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Abstract: Underwater sensor networks (UWSNs) have witnessed significant R&D attention in both 

academia and industry due to their growing application domains, such as border security, freight 

via sea or river, natural petroleum production and the fishing industry. Considering the deep 

underwater-oriented access constraints, energy-centric communication for the lifetime 

maximization of tiny sensor nodes in UWSNs is one of the key research themes in this domain. 

Existing literature on green UWSNs are majorly adapted from the existing techniques in traditional 

wireless sensor network relying on geolocation and the quality of service-centric underwater relay 

node selection, without paying much attention to the dynamic underwater network environments. 

To this end, this paper presents an adapted whale and wolf optimization-based energy and delay-

centric green underwater networking framework (W-GUN). It focuses on exploiting dynamic 

underwater network characteristics by effectively utilizing underwater whale-centric optimization 

in relay node selection. Firstly, an underwater relay node optimization model is mathematically 

derived, focusing on underwater whale dynamics for incorporating realistic underwater 

characteristics in networking. Secondly, the optimization model is used to develop an adapted 

whale and grey wolf optimization algorithm for selecting optimal and stable relay nodes for centric 

underwater communication paths. Thirdly, a complete workflow of the W-GUN framework is 

presented with an optimization flowchart. The comparative performance evaluation attests to the 

benefits of the proposed framework and is compared to state-of-the-art techniques considering 

various metrics related to underwater network environments. 

Keywords: underwater sensor networks; green computing; whale optimization; sensor networks 

 

1. Introduction 

The widely growing application domains for underwater sensor networks (UWSNs) have 

attracted potential attention in R&D from the Internet of Things (IoT)-oriented industries and 

academia [1–3]. The growing domains include border security-centric military applications [4,5], 
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energy and cost-centric water-based transport applications [6,7], oil, and natural gas production 

applications [8,9], and developing fishing-centric industries [10,11]. In underwater networking, tiny 

sensor nodes are deployed underwater, as well as on the upper surface layer for monitoring the 

specific underwater area [12]. These underwater nodes communicate with the surface nodes, acting 

as access points or cluster heads for reaching the sink node of the network, which accumulates the 

information and communicates with the cloud-enabled computing resources [13]. Underwater 

networking is significantly challenging compared to traditional wireless networking due to the 

dynamic self-mobility of the medium of communication and constraints in signal propagation in the 

underwater environment [14–16]. In this constrained networking environment, the underwater 

network deployment-oriented challenges further complicate scientific investigations towards the 

development of an energy-centric green underwater network for various application domains [17–19]. 

Towards enabling green underwater networking, several service and geolocation-centric 

techniques of varying quality have been suggested [20,21]. A heuristic approach has been suggested 

in underwater networking for solving the surface gateway deployment optimization problem, 

focusing on the quality of service [22]. In particular, a heuristic solution has been explored for the 

optimal deployment of surface nodes as access gateways for underwater networking. However, the 

surface gateway deployment optimization lacks coordination with underwater node level multi-hop 

communication. To support service-centric underwater networking, an optimal underwater node 

deployment architecture is explored for a 3D underwater network environment [23]. A scientific, 

mathematical model is designed for assessing the optimality of the deployment architecture. 

However, the deployment architecture did not integrate with the dynamic self-mobility of 

underwater nodes in the network environment. The 3D deployment architecture has been further 

improved by considering static, self-adjusting, and mobility-supported deployments [25]. However, 

the coordination between static and dynamic nodes during communication is lacking in these three 

types of deployment architectures. To support these deployment approaches, a linear programming-

centric approach has been suggested for selecting underwater relay nodes focusing on a longer 

network lifetime [26]. 

In a similar work, node-level energy harvesting capability has been used as a parameter in relay 

node selection for a longer network lifetime [28]. However, the impact of self-mobility of underwater 

nodes due to underwater flow is not considered in both approaches, including deployment-centric 

network lifetime optimization and harvested energy level-centric network lifetime optimization. To 

improve network lifetime optimization, a geolocation vector-based forwarding strategy has been 

explored [31]. It has focused on location-centric relay node selection to reduce energy consumption 

in underwater communication. The geolocation-centric underwater relay node selection has been 

improved by utilizing hop-by-hop forwarding prioritization for sparse underwater networking [32]. 

The pure geolocation-centric relay node selection faces the void area issue in underwater networking. 

To address the issue in geolocation-centric relay node selection, void avoidance approach has been 

investigated, utilizing the quality of service-oriented underwater backtracking [33]. The 

aforementioned underwater relay node optimization techniques majorly rely on either geolocation-

centric node selection or the quality of service-centric node selection, without considering the 

dynamic self-mobility of the medium of communication in underwater environments, such as in 

whale optimization [35]. 

In this context, this paper proposes an adapted whale optimization algorithm-based energy and 

a delay-centric green UWSNs framework (W-GUN). It focuses on exploiting dynamic underwater 

network characteristics by effectively utilizing underwater whale-centric optimization in relay node 

selection. The significant insights and offerings of this paper can be listed as follows. 

• Firstly, an underwater relay node optimization model is mathematically derived, focusing on 

underwater whale dynamics for incorporating realistic underwater characteristics; 

• Secondly, the optimization model is used to develop an adapted whale and grey wolf 

optimization algorithm for selecting minimal energy consumption and stable relay node-centric 

underwater communication paths; 



Sensors 2020, 20, x FOR PEER REVIEW 3 of 23 

 

• Thirdly, a complete workflow of the green underwater networking framework W-GUN, is 

presented with an optimization flowchart; 

• Finally, a comparative performance evaluation of the prosed framework W-GUN, has been 

carried out considering the state-of-the-art techniques in the literature regarding underwater 

networks. 

The rest of the paper is organized as follows: in Section 2, related works on green computing-

centric underwater networks are critically reviewed, considering strengths and weaknesses. Section 

3 presents the detail of the proposed green underwater networking-centric framework W-GUN. In 

Section 4, the experimental setting and result analysis are discussed. Our conclusions and possibilities 

for future work are been presented in Section 5. 

2. Related Works 

Ibrahim et al. use a heuristic approach to solving the surface gateway deployment optimization 

problem. The performance of UWSNs can be increased by deploying various surface-level gateways 

(i.e., sink for the UWSNs). In addition, this approach can mitigate the high propagation delay in 

acoustic communications. The position of gateways plays a crucial role in maximizing the benefit 

[22]. Furthermore, Pompili et al. proposed the enhanced deployment schemes for two-dimensional 

as well as for three-dimensional architectures of communication in UWSNs. They also gave a 

mathematical analysis for both scenarios. The proposed scheme helps in achieving the goal of using 

the least number of sensors for efficient sensing and communication tasks. They discussed the 

robustness of the sensor network in the particular scenario of node failures. They also gave an 

approximate count of the number of redundant sensor nodes to be deployed to compensate in case 

of node failures [23]. Next, Han et al. classified the node deployment schemes for UWSNs into three 

major categories, static or fixed scheme of deployment, the self-adjusting scheme of deployment, and 

movement-supported deployment. In the static or fixed scheme of deployment, sensors have fixed 

or static positions. There are two types of fixed schemes of deployment—random deployment and 

regular deployment. In the self-adjusting scheme, the depths of sensor nodes are adjusted 

automatically after initial deployment in order to achieve the specific requirements. Furthermore, 

there are two types of self-adjusting schemes of deployment—such as uniform self-adjusting 

deployment and nonuniform self-adjusting deployment. In a movement-supported deployment 

scheme, sensor nodes cooperate with other sensors to carry out sensing and monitoring tasks [24]. 

Moreover, Liu et al. presented an efficient algorithm for node placement in UWSNs. The aim is to 

enhance the coverage and reduce the average end-to-end delay. They use the new tracking scheme 

to forecast the sensor node’s positions. The deployment is carried out by using two factors, such as 

the current location of sensor nodes as well as predicted locations of sensor nodes [25]. 

Su et al. have proposed a unique approach for selecting the relay nodes in UWSNs. They use the 

linear programming approach for the relay node selection with the principle aim of enhancing the 

network lifetime. They also implemented a routing metric that considers both the transmitting energy 

and the residual energy [26]. Furthermore, Khan et al. have proposed an optimal scheme for relay 

selection in UWSNs. In this scheme, they consider two factors, the depth and location of the sensor 

nodes, for selecting the relay nodes. The unique characteristic of the proposed scheme is the 

elimination of the synchronization requirement among the source node (SN), relay nodes (RNs), and 

destination nodes. The second unique feature is overcoming the packet drop issues [27]. Additionally, 

Khan et al. presented a scheme for relay node selection in UWSNs based on harvested energy levels. 

For the selection of the correct signal at the destination, they used a fixed combined ratio. 

Furthermore, they used an amplified forwarding scheme for data forwarding. In addition, they used 

the piezoelectric effect-based harvesting scheme to increase the efficiency of sensors in UWSNs [28]. 

Next, Feng et al. have proposed an algorithm consisting of two parts—the establishment of links and 

transmission of data. The algorithms find out the neighboring nodes at the appropriate ranges. In 

addition, the proposed algorithm selects the relay nodes based on the depth of the neighbors. For 

balancing the energy in the network and consequently increasing the network lifetime, the 

communication links were modified [29]. Moreover, Faheem et al. proposed a routing protocol that 
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uses three basic schemes, the detection of the channel, then the assignment of the channel and packet-

forwarding mechanisms. The channel detection scheme had a high channel detection probability and 

the least false alarms [30]. 

Xie et al. have proposed an efficient routing scheme named vector-based forwarding (VBF). It is 

a robust, scalable, and energy-efficient geographic routing. This scheme is also called a position-based 

technique. In this scheme, there is no need for detailed state information. The scheme is called a robust 

scheme because it is immune to packet loss and node failure. The data transmission mechanism 

consists of a virtual pipe. In the case of dense deployment, energy consumption is increased. The 

sparse networks have a low packet delivery ratio (PDR), but, in the case of dense networks, it 

increases. This scheme has a lower end-to-end delay. The end-to-end delay is minimum in a dense 

environment. However, this scheme produces communication overheads [31]. Towards enhancing 

the vector-based forwarding, Nicolaou et al. have given a location-based routing technique known 

as hop-by-hop vector-based forwarding (HH-VBF). Each forwarder has a separate routing vector in 

the network. The separate routing vector for each forwarder brings several advantages and achieves 

a high efficiency for sparse networks. This scheme has a higher packet delivery ratio in sparse 

networks. This scheme has unique the characteristic of recognizing the routes, particularly when 

nodes are extremely scattered in the network. In this scheme, if node density increases, then, as a 

consequence, end-to-end delay, as well as energy consumption, also increases [32]. In addition, 

UWSNs are blighted by one of the most prominent issues, known as the routing under the void 

scenario. Xie et al. have proposed a unique approach to solving this problem. This approach is known 

as vector-based void avoidance (VBVA). This approach has two parts, vector-shift and back-pressure. 

This scheme does not require prior knowledge of network topology. This technique is a geographic-

based routing. This approach enhances the robustness of the network [33]. Next, Wei et al. have 

presented an optimal strategy for routing in UWSNs. This scheme initially considers residual energy 

and localization information. This routing mechanism collects information about the position for 

energy saving with vector-based forwarding (ES-VBF) [34]. 

The aforementioned underwater relay node optimization techniques rely majorly on either 

geolocation-centric node selection or the quality of service-centric node selection, without 

considering the dynamic self-mobility of the medium of communication in underwater 

environments. To this end, the objective of the proposed framework is to reduce energy consumption 

in the network by adapting underwater whale characteristics for the optimization of the overall 

performance of underwater networking. 

3. Green Underwater Sensor Network Framework using Adapted Whale and Wolf Optimization 

In this section, the proposed framework for the green underwater network using whale and wolf 

optimizations (W-GUN) is presented. In UWSNs, researchers are currently aiming to increase 

network lifetime and improve the data delivery rate, considering constrained underwater network 

scenarios. For this, the data dissemination path should consider natural underwater characteristics 

along with the shortest path possible. It will lower the energy consumption and also packet delay in 

the underwater scenario. However, the best deployment of underwater relay nodes optimizes each 

network resource and routing performance. Therefore, optimizing the number of underwater relay 

nodes and the deployment strategy of relay nodes considering underwater scenarios has been an 

essential downside to green communication in underwater networks. 

In order to solve the above mentioned problem, this paper presents a novel approach for the 

optimization of underwater relay nodes prioritization using an adapted whale and wolf optimization 

algorithm. The adapted optimization algorithm has been developed to realize the W-GUN 

framework by incorporating moving underwater whale characteristics in underwater data 

dissemination. Here, the optimal best relay nodes are obtained simultaneously from the algorithms, 

including whale optimization and wolf optimization, and the final relay node decision is taken to 

select the best among them during each iteration. At the completion of every iteration, the best 

underwater relay node solution will be given to both algorithms to generate a better solution for the 

underwater relay node than the previous one, and the same cycle is repeated. Here, the deployment 
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of underwater sensor nodes comes in the form of normal random distribution at the initial 

underwater network establishment stage. 

By utilizing the proposed adapted optimization algorithms in W-GUN, the minimum number 

of underwater relay nodes required is specifically determined once the network parameters are 

provided, such as the variety of source nodes, the communication range, and amount of routing 

paths. Once the underwater relay nodes are optimally determined, the average path length and, 

therefore, the range of control packets were significantly reduced, which may doubtless minimize 

energy consumption and packet delay and increase network lifetime, and packet delivery ratio. 

Moreover, the duty cycle of underwater relay nodes is adjusted adaptively using the modified echo 

state network (MESN). 

3.1. Underwater Relay Node Optimization Model 

Here, as the adapted whale and wolf optimization algorithm is used for picking the optimal 

relay set required for continuous data packet transmission in W-GUN. In our proposed framework 

W-GUN, the traditional whale optimization is adapted for green underwater networking. The 

exploitation and exploration of whale optimization is further improved via wolf optimization. This 

adaptation works towards harnessing the benefits of underwater whale movement characteristics in 

reducing energy consumption and delay. The adaptation of whale movement characteristics is crucial 

for underwater communication environments. The aim of the objective function of the optimization 

scheme is to avail the maximum number of underwater forwarding routes as possible reachable paths 

with a minimum number of underwater relay nodes. So, the position of the underwater relay nodes 

is varied and checked for optimal deployment, so as to reduce the number of underwater relay nodes 

(RNs) needed for deployment. Therefore, the objective function is adapted for underwater scenarios, 

as expressed in Equation (1). 

𝑚𝑎𝑥(𝒫𝑛) = 𝑚𝑖𝑛(𝑅𝑛
𝑏 ,∑𝑅𝑛

𝑗

𝑁

𝑗=1

) (1) 

where max(𝒫𝑛) represents the maximum number of underwater forwarding paths that can be formed 

between the base station and all sender sensor nodes, 𝑅𝑛
𝑏  represents the number of underwater relay 

nodes nearby to the base station; 𝑅𝑛
𝑗  the number of underwater relay nodes close to jth sensor node 

and 𝑗 = {1,2, . . . 𝑁} denotes the number of underwater sensor nodes. To achieve the above objective, 

the two major constraints that must be satisfied are as given below in Equations (2) and (3): 

𝑅𝑛
𝑗 ≥ 𝒫𝑛

𝑗  (2) 

𝑅𝑛
𝑏 ≥ ∑𝑅𝑛

𝑗

𝑁

𝑗=1

≥ (∑𝒫𝑛
𝑗 =

𝑁

𝑗=1

𝒫𝑛) (3) 

where 𝒫𝑛
𝑗  denotes the number of underwater forwarding paths between the base station and jth 

underwater relay sensor nodes. During each iteration, based on the maximum number of underwater 

forwarding paths obtained for different solutions, the set of underwater relay nodes (i.e., the finest 

solution) and their position is selected. The base of the objective function of the adapted whale and 

wolf algorithm is discussed in detail, with related mathematical derivations, in the following sections. 

3.1.1. Adapted Whale Optimization for Underwater Networks 

The whale optimization algorithm (WOA) is influenced by the natural characteristics of the 

underwater movement of whales [35]. The technical optimization steps involved in WOA are given 

in the following description, which can be divided into two major phases, namely exploitation and 

exploration phases. In the exploitation phase, the encircling prey and spiral position updating are 

performed, and searching for prey is implemented in the exploration phase. The mathematical 

modeling of these operations is carried out as follows: 
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• Encircling prey 

Traditionally, whales encircle the prey once they discover its location or position. Similarly, the 

position of the optimal next-hop sensor nodes is identified in the underwater network environments. 

In the proposed algorithm, the present leading candidate solutions, i.e., the positions of the direct 

neighbor nodes, are the target prey near the optimal solution. Subsequently, the other search agents 

attempt to change their position towards the best search agents. The encircling prey can be 

mathematically represented as given in Equation (4): 

�⃗⃗⃗� = |𝐺 ⋅ �⃗⃗� ∗(𝑘) − �⃗⃗� (𝑘)| (4) 

�⃗⃗� (𝑘 + 1) = �⃗⃗� ∗(𝑘) − 𝑋 ⋅ �⃗⃗⃗�  (5) 

where ‘𝑘’ represents a current iteration, 𝑋 , 𝐺  represent coefficient vectors, �⃗⃗� ∗(𝑘) demonstrate the 

previous best solution or position of the previous best node, �⃗⃗� (𝑘 + 1) depicts the current best state 

or the position of the current best node for next-hop forwarding in the neighborhood. Furthermore, 

the coefficient vectors 𝑋 , 𝐺  can be calculated as expressed in Equations (6) and (7): 

𝑋 = 2𝑥 ⋅ 𝑗 − 𝑥      (6) 

𝐺 = 2 ⋅ 𝑗      (7) 

where 𝑥  reduces from 2 to 0, 𝑗 ∈ [0,1] also results in the reduced range of 𝑋 . The new position of 

the current best forwarding node can be determined anywhere between the previous best position of 

the node and the encircling preposition. 

• Exploitation phase 

There are two mechanisms presented to carry out the exploitation phase in the whale-based 

search space discovery: 

1. Shrinking encircling mechanism 

This mechanism is basically represented in Equation (6) where the value of the unit coefficient 

vector 𝑥  is reduced from 2 to 0 with 𝑗 ∈ [0,1]. 

2. Spiral updating position 

Traditionally, once the distance between the encircling prey and the whales is calculated, a spiral 

equation is derived between the position of the prey and the whales to imitate the helix-shaped 

movement of whales. Here, the positions of the current forwarder node and the direct neighbor nodes 

are shown in Equation (8): 

�⃗⃗� (𝑘 + 1) = �⃗⃗⃗� 𝑑𝑖𝑠𝑡 . 𝑒𝑥𝑝
𝑙𝑜𝑔𝑠𝑝𝑖𝑟𝑎𝑙𝑠⋅ 𝑐𝑜𝑠(2∏𝑠) + �⃗⃗� ∗(𝑘)                        (8) 

where �⃗⃗⃗� 𝑑𝑖𝑠𝑡 = |�⃗⃗� 𝑝
∗(𝑘) − �⃗⃗� (𝑘)|  means the distance between 𝑝 th whale and prey (i.e., the best 

solution attained up until now), 𝑠 takes value from [−1,1] and 𝑙𝑜𝑔𝑠𝑝𝑖𝑟𝑎𝑙 signifies the logarithmic 

spiral shape. 

Here, we want to highlight that the ‘exploitation phase’ of the whale optimization process can 

be executed by either ‘shrinking encircling’ or ‘spiral updating’. These operations basically represent 

humpback whales’ swimming characteristics around the prey within a shrinking circle and along a 

spiral-shaped path, simultaneously. To model this simultaneous behavior, the selection of the 

threshold value plays a significant role, where we assume that there is a 0.5 probability of choosing 

between either the shrinking encircling mechanism or the spiral model for the next future position of 

the whales during optimization. This is assumed in order to give a fair amount of randomization to 

the whale optimization process for underwater networking environments. This exploitation phase 

can be expressed as given in Equation (9): 

�⃗⃗� (𝑘 + 1) = {
�⃗⃗� ∗(𝑘) − 𝑋 ⋅ �⃗⃗⃗� , 𝑖𝑓𝑄 < 0.5

�⃗⃗⃗� 𝑑𝑖𝑠𝑡 . 𝑒𝑥𝑝
𝑙𝑜𝑔𝑠𝑝𝑖𝑟𝑎𝑙𝑠⋅ 𝑐𝑜𝑠(2∏𝑠) + �⃗⃗� ∗(𝑘), 𝑖𝑓𝑄 ≥ 0.5

 (9) 
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where 𝑄 ∈ [0,1]  is a random number to help with the selection of the two aforementioned 

mechanisms in the underwater sensor node selection for energy- and delay-centric next-hop node 

identification or, in other words, search space exploitation. 

• Exploration phase 

Traditionally, it is the search phase where whales use random search to discover their prey based 

on the how nearby they are. Here, the search for the next-hop is carried out using the nearby positions 

of the direct neighbor nodes, which are candidate forwarders. The exploration uses 𝑋  vector with 

random values that are greater or less than one. In addition, a random search agent is considered, 

rather than the best search agent for addressing the optimal local problem in the exploration phase. 

This search procedure can be mathematically expressed as given in Equation (10): 

�⃗⃗⃗� = |𝐺 ⋅ �⃗⃗� 𝑟𝑎𝑛𝑑 − �⃗⃗� |                                                           (10) 

�⃗⃗� (𝑘 + 1) = �⃗⃗� 𝑟𝑎𝑛𝑑 − 𝑋 ⋅ �⃗⃗⃗�  (11) 

where �⃗⃗� 𝑟𝑎𝑛𝑑  is a current population random position vector, and 𝐺  and 𝑋  are coefficient vectors, 

as described in previous equations. Now, grey wolf optimization (GWO) is discussed, which 

enables the whale optimization for underwater node searching. 

3.1.2. Adapted Grey Wolf Optimization for Underwater Networks 

Towards effectively balancing the exploitation and exploration phases for better convergence in 

next-hop searching, wolf optimization is used to enable the proposed framework W-GUN [36]. It is 

also a swarm intelligence technique. In traditional GWO, tracking is directed by the alpha, beta and 

delta wolves as follows: 

• The alpha wolves (𝛼): the most important wolves. They encompass a responsibility to make a 

decision. Using this setting, we focus on the energy-centric nodes for optimization; 

• The beta wolves (𝛽): they comprise the second tier of wolves, subsequent to the alphas. The 

standard responsibility of beta wolves is to aid and encourage alpha selection. Using this setting, 

we focus on delay-centric nodes for optimization; 

• The delta wolves (𝛿): they comprise the third tier of wolves. Using this setting, both energy and 

delay are considered as the overall optimization goal. 

In W-GUN, the most important aspiration is to encircle a prey by guidance through α, β and δ, 

which can be systematically established as given in Equation (12): 

𝑀(𝑘 + 1) = 𝑀(𝑘) − 𝐶 ⋅ 𝑃 (12) 

𝑃 = |𝑉 ⋅ 𝑀𝑙(𝑘) − 𝑀(𝑘)| (13) 

where 𝑃 is the search accelerator parameter, 𝑀 represents the grey wolf position, 𝑀𝑙 is the prey 

position, 𝐶 , 𝑉  are the coefficient vectors, and the number of iterations is defined by ‘𝑘 ’. The 

coefficient vectors 𝐶 and 𝑉 can be obtained by the equation below: 

𝐶 = 2𝑐 ⋅ 𝑤1 − 𝑐  (14) 

𝑉 = 2 ⋅ 𝑤2 (15) 

where ‘𝑐’ will be linearly decreased from 2 to 0 and 𝑤1 and 𝑤2 are the random vectors from [0, 1]. 

The parameter ‘𝑐’ is updated in every iteration within the range from 2 to 0, according to the below 

Equation (16): 

𝑐 = 2 − 𝑘 (
2

𝐾
) (16) 

where ‘𝐾’ denotes the total number of iterations allowed. It is assumed that the large number of 

possible locations of prey can be discovered through the alpha, beta, and delta solutions; the updated 
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procedure of the whales positions, based on the first three best solutions, can be obtained as shown 

below: 

𝑀1 = 𝑀𝛼(𝑘) − 𝐶1 ⋅ 𝑃𝛼   (17) 

𝑀2 = 𝑀𝛽(𝑘) − 𝐶2 ⋅ 𝑃𝛽  (18) 

𝑀3 = 𝑀𝛿(𝑘) − 𝐶3 ⋅ 𝑃𝛿  (19) 

where the component values 𝑃𝛼, 𝑃𝛽 and 𝑃𝛿are calculated as follows: 

𝑃𝛼 = |𝑉1 ⋅ 𝑀𝛼 −𝑀| (20) 

𝑃𝛽 = |𝑉2 ⋅ 𝑀𝛽 −𝑀|  (21) 

𝑃𝛿 = |𝑉3 ⋅ 𝑀𝛿 −𝑀|.  (22) 

Based on the above Equations (17)–(19), the solution for the next iteration will be obtained as 

follows: 

𝑀(𝑘 + 1) =
(𝑀1+𝑀2+𝑀3)

3
  (23) 

The process of updating the whales positions takes place continuously until the maximum 

iteration is achieved. A complete procedure of the proposed framework W-GUN, is presented below 

as an algorithm and flowchart in Figure 1. 
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Figure 1. Flowchart of the proposed adapted whale optimization for the green underwater network 

(W-GUN). 

3.2. The Pseudo-Code for the Proposed W-GUN Framework 

In Algorithm 1, a few of the major operations of the optimization model are detailed. In steps 

one and two, initialization of the optimization model is performed, which is basically a constant time 

operation depending on the population size 𝑀𝑥. In step two, the fitness function for the optimization 

model is calculated using Equation (1). In step five, whale optimization is considered for better 

underwater relay node selection. The exploration and exploitation of whale optimization is enhanced 

in step six via the wolf optimization method. In steps 10–13, we prioritize the three best solutions as 

the most recent solutions at each optimization iteration. In steps 17–31, the whale optimization-based 

iterative search is performed for selecting underwater relay nodes. In steps 35–38, the wolf 

optimization-based search is performed for enhancing the exploitation and exploration of the whale 

approach. In steps 40–44, the three optimal relay node solutions are prioritized for each particular 

iteration. 

Algorithm 1 W-GUN: Whale-centric Optimization for Green Underwater Networks 

1. Initialize the population, 𝑀𝑥(𝑥 = 1,2,… , 𝑦), 

//𝑀𝑥represents the set of random solutions based on the size and position of relay nodes 

2. Initialize WOA parameters(x,X,G,Q and s) and GWO parameters(C,V and c) 

3. Calculate the fitness(𝐹𝐹 = 𝑚𝑎𝑥(𝒫𝑛)) of each search agent using Equation (1) 

// Fitness represents the maximum number of paths covered with minimal relay nodes 

4. Selection based on the adapted search algorithm 

5. For WOA-based search 

6. Find the best solution 𝑀∗ 

7. For GWO-based search 

8. Do 

9. Separate the solutions based on the fitness 

10. 𝑀𝛼= the first best search solution 

11. 𝑀𝛽= the second-best search solution 

12. 𝑀𝛿= the third best search solution 

13. Compare 𝑀∗and 𝑀𝛼 

//Select the best solution among 𝑀∗and 𝑀𝛼 pass 𝑀(𝑓𝑖𝑛𝑎𝑙_𝑏𝑒𝑠𝑡) to WOA- and GWO-based updating 

procedures 

14. While (𝑘 < maximum number of iterations) 

15. Do update based on WOA and GWO  

16. // WOA-based update 

17. For each search agent 

18. Update 𝑥 , 𝑋 , 𝐺 ,𝑄 and 𝑠 

19. if1(𝑄<0.5) 

20. if2(|𝑋 |<1) 

21. Update the position of the current search agent by, 

22. �⃗⃗⃗� = |𝐺 ⋅ �⃗⃗� ∗(𝑘) − �⃗⃗� (𝑘)|  

23. else if2(|𝑋 | ≥ 1) 

24. Select a random search agent (�⃗⃗� 𝑟𝑎𝑛𝑑) 

25. Update the position of the current search agent by, 

26. �⃗⃗� (𝑘 + 1) = �⃗⃗� 𝑟𝑎𝑛𝑑 −𝑋 ⋅ �⃗⃗⃗�  

27. end if2 

28. else if1(Q≥ 0.5) 

29. Update the position of the current search by, 

30. �⃗⃗� (𝑘 + 1) = �⃗⃗⃗⃗� 𝑑𝑖𝑠𝑡. 𝑒𝑥𝑝
𝑙𝑜𝑔𝑠𝑝𝑖𝑟𝑎𝑙𝑠⋅ 𝑐𝑜𝑠(2∏𝑠) + �⃗⃗� ∗(𝑘) 

31. (where �⃗⃗⃗� 𝑑𝑖𝑠𝑡 = |�⃗⃗⃗� 𝑝
∗
(𝑘) − �⃗⃗⃗� (𝑘)| It means the distance between 𝑝𝑡ℎwhale and prey (i.e., the best 

solution attained till now); 𝑠 ∈ [−1,1] and 𝑙𝑜𝑔𝑠𝑝𝑖𝑟𝑎𝑙  is the constant for defining the shape of the 

logarithmic spiral) 

32. end if1 

33. end for 
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34. Return 𝑴∗ 

// GWO-based update 

35. For each search solution 

36. Update the current search agent 

37. 𝑀(𝑘 + 1) =
(𝑀1+𝑀2+𝑀3)

3
 

38. where 𝑀1 = 𝑀𝛼(𝑘) − 𝐶1 ⋅ 𝑃𝛼 ; 𝑀2 = 𝑀𝛽(𝑘) − 𝐶2 ⋅ 𝑃𝛽;𝑀3 = 𝑀𝛿(𝑘) − 𝐶3 ⋅ 𝑃𝛿 ; 

𝑃𝛼 = |𝑉1 ⋅ 𝑀𝛼 −𝑀|;𝑃𝛽 = |𝑉2 ⋅ 𝑀𝛽 −𝑀|; 𝑃𝛿 = |𝑉3 ⋅ 𝑀𝛿 −𝑀|; 

39. End for 

40. Check if any search agent goes beyond the search space and adjust it 

41. Calculate the fitness of each search agent (i.e., relay set) obtained through both search algorithms 

42. Compare and update 𝑀(𝑓𝑖𝑛𝑎𝑙_𝑏𝑒𝑠𝑡) if there is a better solution  

43. Store the best solution attained so far 

44. 𝑘 = 𝑘 + 1 
45. end while 

46. return 𝑀(𝑓𝑖𝑛𝑎𝑙_𝑏𝑒𝑠𝑡) 

47. Stop 

3.3. The Complete Working Structure of the Adapted Optimization Framework (W-GUN) 

The working structure of the adapted whale optimization-based relay node optimization for the 

W-GUN framework with a dynamic duty cycle is given in Figure 2. 

Next, we will discussed the working of the proposed underwater framework W-GUN, in detail 

as per Figure 2 (above). In the first step, the underwater sensor nodes that were deployed in a uniform 

random fashion are located in the underwater network sensing area. In the second step, underwater 

relay nodes deployed in a normal random distribution fashion are identified. In the third step, the 

initial estimation of the network is performed with the objective function of the deployed underwater 

relay nodes. Thus, this step initially calculates the fitness of each search agent. In the fourth step, the 

adapted underwater optimization framework W-GUN, is utilized to find the optimal set of 

underwater relay nodes from the direct neighbor nodes. A flowchart of the adapted whale and wolf 

optimization framework is given in Fig 1. The adapted underwater optimization has been designed 

by integrating the whale and wolf optimization techniques. Here, the optimal best relay node 

solutions are obtained simultaneously from both algorithms, and the final decision is taken to select 

the best relay node among them during each optimization iteration. At the completion of every 

underwater relay node optimization iteration, the best underwater relay node solution will be given 

to both optimization algorithms to generate solutions that are better than the previous underwater 

relay node solutions, then the same cycle is repeated. Thus, the output of the fourth step is an optimal 

set of underwater relay nodes to be used as the next-hop forwarder. 
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𝑠𝑖𝑧𝑒_(𝑅𝑛 )
 

Modified Echo State Network (MESN)

Deploy the underwater relay nodes (using random distribution)

Initially estimate the network with objective function for deployed relay nodes 

(Here we calculate the fitness (FF=max(L) of each search agent using equation-1

Evaluate the network using proposed adapted W-GUN

Check if any search agent goes beyond the search space then adjust it

(i.e. Vary the position of relay nodes)

            Calculate the fitness of each search agent (i.e. relay set) obtained through both 

          search  algorithm using objective function, equation-1

                                     Compare and update M(Final_best) if there is a better solution, 

                               Store the best solution attained so far.

Find optimal set of relay nodes

Step-2

Step-3

Step-4

𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑎𝑐𝑡
𝑥 (𝑗 + 1) ≤ 𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑥  

Figure 2. The working structure of proposed adapted relay node optimization framework W-GUN. 

After finding the optimal set of underwater relay nodes, their current duty cycle is calculated in 

the fifth step. Now, the underwater relay set for each node is identified, and all relay nodes become 

active in the underwater network path. In addition, in the fifth step, the expected effective 

transmission cost (EETC) is calculated, and relay nodes are prioritized accordingly [37,38]. Therefore, 

the actual underwater relay node list for each node is discovered in this step. For each sender node 
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𝑚 , the underwater relay nodes n are identified. The EETC of the underwater single-hop data 

forwarding, 𝐸𝐸𝑇𝐶  𝑇𝑠𝑖𝑛𝑔𝑙𝑒−ℎ𝑜𝑝
𝑚𝑛 (𝑢) , at particular slot u, is derived from the sum of the underwater 

transmission cost and the waiting cost, as expressed in Equation (24): 

𝐸𝐸𝑇𝐶  𝑇𝑠𝑖𝑛𝑔𝑙𝑒−ℎ𝑜𝑝
𝑚𝑛 (𝑢) = 𝑐𝑜𝑠 𝑡 (𝑇𝑤𝑎𝑖𝑡

𝑚𝑛 (𝑢)) + 𝑐𝑜𝑠 𝑡 (𝑇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑚𝑛 (𝑢)) (24) 

where 𝑇𝑤𝑎𝑖𝑡
𝑚𝑛

 is the waiting time interval and 𝑇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑚𝑛  represents a transmission time interval. The 

expected time interval between receiving a packet and beginning to send that packet to other nodes 

is considered to be the waiting cost. The underwater multi-hop data forwarding uses the single-hop 

EETC and an average of subsequent underwater relay nodes. This can be calculated as given in 

Equation (25): 

𝐸𝐸𝑇𝐶 𝑇𝑚𝑛(𝑢) = 𝐸𝐸𝑇𝐶  𝑇𝑠𝑖𝑛𝑔𝑙𝑒−ℎ𝑜𝑝
𝑚𝑛 (𝑢) +

 𝐸𝐸𝑇𝐶 𝑇𝑛𝑜(𝑢) 𝑜∈𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛

𝑠𝑖𝑧𝑒(𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛 )

 (25) 

where 𝑠𝑖𝑧𝑒(𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛 ) is the size of the relay set, 𝐸𝐸𝑇𝐶  𝑇𝑠𝑖𝑛𝑔𝑙𝑒−ℎ𝑜𝑝

𝑚𝑛 (𝑢)  is the expected effective 

transmission cost for a single hop of the receiver node 𝑛 in the relay node-set 𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛 . Moreover, 

 𝐸𝐸𝑇𝐶 𝑇𝑛𝑜(𝑢) 𝑜∈𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛

𝑠𝑖𝑧𝑒(𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛 )

 is the average dynamic transmission cost of the relay node-set 𝑠𝑖𝑧𝑒(𝑆𝑒𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛 ). 

In step six, underwater node energy acquisition of the next slot is predicted by using a modified 

eco state network (MESN) model [39]. Here, for (j + 1) time slot, energy acquisition is 

𝐸𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛
𝑥 (𝑗 + 1).Finally, in step seven, underwater node energy consumption is calculated, and the 

duty cycle is adjusted accordingly based on energy consumption, the energy acquisition of the next 

slot and the energy threshold of the underwater network environments. 

In the underwater network, the energy utilization of (𝑗 + 1)𝑡ℎ the time slot is nothing but the sum of 

the energy acquisition of the next time slot and the excess energy of the current time slot, which can 

be referred to as given in Equation (26): 

𝐸𝑈
𝑥(j + 1) = 𝐸𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛

𝑥 (𝑗 + 1) + 𝐸𝑒𝑥
𝑥 (𝑗)  (26) 

where 𝐸𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛
𝑥 (𝑗 + 1) denotes the underwater node energy acquisition of next time slot, 𝐸𝑒𝑥

𝑥 (𝑗) 

represents the excess energy in the current time slot. By utilizing Equation (2), the dynamic duty 

cycle in underwater networking as calculated as given in Equation (27): 

𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑎𝑐𝑡
𝑥 (𝑗 + 1) = 𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑥 × 𝑚𝑖𝑛 𝑚𝑎𝑥  

𝐸𝑈
𝑥(𝑗 + 1) − 𝐸𝑇

𝐸𝑚𝑎𝑥
𝑥𝑇 − 𝐸𝑇

, 0 , 1  (27) 

where 𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑎𝑐𝑡
𝑥 (𝑗 + 1) represent the active time at slot (𝑗 + 1) of the underwater relay node, 

𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑥 is the slot length, 𝐸𝑈
𝑥(𝑗 + 1) refers to the energy utilization of (𝑗 + 1)𝑡ℎ time slot for 

the underwater relay node, 𝐸𝑚𝑎𝑥
𝑥𝑇  represent maximum consumption of energy for a slot, and 

𝐸𝑇 represent the energy threshold in underwater communication network environments. The active-

duty cycle constraint is referred to as, 𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑎𝑐𝑡
𝑥 (𝑗 + 1) ≤ 𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑥 . In addition, if 

𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑎𝑐𝑡
𝑥 (𝑗 + 1) = 0, this represents that the underwater node is entirely inactive for the (𝑗 +

1)𝑡ℎ time slot. 

4. Results and Discussion 

4.1. Experimental Settings 

In this section, a brief description of the experimental settings is provided, which were used to 

set up Aqua-Sim-enabled network simulator (ns2) environments for evaluating the performance of 

the proposed underwater relay node optimization framework W-GUN. The underwater simulation 

environment had utilized acoustic channels at Medium Access Control (MAC) and physical layers. 

Towards benchmarking a centric comparative experimental analysis, recent techniques in 

underwater relay node optimization were considered, including VBF [31], HH-VBF [32], VBVA [33] 

and ES-VBF [34]. Both VBF and HH-VBF possess the qualities of service-oriented modeling without 

considering underwater network characteristics in the modeling. VBVA and VBF both focused on 
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void avoidance without topology knowledge using the geographic locations of relay nodes. Here, the 

significant impact of underwater characteristics on relay node locations is not considered. The 

adapted optimization framework W-GUN for underwater relay node selection with a dynamic duty 

cycle is implemented under realistic 3D underwater network environments of size 1000𝑚 ×

1000𝑚 × 1000𝑚. Here, the underwater sensor nodes vary from 100 to 500 in the network region, 

which is quite a realistic assumption for scalability. Each sensor node in the region is charged with 

an initial energy of 100 j. For sending a single packet of size 512 bytes per node, the transmission 

energy per node is considered2𝑤, and receiving energy per node is considered to be0.75𝑤, given 

that the ideal node needs 10 mw of energy. The transmission range of each underwater sensor node 

is 150 m, and the movement of underwater nodes in the horizontal dimension is considered to be 0–

3 m/s. There is the consideration of an 100 s beaconing gape in underwater networking 

communication. Due to the longer propagation delay in underwater networking environments, the 

handling packet collision is significant. The packets colliding in one node may not collide with other 

nodes or arrive in different sequential orders in underwater environments. This is handballed 

effectively in our Aqua-Sim-based simulations where every node maintains a local copy of incoming 

packets and collision of packets are identified using the difference in received power levels locally. 

Therefore, the effect of collision only remains on local copies of a node and does not impact the copies 

of other nodes. This is the way in which collisions are handled locally at each node in our simulation 

experiments. For controlling the constrains of underwater physical layer implementation, we are 

essentially setting the exposed interface values of the simulator. For example, as attenuation model 

setting, spreading factor was considered to be two, along with the absorption coefficient calculated 

following Thorp’s equation with 1500 m/s propagation speed. An average of 50 simulation runs are 

averaged to get the results, and overall simulation time considered to be 1500 s. A confidence interval 

of 98% was considered for generating the results. The framework is implemented in the C++ 

environment in the simulator. 

4.2. Analysis of Results 

This section covers the comparative performance analysis part of the proposed approach with 

the existing methods. The analysis of the end-to-end delay versus the number of underwater sensor 

nodes is given in Figure 3. Here, the number of underwater sensor nodes is varied as 100, 200, 300, 

400, and 500. It shows that the delay is considerably less for the proposed underwater relay 

optimization method W-GUN than the state-of-the-art techniques. It is evident that the optimal 

selection of underwater relay nodes enhances the performance of the overall network, resulting in 

reduced delay. For a lower delay, the underwater routing path should be as optimal as possible. The 

aim of the proposed optimization method is to select the maximal number of underwater routes with 

a minimal number of underwater relay nodes. Therefore, the route consists of the minimum number 

of underwater relay nodes in our proposed approach. Thus, the delay is considerably minimal 

compared with existing schemes in the underwater literature. 

A more detailed description of the end-to-end delay performance gain of the proposed 

framework is given in Table 1 with the comparative investigation of the frameworks HH-VBF, VBVA 

and ES-VBF, as described in the literature. It can be observed that the average performance gain of 

W-GUN in terms of percentage is 27%, 42%, and 50% for ES-VBF, VBVA and HH-VBF, respectively. 

This can be attributed to the fact that the natural underwater characteristics are not considered in the 

literature, which rather majorly relies on service quality and location-centric underwater relay nodes. 

However, W-GUN utilized underwater characteristics by the consideration of whales movement, 

resulting in a considerable performance gain. This performance gain is further represented in a more 

readable way in Figure 4, where percentage gain and end-to-end delay observations are shown to be 

in close relation. This verifies the results presented in Table 1 and Figure 3. Therefore, the proposed 

underwater framework outperforms the state-of-the-art techniques with considerably lower end-to-

end delay. 
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Figure 3. End-to-end delay versus the number of underwater nodes. 

Table 1. Descriptive performance observation of W-GUN in terms of end-to-end delay. 

Delay (ms) Comparison with Varying Number 

of Nodes 
% Improvements of W-GUN Compared with Existing Techniques 
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100 125 115 109.8 100 89 11 19 23 

200 120 109 100 78 66 15 34 39 

300 112 94 81 64 49 23 40 48 

400 98 78 65 53 35 34 46 55 

500 84.8 60 35.6 20 10 50 72 83 

Average % Improvement → 27 42 50 

 

Figure 4. Detailed percentage-centric performance gain of W-GUN focusing on end-to-end delay. 

The results in Figure 5 show the comparison of packet delivery ratio performance between the 

proposed framework and state-of-the-art techniques with varying underwater network density in 

the range of 100–500 sensor nodes. It can be observed that the packet delivery ratio is significantly 

higher for the proposed underwater relay optimization framework compared to state-of-the-art 
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utilization of underwater environmental characteristics in relay node optimization, ultimately paying 

as a higher packet delivery rate. Furthermore, an underwater environmental scenario-centric delivery 

path is the target of the proposal’s discovery mechanism, in order to have more stable nodes in the 

path for a higher packet delivery ratio. This means that the proposed underwater relay node 

optimization framework selects the more stable underwater routes with the optimal number of 

underwater relay nodes. Therefore, the delivery path consists of stable underwater relay nodes in our 

proposed approach. Thus, the packet delivery ratio is considerably higher compared with existing 

schemes in the underwater literature. 

A more detailed analysis of performance gain in terms of packet delivery ratio of the proposed 

framework is presented in Table 2. This comparative investigation considered the underwater state-

of the-art literature for highlighting the respective performance gains against the framework in this 

study. It can be observed that the average performance gain of the proposal in terms of percentage is 

15%, 23%, and 32% for ES-VBF, VBVA and HH-VBF, respectively. The reason behind this the 

utilization of underwater characteristics for identifying network dynamics which is not considered 

in the existing literature. The existing techniques have utilized service quality and location of 

underwater relay nodes for making data delivery decisions. However, the proposed framework 

considers underwater network dynamics resulting in significant performance gain in the packet 

delivery ratio. This performance gain is further shown in a more scientifically understandable way 

in Figure 6. Here, the percentage gain as well as packet delivery ratio observations are presented close 

together to make it easy to highlight the performance benefits of the proposal in comparison with the 

literature. This is also helpful in validating the results shown in Table 2 and Figure 5. Thus, the 

proposed underwater framework provides a better packet delivery ratio in underwater environments 

compared to state-of-the-art techniques. 
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200 40 57 67.5 75 89 16 24 36 

300 52 66 74.4 82 97 15 23 32 

400 59 75 81.3 86 99 13 18 24 

500 70 79 87 95 108 12 19 27 

Average % Improvement → 15 23 32 

 

Figure 6. Detailed percentage-centric performance gain of W-GUN focusing packet delivery ratio. 

A comparative analysis between the proposed framework and state-of-the-art techniques is 

presented in Figure 7 for energy consumption performance as a function of the number of underwater 

sensor nodes in the underwater network. It can be observed that the energy consumption is 

considerably lower for the proposed underwater relay optimization method W-GUN than the state-

of-the-art techniques. It is evident that the optimal selection of underwater relay nodes reduces the 

energy consumption of the overall network, resulting in better utilization of the energy of underwater 

nodes. For lower energy consumption, the underwater routing path should be as optimal as possible. 

The proposed optimization framework selects the optimal number of underwater relay nodes for 

optimizing the energy usage at the node level. Therefore, the route consists of stable underwater 

nodes as well as the minimum number of underwater relay nodes in our proposed framework. In 

particular, it can be observed that energy consumption reaches more than 7000 j for VBVA with 500 

sensor nodes in the underwater network. In the case of our proposal, it reaches up to approximately 

5000 j with similar 500 sensor nodes underwater network density. Here, we want to clarify that the 

energy consumption is of the overall underwater network, considering all the sensor nodes’ energy 

consumption. As we have specified in our experimental setting description, total simulation time 

considered for each simulation experiment was 1500 s and each point considered in the result is an 

average 50 simulation runs. Essentially, after our simulation time, overall 14% of underwater network 

energy has been consumed in the case of VBVA and approximately 10% of underwater network 

energy has been consumed in the case of the proposed framework. Therefore, energy consumption 

is lower considerably compared with existing schemes in the underwater literature. 

The overall energy consumption of the proposed framework is investigated in detail in Table 3 

with a comparison to the literature, focusing on respective performance gain percentage. It can be 

noted that the average energy consumption performance gain of the proposed framework in 

percentage is 27%, 53%, and 46% for ES-VBF, VBVA and HH-VBF, respectively. This can be attributed 

to the fact that the optimal and stable underwater nodes are considered in the proposed framework, 

in comparison with the literature majorly relying on the quality of service and location-centric 

underwater relay nodes. W-GUN utilized underwater characteristics resulting in a considerable 

energy performance gain. This energy performance gain is further represented in a more 

understandable way in Figure 8, where percentage gain and energy consumption observations are 

shown in close relation for better clarity and understanding. This verifies the results presented in 

Table 3 and Figure 7. Therefore, the proposed underwater framework outperforms the state-of-the-

art techniques with considerably lower energy consumption. 
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state-of-the-art techniques. Similar network density in the range of 100–500 sensor nodes is 

considered for this experiment. It can be easily noticed that the network lifetime is effectively longer 

for the proposed underwater relay optimization framework than the compared state-of-the-art 

techniques. It is evident that the optimal selection of underwater relay nodes enhances the 

communication performance of the overall network in terms of a longer network lifetime. For a 

durable network lifetime, the underwater communication path should be optimal. The aim of the 

proposed optimization method is to select the maximal number of underwater communication routes 

with a minimal number of underwater relay nodes. Therefore, the route consists of the minimum 

number of underwater relay nodes in our proposed approach. Therefore, the network lifetime is 

longer considerably compared with existing schemes in the underwater literature. 

The longer network lifetime-centric performance benefits of the proposed framework are 

explored in detail in Table 4 in terms of percentage gain compared with the literature. The average 

performance gain of W-GUN in terms of network lifetime percentage can be notes as 12%, 32%, and 

46% for literature including ES-VBF, HH-VBF and, VBVA respectively.  The performance benefits 

can be reasoned to the fact that the natural underwater characteristics are not considered in the 

literature, which rather majorly relied on the quality of service and location information of 

underwater relay nodes. However, the proposed framework has utilized underwater characteristics, 

resulting in considerable performance gain and a longer network lifetime. This network lifetime 

performance gain is further represented in a more readable way in Figure 10. Here, the percentage 

gain and network lifetime observations are shown in close relation so that they can be analyzed 

relatively. This is also verifying the results presented in Table 4 and Figure 9. Therefore, the proposed 

underwater framework shows a longer network lifetime compared to the state-of-the-art techniques 

in the underwater literature. 

 

 

Figure 9. Network lifetime versus the number of underwater nodes. 
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Figure 10. Detailed percentage-centric performance gain of W-GUN focusing network lifetime. 

The throughput performance of the proposed framework is comparatively studied in the results 

presented in Figure 11, with varying numbers of sensor nodes in the underwater network 

environment. The throughput of the proposed framework is significantly higher for the considered 

underwater relay optimization environment compared to state-of-the-art techniques. The better 

throughput of the proposal is due to the utilization of stable and lower delay-centric underwater 

relay nodes. In the framework, an underwater environmental scenario-centric routing path is 

discovered to have more stable nodes in the delivery path. In other words, the proposed underwater 

relay node optimization framework selects the more stable underwater routes compared to the 

considered existing literature with the optimal number of underwater relay nodes. The delivery path 

consists of stable underwater relay nodes in our proposed framework. Thus, the throughput 

performance of the proposal is considerably higher compared with existing schemes in the 

underwater literature. 

The benefits in terms of the throughput of the proposed framework are analyzed as performance 

gain in Table 5. It is a comparative investigation between the proposed framework and underwater 

state-of-the-art techniques. The average throughput performance gain of W-GUN in terms of 

percentage is 10%, 33%, and 45% for the underwater literature including ES-VBF, HH-VBF and, 

VBVA respectively.  The reason behind the better throughput is the utilization of underwater 

characteristics for identifying network dynamics. However, W-GUN considers underwater network 

dynamics, resulting in significant performance gains in throughput. These performance benefits are 

further evident in Figure 12 in a more scientifically understandable way. Here, the percentage gain 

and throughput observations are presented in close relation so that they can be analyzed relatively. 

This is helpful in validating the results shown in Table 5 and Figure 11. Thus, the proposed 

underwater framework provides higher throughput in underwater environments compared to the 

state-of-the-art techniques. 
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Figure 11. Throughput versus the number of underwater nodes. 

Table 5. Descriptive performance observation of W-GUN in terms of throughput. 
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In this paper, we have presented an underwater relay node optimization framework (W-GUN) 

for enabling green computing in underwater networking. The underwater relay nodes are selected 

to cover the maximal paths with the help of an adapted whale and wolf optimization algorithm. The 

position of underwater relay nodes is varied and checked for optimal deployment to reduce the 

number of underwater relay nodes for green underwater networking. The adapted W-GUN 

framework has been designed by integrating underwater-centric optimization techniques, namely a 

whale and wolf optimization algorithm. Moreover, the performance of the proposed framework is 

compared with the existing techniques ES-VBF, VBVA and HH-VBF. The proposed methodology is 

analyzed in terms of various underwater-centric metrics including end-to-end delay, packet delivery 

ratio, energy consumption, network lifetime, and throughput by varying the number of underwater 

sensor nodes in the network. The average percentage improvements reflect the effectiveness of the 

proposed scheme compared with the state-of-the-art underwater techniques. In addition, from the 

results attained, it can be concluded that the proposed optimal underwater relay selection scheme is 

effective in terms of improving the network lifetime with less energy consumption. In future works, 

the authors will focus on using deep learning-centric optimization in order to further evolve the 

understanding of underwater network environments in optimal relay node selection and route 

optimization based on network dynamics. 
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