicolas et al, 2005) but is 

rarely isolated in the UK. High case fatality was noted and secondary cases 

became apparent as the outbreak progressed. As the causative organism 

has, apart from serogroup, the same phenotype as the ST11/ET37 group C 

clone found in the UK prior to MenC immunisation, it would become a 

serious issue if it became endemic. The MRU used non culture sequence 

typing to designate W135 cases as Hajj related (Birtles et al, 2005) if no 
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organism was isolated. An indigenous serogroup W135 organism is found in 

the UK which is antigenically distinct (porA VR1 18-1, VR2 3) and of a 

distinct clonal complex (ST22). ST11/ET37 group W135 meningococci had 

been seen in the UK in the 1970s (Russell et al, 2008) but has been 

uncommon since then.  Following a change in immunisation advice for 

pilgrims travelling to Hajj post 2001 (Wilder-Smith and Memish, 2003) the 

imported ST11/ET37 serogroup W135 organism was rarely seen. The 

importation of meningococci from Hajj had been seen previously (Jones and 

Sutcliffe, 1990) when group A disease was involved. The earlier 

immunisation advice was for pilgrims to have A/C polysaccharide vaccine, 

and the change in 2001 was for the quadrivalent (ACYW135) vaccine to be 

recommended. 

 

Multicomponent group B vaccines currently under trial in the UK are 

designed to provide broad spectrum cover. They may, however, not cover 

all the observed antigenic variants causing group B disease. Clones not 

covered by the vaccines could proliferate. This is being observed with the 

multivalent pneumococcal vaccines, where those pneumococcal types not 

covered are beginning to be seen in larger numbers than pre-immunisation 

(Singleton et al, 2007). The importance of enhanced surveillance around the 

introduction of group B meningococcal vaccines is highlighted by this 

possibility. 

 

A large proportion of group C meningococcal cases in England and Wales 

prior to the immunisation programme were caused by a particular group C 
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clone. The phenotype was recognisable as C:2a:P1.5,P1.2, and these 

organisms belonged to the hyper virulent ST11/ET37 clone (Gray et al 

2006). Other hyper virulent group C clones have been observed such as 

ST11/ET15 in Canada (Tyler and Tsang, 2004) and have also been 

observed to cause high fatality rates (Smith et al, 2006). The group B 

meningococcal population is much more diverse, (Ashton and Caugent, 

2002) showing a wide range of sequence types with a distribution which 

changes with time (Kyaw et al, 2002) 

 

1.12 National carriage study. 

Carriage of meningococci has been studied in the past and used to 

investigate the epidemiology of the disease (Cartwright et al, 1987; Caugent 

et al, 1994; Ala’Aldeen et al, 2000). A national meningococcal carriage study 

was undertaken both pre and post immunisation to assess the effects of the 

MenC vaccine programme on carriage of meningococci in the UK. The study 

involved six centres nationally and throat swabs were obtained from 

adolescents. The carriage rate of meningococci is between 10 and 20% of 

which 1% is serogroup C. therefore a large number of swabs (over 13,000 

each year) were collected (Maiden et al 2002). 

 

Swabbing was undertaken at secondary schools and sixth form colleges and 

was done prior to the immunisation programme (in 1999), and again in 2000 

and 2001. All the pupils should have been immunised as part of the catch 

up programme with one dose of the new conjugate group C vaccine. Swabs 

were anonymised and all meningococci isolated were sent to the MRU for 
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phenotypic characterisation. The study showed a reduction in group C 

carriage by 70%, indicating that as well as reducing group C disease 

vaccination had altered the carriage population of meningococci (Maiden et 

al, 2002; Trotter et al, 2005). The niche created by this phenomenon could 

be exploited by any shift to more hypervirulent group B meningococcal 

strains (De Filippis and Vincente, 2005). Non-culture molecular 

characterisation methods applied before and after the vaccination 

programme will further enhance surveillance of group B meningococcal 

disease and, along with data obtained from isolates, enable reasons for 

observed phenomena to be investigated. 

 

1.13 Aims. 

This study aimed to enhance the surveillance of group B meningococcal 

disease around the introduction of new conjugate group C vaccines in a 

national immunisation programme, which began in November 1999, by the 

application of non-culture multilocus and porA sequence typing. 

 

To provide further epidemiological data on non-culture (PCR) confirmed fatal 

cases of group B meningococcal disease in the years 1999-2001. 

 

To determine whether the strain composition amongst fatal group B cases 

changed during the period of study. 

 

To examine other MRU data from the same time period. 
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Chapter 2: Materials and Methods 

 
 
2.1  Stored material from meningococcal positive PCR samples. 
 
Under the specimen retention policy for the Meningococcal Reference Unit 

nucleic acid extracts, obtained by Generation® capture column methodology 

(EDTA blood) or DNAzol extraction (CSF and serum), were archive stored at  

–20oC. Original samples were also archived and meningococcal DNA 

positive samples were stored long-term at -80oC. Isolates of meningococci 

were also archived using a commercial glycerol broth (Microbank, Prolab 

Diagnostics, Canada) stored indefinitely at -80oC, and a National collection 

of case isolates with material dating back to the late 1970s was maintained. 

 

The retention policy aims to retain all positive material for confirmatory re-

testing, prospective testing of alternative test methods, and retrospective 

testing for further epidemiological markers (as part of case cluster or 

outbreak investigations), long term epidemiological study of meningococcal 

disease and approved research projects. 
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2.2  Provision of demographic data. 

The Communicable Disease Surveillance Centre (CDSC) provided data on 

laboratory confirmed fatal group B meningococcal disease cases for 1999 

(n=79), 2000 (n=88) and 2001 (n=111). Table 2.1 below describes the 

diagnostic confirmation details and method involved per year. 

 

Table 2.1 Laboratory confirmation in the three years of study 

Year Fatal group B 
cases 

Culture 
confirmed 

 PCR only Percentage 
PCR only 

1999 79 48 31 39 

2000 88 51 37 42 

2001 111 65 46 41 

 

 

This information was gathered retrospectively as reported cases of probable 

and possible meningococcal disease were followed up to ascertain clinical 

outcome. Morbidity and mortality/case fatality ratio figures were obtained. At 

a time of reducing disease burden due to the success of the group C 

immunisation campaign the observed trend of increasing numbers of group 

B cases was of particular interest. 

 

All the positive results, by isolate and PCR testing (or both) are held on a 

secondary database at the MRU which can be interrogated to provide 

further data. This is part of the National epidemiological monitoring of 

meningococcal disease. Some of the samples from the study period were 
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missing. This was because the sample was all used for analysis as a result 

of small initial sample volume or having been removed for an approved 

study involving human genomics (Read et al 2009). Six, eight and three 

samples were missing from 1999, 2000 and 2001 respectively and were not 

available for inclusion in this study. 

 
 

2.3  Phenotypic sero-typing and serogrouping methods routinely 
employed in the MRU for N. meningitidis isolates. 

 

2.3.1 Dot-blot ELISA. 

A suspension of N. meningitidis from the surface of a non selective Neisseria 

gonorrhoeae agar (GCNS) plate with 10% (v/v) lysed horse blood (Oxoid Ltd, 

Basingstoke, Hampshire, UK code PB1052A) was made in 3 ml of 0.85% 

(w/v) saline (Oxoid Ltd, Basingstoke, Hampshire, UK code EB0334B) to 

MacFarland standard 2.0 inside a class 2 safety cabinet. The suspensions 

were then placed in a water bath at 60oC (Grant Instruments (Cambridge) Ltd, 

Royston, Hertfordshire, UK) for 60 minutes.  The suspensions were then 

stored at 4oC for up to 1 week after heat treatment if not used immediately. A 

nitrocellulose strip (2mm by 11cm) (Bio-Rad, Hemel Hempstead, 

Hertfordshire, UK) was labelled for each of the 29 available monoclonal 

antibodies, comprising serogroups, serotypes and serosubtypes. 

 

1l of meningococcal suspension was spotted onto each strip and allowed 

to air dry for 5 minutes; if more than one isolate was being typed the 

suspensions from the different organisms were spaced evenly down the 

strip. The strips were then placed in divided trays (one division for each 
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monoclonal antibody) and 2ml of a 4% (w/v) skimmed milk powder in PBS 

blocking solution was added to each division and rocked on a platform 

(Camlab Ltd, Over, Cambridge, UK) for 30 minutes. The strips were then 

washed twice with 5 ml of 0.85% (w/v) saline. Using a separate 1 ml 

graduated pastette (Alpha Laboratories, Eastleigh, Hampshire, UK) for each 

one, 1 ml of diluted serotyping or serogrouping monoclonal antibody (mab) 

was added to the corresponding marked strip and mixed by rocking for 60 

minutes. The strips were washed twice with 5 ml of 0.85% (w/v) saline. A 1 ml 

aliquot of diluted protein A-peroxidase conjugate (www.sigma-aldrich.com) 

was added to the serotyping and sub-typing strips, 1 ml of diluted anti-mouse 

IgG conjugate (www.sigma-aldrich.com) was added to the serogroup A and C 

strips and 1 ml of diluted goat anti-mouse IgM conjugate (AbD serotech 

www.ab-direct.com) was added to the serogroup B strips. The substrate was 

removed after 60 minutes mixing and the strips washed twice with 5 ml of 

0.85% (w/v) saline.  1 ml of colour developer substrate was added to each 

strip and mixed by rocking for 5 minutes. The substrate was removed and the 

strips washed with 10 ml of tap water. The strips were then examined, a dark 

purple/black spot representing a positive reaction for a particular serogroup or 

serotype/sub-type. An example of a completed assay is shown in figure 2.1. 
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2.3.2 Serogrouping of N. meningitidis using co-agglutination. 

A suspension of the N. meningitidis was harvested from growth on a GCNS 

base agar with 10% (v/v) lysed horse blood plate (Oxoid Ltd, Basingstoke, 

Hampshire, UK ref PB1052A) to approximately MacFarland standard 2.0 in 3 

ml of 0.85% (w/v) saline (Oxoid Ltd, Basingstoke, Hampshire, UK ref 

EB0334B) in a class 2 microbiological safety cabinet. Three drops of 38% 

formaldehyde (WWR International, Poole UK Prod 101134A) coloured with 

crystal violet stain (Pro-Lab diagnostics UK) was added and the suspension 

left to stand for 5 minutes. A single drop (≈ 40 µl) of each serogroup 

suspension B, C, X, Y, Z, 29E and W135 was added to the well corresponding 

to that serogroup in large well haemaglutination trays using a 1 ml graduated 

pastette. For more than one test organism the suspensions were added in 

columns. A single drop (≈ 40 µl) of the N. meningitidis suspension was added 

to each well in a row.  The tray was gently rocked/ tapped for up to 2 minutes 

in the class 2 safety cabinet and the co-agglutination read over a black surface 

using side illumination from a bench lamp. (Figure 2.2) 
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Figure 2.1 Dot blot ELISA assay. 

 

Figure 2.1 shows a completed Dot-Blot ELISA assay showing group, type 
and subtype results (prior to the introduction of group W135 by ELISA) 
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Figure 2.2   Co-agglutination to determine serogroup of meningococci 

                 

 

Figure 2.2 shows co-agglutination grouping of five isolates. This method was 
used if dot-blot ELISA assays failed to identify the serogroup. 
 
 
 
 
 
 
 
 
 
 
 
 

Positive co-
agglutination 

Negative co-
agglutination 
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2.4 Nucleic acid extraction methods from clinical samples in the 
MRU. 

 
2.4.1 EDTA blood samples. 

A Generation® capture column was placed into a 1.5 ml Generation® waste 

collection tube, 200 µl of EDTA blood sample was then added to the centre 

of the column and incubated for 1 minute at room temperature. Next, 400 µl 

of Generation® nucleic acid purification solution was added to the capture 

column, which was left to incubate for a further minute at room temperature. 

The column was centrifuged at 12,631 xg for 10 seconds in a Biofuge Primo 

R (Kendro Laboratory Products, Hanau, Germany) after which the waste 

collection tube was replaced with a fresh one.  A further 400 µl of nucleic 

acid purification solution was added to the column followed by incubation 

and centrifugation as described above, 200 µl of Generation®  nucleic acid 

elution solution was then added to the column which was centrifuged 

immediately at 12,641 xg for 10 seconds. The capture column was 

transferred to a nucleic acid collection tube and 200 µl of nucleic acid elution 

solution added and incubated at 99oC for ten minutes on a QBT2 heating 

block (Grant Instruments Ltd, Cambridge, UK) heating block. The sample 

was centrifuged at 12,641 xg for 20 seconds. The capture column was 

discarded leaving the nucleic acid in the collection tube ready for analysis or 

storage at -20oC (according to the MRU specimen retention policy). 

 

 

 

 

 



 49 

2.4.2 Cerebrospinal fluid and serum. 

A 1 ml aliquot of DNAzol (Invitrogen, Paisley, Scotland) was placed in a 1.5 

ml micro centrifuge tube (Sarstedt, Beaumont Leys, Leicester, UK), 100 µl of 

CSF sample or standardized bacterial suspension was then added. After 

vortexing using a MS2 minishaker (IKA®, Staufen, Germany) the samples 

were left to incubate at room temperature for 5 minutes. Next 0.5ml of  95% 

ethanol (v/v) (Sigma-Aldrich, Gillingham, Dorset, UK) was added to each 

sample and the samples left to incubate for a further 10 minutes at room 

temperature. The samples were then centrifuged at 13,684 xg in a Biofuge 

Primo R (Kendro Laboratory Products, Hanau, Germany) for 10 minutes 

after which the supernatant was removed using a extended pastette (Alpha 

laboratories, Eastleigh, Hampshire, UK) to leave a pellet. After adding 1 ml 

of 75% cold ethanol (v/v) to each sample and centrifuging for 5 minutes at 

13,684 xg the supernatant was removed using a extended pastette and the 

pellet re-suspended in 50 µl of molecular grade water (Sigma-Aldrich, 

Gillingham, Dorset, UK). The pellet was dissolved by incubating at 60oC for 

10 minutes in a QBT2 heating block (Grant Instruments Ltd, Cambridge, 

UK); the DNA sample was then ready for analysis or storage at -20oC 

(according to the MRU specimen retention policy). 
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2.5  Real-Time PCR detection and genogrouping of N. meningitidis 
offered as a national diagnostic test at the MRU. 

 

2.5.1  Detection of N. meningitidis and S. pneumoniae using the ABI 
Prism®  7700 sequence detection system. 

 
Detection of N. meningitidis and S. pneumoniae DNA was carried out as a 

duplex real-time PCR assay as developed by Corless et al. (2001), using the 

ctrA gene target for N. meningitidis and the ply gene target for S. 

pneumoniae (the pneumococcal result is only reported if positive or if 

specifically requested by the sender). For a single PCR, a reaction mix was 

prepared as follows: 2.5µl of N. meningitidis  primer mix (6 µM concentration 

of both forward and reverse ctrA primers (ctrA-F and ctrA-R), 2.5 µl of S. 

pneumoniae  primer mix (6 µM concentration of both forward and reverse 

ply primers (ply-F and ply-R), 2.5 µl of probe mix (2 µM concentration of 

both ctrA and ply probes (ctrA-PROBE and ply-PROBE), 12.5 µl of 2X 

TaqMan® Universal Master mix (Applied Biosystems, Warrington, Cheshire, 

UK) consisting of 5.5 mM MgCl2, 200 M each of deoxynucleoside 

triphosphates (dNTP), dATP, dCTP, dGTP, dUTP and 0.125 units of 

AmpliTaq GOLD. Finally 3 µl of molecular grade water (Sigma-Aldrich, 

Gillingham, Dorset, UK) was added and the reaction mix was inoculated with 

2 µl of the DNA extract of interest. The reaction mix sample was placed into 

a well of a MicroAmp® Optical 96 well reaction plate with bar code (Applied 

Biosystems, Warrington, Cheshire, UK) and sealed with ABI Prism™ optical 

caps (Applied Biosystems, Warrington, Cheshire, UK). The plate was placed 

on an ABI Prism® 7700 Sequence Detection system and subjected to the 

thermal cycling conditions listed in Table 2.2. The results were analyzed 
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using ABI Prism® Sequence Detection software v1.7 (Applied Biosystems, 

Warrington, Cheshire, UK).  

 

TaqMan® ctrA gene target primers and probe, incorporating 6-carboxy-

fluorescein (FAM) reporter dye quenched by 6-carboxy-tetramethylrodamine 

(TAMRA), for detection of N. meningitidis DNA: 

 

ctrA-F 5’-GCTGCGGTAGGTGGTTCAA-3’ 

ctrA-R 5’-TTGTCGCGGATTTGCAACTA-3’ 

ctrA-PROBE 5’-FAM-CATTGCCACGTGTCAGCTGCACAT-TAMRA-3’ 

 

TaqMan® ply gene target primers and probe, VIC™ reporter dye (Applied 

Biosystems, Warrington, Cheshire, UK) quenched by TAMRA, for detection 

of S. pneumoniae DNA: 

 

ply-F 5’-TGCAGAGCGTCCTTTGGTCTAT-3’ 

ply-R 5’-CTCTTACTCGTGGTTTCCAACTTGA-3’ 

ply-PROBE 5’-VIC-TGGCGCCCATAAGCAACACTCGAA-TAMRA-3’ 
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Table 2.2  Thermal cycling conditions for the ABI Prism® 7700 

sequence detection system. 
 

 
Stage Temp 

(oC) 
Time 
(Min:Sec) 

No of cycles 

    

    
1 50 2:00        1 
    
2 95 10:00        1 
    
3 95 00:15        45 
 60 1:00 
   
    

 
Table 2.1 illustrates the thermal cycling conditions for dual labelled probe 
detection of N. meningitidis and S. pneumoniae as well as genogrouping of 
N. meningitidis using the ABI Prism® 7700 sequence detection system. 
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2.5.2 Genogrouping of N. meningitidis using the ABI Prism® 7700 
sequence detection system. 

 
Genogrouping of N. meningitidis DNA was carried out as a single target 

real-time PCR assay for meningococcal groups B and C and as a duplex 

real-time PCR assay for meningococcal groups Y and W135 (Taha et al., 

2005), with all primer and probe sets using the siaD gene target to 

determine genogroup. The primers and probes for all four meningococcal 

groups are listed below. For a single PCR to identify meningococcal groups 

B or C, a reaction mix was prepared as follows: 2.5 µl of forward primer (3 

µM concentration), 2.5 µl of reverse primer (3 µM concentration), 2.5 µl of 

probe (1 µM concentration of probe), 12.5 µl of 2X TaqMan® Universal 

Master mix (Applied Biosystems, Warrington, Cheshire, UK), 3 µl of 

molecular grade water and inoculated with 2 µl of the DNA extract of 

interest.  

 

For a single duplex PCR to identify meningococcal types Y and W135 a 

reaction mix was prepared as follows: 1.25 µl of forward primer (identical 

primer used for both Y and W135 siaD targets) (4 µM concentration), 1.25 µl 

of siaD (Y) reverse primer (4 µM concentration), 1.25 µl of siaD (W135) 

reverse primer (4 µM concentration),1.25 µl siaD (W135)-probe (2 µM 

concentration of probe), 1.25 µl of siaD (W135)-probe (2 µM concentration 

of probe),  12.5 µl of 2X TaqMan® Universal Master mix (Applied 

Biosystems, Warrington, Cheshire, UK), 4.25 µl of molecular grade water 

and inoculated with 2 µl of the DNA extract of interest.    
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A reaction mix sample was then placed into a well of a MicroAmp® Optical 

96 well reaction plate with bar code (Applied Biosystems, Warrington, 

Cheshire, UK) and sealed with ABI Prism™ optical caps (Applied 

Biosystems, Warrington, Cheshire, UK). The plate was then placed on an 

ABI Prism® 7700 Sequence Detection system and subjected to the thermal 

cycling conditions listed in Table 2.1. The results were then analyzed using 

ABI Prism® Sequence Detection software v1.7.  

 

TaqMan® siaD gene target Primers and probes, incorporating 6-carboxy-

fluorescein (FAM) or VIC™ (Applied Biosystems, Warrington, Cheshire, UK)  

reporter dyes both quenched by TAMRA, for detection of N. meningitidis 

genogroups B, C, W135 and Y: 

 

N. meningitidis genogroup B 

 

siaD (B)-F 5’-TGCATGTCCCCTTTCCTGA-3’ 

siaD (B)-R 5’-AATGGGGTAGCGTTGACTAACAA-3’ 

siaD (B)-PROBE  

5’- FAM –TGCTTATTCCTCCAGCATGCGCAAA-TAMRA-3’ 

 

N. meningitidis genogroup C 

 

siaD(C)-F 5’-GATAAATTTGATATTTTGCATGTAGCTTTC-3’ 

siaD(C)-R 5’-TGAGATATGCGGTATTTGTCTTGAAT-3’ 

siaD(C)-PROBE  

5’- FAM –TTGGCTTGTGCTAATCCCGCCTGA-TAMRA -3’ 

N meningitidis genogroup Y 

siaD(Y/W135)-F 5’-GGTGAATCTTCCGAGCAGGA-3’ 
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siaD(Y)-R 5’-GGGATATCGTACACCATACCCTCTAG-3’ 

siaD(Y)-PROBE  

5’-FAM –AGCCTTCGCTTTGAGACGTCATGATTAGGATATCTG-TAMRA -

3’ 

 

N. meningitidis genogroup W135 

siaD(Y/W135) 5’-GGTGAATCTTCCGAGCAGGA-3’ 

siaD (W135) 5’-GAATATCATACACCATGCCTTCCATA-3’ 

siaD (W135)-PROBE  

5’-VIC-ATCCCTCACTTTCTGATGTCATGATCAGGATATCTG-TAMRA-3’ 

 

2.6 Nested PCR amplification for molecular characterisation on  
           group B positive nucleic acid extracts from clinical samples. 
 
2.6.1  PorA PCR amplification of N. meningitidis. 

For the porA PCRs the total volume of PCR mixture was 50 l and 

contained 1.5 l of  50 mM MgCl2 (Invitrogen, Paisley, Scotland), 10 µl of a 

1mM dNTP mix containing dATP, dGTP, dCTP, dTTP (Amersham 

Pharmacia Biotech, Little Chalfont, UK), 5 l of a 5 M concentration of 

primers 210 and 211 (Urwin, 2000), 5 l of 10X buffer, 1 l of 1% (v/v) W1 

(Invitrogen, Paisley, Scotland), 1 l of extracted DNA sample, 21.25 l of 

molecular grade water (Sigma-Aldrich, Gillingham, Dorset, UK) and 0.25 l 

(5 U/l) of Taq DNA polymerase (Invitrogen, Paisley, Scotland).  

 

The first round of the nested porA PCR carried out on clinical sample DNA 

extracts used the same reaction mix as for the isolate porA PCR listed 
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above except that the amount of DNA extract added was increased from 1 

l to 5 l and the volume of sterile water decreased to 17.25 l. For the 

second round of the nested porA PCR two separate PCRs were prepared, 

each PCR mixture was 50 l in volume and contained 1.5 l of  50 mM 

MgCl2 (Invitrogen, Paisley, Scotland), 10 µl of a 1 mM dNTP mix containing 

dATP, dGTP, dCTP, dTTP (Amersham Pharmacia Biotech, Little Chalfont, 

UK), 5 l of a 5 M concentration of VR1A and VR2B for amplification of 

variable region 1, primers VR2C and VR2E for amplification of variable 

region 2, 5 l of 10X buffer, 1 l of 1% (v/v) W1 (Invitrogen, Paisley, 

Scotland), 1 l of first round porA PCR, 21.25 l of molecular grade water 

(Sigma-Aldrich, Gillingham, Dorset, UK) and 0.25 l (5 U/l) of Taq DNA 

polymerase (Invitrogen, Paisley, Scotland).  

 

Thermal cycling was carried out using a MJ PTC 200 thermal cycler (GRI, 

Braintree, UK) using the thermal cycling conditions listed in Table 2.3 and 

primer sequences are listed in Table 2.2. 

 

2.6.2 MLST PCR amplification of N. meningitidis  DNA direct from 
clinical samples. 

 
For the first round of the nested touchdown MLST PCR for group B positive 

extracts, each reaction mixture was 50 l in volume and contained 10 µl of a 

1mM dNTP mix containing dATP, dGTP, dCTP, dTTP (Amersham Pharmacia 

Biotech, Little Chalfont, UK), 5 l of 10X buffer (containing 15 mM of 

MgCl2)(Qiagen, Crawley, UK), 10 l of Q-Solution (Qiagen, Crawley, UK), 5 l 

of a 1 M concentration of each primer, 0.5 l (5 U/l) of HotStarTaq DNA 
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polymerase (Qiagen, Crawley, UK),9.5 l of molecular grade water (Sigma-

Aldrich, Gillingham, Dorset, UK) and 5 l of specimen DNA extract. 

 

The second round MLST nested PCR  for DNA direct from clinical samples 

used the same reaction mix concentrations and final volume as the first 

apart from the fact that 1 l of PCR product from the first round reaction was 

added along with 13.5 l of sterile water. 

 

The PCR primers for both 1st and 2nd round nested protocol and their 

thermal cycling conditions are listed in Tables 2.3. 2.4 and 2.5. Thermal 

cycling was carried out using a MJ PTC 200 thermal cycler (GRI, Braintree
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Table 2.3 Thermal cycling conditions for N. meningitidis porA and MLST (nested PCR). 
 

 
porA N1 

 
porA N2 

 
N-MLST N1 

 
N-MLST N2 

                

Stage Temp 
(oC) 

Time 
(Min) 

No of 
cycles 

Stage Tem
p 
(oC) 

Time 
(Min) 

No of 
cycles 

Stage Temp 
(oC) 

Time 
(Min) 

No of 
cycles 

Stage Temp 
(oC) 

Time 
(Min) 

No 
cycles 

                

                

1 94 2 1 1 94 5 1 1 95 15 1 1 95 15 1 

                

2 94 1  2 94 1  2 94 1  2 94 1  

                

 68 1 40  46 1 40  63 1 30  65 1 30 

         -0.5 
per 
cycle 

   -0.5 
per 
cycle 

  

 72 2   72    72 2   72 2  

                

3 72 2 1 3 72  1 3 94 1  3 94 1  

                

4 4 forev
er 

 4 4 forever   48 1 10  50 1 10 

                

         72 2   72 2  

                

        4 72 2 1 4 72 2 1 

                

        5 4 forever  5 4 forever  

 
Table 2.1 lists the thermal cycling conditions for porA PCR from isolates as well as 1st and 2nd round nested porA PCR 
along with the 1st round nested MLST PCR for gene targets adk, aroE, fumC, gdh, pdhC and pgm as well as 2nd round 
MLST nested/semi-nested PCR for gene targets abcZ, aroE, fumC, gdh and pdhC. 
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Table 2.4 Thermal cycling conditions for N. meningitidis MLST (nested PCR). 
 
 
N-MLSTN3 

 
N-MLSTN4 

 
N-MLSTN5 

 
N-MLSTN6 

                

Stage Temp 
(oC) 

Time 
(Min) 

No of 
cycles 

Stage Temp 
(oC) 

Time 
(Min) 

No of 
cycles 

Stage Temp 
(oC) 

Time 
(Mins) 

No of 
cycles 

Stage Temp 
(oC) 

Time 
(Min) 

No of 
cycles 

                

                

1 95 15 1 1 95 15 1 1 95 15 1 1 95 15 1 

                

2 94 1  2 94 1  2 94 1  2 94 1  

                

 67 1 30  63 1 30  60 1 30  66 1 30 

 -0.5 per 
cycle 

   -0.3 per 
cycle 

   -0.5 
per 
cycle 

   -0.3 
per 
cycle 

  

 72 2   72 2   72 2   72 2  

                

3 94 1  3 94 1  3 94 1  3 94 1  

                

 52 1 10  53 1 10  45 1 10  56 1 10 

                

 72 2   72 2   72 2   72 2  

                

4 72 2 1 4 72 2 1 4 72 2 1 4 72 2 1 

                

5 4 forever  5 4 forever  5 4 forever  5 4 forever  

                

 
Table 2.3 lists the thermal cycling conditions for the 1st round nested MLST PCR for gene targets abcZ as well as 2nd round 
MLST nested/semi-nested PCR for gene targets adk, fumC and pgm. 
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Table 2.5 Oligonucleotide primers for N. meningitidis MLST and porA nested/semi-nested PCR. 
 

Gene 

 

Protocol 

 

Forward primer 

 

Reverse primer 

Amplicon 

Size (bp) 

Thermal cycling 
conditions 

      

abcZ abcZ-CS1st abcZ-P1d 5’-GCTGGCGGCGCAGYTCTTCC-3’ abcZ-P2d 5’-ATGGGCGGCATCATTATTGTTTCC-3’ 985 MLSTN3 

 abcZ-CS2nd abcZ-P1C 5’-TGTTCCGCTTCGACTGCCAAC-3’ abcZ-SNP1A 5’-CGGTAAAATCCAAACGGTAACTG-3’ 802 MLSTN1 

      

adk adk-CS1st adk-P1b 5’-CCAAGCCGTGTAGAATCGTAAACC-3’ adk-P2b 5’-TGCCCAATGCGCCCAATAC-3’ 708 MLSTN1 

 adk-CS2nd adk-SNP1 5’-GCATTCCGCAAATCTCTACCG-3’ adk-P2b    5’-TGCCCAATGCGCCCAATAC-3’ 570 MLSTN4 

      

aroE aroE-CS1st aroE-P1 5’-ACGCATTTGCGCCGACATC-3’ c aroE-P2 5’-ATCAGGGCTTTTTTCAGGTT-3’ c 911 MLSTN1 

 aroE-CS2nd aroE-P1b 5’-TTTGAAACAGGCGGTTGCGG-3’ aroE-P2b 5’-CAGCGGTAATCCAGTGCGAC-3’ 835 MLSTN2 

      

fumC fumC1-CS1st fumC-A1 5’-CACCGAACACGACACGATGG-3’d fumC-A2 5’-ACGACCAGTTCGTCAAACTC-3’ d 1350 MLSTN2 

 fumC1-CS2nd fumC-P1b 5’-TCCCCGCCGTAAAAGCCCTG-3’ fumC-P2b 5’-GCCCGTCAGCAAGCCCAAC-3’ 820 MLSTN2 

      

 fumC2-CS1st fumC-P1b 5’-TCCCCGCCGTAAAAGCCCTG-3’ fumC-P2b 5’-GCCCGTCAGCAAGCCCAAC-3’ 820 MLSTN2 

 fumC2-CS2nd fumC-SNP1 5’-GTCAAAATCGGCCGCACCCAC-3’ fumC-P2b 5’-GCCCGTCAGCAAGCCCAAC-3’ 798 MLSTN6 

      

gdh gdh CS1st gdh-P2 5’-GGTTTTCATCTGCGTATAGAG-3’ gdh-P1 5’-ATCAATACCGATGTGGCGCGT-3’ 678 MLSTN1 

 gdh CS2nd gdh-P2 5’-GGTTTTCATCTGCGTATAGAG-3’ Gdh-P2b 5’-TGTTGCGCGTTATTTCAAAGAAGG-3’ 726 MLSTN1 

      

pdhC pdhC-CS1st pdhC-P1b 5’-CCGGCCGTACGACGCTGAAC-3’ pdhC-P2b 5’-GATGTCGGAATGGGGCAAACAG-3’ 818 MLSTN2 

 pdhC-CS2nd pdhC-NP1A 5’-TGCGCCGTATGTATGCCAATAATG-3’ pdhC-NP2A 5’-ACAGGCCGTCTGAAACATCAATCA-3’ 662 MLSTN1 

      

pgm pgm-CS1st pgm-P2 5’-CGGATTGCTTTCGATGACGGC-3’c pgm-P1 5’-CTTCAAAGCCTACGACATCCG-3’c 963 MLSTN2 

 pgm-CS2nd pgm -NP1A 5’-GGCTTTGAATTGGTTTTGAATCC-3’ pgm -NP2A 5’-AATCGGCYTGGCGTTTGAC-3’ 796 MLSTN5 

      

porA  porA-CS1st 210 5-ATGCGAAAAAAACTTACCGCCCTC-3 211 5-AATGAAGGCAAGCCGTCAAAAACA-3 1148 porAN1 

 porA-VR1 VR1A 5-CTTACCGCCCTCGTATTG-3 VR1B 5-GGCAACGGATACGTCTTG-3 300 porAN2 

 porA-VR2 VR2C 5-TGGCTTCGCAATTGGGTA-3 VR2E 5-ACCGGCATAATACACATC-3 250 porAN2 

 

 Table 2.4 illustrates the PCR primers for the nested/semi-nested N. meningitidis MLST as well as the porA PCR primers 
and provides their thermal cycling conditions and the amplicon size.
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2.7 Visualisation of PCR products. 

All PCR products were electrophoresed on a 2% (v/v) agarose gel, 

consisting of 3 g agarose (Oncor Appligene, Durham, UK), 150 ml 1X Tris 

Borate EDTA (Sigma, Dorset, UK) and 15 l (500 g/ml) ethidium bromide 

(Sigma, Dorset, UK). 5l of PCR product was mixed with 2 l of loading 

buffer (70% (w/v) sterile injectable water (Phoenix Pharmaceuticals, 

Gloucester, UK), 29.5% (w/v) Glycerol (Sigma, Dorset, UK) and 0.5% (w/v) 

Bromphenol Blue (Bio-Rad, Hertfordshire, UK)) on a Parafilm® sheet 

(Sigma, Dorset, UK) and loaded into the gel. In order to determine the size 

of the PCR products 2 l of loading buffer was also added to 5 l of 100 

base pair ladder (1 µg/µl) (Amersham Pharmacia Biotech, Buckinghamshire, 

UK) and loaded onto the gel. The gel was electrophoresed for 45 minutes at 

130 v/cm in a Horizon 11.14 electrophoresis tank (Gibco Life Technologies 

Paisley, Scotland) which contained 1litre of 1x Tris Borate EDTA buffer 

(Sigma, Dorset, UK) and 10 l (500 g/ml) ethidium bromide (Sigma, 

Dorset, UK). The gel was imaged using a Gel Doc 3000 (Bio-Rad, 

Hertfordshire, UK) Ultra Violet (UV) imaging system (Figure 2.3, 2.4). Each 

image was saved on the laboratory network in a named folder. (For 

examples of gel images see Figure 2.3 and 2.4) 

 

For any channel indicating no product for either porA or MLST allele the 

amplification was repeated in duplicate in order to obtain a product if 

possible. 
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Figure 2.3  MLST and PorA products compared on the same gel. 

 

Figure 2.3 demonstrates that MLST nested PCR produces more product 
than porA. 
 

Figure 2.4  MLST nested PCR products run against a 100bp ladder. 

 

Showing different sized amplicons for different MLST targets. 

Figure 2.3 and 2.4 show examples of the gel images obtained for both porA 
and MLST products. 
 

PorA 

MLST 
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2.8 PCR Cleanup via Montage PCR96 plate from solution. 

The PCR product was loaded into a well on a Montage PCR96 plate 

(Millipore (U.K.) Ltd, Watford, UK), any wells not in use were covered in 

sealing tape and the plate placed on the multiscreen vacuum manifold.  A 

vacuum was then applied at 20 inches Hg for 20 minutes. After the vacuum 

was removed, 50 µl (for porA) or 100µl (for MLST) of molecular grade water 

(Sigma-Aldrich, Gillingham, Dorset, UK) was added to the well and the plate 

transferred to a Wellmix 3 mini shaker (Denley Ltd, Cambridge, 

Cambridgeshire, UK) and mixed for 20 minutes at maximum speed. The re-

suspended and cleaned PCR product was then removed to a 96 well flat 

bottomed Costar® plate (Corning, www.corning.com/lifesciences) for 

analysis and storage at -20oC. 

 

2.9 Sequencing reactions using Beckman Coulter® chemistry for 
MLST and porA gene fragments for N. meningitidis 

 

Sequencing reactions were prepared using the reduced volume protocol 

described by Azadan et al., (2002). The final volume of the sequencing 

reactions was 10 l containing 4 l of Dye Terminator Cycle Sequencing 

(DTCS) Quick Start master mix (Beckman Coulter, High Wycombe, 

Buckinghamshire, UK), 1 l of sequencing primer (10 M concentration), 4.5 

l of molecular grade water (Sigma-Aldrich, Gillingham, Dorset, UK) and 1 l 

of PCR product template which had been diluted with molecular grade water 

to approximately 16 ng/l. Reaction mixtures were placed on a MJ PTC 200 

thermal cycler (GRI, Braintree, Essex, UK) and amplified using the following 

thermal cycling conditions (Table2.6). 

http://www.corning.com/lifesciences
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Table 2.6  Sequencing thermal cycling conditions. 
 

    
Stage Temperature 

(oC) 
Time (minutes: 
seconds) 

Cycles 

    

    
 96 00:20  
1 50 00:20 40 
 60 04:00  
    
2 4 indefinately 1 
    

 
Table 2.5 presents the optimal thermal cycling conditions for the used in 
Beckman Coulter® Dye Terminator Cycle Sequencing kits incorporating 
WellRed Dyes. 
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The sequencing primers used for N. meningitidis MLST from cultured 

microorganisms and directly from clinical samples (Maiden et al, 1998; 

Feavers et al, 1999) are listed below:  

 

abcZ-S1 5'-AATCGTTTATGTACCGCAGG-3' 

abcZ-S2 5'-GAGAACGAGCCGGGATAGGA-3' 

 

adk-S1 5'-AGGCTGGCACGCCCTTGG-3' 

adk-S2 5'-CAATACTTCGGCTTTCACGG-3' 

 

aroE-S1 5-GCGGTCAAYACGCTGATT-3  

aroE-S2 5-ATGATGTTGCCGTACACATA-3 

 

fumC-S1 5-TCCGGCTTGCCGTTTGTCAG-3 

fumC-S2 5-TTGTAGGCGGTTTTGGCGAC-3 

 

gdh-S3 5'-CCTTGGCAAAGAAAGCCTGC-3' 

gdh-S2 5-GCGCACGGATTCATATGG-3 

 

pdhC-S1 5'-TCTACTACATCACCCTGATG-3' 

pdhC-S2 5'-ATCGGCTTTGATGCCGTATTT-3' 

 

pgm-S1 5'-CGGCGATGCCGACCGCTTGG-3' 

pgm-S2 5'-GGTGATGATTTCGGTTGCGCC-3' 
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Identification of ET-15 clone of N. meningitidis required sequencing of the 

fumC allele with the following specifically designed primer (Vogel et al., 

2000b): 

 

fumC-P3 5'-CGTAAAAGCCCTGCGCGAC-3' 

 

The sequencing primers used for N. meningitidis porA variable regions 1 

and 2 subtyping are listed below:  

 

porA-VR1 

VR1A 5-CTTACCGCCCTCGTATTG-3 

VR1B 5-GGCAACGGATACGTCTTG-3 

porA-VR2 

VR2C 5-TGGCTTCGCAATTGGGTA-3 

VR2E 5-ACCGGCATAATACACATC-3 

 

2.10 Clean up of sequencing products amplified using Beckman 
Coulter® chemistry for porA and MLST gene fragments for N. 
meningitidis. 

 

Stop solution (2.5 l), consisting of 1 l of 1.5 M NaOAc pH-5.2 (Sigma-

Aldrich, Gillingham, Dorset, UK), 1 l of 50 mM Na2EDTA pH-8.0 (Sigma-

Aldrich, Gillingham, Dorset, UK), 0.5 l of 20 mg/mL glycogen (Beckman 

Coulter, High Wycombe, Buckinghamshire, UK) followed by 30 l of -20oC 

95% (v/v) ethanol (Sigma-Aldrich, Gillingham, Dorset, UK) was added and 

the samples placed at -20oC for 10 minutes. The samples were centrifuged 
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at 3000 rpm for 30 min at 4oC in an Allegra 21R Centrifuge (Beckman 

Coulter, High Wycombe, Buckinghamshire, UK). The plate was inverted and 

the ethanol poured off, the plate was then blotted twice on absorbent paper. 

The samples were rinsed twice with 200 l of -20oC 70% ethanol (v/v) 

(Sigma-Aldrich, Gillingham, Dorset, UK). After each rinse the samples were 

inverted, the ethanol was poured off and the plate was then blotted twice on 

absorbent paper as before. The plate was centrifuged, inverted, on 

absorbent paper for 15 seconds at 300 rpm to further remove residual 

ethanol. The plates were vacuum dried for 20 minutes and the sequencing 

products re-suspended in sample loading solution (Beckman Coulter), 

overlayed with mineral oil (Beckman Coulter, High Wycombe, 

Buckinghamshire, UK) and sequenced on a CEQ™ 8000XL DNA Genetic 

Analysis system (Beckman Coulter, High Wycombe, Buckinghamshire, UK) 

using Genetic analysis system software version 4.3.9 (Beckman Coulter, 

High Wycombe, Buckinghamshire, UK). Pre-programmed sequencing 

methodology (LFR1) and raw data analysis protocol (Default sequence 

analysis parameter) were used to produce the analyzed sequence data for 

further use (Figure 2.5). 
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Figure 2.5 Analyzed data produced by the Beckman Sequencer. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 shows base sequence data produced by the Beckman CEQ™ 
8000 Genetic Analysis system 
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2.11 Analysis of porA and MLST sequence data. 
 

The forward and reverse sequences for the two porA regions (VR1 and 

VR2), four per sample, and the seven MLST gene fragments, fourteen per 

sample for were assembled from the resultant chromatograms using 

Sequencher sequence analysis software (Gene Codes Corporation, MI, 

USA) (Figure 2.6). The edited sequences for the porA and the different 

MLST loci were queried against the relevant N.meningitidis databases 

(Jolley, 2007). Sequence data for porA were compared to published known 

sequences for porA variable regions one and two (VR1 and VR2) on the 

www.neisseria.org website (Figure 2.7) to determine the designated variant 

for each locus. For MLST the sequence data was compared to known 

alleles on www.mlst.net.  

 

In order to designate a sequence type and clonal complex a seven number 

allelic profile was in turn submitted on the mlst.net website. For partial 

profiles (with missing alleles) it was possible to designate clonal complex but 

not sequence type on most occasions. 

http://www.mlst.net/
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Figure 2.6  Forward and reverse sequences assembled in 
SequencherTM 

 

 

 

Figure 2.6 demonstrates a porA VR2 (Peptide sequence 
YYTKDKNDNLTLVP) VR2=16-3 on the Sequencher™ sequence editing 
software package. 
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Figure 2.7  Use of the Neisseria.org. website. 

 

 

Figure 2.7 demonstrates a base sequence copied and pasted from 
SequencherTM into the neisseria.org website. Click on “Submit Query” to 
identify the target. 
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In summary, for each clinical sample included in the study, two-round nested 

PCR was carried out for porA and for the seven different MLST targets, 16 

PCR reactions in total for each sample. If products were obtained four 

sequencing reactions for porA and fourteen for MLST were carried out, a 

total of 18 sequencing reactions per sample. 

 

Over the three years, a total of 96 samples were available for study. 1536 

PCR reactions were carried out, with a maximum of 1728 sequencing 

reactions (forward and reverse for each target) ensuing. A maximum of 864 

sequences for analysis using SequencherTM sequence analysis software 

were produced. 

 

The sequence data obtained from 1999, 2000 and 2001 non-culture 

confirmed fatal group B meningococcal disease cases were compared with 

data from culture confirmed cases, to ascertain any epidemiological shift in 

the disease. Comparison with other data available within the MRU was 

included in the study to enhance epidemiological findings. This is indicated 

throughout the text where relevant. 

 

2.12  Statistical Analysis 

Where appropriate statistical comparison of data was undertaken using the 

paired t test at www.graphpad.com/quickcalcs/ttest1 and chi squared 

analysis at www.udel.edu/~mcdonald/statfishers (online Handbook of 

Biological Statistics, University of Delaware). 

http://www.graphpad.com/quickcalcs/ttest1
http://www.udel.edu/~mcdonald/statfishers
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Chapter 3: Results 

 

3.1 Sample types for non-culture group B fatal cases. 

The majority (86.8%) of the 96 clinical samples included in the study were 

blood samples, this included Ethylenediaminetetraacetic (EDTA) blood, 

serum (from clotted blood), plasma and one heparinised blood sample. CSF 

samples made up 11.4% of the total and other sample types (1.75%) 

included a tracheal aspirate and a single nucleic acid extract. The nucleic 

acid extract came from a laboratory which performs in-house meningococcal 

PCR testing, one of only two in England to do so at the time, and was sent 

to the MRU for confirmatory testing. The extract and the tracheal aspirate 

were among the samples which were missing from the sample archive. Data 

for sample types is included in appendices A, B and C. 

 
 
3.2 Application of nested PCR for non-culture fatal group B cases 

1999, 2000 and 2001. 
 
Ninety six DNA extracts from blood and/or CSF samples were available for 

study, 25 from 1999, 28 from 2000 and 43 from 2001. All were processed by 

nested PCR to amplify the porA region of the meningococcal genome and 

the seven gene targets for MLST before DNA sequencing reactions were 

carried out. The DNA extracts were from patients who had a positive 

meningococcal group B real time PCR test, no isolate, and whose disease 

outcome was fatal. 

 

A positive PCR reaction on the TaqMan® platform was indicated by the 

Cross-Threshold (CT) value (Figure 3.1), this is the number of thermal 
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cycles before the trace crosses a calculated threshold value to be flagged as 

positive. The MRU uses a 45 cycle protocol for meningococcal PCR testing, 

so a CT of 45 indicates a negative PCR test (no amplification). The mean 

CT values for the ctrA gene for the samples included in the study are shown 

in appendices A, B and C and are summarised in Table 3.1.The table also 

includes non-fatal samples from the same time period (the non fatal samples 

were not included in the study).  

 

3.3 Sensitivity of the non-culture sequence typing methods. 

The percentage of samples which produced sequence data to enable porA 

VR1,2, sequence type (ST) and clonal complex (CC) to be ascertained are 

shown in Table 3.2. Of the 96 samples, 78 (81%) gave a porA result, 80 

(83%) samples yielded an MLST clonal complex and 63 (66%) an MLST 

sequence type. Seven samples (7.3%) gave neither sequence type nor 

clonal complex. For porA, six of the samples with no result had CT values 

greater than 35, three had no CT value recorded, and seven a CT value of 

less than 35. Of the seven samples with neither ST nor CC  three had a CT 

of greater than 35 and four a CT less than 35. Thirty-five samples (36%) did 

not give a full MLST profile due to missing allele data.  

A full data set is available in Tables 3.3, 3.4 and 3.5.
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Table 3.1  Summary of the cross-threshold (CT) values for group B meningococcal PCR positive samples for 

the three years of the study. 
 

Year Number of samples     
(CSF) 

No. with no CT value 
entered 

Data (n= ) Mean CT value (ctrA 
gene) 

 Fatal Non-fatal Fatal Non-fatal Fatal Non-fatal Fatal Non-fatal 

1999 25 (6) 417 7 133 18 284 29.0 31.5 

2000 28 (1) 615 1 39 27 576 28.0 31.3 

2001 43 (6) 659 0 17 43 642 24.3 30.6 

Overall 96 (13) 1691 8 189 88 1502 27.1 * 31.1 * 

 

Table 3.1 shows the CT values for the meningococcal positive (ctrA gene) PCR tests on the non-culture (PCR) confirmed 
group B cases for the three years of the study. Subsequent analysis was carried out on the 96 fatal case samples. Fatal 
case results included in appendices A, B and C. CT data from MRU secondary archive database. 
 
*Overall the mean CT value for fatal cases was significantly lower by Paired t test (p= <0.0001) than for non-fatal cases. 
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                        Table 3.2 Summary of sequence data obtained from the samples studied. 
 
 

Year Sample 
numbers 

Number 
giving porA 
(VR1,2) 

Number 
with 
complete 
MLST 

Number 
allowing ST 
designation 

Number 
allowing 
CC 
designation 

1999 25 19       

(76%) 

10       

(40%) 

13       (52%) 18    (72%) 

2000 28 22       

(78%) 

19       

(68%) 

19       (68%) 24    (84%) 

2001 43 37       

(86%) 

32       

(75%) 

31       (72%) 38    (89%) 

Total 96 78       

(81%) 

62       

(65%) 

63       (66%) 80    (83%) 

                         ST= sequence type, CC= clonal complex. VR1,2= variable regions 1 and 2. 

Table 3.2 shows the percentage of positive data obtained over the three years using the non-culture molecular 
characterisation methods (porA and MLST). All included samples initially tested positive for meningococcal DNA by ctrA 
PCR and were confirmed as serogroup B by siaD PCR. 
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Table 3.3 PorA and MLST results for fatal group B non culture samples 1999 
 
Study 
number 

Sample 
type Group Ctvalue 

PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

          0036 edta B 29 19* 15 8 10 77 4 6 3 np UA ST32 ET5 

0114 plasma B na 22 9 rptx2 35 2 5*/rpt 38 11 9 UA ST269 

0140 csf B na 7-2* 4 3* 5 9 5 9 6 9 3754 ST41/44Lin3 

0180 plasma B 36 np rpt 4 35 15 17 8 11 17 479 ST269 

0207 plasma B 30 7-2 4 3 6 9 17 9 6 9 482 ST41/44Lin3 

0286 plasma B 21 19-1* 15-11 4* rpt/rpt 15 9 8 11 9 UA ST269 

0587 blood B na np np 4 rpt/rpt 6 np 38 np np UA ST269 

0907 plasma B na 5-2* 10 9 6 9 9 9 6 2 180 ST41/44Lin3 

1193 edta B na 21 16 6 7 6 17 26 21 8 840 UA 

0963 plasma B na rpt 10 rptx2 10 6 4 5 3 2 74 ST32 ET5 

2614 plasma B 26 7-9 13-1 8 10 5 4 5 3 8 34 ST32 ET5 

3498 csf B 23 5 2 17 5 19 17 3 26 2 60 UA 

4540 plasma B 21 19-1 15-11 4 np 15 9 8 11 rpt/9* UA ST269 

4863 csf B 28 7-2* 4 4 6 9 rpt/rpt 9 6 9 UA ST41/44Lin3 

6036 edta B 30 7-2 4 3 6 9 rpt/5* 9 6 9 41 ST41/44Lin3 

6643 plasma B 28 7-2 4 3 6 9 rpt/5* 9 6 9 41 ST41/44Lin3 

7304 csf B 38 np np rptx2 rpt/np 9 5 rpt np np UA UA 

9630 serum B 34 np np rpt/np np np rpt np rpt rpt  NP 
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Table 3.3 continued. PorA and MLST results for fatal group B non culture samples 1999 
 

Study 
number 

Sample 
type Group Ctvalue 

PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

9798 plasma B 30 22 9 4 rpt/rpt 2 rpt/5* 38 11 rpt/9 UA UA 

5223 csf B na 19-1* 15-11 4 10 15 9 8 11 9 269 ST269 

5608 serum B 26 22-1 14 4 10 161 9 11 21 3 UA UA 

5945 serum B 25 7-2* 4 4 6 9 5 9*/9* 6 9 5098 ST41/44Lin3 

8269 plasma B 32 22 14 7 5 1 13 36 rpt 15 3496 ST213 

8808 csf B na 5-1 10-4 42 np 46 24 6 rpt 17 UA UA 

4383 plasma B 36 np np 3 6 9 rpt 9 22 np UA ST41/44Lin3 

 

UA=unassigned, np= no product (amplification repeated), *=single strand only. Rpt=sequence data obtained but not 
resolvable, sequencing reaction repeated and data still unresolvable. Na=Ct value not recorded in laboratory reporting 
system. 
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Table 3.4 PorA and MLST results for fatal group B non culture samples 2000 

 
Study 
number 

Sample 
type Group Ctvalue 

PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

            0082 serum B 31 7-2 13-1 3 6 9 5 9 22 9 40 ST41/44Lin3 

0306 plasma B na 21 16 3 6 9 60 9 6 9 170 ST41/44Lin3 

0624 plasma B na np np 3 6 9 5 9 6 9 41 ST41/44Lin3 

0737 edta B 21 5 10-5 2 3 7 2 34 5 2 153 ST8 Cluster4 

0880 edta B 27 7* 16 4 10 5 40 6 3 8 259 ST32 ET5 

1065 serum B 24 19-1* 15-11 4 10 15 9 8 11 9 269 ST269 

1100 plasma B 27 19-1* 15-11 4 10 15 9 8 11 9 269 ST269 

1248 serum B 37 np np np np np rpt np np np  NP 

1388 plasma B 26 5-2* 10 8 10 5 4 5 3 8 34 ST32 ET5 

1510 edta B 30 7-2* 16 4 10 4 4 6 3 8 2145 ST32 ET5 

1840 plasma B 23 7-2* 4 3 6 9 17 9 6 9 482 ST41/44Lin3 

2148 plasma B 28 7-2* 4 3 6 19*/19* 5 3 6 9 340 ST41/44Lin3 

2705 plasma B 30 7-2 4 3 6 9 5 9 6 9 41 ST41/44Lin3 

2982 edta B 37 np np rpt/np 6 9*/np np rpt np rpt UA UA 

3115 serum B ins           M 

3497 serum B 24 7-2* 4 3 rpt/rpt rpt/np 5 9 6 9 UA ST41/44LIN3 

4306 edta B 24 7-2* 4 3 6 9 5 9 6* 9 41 ST41/44Lin3 

5644 edta B 21 22 14-6 28*/np 6 9 9 9 21 2 3919 ST41/44Lin3 

5844 edta B 27 7-2 4 3 6 9 5 9 6 2 2314 ST41/44Lin3 

6090 edta B 27 7-1 14-6 17 5 19 17 3 26 2 60 ST60 
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Table 3.4 continued. PorA and MLST results for fatal group B non culture samples 2000 
 

LABnumber 
Sample 

type Group Ctvalue 
PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

280950 edta B 32 7-2* 4 3 np 9 5 9 6 9 UA ST41/44Lin3 

280958 edta B 28 7-2* 4 3 rpt/rpt 9 5*/np 9 rpt/6 9 UA ST41/44Lin3 

270234 serum B missing           M 

277192 csf B 36 np np np np np np np np np  NP 

283545 extract B missing            M 

283818 edta B 27 7-2 4 10 6 9 5* 9 6 9 42 ST41/44Lin3 

284001 edta B 26 22 9 4 rpt 34 5 38 11 9 UA ST269 

284650 edta B 24 19-1* 15-11 4 10 15 9 8 11* 17 283 ST269 

284927 plasma B 38 np np rpt 6 9 np 11 6* 46 UA ST41/44Lin3 

285320 edta B 28 7-2 4 3 6 19 5 3 6* 9 340 UA 

286218 serum B 26 np np 3 6 rpt 23 9 6 9 UA ST41/44Lin3 

 

 

UA=unassigned, np= no product (amplification repeated), *=single strand only, rpt=sequence data obtained but not 

resolvable (Sequencing reaction repeated). Na=Ct value not recorded in laboratory reporting system.  
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Table 3.5  PorA and MLST results for fatal group B non culture samples 2001 

 
Study 
number 

Sample 
type Group Ctvalue 

PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

4230 csf B 29 19-1 15-11 np 10 rpt 9 8 11 9 UA ST269 

4505 serum B 22 7-2* 4 3 6 9* 5 9 6 9 41 ST41/44Lin3 

0113 serum B 16 7-2 4 3 6 9 17 9 6 9 482 ST41/44Lin3 

0878 edta B 24 19-1 15-11 4 rpt/rpt 6 9 8 11 9 1092 ST269 

0888 edta B 21 5 10-4 42 2 rpt 24 6 20 17 1164 UA 

1050 heparin B 25 np np np rpt/np rpt np rpt rpt 9 UA UA 

4532 edta B 24 5-1 10-1 2 3 4 3 8 4 6 11 ST11 ET37 

4602 edta B 20 5-1 10-1 2 3 4 3 8 4 6 11 ST11 ET37 

1393 edta B 22 21 4* ?3 6 9* 9 9 6 9 303 ST41/44Lin3 

1471 csf B 29 19-1* 15-11 4 10 15 9 8 11 9 269 ST269 

2404 edta B 34 np np np np rpt np np np rpt  NP 

2702 edta B 22 np np 7 8 10 np 10 1 2 UA ST18 

4209 edta B 26 7-2* 4 3 6 9 5 9 6 9 41 ST41/44Lin3 

4513 edta B 23 19-1* 15-11 4 35 15 9 8 11 9 393 ST269 

5200 edta B 22 np np np np np rpt/np np rpt rpt  NP 

3054 csf B 27 7-2 16 4 10 15 9 8 11 17 283 ST269 

3098 edta B 22 22 9 4 10 2 5 38 11 9 275 ST269 

3585 edta B 24 7-2* 16 4 np 15 9 8 11 17 UA ST18 

3834 edta B 24 21 16 17 5 19 17 3 26 2 UA ST60 

2098 edta B 20 7-2 16 4 10 15 9 8 11 17 283 ST269 

1463 edta B 28 7-2* 4 3 6 9 5 9 6 9 41 ST41/44Lin3 

5835 edta B 23 22 14 7 8 10 19 38 1 2 UA ST18 

6350 edta B 20 7-2* 4 17 5 19 17 3 26 17 3014 ST60 
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Table 3.5 continued. PorA and MLST results for fatal group B non culture samples 2001 
 
Study 
number 

Sample 
type Group Ctvalue 

PorA 
VR1 

PorA 
VR2 abcZ adk aroE fumC gdh pdhC pgm MLST 

Clonal 
Complex 

8632 edta B 26 21* 16 6 7 6 17 26 21 8 840 ST167 

9680 edta B 25 18-1* 3 3 6 34 5*/5* 11 6 9 UA ST41/44Lin3 

2327 plasma B 23 7-2 4 3 6 19 5 3 6 9 340 ST41/44Lin3 

9700 plasma B 18 19-1 15-11 4 10 15 9 8 11 17 283 ST269 

2764 edta B 20 7-2 34 3 6 9* 5*/5* 9 6 9 41 ST41/44Lin3 

2865 edta B 26 7-2* 4 3 6 9* 5*/rp 9 6 9 41 ST41/44Lin3 

3556 serum B 26 rpt 4 3 6 19 5 3 6 9 340 ST41/44Lin3 

4393 serum B 27 np np 15 3 rpt 2 8 19 15 UA UA 

4462 edta B 26 18-7* 9-5 8 4 rpt 4 5 18 9 UA ST103 

2764 edta B 34 19-1 15-11 4 10 15 5*/5* 8 11 9 354 ST269 

4958 edta B 23 22* 9 4 10 2 9 38 11 16 5372 ST269 

5059 csf B 29 19-1 15-11 4 10 15 9*/rpt 8 11 9 269 ST269 

3459 edta B 26 7-2 4 3 6 9 5 9 6 9 41 ST41/44Lin3 

3528 edta B 32 19 13-1 rpt/rpt 10 15 9 8 11 rpt UA ST269 

3954 edta B 23 7-2 4 3 6 12 5*/5* 9 6 9 4965 ST41/44LIN3 

4440 edta B 26 19 13-1 12 5 12 35 60 22 17 461 ST461 

5257 csf B 26 19-1 30-1 4 10 15* 9 8 11 17 283 ST269 

0124 csf B 16 22* 9 4 10 34 5*/5* 38 11 9 1161 ST269 

0128 serum B 19 22* 9 4 10 2 5 38 11 9 275 ST269 

0422 plasma B 27 19-1 15-11 4 10 15 17 8 11 9 1049 ST269 

 

UA=unassigned, np= no product, *=single strand only, rpt=sequence data obtained but not resolvable-repeated.
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3.4 PorA genotypes for the non-culture fatal group B cases. 
 
Two porA genotypes were prevalent from the non-culture fatal group B 

cases in each of the three years (1999, 2000 and 2001) (Figure 3.2). The 

VR1 7-2, VR2 4 genotype and the VR1 19-1, VR2 15-11 genotypes 

combined made up 53, 62 and 46% of the types ascertained for the three 

years respectively. In 1999 and 2000 in addition to the two prevalent types 

only singleton genotypes were identified, with three being common to both 

years. In 2001 an additional eleven porA types were identified as well as the 

two prevalent ones, of which seven were singletons.  

 

The two prevalent porA genotypes show a strong association with particular 

MLST clonal complexes. Over all three years, 23 of the VR1 7-2, VR2 4 

types were from samples designated ST41/44 lineage3 clonal complex, 

whilst one was unassigned and one associated with the ST60 clonal 

complex. All of the VR1 19-1, VR2 15-11 porA genotypes were associated 

with ST269 clonal complex (data in Table 3.6)
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Table 3.6 PorA and clonal complex for the non culture group B samples 1999, 2000 and 2001 

1999 1999 1999 2000 2000 2000 2001 2001 2001 2001 2001 2001 
PorA 
VR1 

PorA 
VR2 CC 

PorA 
VR1 

PorA 
VR2 CC 

PorA 
VR1 

PorA 
VR2 CC PorA VR1 PorA VR2 CC 

19 15 ST32ET5 7-2 13-1 ST41/44L3 19-1 15-11 ST269 18-7 9-5 ST103 

22 9 ST269 21 16 ST41/44L3 7-2 4 ST41/44L3 19-1 15-11 ST269 

7-2 4 ST41/44L3 5 10-5 ST8CL4 7-2 4 ST41/44L3 22 9 ST269 

7-2 4 ST41/44L3 7 16 ST32ET5 19-1 15-11 ST41/44L3 19-1 15-11 ST269 

19-1 15-11 ST269 19-1 15-11 ST269 5 10-4 UA 7-2 4 ST41/44L3 

5-2 10 ST41/44L3 19-1 15-11 ST269 5-1 10-1 ST11ET37 19 13-1 ST269 

21 16 UA 5-2 10 ST32ET5 5-1 10-1 ST11ET37 7-2 4 ST41/44L3 

7-9 13-1 ST32ET5 7-2 16 ST32ET5 21 4 ST41/44L3 19 13-1 ST461 

5 2 UA 7-2 4 ST41/44L3 19-1 15-11 ST269 19-1 30-1 ST269 

19-1 15-11 ST269 7-2 4 ST41/44L3 7-2 4 ST41/44L3 22 9 ST269 

7-2 4 ST41/44L3 7-2 4 ST41/44L3 19-1 15-11 ST269 22 9 ST268 

7-2 4 ST41/44L3 7-2 4 ST41/44L3 7-2 16 ST269 19-1 15-11 ST269 

7-2 4 ST41/44L3 7-2 4 ST41/44L3 22 9 ST269 

22 9 UA 22 14-6 ST41/44L3 7-2 16 ST18 

19-1 15-11 ST269 7-2 4 ST41/44L3 21 16 ST60 

22-1 14 UA 7-1 14-6 ST60 7-2 16 ST269 

7-2 4 ST41/44L3 7-2 4 ST41/44L3 7-2 4 ST41/44L3 

22 14 ST213 7-2 4 ST41/44L3 22 14 ST16 

5-1 10-4 UA 7-2 4 ST41/44L3 7-2 4 ST60 

   22 9 ST269 21 16 ST167 

   19-1 15-11 ST269 18-1 3 ST41/44L3 

   7-2 4 ST41/44L3 7-2 4 ST41/44L3 

      19-1 15-11 ST269 

      7-2 34 ST41/44L3 

      7-2 4 ST41/44L3 
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Figure 3.1 Percentages of porA genotypes for fatal group B cases.  
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Figure 3.2 shows the percentages of porA genotypes identified from the 
PCR positive samples for the three years of the study (data from appendices 
A, B and C). 
 
Statistical analysis was not valid for this data due to the small sample sizes. 
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3.5 MLST genotyping for the non-culture fatal group B cases. 

The MLST data obtained from the non-culture fatal group B samples is 

presented in figure 3.3. Of the 18 samples designated a clonal complex for 

1999 only four distinct complexes were noted; ST41/44Lineage3 (33.4%) 

was the most common, with ST269 (25.0%), ST32/ET5 (25.0%) and ST213 

(4.2%). 25% of the samples were unassigned. For 2000, 24 samples yielded 

five distinct complexes; ST41/44Lineage3 (57.8%), ST269 (15.4%), 

ST32/ET5 (11.6%). ST8 and ST60 were singleton data, and 7.7% were 

unassigned. For 2001, 38 samples were observed in 8 distinct complexes 

ST41/44Lineage3 (30%), ST269 (39%), ST18 (7.3%) and the remainder 

(ST60, ST8, ST11/ET37, ST137 and ST461 either less than 5% or singleton 

data. 7.3% were unassigned. 

 

The two main clonal complexes represented in the fatal group B cases, 

ST41/44 lineage3 and ST269, were the two most common among group B 

disease complexes in general over this timescale. This is shown in figure 3.5 

where sample sizes for the isolates analyzed were larger (for 1998-99 

n=933 and for 2000-01 n=934). 
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Figure 3.2  Clonal complex distribution of non-culture fatal group B 

cases. 
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Figure 3.3 shows the clonal complex percentages for the non-culture fatal 
group B cases included in the study (data from appendices A, B and C). 
 
Statistical analysis was not valid for this data due to the small sample sizes. 
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3.6 Fatal group B cases, comparison of combined culture and non-

culture data for 1999 and 2001. 
 
In order to provide as complete epidemiological data for fatal group B 

disease cases as possible the data from the study was combined with data 

from case isolates. The combined clonal complex data are summarised in 

Figure 3.4. It was not possible to include the year 2000 as isolates for that 

year (with the exception of those from November and December) did not 

have MLST designation available. 

 

The distribution of clonal complexes obtained from both culture and non 

culture MLST sequence typing on fatal group B cases shows that two major 

complexes (ST41/44 lineage3 and ST269) were prevalent in 1999. Other 

common complexes (ST32, ST18 and ST60) were also seen.  

 

In 1999, pre-immunisation, fatal cases were associated with 41/44Lineage3 

complex (36.3%) compared to 30.8% in 2001 (post immunisation). The 

percentage distribution for other clonal complexes in the same two years 

were; 22.4% and 31.9% for ST269; 17.6 and 6.6% for ST32; 4.8 and 4.4% 

for ST18 and 3.2 and 3.3% for ST60. ST11/ET37 complex was only 

observed in 2001, causing 4.4% of fatal group B cases. This distribution of 

clonal complexes was found not to be significantly different (p=0.179) 

between the two years. 
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Figure 3.3  Combined culture and non culture fatal group B cases 

1999 and 2001. 
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          Figure 3.4 shows clonal complex percentages for culture and non-

culture confirmed fatal group B cases pre (1999) and post (2001) 
MenC immunisation. 

            
           Using chi-squared analysis there was no significant difference 

(p=0.179) between the clonal complex distribution for the two years. 
 
           MLST determination of the cultures was carried out at Oxford 

University as part of an MRU collaborative study. 
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3.7 Meningococcal disease in England and Wales for one calendar 
year prior to the MenC immunisation programme. (Nov 1998-Nov 
1999). 

 
At the time of this study MLST analysis was routinely carried out by the 

MRU on every tenth N. meningitidis isolate. In order to provide a more 

comprehensive surveillance around the introduction of serogroup C vaccine 

MLST was carried out on every isolate for one calendar year prior to 

immunization (November 1998 to November 1999). There were 933 group B 

isolates submitted to the MRU during this period, all had MLST analysis 

carried out at the department of Zoology, Oxford University as part of an 

MRU collaborative study. The information is included in this study for 

comparison and to put the fatal case non culture results in epidemiological 

context. 406 (37.6%) were found to belong to clonal complex ST41/44 

lineage3, 237 (22.0%) to clonal complex ST269 and 95 (14.2%) to clonal 

complex ST32. In total 18 different clonal complexes were identified among 

the group B isolates for this pre immunization year, with 45 (7.8%) being 

unassigned. Within each of the two major clonal complexes a range of 

sequence types were identified. Within CC ST41/44 lineage3, 110 different 

sequence types were identified, many were singletons or in very low (<10) 

numbers. The most common ST found was ST41 (n=185, 45.6%) with 

ST154 (n=17, 4.2%), ST180 (n=12, 3.0%), ST1097 (n=12, 3.0% and ST340 

(n=11, 2.7%) others STs were present at n=<10. Within CC ST269 36 

different sequence types were identified. For CC ST41/44 lineage3, many 

were singletons, or found in low numbers. The most common sequence type 

was ST 269 (n=108, 45.6%) with ST283 (n=26, 11.0%) and ST275 (n=24, 

10.1%) being the only other STs significantly represented. 
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There were 655 group C isolates submitted to the MRU during this period 

and were also assigned at the department of Zoology, Oxford University. 

544 (83.1%) were found to belong to clonal complex ST11, 73 (11.1%) to 

CC ST8, 10 (1.5%) to CC ST41/44 lineage3 and 8 (1.2%) to CC ST269. In 

total 13 different clonal complexes were identified, with 7 (1.1%) of the 

isolates being unassigned to a complex. Of the 544 CC ST11, 495 (91.0%) 

were identified as sequence type ST11, and 11 (2.0%) as ST67. Of the 73 

CC ST8 58 (79.5%) were sequence type ST8, 5 (6.9%) were ST66 and 5 

(6.6%) were ST4047. 

 

Data from MLST analysis of MRU isolates, carried out at the department of 

Zoology, Oxford University, are in appendices E and F. Figure 3.5 shows a 

summary of the results relating to clonal complex distribution. 
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Figure 3.4  Group B and Group C clonal complex distribution for N 

meningitidis isolates November 1998- November 1999. 
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Figure 3.5 shows the distribution of clonal complexes among group B and 
group C isolates causing meningococcal disease in England and Wales 
prior to the MenC immunisation programme.  
 
MLST designation of the isolates was carried out at the University of Oxford 
Zoology department, as part of an MRU collaborative study. 
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3.8 Group B meningococcal disease pre and post MenC 
immunization, culture confirmed totals. 

 

The epidemiology of group B disease for one calendar year before 

immunization was compared to group C in the same timescale in figure 3.6. 

A further calendar year, November 2000 to November 2001, was also 

studied by MLST sequence typing of isolates from the MRU. This year was 

chosen, leaving out November 1999 to November 2000, to give the 

immunization programme sufficient time to be implemented nationally, and 

to allow a full calendar year of meningococcal disease data post 

immunisation to be included.  

 

Figure 3.6 compares the group B isolates already included in figure 3.5, 

from 1998-1999, to those from 2000-2001 by percentage clonal complex 

distribution. The total numbers of isolates from the two calendar years are 

remarkably similar (1998-1999; n=933 and 2000-2001; n=934), the numbers 

of distinct clonal complexes identified for each year were the same (18) 

though three complexes were found exclusively in either year in small 

numbers (three as singleton data). There were five and seven percent 

unassigned to a complex respectively. The percentage clonal complex 

distribution was not significantly different (p=0.112) for the two years. MLST 

data of MRU isolates determined at Oxford University is presented in 

appendix E and G. 
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Figure 3.5  Group B isolate Clonal complex distribution pre and post 
immunization. 
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Figure 3.6 shows the distribution of clonal complexes among group B 
isolates causing meningococcal disease in England and Wales prior to 
(Nov1998-Nov1999) and post (Nov2000-Nov2001) the MenC immunisation 
programme. 
 
Using chi-squared analysis there was no significant difference (p=0.112) 
between the clonal complex distribution for the two years. 
 
MLST determination of the isolates was carried out at the University of 
Oxford Zoology department as part of an MRU collaborative study. 
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Chapter 4. Discussion and further work 
 
This study intended to enhance the epidemiology of group B meningococcal 

disease in England and Wales by the implementation of non-culture DNA 

sequencing methods developed in the MRU. In particular the provision of 

epidemiological data on non culture confirmed fatal group B disease cases. 

The period around the introduction of the national immunisation programme 

with conjugated group C vaccines was studied. In the MRU cases confirmed 

by ctrA PCR and with no organism isolated (defined as non-culture cases) 

had the serogroup determined by siaD PCR. PCR only cases now represent 

almost 50% of laboratory confirmed meningococcal disease. Further 

epidemiological information is necessary to provide a more complete 

epidemiological picture of meningococcal disease and to enable a more 

accurate study both of case clusters and longer term disease trends.  

 

DNA sequence typing from isolates is relatively straightforward but does 

involve significant resourcing for the MRU, for this reason all isolates have 

had porA sequence typing performed routinely since October 2007 but 

MLST is currently only applied to isolates submitted during January and July 

each year for molecular surveillance. Previous studies have shown that 

complex procedures are required to obtain comparable typing information 

from the meningococcal DNA detected in positive PCR assays, the non 

culture confirmed cases. A nested PCR approach is necessary for positive 

PCR samples, as a single round PCR reaction fails to give products (for 

sequence analysis) with any consistency, even for strongly positive samples 

(Birtles et al 2005). 
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The samples included in this study were predominantly (86.8%) blood 

samples, indicating that either the fatal cases studied were the result of 

septicaemia rather than meningitis, that lumber puncture was unable to be 

performed due to the severity of the patient’s presentation, or a clinical 

decision not to perform lumbar puncture was taken. The progression of 

meningococcal disease is normally from an initial bacteraemic spread, 

followed by septicaemia and/or meningitis (Steven and Wood 1995). 

Peripheral blood is therefore a good sample to obtain even in a patient 

presenting clinically with meningitis as the infective organism may often be 

detected without lumbar puncture being necessary. EDTA blood is the 

preferable sample type as nucleic acid extraction from whole blood will 

enable detection of intracellular organisms. PCR testing of serum from 

clotted blood samples could give a false negative result. The MRU will 

advise on specimen types but will test most samples submitted as on 

occasion EDTA blood has not been obtained. Samples need to be taken as 

soon as possible because previous studies have found that meningococcal 

PCR, following the initial administration of antibiotics, remains positive for as 

little as 12 hours in some patients (Hackett et al 2002a). For these reasons 

all meningococcal PCR negative laboratory reports include the phrase “a 

negative PCR result does not exclude meningococcal disease”, this is due 

to negative predictive values of ≈75% (Carrol et al 2000). 

 

In order to assess and examine the possibility of implementing the new non-

culture sequence typing methods, in the time scale available for this study, it 
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was decided to study only fatal group B cases. This yielded a manageable 

sample number (96 samples available in total) upon which to apply the non-

culture sequence typing techniques. Also the study of fatal cases would 

highlight any antigenic or population shift in the group B meningococci 

causing the most serious clinical outcome. For the three years of the study 

5.4, 5.3 and 6.5% of group B cases were fatal, so non fatal cases (hence 

sample numbers), would be too numerous to include in the study (1691 non-

fatal samples compared to the 96 from fatal cases).  

 

Previous studies have shown a correlation between the bacterial load at 

presentation with meningococcal disease and the clinical outcome (Hackett 

et al, 2002b; Darton et al, 2009) and data from this study was from patients 

with a fatal disease outcome. When compared with non fatal non culture 

group B cases over the same time period, the positivity of the fatal cases 

included in this study was significantly (p=<0.0001 : t test) greater. The 

difference in the mean CT values of four cycles represented a sixteen-fold 

difference in amplified PCR product.  The fatal case positive PCR samples 

would therefore be expected to produce sequence data due to their strong 

positivity. It was previously reported that where a positive sample gave a CT 

value greater than 35 it was difficult to obtain sequence data (Birtles et al, 

2005). This study included some such samples, and some MLST sequence 

data was obtained, but no porA data. In the application of non-culture porA 

sequencing techniques to study case clusters the MRU will attempt 

sequence typing on more weakly positive samples (CT>35) and results have 

been obtained on occasion by replicating the nested PCR up to six times. A 
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targeted approach in the use of non-culture porA sequencing is employed 

by the MRU, as sequence data would be difficult to obtain for all non-culture 

cases. General meningococcal epidemiology (with the exception of the 

serogroup, which is routinely determined on non culture cases) is reliant 

upon molecular characterisation of isolates rather than samples from non-

culture cases. 

 

The non culture sequence typing methods employed in this study 

successfully provided both porA and MLST data, giving results for 81 and 

83% of the samples respectively. Ascertaining a sequence type was more 

difficult, as some samples did not give sequence data for all seven MLST 

alleles, and only 66% of the samples gave a sequence type result. All these 

samples were previously confirmed as group B meningococcal DNA positive 

by PCR, but no further epidemiological information was available. Without 

further data these cases could not be included in either medium to long term 

epidemiological study or in case cluster investigation. None of the samples 

tested with a CT value of >35 gave sequence data for porA typing and 

sensitivity of the assay was therefore unsatisfactory. The product yield for 

porA is lower than for MLST (Figure 2.3) and further optimisation of the 

nested amplification for porA may be necessary. All targets where no 

product was obtained had the nested PCRs repeated, and those samples 

with non resolvable sequence were also repeated. Despite this repeat 

testing some targets still remained unresolved. 18% of porA investigation 

yielded no data and 12.5% remained unresolved for MLST alleles. This may 

be due to the visual quantification and optimisation of DNA concentration, by 
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running the products in agarose gel, for subsequent DNA sequencing. Fully 

quantitative methods are available and their implementation may improve 

the yield of sequence data, bur would incur further costs. Three samples 

gave no data despite CT values <35 (34, 25 and 22), suggesting that they 

may have deteriorated in storage. 

 

PorA genotype data showed common (VR1 7-2, VR2 4 and VR1 19-1, VR2 

15-11) types represented (Figure 3.2). Small sample sizes led to many 

singleton data, and statistical analysis of this data was not possible. 

Similarly percentage clonal complex distribution results were affected by 

small sample sizes, but the common (ST41/44lineage3 and ST269) 

complexes did predominate (Figure 3.3). The two non-culture fatal case 

ST11/ET37 results seen in 2001 were both from patients who were part of a 

case cluster studied by the MRU. One culture confirmed non-fatal case was 

also part of this cluster; the patients were two 12 year old males who 

attended different schools and a 57 year old male who all used the same 

bus to travel daily to school or work. Apart from this one case cluster there 

were no other fatal group B cases caused by ST11/ET37 group B 

meningococci in the three years studied. This indicated no proliferation of 

this particular more invasive clone of group B following the immunisation 

programme, and that capsule switching from C to B has not been apparent. 

The data from non-culture cases obtained in the study, combined with data 

from isolates, showed that fatal cases of group B disease over the time 

period studied were caused by a similar diversity of group B clones as 

general group B disease, within the limitations of the sample sizes available. 
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Group C immunisation seems to have had little impact on group B disease 

in the short term, surveillance by the MRU continues.   

 

The most meaningful data, using the results from this study, was obtained in 

combination with culture confirmed cases to provide a more complete data 

set of fatal group B case epidemiology. Figure 3.4 shows that fatal group B 

cases were being caused by the major clonal complexes prevalent at the 

time (ST41/44Lineage3 and ST269) with a range of other clonal complexes, 

and that there was no significant difference (p=0.179 : chi squared) between 

1999 and 2001 (pre and post MenC immunisation).The more 

comprehensive data for all culture confirmed group B cases (including fatal 

cases) shown in Figure 3.6 also shows no significant difference in the 

clonallity of group B disease pre and post immunisation (p=0.112 : chi 

squared). No shift in group B epidemiology had been caused by the MenC 

vaccination programme. 

 

The porA sequence results from this study were characterised by 

submission to www.neisseria.org, where it can be seen that to date, 11 VR1 

and 20 VR2 families have been identified, with many variants of each type 

including 104 variants of the P1.16 family alone. The Neisseria.org website 

does not include porA VR3 sequences as they have been characterised and 

curated by the Scottish Meningococcal and Pneumococcal Reference 

Laboratory in Glasgow (Clarke et al 2003). The sequences characterised to 

date are available on the website www.smprl.scot.nhs.uk where the limited 

variability of the VR3 region is indicated as only thirteen genotypes are 

http://www.neisseria.org/
http://www.smprl.scot.nhs.uk/
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included. Since the time of this study the VR2 amplicon, when the stated 

primers are used, has been found to include the VR3 region.  

 

Since completion of this study further work has been undertaken and non-

culture porA sequence typing has been implemented in the study of case 

clusters. In 2009 the technique has been used in ten case cluster 

investigations, including a large study of all meningococcal disease cases in 

Leicestershire. Data on ten cases was provided solely by non-culture 

techniques, and along with the data from isolates, was instrumental in 

determining that an increase in disease incidence was not caused by a 

particular strain but was sporadic group B disease. A similar investigation in 

Cumbria found group B disease with a higher than expected incidence of 

porA VR1 19-1, VR2 15-11 genotype. In 2008 an investigation of cases in 

Cornwall found sporadic disease, but with a case cluster among family 

contacts (four cases separated geographically but with epidemiological 

contact) which was porA genotype 22, 14. This type of investigation is 

usually instigated by the Health Protection Unit covering the area where high 

incidence or possible connected cases of meningococcal disease are noted, 

and the information provided used to inform any public health action 

subsequently taken. Recently a Spanish exchange student who became 

unwell soon after entering the UK was diagnosed as having group C 

meningococcal disease by PCR testing in the MRU. As the causative 

meningococcus was not isolated, non-culture porA sequence typing was 

undertaken at the request of the Spanish MRU. The result showed porA 

indistinguishable from three other group C cases in the region the patient 
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had travelled from. The previous three cases had been reported as an 

outbreak in the Canary Islands (personal communication, Dr Julio Vazquez, 

Spanish MRU). 

 

Other antigen genes have been proposed for inclusion in the molecular 

epidemiology of meningococcal disease, in particular fetA (Thompson et al, 

2003; Russell et al, 2008) which is already being included in the analysis of 

isolates in some of the European meningococcal reference laboratories 

(personal communication, Dr S.J Gray from 2009 European Monitoring 

Group for Meningococci (EMGM) conference). More information on the 

EMGM (Trotter et al 2006) can be found on the EMGM website via 

www.neisseria.org. The latest initiative is to propose a move to a new “fine 

typing” scheme for meningococci (Elias et al 2006, Fox et al 2007) which 

involves ascertaining serogroup, porA VR1 and VR2 (VR3 is not included as 

it fails to provide additional discrimination within common antigenic types), 

fetA and MLST (if required, for clonal complex) for meningococcal isolates. 

A fetA variable region database has already been created on the 

www.neisseria.org. Website. The region has been sub divided into six 

different families and a total of 295 variants have been included to date. The 

PCR and sequencing primers for use with isolates are published on the 

website, and the MRU intend to include fetA analysis in the near future. In 

order to include fetA for non-culture samples a nested PCR will be needed. 

An additional primer for this purpose has been described (Fox et al 2007). 

The MRU intend to implement the “fine typing” scheme. FetA non-culture 

sequence typing may be included to further enhance case cluster analysis. 

http://www.neisseria.org/
http://www.neisseria.org/
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Changes in methodology and legislation have taken place since completion 

of this study which may impact on similar studies in the future. The 

molecular department carrying out the meningococcal PCR testing has 

become significantly larger as more molecular assays are developed and 

put into use. The manual extraction methods used at the time of this study 

have been superseded by automation based methods to allow large batch 

processing. The MagNA Pure™ platform (Roche Applied Sciences, 

Indianapolis Ind) initially replaced the manual extraction methods but was 

then replaced by the MDX Biorobot (Quiagen LTD, Crawley UK) of which 

two are in use. A NucliSens® easyMAG™ (Biomerieux, Marcy l'Etoile, 

France) and an EZ1 Biorobot (Qiagen LTD, Crawley UK) are also in use. At 

the time of the study two ABI Prism® 7700 (Applied Biosystems, Warrington, 

Cheshire, UK) Sequence Detection system platforms were in use. At 

present eleven platforms are in use, eight ABI Prism® 7500, one ABI Prism® 

7900 (both Applied Biosystems, Warrington, Cheshire, UK) and two 

M2000RT platforms (Abbott Diagnostics Maidenhead, Berkshire, UK). 

These PCR detection platforms have a faster completion time of 42 minutes 

compared to 2 hours and 9 minutes, allowing for a faster turnaround time for 

PCR assays. Due to the large increase in PCR testing the meningococcal 

testing has become a smaller part of the molecular department, which has 

impacted on turnaround times. The robotic extraction methods tend to use a 

larger sample volume and produce a smaller final elution volume for the 

extract, which may mean volume of extract for subsequent sequence 

analysis is limited. 
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Automation has been used in sequence typing (Clarke et al, 2001a; Sullivan 

et al, 2006) and in non culture sequence typing (Clarke et al 2001b). A 

Biomek® 2000 (Beckman Coulter, High Wycombe, Buckinghamshire, UK) 

liquid handling platform was available in the MRU and, following the 

practical work of this study, was trialed to perform any part of the processing 

of the non-culture sequencing work. As the MLST amplification gave higher 

amplicon yields (Figures 2.3 and 2.4) the platform was programmed to carry 

out the clean up procedure following this amplification. The platform was set 

up with a vacuum manifold and with a final elution volume of 100µl for all the 

products (gel visualization of products was not carried out prior to robotic 

clean-up). The platform proved useful when whole plates (96 products) were 

processed, and good sequence data was obtained. Liquid handling robotics 

would be useful in large batch testing, but is not used for the porA non-

culture work currently undertaken by the MRU.  

 

A more recent change in methodology has seen the MRU cease to use the 

CEQ™ 8000XL DNA Genetic Analysis system (Beckman Coulter, High 

Wycombe, Buckinghamshire, UK) which has been replaced by the ABI 

3130XL Genetic Analyzer, used with ABI PRISM® BigDye™ terminator 

sequencing chemistry (Applied Biosystems Inc Foster City, CA, USA). The 

ABI chemistry produces a better quality sequence data, including enhanced 

read length, and this allows the porA sequencing to be performed with two 

primers rather than four. The reassembled double stranded sequence 

incorporates VR1, VR2 and VR3 regions. This halves the number of 
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sequencing reactions needed to obtain porA data, a saving in reagents and 

staff time for this work. 

 

The legislative change impacting on further work is the Human Tissue act of 

2004. This act was brought about by the retention of organs from fatal case 

pediatric patients at the Alder Hey children’s hospital without parental 

consent (Ellis et al 2003); the act was implemented in 2006. Under the 

legislation samples from fatal cases containing human cells, which includes 

whole blood and CSF samples, must be either destroyed or returned to the 

sending laboratory, and cannot be stored beyond initial testing. Serum 

samples, which are sub optimal for PCR testing, can be retained as can the 

nucleic acid extracts. The extracts do contain human genomic DNA, but to 

date it is believed that they can be retained. The MRU has not yet applied to 

establish a tissue bank of samples (McHale et al 2007) but this would be a 

possibility to archive samples. As samples are invariably taken from patients 

who are still alive at the time of sampling, and are often used retrospectively 

in case cluster analysis, this legislation has implications for some of the work 

of the MRU.  

 

In summary this study illustrates the successful use of non-culture MLST 

and porA sequence typing to enhance the surveillance of group B 

meningococcal disease by the MRU. Epidemiological information, previously 

unavailable without an isolate of N. meningitidis is made available by the 

techniques applied. Non-culture cases, routinely having only serogroup 

ascertained, are able to be included in both case cluster investigation and 
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long term disease surveillance by the DNA sequence based typing as 

described and discussed in this study. Using a set of clinical specimens from 

fatal cases over three years, it was possible to add to the data obtained from 

isolates to give a more complete data set. Without non-culture sequence 

data the 50% of clinical cases without culture confirmation cannot be 

included. Using the combined data and other results from MRU isolates it 

can be shown that during the time period studied there was no antigenic 

shift among group B meningococci causing invasive disease, including 

fatality. The implementation of the MenC immunisation programme appears 

to have had no discernable short term effect on the epidemiology of group B 

disease in the study period, and the proposed phenomena of capsule 

switching was not apparent. The non-culture porA techniques have been 

implemented by the MRU in the investigation of case clusters, but 

resourcing issues have so far prevented more extensive implementation of 

the methods. 
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Appendices 
 

 

Appendix A Group B isolates MLST Data Nov 1998-Nov 1999 

Appendix A1 Clonal complex 

 

Clonal complex n= 

 ST-103 complex                           4 

 ST-11 complex/ET-37              7 

 ST-1494 complex              1 

 ST-162 complex                           4 

 ST-167 complex                           5 

 ST-18 complex                            15 

 ST-213 complex                           39 

 ST-22 complex                            5 

 ST-269 complex                           237 

 ST-32 complex/ET-5              95 

 ST-334 complex                           1 

 ST-35 complex                            14 

 ST-364 complex                           5 

 ST-41/44 complex/Lineage 3               406 

 ST-461 complex                           10 

 ST-53 complex                            1 

 ST-60 complex                            28 

 ST-8 complex/Cluster A4                  11 

 Unassigned                               45 

 

Clonal complex distribution, MLST determination of MRU isolates carried out 
at Oxford University dept of zoology. Data analysis, this study. 
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Appendix A2 Breakdown of CC ST41/44 lineage3 into sequence 
types 

 
Sequence 

type Clonal complex n= 

40  ST-41/44 complex/Lineage 3               4 

41  ST-41/44 complex/Lineage 3               185 

42  ST-41/44 complex/Lineage 3               1 

43  ST-41/44 complex/Lineage 3               5 

44  ST-41/44 complex/Lineage 3               2 

46  ST-41/44 complex/Lineage 3               1 

136  ST-41/44 complex/Lineage 3               5 

146  ST-41/44 complex/Lineage 3               1 

154  ST-41/44 complex/Lineage 3               17 

170  ST-41/44 complex/Lineage 3               5 

180  ST-41/44 complex/Lineage 3               12 

191  ST-41/44 complex/Lineage 3               1 

206  ST-41/44 complex/Lineage 3               1 

207  ST-41/44 complex/Lineage 3               1 

274  ST-41/44 complex/Lineage 3               7 

303  ST-41/44 complex/Lineage 3               4 

318  ST-41/44 complex/Lineage 3               1 

340  ST-41/44 complex/Lineage 3               11 

414  ST-41/44 complex/Lineage 3               1 

437  ST-41/44 complex/Lineage 3               4 

477  ST-41/44 complex/Lineage 3               2 

482  ST-41/44 complex/Lineage 3               4 

493  ST-41/44 complex/Lineage 3               1 

571  ST-41/44 complex/Lineage 3               2 

839  ST-41/44 complex/Lineage 3               2 

877  ST-41/44 complex/Lineage 3               1 

944  ST-41/44 complex/Lineage 3               1 

1028  ST-41/44 complex/Lineage 3               1 

1091  ST-41/44 complex/Lineage 3               1 

1097  ST-41/44 complex/Lineage 3               12 

1194  ST-41/44 complex/Lineage 3               1 

1200  ST-41/44 complex/Lineage 3               5 

1403  ST-41/44 complex/Lineage 3               1 

1480  ST-41/44 complex/Lineage 3               4 

1489  ST-41/44 complex/Lineage 3               2 

1770  ST-41/44 complex/Lineage 3               1 

1778  ST-41/44 complex/Lineage 3               3 

1823  ST-41/44 complex/Lineage 3               4 

1915  ST-41/44 complex/Lineage 3               1 

 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study 
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Appendix A2 continued 

2080  ST-41/44 complex/Lineage 3               4 

2203  ST-41/44 complex/Lineage 3               1 

2211  ST-41/44 complex/Lineage 3               1 

2253  ST-41/44 complex/Lineage 3               1 

2259  ST-41/44 complex/Lineage 3               1 

2279  ST-41/44 complex/Lineage 3               2 

2314  ST-41/44 complex/Lineage 3               2 

2671  ST-41/44 complex/Lineage 3               1 

2691  ST-41/44 complex/Lineage 3               1 

2761  ST-41/44 complex/Lineage 3               2 

2806  ST-41/44 complex/Lineage 3               1 

2821  ST-41/44 complex/Lineage 3               4 

2836  ST-41/44 complex/Lineage 3               1 

2837  ST-41/44 complex/Lineage 3               1 

2916  ST-41/44 complex/Lineage 3               1 

3050  ST-41/44 complex/Lineage 3               2 

3248  ST-41/44 complex/Lineage 3               2 

3457  ST-41/44 complex/Lineage 3               1 

3461  ST-41/44 complex/Lineage 3               1 

3620  ST-41/44 complex/Lineage 3               1 

3754  ST-41/44 complex/Lineage 3               2 

3794  ST-41/44 complex/Lineage 3               1 

3802  ST-41/44 complex/Lineage 3               1 

3866  ST-41/44 complex/Lineage 3               1 

4018  ST-41/44 complex/Lineage 3               1 

4021  ST-41/44 complex/Lineage 3               2 

4026  ST-41/44 complex/Lineage 3               2 

4029  ST-41/44 complex/Lineage 3               2 

4030  ST-41/44 complex/Lineage 3               1 

4031  ST-41/44 complex/Lineage 3               1 

4033  ST-41/44 complex/Lineage 3               1 

4036  ST-41/44 complex/Lineage 3               1 

4039  ST-41/44 complex/Lineage 3               1 

4040  ST-41/44 complex/Lineage 3               1 

4042  ST-41/44 complex/Lineage 3               1 

4048  ST-41/44 complex/Lineage 3               1 

4049  ST-41/44 complex/Lineage 3               1 

4082  ST-41/44 complex/Lineage 3               1 

4084  ST-41/44 complex/Lineage 3               2 

4085  ST-41/44 complex/Lineage 3               1 

 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 



 120 

Appendix A2 continued 

 

4086  ST-41/44 complex/Lineage 3               1 

4088  ST-41/44 complex/Lineage 3               1 

4092  ST-41/44 complex/Lineage 3               1 

4097  ST-41/44 complex/Lineage 3               1 

4100  ST-41/44 complex/Lineage 3               1 

4111  ST-41/44 complex/Lineage 3               1 

4112  ST-41/44 complex/Lineage 3               1 

4113  ST-41/44 complex/Lineage 3               1 

4249  ST-41/44 complex/Lineage 3               1 

4359  ST-41/44 complex/Lineage 3               1 

4438  ST-41/44 complex/Lineage 3               1 

4444  ST-41/44 complex/Lineage 3               1 

4448  ST-41/44 complex/Lineage 3               1 

4449  ST-41/44 complex/Lineage 3               1 

4523  ST-41/44 complex/Lineage 3               1 

4525  ST-41/44 complex/Lineage 3               1 

4526  ST-41/44 complex/Lineage 3               1 

4975  ST-41/44 complex/Lineage 3               1 

5281  ST-41/44 complex/Lineage 3               1 

5357  ST-41/44 complex/Lineage 3               1 

5446  ST-41/44 complex/Lineage 3               1 

5503  ST-41/44 complex/Lineage 3               2 

5509  ST-41/44 complex/Lineage 3               1 

5511  ST-41/44 complex/Lineage 3               1 

5513  ST-41/44 complex/Lineage 3               1 

5515  ST-41/44 complex/Lineage 3               1 

5516  ST-41/44 complex/Lineage 3               1 

5534  ST-41/44 complex/Lineage 3               1 

5535  ST-41/44 complex/Lineage 3               1 

5536  ST-41/44 complex/Lineage 3               1 

5537  ST-41/44 complex/Lineage 3               1 

 

 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 
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Appendix A3 Breakdown of CC ST269 into sequence types 

 

Sequence 
type Clonal complex n= 

13  ST-269 complex                           2 

269  ST-269 complex                           108 

275  ST-269 complex                           24 

283  ST-269 complex                           26 

479  ST-269 complex                           2 

798  ST-269 complex                           1 

1049  ST-269 complex                           4 

1089  ST-269 complex                           1 

1092  ST-269 complex                           4 

1095  ST-269 complex                           1 

1161  ST-269 complex                           5 

1163  ST-269 complex                           5 

1195  ST-269 complex                           9 

1214  ST-269 complex                           6 

1273  ST-269 complex                           1 

1284  ST-269 complex                           2 

1298  ST-269 complex                           1 

1416  ST-269 complex                           4 

1774  ST-269 complex                           1 

1791  ST-269 complex                           9 

2239  ST-269 complex                           1 

2803  ST-269 complex                           1 

2835  ST-269 complex                           1 

3458  ST-269 complex                           1 

4020  ST-269 complex                           1 

4023  ST-269 complex                           1 

4087  ST-269 complex                           1 

4116  ST-269 complex                           1 

4362  ST-269 complex                           1 

4447  ST-269 complex                           1 

4451  ST-269 complex                           1 

5502  ST-269 complex                           1 

5505  ST-269 complex                           1 

5514  ST-269 complex                           1 

5528  ST-269 complex                           1 

5532  ST-269 complex                           1 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 
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Appendix B Group C isolates MLST Data Nov 1998-Nov 1999 

 

Appendix B1 Clonal complex 

 

Clonal complex n= 

 ST-103 complex                           1 

 ST-11 complex/ET-37 complex              544 

 ST-18 complex                            2 

 ST-213 complex                           1 

 ST-23 complex/Cluster A3                 1 

 ST-254 complex                           1 

 ST-269 complex                           8 

 ST-32 complex/ET-5 complex               2 

 ST-334 complex                           1 

 ST-35 complex                            1 

 ST-41/44 complex/Lineage 3               10 

 ST-60 complex                            3 

 ST-8 complex/Cluster A4                  73 

 Unassigned                               7 

 

Clonal complex distribution, MLST determination carried out at Oxford 

University dept. of Zoology. Data analysis, this study. 
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Appendix B2 Breakdown of CC ST11 into sequence types 

 

Sequence 
type Clonal complex n= 

 1025   ST-11 complex/ET-37 complex              4 

 11     ST-11 complex/ET-37 complex              495 

 1287   ST-11 complex/ET-37 complex              1 

 1410   ST-11 complex/ET-37 complex              1 

 1988   ST-11 complex/ET-37 complex              4 

 214    ST-11 complex/ET-37 complex              1 

 2709   ST-11 complex/ET-37 complex              1 

 2942   ST-11 complex/ET-37 complex              1 

 3035   ST-11 complex/ET-37 complex              1 

 3455   ST-11 complex/ET-37 complex              4 

 3456   ST-11 complex/ET-37 complex              1 

 3462   ST-11 complex/ET-37 complex              1 

 3751   ST-11 complex/ET-37 complex              1 

 4025   ST-11 complex/ET-37 complex              1 

 4044   ST-11 complex/ET-37 complex              1 

 4091   ST-11 complex/ET-37 complex              2 

 4093   ST-11 complex/ET-37 complex              1 

 4098   ST-11 complex/ET-37 complex              1 

 4115   ST-11 complex/ET-37 complex              1 

 4357   ST-11 complex/ET-37 complex              2 

 4445   ST-11 complex/ET-37 complex              1 

 491    ST-11 complex/ET-37 complex              2 

 4976   ST-11 complex/ET-37 complex              1 

 4977   ST-11 complex/ET-37 complex              1 

 50     ST-11 complex/ET-37 complex              1 

 52     ST-11 complex/ET-37 complex              1 

 5517   ST-11 complex/ET-37 complex              1 

 67     ST-11 complex/ET-37 complex              11 

 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 
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Appendix B3 Breakdown of CC ST8 into sequence types 

 

Sequence 
type Clonal complex n= 

 3459   ST-8 complex/Cluster A4                  1 

 4035   ST-8 complex/Cluster A4                  1 

 4047   ST-8 complex/Cluster A4                  5 

 4089   ST-8 complex/Cluster A4                  1 

 66     ST-8 complex/Cluster A4                  5 

 760    ST-8 complex/Cluster A4                  2 

 8      ST-8 complex/Cluster A4                  58 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 
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Appendix C Group B isolates MLST Data Nov 2000-Nov 2001 

Clonal complex 

Clonal complex n= 

 ST-103 complex                           5 

 ST-11 complex/ET-37 complex              14 

 ST-1157 complex                          4 

 ST-162 complex                           1 

 ST-167 complex                           2 

 ST-18 complex                            14 

 ST-213 complex                           50 

 ST-22 complex                            1 

 ST-254 complex                           2 

 ST-269 complex                           266 

 ST-32 complex/ET-5 complex               78 

 ST-35 complex                            13 

 ST-364 complex                           3 

 ST-41/44 complex/Lineage 3               367 

 ST-461 complex                           10 

 ST-60 complex                            31 

 ST-750 complex                           1 

 ST-8 complex/Cluster A4                  8 

 Unassigned                               63 

 

MLST determination carried out at Oxford University dept. of Zoology. Data 

analysis, this study. 
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Appendix D Laboratory confirmed Group B cases 1984-2006. MRU 
data. 

 

Serogroup 
B Cases 

Culture 
only 

Culture 
and 
PCR 

PCR 
only Total    

Culture 
only 

Culture 
and 
PCR 

PCR 
only 

1984 300     300   100% 0% 0% 

1985 377     377   100% 0% 0% 

1986 573     573   100% 0% 0% 

1987 679     679   100% 0% 0% 

1988 852     852   100% 0% 0% 

1989 885     885   100% 0% 0% 

1990 996     996   100% 0% 0% 

1991 964     964   100% 0% 0% 

1992 923     923   100% 0% 0% 

1993 928     928   100% 0% 0% 

1994 789     789   100% 0% 0% 

1995 904    907   100% 0% 0% 

1996 761 68 26 855   89% 8% 3% 

1997 621 261 291 1173   53% 22% 25% 

1998 552 324 336 1212   46% 27% 28% 

1999 556 423 496 1475   38% 29% 34% 

2000 555 401 703 1659   33% 24% 42% 

2001 522 418 770 1710   31% 24% 45% 

2002 424 323 638 1385   31% 23% 46% 

2003 403 353 619 1375   29% 26% 45% 

2004 325 294 525 1144   28% 26% 46% 

2005 327 293 659 1279   26% 23% 52% 

2006 297 248 511 1056   28% 23% 48% 

 

Note: PCR analysis introduced in October 1996. 
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Appendix E.  Laboratory confirmed Group C cases 1984-2006. MRU      
data. 

  

Serogroup 
C Cases 

Culture 
only 

Culture 
and PCR 

PCR 
only Total    

Culture 
only 

Culture 
and 
PCR 

PCR 
only 

1984 125     125   100% 0% 0% 

1985 180     180   100% 0% 0% 

1986 392     392   100% 0% 0% 

1987 442     442   100% 0% 0% 

1988 464     464   100% 0% 0% 

1989 436     436   100% 0% 0% 

1990 466     466   100% 0% 0% 

1991 393     393   100% 0% 0% 

1992 326     326   100% 0% 0% 

1993 319     319   100% 0% 0% 

1994 291     291   100% 0% 0% 

1995 465     465   100% 0% 0% 

1996 509 72 30 611   83% 12% 5% 

1997 406 204 209 819   50% 25% 26% 

1998 353 237 236 826   43% 29% 29% 

1999 349 310 341 1000   35% 31% 34% 

2000 260 194 261 715   36% 27% 37% 

2001 126 78 117 321   39% 24% 36% 

2002 74 54 40 168   44% 32% 24% 

2003 45 19 34 98   46% 19% 35% 

2004 19 15 25 59   32% 25% 42% 

2005 13 4 11 28   46% 14% 39% 

2006 12 6 11 29   41% 21% 38% 

2007 18 4 17 39   46% 10% 44% 

 

 

Note: PCR analysis introduced in October 1996. 
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Appendix F Fatal group B case isolates from 1999 with phenotype 
(MRU) and MLST data (Oxford University). 

 
Lab No. site grp type sub-type ST CC 

M99.240178 TS B NT P1.15  269    ST-269 Complex                          

240148 BC B 4 P1.4  340   
 ST-41/44  Lineage 
3               

240278 BC B 4 P1.4  340    ST-41/44 Lineage 3               

240364 TS B 1 P1.10  4110   Unassigned                               

240531 BC B 4 P1.2.P1.5  4028   ST-35 complex                            

240689 BC B 4 P1.4  340    ST-41/44 Lineage 3               

240960 BC B 15 P1.7,P1.16  259   
 ST-32/ET-5 
complex               

240930 BC B 4 P1.4  4036   ST-41/44 Lineage 3               

240928 BC B 4 P1.10  4002  
 ST-32/ET-5 
complex               

241116 TRACH B 15 P1.6  41     ST-41/44 Lineage 3               

241417 BC B 4 P1.4  41     ST-41/44 Lineage 3               

241418 BC B NT P1.9  4050   Unassigned                               

241547 BC B 4 P1.4  41     ST-41/44 Lineage 3               

241619 BC B 1 P1.15  284    Unassigned                               

241735 BC B 2B NT  4437   ST-8 Cluster A4                  

242004 BC B 22 P1.14  18     ST-18 complex                            

241999 BC B NT P1.4  41     ST-41/44 Lineage 3               

242146 BC B 14 P1.4  154    ST-41/44 Lineage 3               

242269 BC B 15 P1.7,P1.16  32    
 ST-32 ET-5 
complex               

242546 BC B 4 P1.15  34    
 ST-32 ET-5 
complex               

243163 BC B NT P1.3,P1.6  1617   ST-22 complex                            

243265 BC B 4 P1.6  5537   ST-41/44 Lineage 3               

243289 BC B 4 P1.15  33    
 ST-32 ET-5 
complex               

243340 CSF B 4 P1.15  5539  
 ST-32 ET-5 
complex               

243657 BC B 4 P1.5 NA NA 

243755 BC B 4 P1.4 NA NA 

240096 BC B 4 P1.4  340    ST-41/44 Lineage 3               

240871 CSF B 4 P1.4  5513   ST-41/44 Lineage 3               

242067 BC B NT NT  5527   ST-18 complex                            

242178 BC B 1 P1.4  2837   ST-41/44 Lineage 3               

242391 BC B 4 NT NA NA 

243610 
BRAIN 
PUS B 22 NT NA NA 

243951 TS B 4 P1.4 NA NA 

240076 BC B NT P1.6  479    ST-269 complex                           

240087 BC B NT P1.9  1195   ST-269 complex                           

240265 BC B NT P1.6  479    ST-269 complex                           

240178 TS B NT P1.15  269    ST-269 complex                           

240514 BC B 4 P1.14  4432   Unassigned                               

241186 BC B NT NT  4041   ST-60 complex                            

241198 BC B 22 P1.14  18     ST-18 complex                            

241477 BC B NT P1.15  269    ST-269 complex                           

241781 BC B 15 P1.7,P1.16  259   
 ST-32 ET-5 
complex               

241931 BC B 4 P1.16  944    ST-41/44 Lineage 3               

242053 BC B 15 P1.1  32    
 ST-32 ET-5 
complex               

242196 BC B NT P1.9  275    ST-269 complex                           
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Appendix F continued 
 

242331 BC B 4 P1.4  274    ST-41/44 Lineage 3               

242476 BC B NT NT  269    ST-269 complex                           

243316 CSF B 4 P1.4  41     ST-41/44 Lineage 3               

 
NA= not available (for 1999 only isolates up to the end of October had 
MLST analysis carried out). MLST determination of MRU isolates carried out 
at Oxford University dept. of Zoology. 
 
TS = throat swab, BC = Blood culture, CSF = cerebro-spinal fluid. 
 


