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Abstract

Unsteady numerical computations are performed to investigate the flow field,
wave propagation and the structure of bubbles in sonochemical reactors. The
turbulent flow field is simulated using a two-equation Reynolds-Averaged
Navier-Stokes (RANS) model. The distribution of the acoustic pressure is
solved based on the Helmholtz equation using a finite volume method (FVM).
The radial dynamics of a single bubble are considered by applying the Keller-
Miksis equation to consider the compressibility of the liquid to the first order
of acoustical Mach number. To investigate the structure of bubbles, a one-
way coupling Euler-Lagrange approach is used to simulate the bulk medium
and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass,
volume change and first Bjerknes forces are considered and their orders of
magnitude are compared. To verify the implemented numerical algorithms,
results for one and two-dimensional simplified test cases are compared with
analytical solutions. The results show good agreement with experimental
results for the relationship between the acoustic pressure amplitude and the
volume fraction of the bubbles. The two-dimensional axi-symmetric results
are in good agreement with experimentally observed structure of bubbles
close to sonotrode.
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1. Introduction

Acoustic cavitation concerns the formation of bubbles from nuclei, their
convection, oscillation and collapse [1]. These bubbles are responsible for dis-
sipation of the acoustic energy in the liquid medium. Thus, determining the
correct bubble distribution is an important goal in designing sonochemical re-
actors. The most important technological problem is upscaling the laboratory
reactors to industrial scales ones in which the uniformity of the cavitational
activity cannot be guaranteed. This uniformity, in addition, is disturbed due
to external instruments such as aluminum foils and hydrophones during ex-
perimental investigations [2, 3]. Furthermore, the majority of experimental
investigations are on the behavior of a single bubble during a short period of
time such as the work of Lauterborn et al. [4] and Dangla and Poulain [5].
These experiments are of limited value to understand the state of a bubble
swarm which is the most significant factor affecting the cavitational activity.
Thus, to understand the design aspects of sonochemical reactors such as the
dependency of the cavitational activity on the operating parameters and their
optimum values [6], theoretical models as well as experimental investigations
should be utilized [7].

Computational models may help in optimizing the geometry and operat-
ing parameters of a reactor. However, formulating a comprehensive physical
model is still a challenge since not all of the phenomena are completely un-
derstood [8]. Furthermore, the disparity of the length and time scales causes
severe mathematical problems. A majority of models dealing with bubbles in
an acoustic field focus on a Rayleigh type equation for a single bubble during
one or several acoustic periods [9, 10]. As a result the pressure and temper-
ature at the bubble position during the oscillation and after its collapse are
predictable. These parameters may help in estimating the optimum design
parameters such as cavitational yield in a reactor [11]. Furthermore, the en-
ergy analysis of a single bubble dynamics could be helpful in determining the
dissipation of power in the whole geometry of the reactor [12, 13]. However,
predicting the heat and mass transfer as well as the chemical consequences
at a microscopic scale in these models is still of challenge. Furthermore,
the swarm behavior of bubbles can not be figured out from single bubble
dynamics.

The second group of the models concerns the modeling of the cavitational
activity by finding the acoustic pressure amplitude as a field quantity. In this
category, the acoustic pressure is predicted without considering the effect of
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bubbles [14] or by estimating their effect using simplifications [15, 16]. These
approaches allow to determine the effect of parameters such as frequency and
intensity of the ultrasound source or the boundaries, with respect to sound
propagation and damping [17].

Most of the aforementioned references do not concentrate on the bulk
medium motion. This flow field may be a result of external momentum
sources, such as the inlet/outlet of a continuous feed reactor. Alternatively,
they may be due to a strong acoustic source (acoustic streaming). Previ-
ous studies on the fluid motion in presence of a sound field are limited to
investigate the acoustic streaming and are not for a combination with other
momentum sources (see Ref. [18] or Ref. [19] and references therein). Fur-
thermore, the experimental works in this field are usually conducted by con-
sidering some chemical characteristics such as mixing time of the reactants
in a sonochemical reactor [20]. Since recent sonochemical reactors may be
designed for reacting flows [21], the influence of external convective sources
should also be considered. Besides that, it is important to understand the
mixing and hydrodynamic characteristics due to the presence of solid/gas
phases in a continuous feed reactor [22]. The idea of modeling of such a flow
field is that it can help in placement of the reactants in zones of maximum
cavitational intensity, flow distributors and near transducers for eliminating
zones with weak cavitational activity [23].

Recently, hydrodynamic cavitation phenomena including the radial dy-
namics of externally driven bubbles are investigated by Abdel-Maksoud et
al. [24]. However, due to the large difference between time scales of the oscil-
lations of the bubbles and the bulk liquid flow, there are no attempts toward
simultaneous modeling of these events using an Euler-Lagrange method in
sonochemical reactors. The works of Parlitz et al. [25] and Mettin et al. [26]
are some of the first attempts to use an Euler-Lagrange approach for the
motion of bubbles under the action of ultrasound. By applying a parti-
cle model, they found that the primary Bjerknes force creates filaments of
bubbles (streamers) due to the motion of the bubbles towards the nodes or
antinodes of the acoustic field. Nevertheless, these works also suffer from the
lack of investigating the external convective sources. Therefore, the present
paper seeks to find a new method to investigate the motion of bubbles with
varying radii and the formation of their quasi-steady structure under the
action of a strong acoustic field.
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2. Theory

2.1. Field quantities

For small amplitude waves, the distribution of the acoustic pressure may
be described by the linear wave equation. Decomposing this equation into
a spatially varying amplitude and a harmonic contribution, results to a
Helmholtz type equation

∇2p + k2p = 0 . (1)

Here, k = ω/c denotes the wave number in which ω is the frequency of the
wave, c is the speed of sound in the medium and p is the acoustic wave
amplitude.

The motion of the turbulent, Newtonian, incompressible fluid may be
governed by the RANS models, i.e., the convection equations for mass and
momentum together with a transport model for the turbulent kinetic energy
k and the turbulent dissipation rate ǫ. Here, the standard k − ǫ model is
selected for turbulence modeling. Details of the model are not presented
here. In the following, Uf denotes the fluid velocity.

2.2. Lagrangian approach for bubble motion

The motion of each individual bubble in a Lagrangian approach is gov-
erned by Newton’s second law

mb

dUb

dt
= FG + FAM + Fvol + FD + FBj1 , (2)

in which mb is the mass of the bubble and Ub is its velocity. The Right Hand
Side (RHS) of Eq. (2) contains the gravitational force FG = (1 − ρ

ρb

)mbg,

the added mass force FAM = mbρ

2ρb

(DUf

Dt
− dUb

dt
), the volume variation force

Fvol = ρ

2ρb

dmb

dt
(Uf −Ub) which represents momentum transfer due to changes

in the bubble volume [27], the drag force and the primary Bjerknes force. In
these equations, ρb is the density of the bubble that is mainly filled with gas
such as air. The last two forces are explained in the following.

The drag force is a result of the relative motion between the bubble and
the surrounding fluid and can be expressed as

FD = −mb

Ub − Uf

τb

, (3)
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where τb is the relaxation time for the bubble. The value of τb ,which rep-
resents the time for a bubble to respond to the changes in the local fluid
velocity, can be obtained as

τb =

{

ρbd
2

b

18µ
: Reb < 0.1

4

3

ρbdb

ρCD|Uf−Ub|
: Reb > 0.1

in which db is the diameter of the spherical bubble, Reb is the bubble Reynolds
number defined based on the relative velocity between bubble and the sur-
rounding fluid and the drag coefficient, CD, is obtained from the Schiller and
Naumann relation [28].

As the acoustic pressure is oscillatory in time, the average of the primary
Bjerknes force on the bubble during one acoustic cycle is calculated as follows

FBj1 = −〈V (t)∇p(t)〉t , (4)

where V (t) is the volume of the bubble and ∇p(t) is the pressure gradient at
the bubble position. The operator 〈.〉t denotes averaging in time.

2.2.1. Updating the bubble position

To find the new position of a bubble as xn+1

b = xn
b +Un+1

b dt, the updated
bubble velocity Un+1

b is obtained by substituting Eqs. (3) and (4) and the
gravitational, added mass and volume variation forces into Eq. (2). To calcu-
late drag, added mass and volume variation forces, the updated value for the
bubble velocity is applied, that means a backward (implicit) Euler method
is used. After some algebraic operations, the updated bubble velocity is
obtained as below

Un+1

b =
Un

b + 2dt
2ρb+ρ

(

(ρb − ρ)g + ( ρ

2Vb

dVb

dt
+ ρb

τ
)U@b −

1

Vb

〈Vb∇p(t)〉t

)

1 + 2dt
2ρb+ρ

( ρ

2Vb

dVb

dt
+ ρb

τ
)

, (5)

in which U@b is a new notation for Uf to show the velocity vector of the
liquid at the bubble position. This vector is interpolated from the solution
of the flow field at each time step.

2.3. Bubble dynamics

For the sake of simplicity, it is assumed that the spherical shape of the
bubbles remains unchanged and the radial dynamics of a bubble including
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the compressibility effects to the first order of acoustical Mach number, Ṙ/c,
is modeled by the Keller-Miksis Equation (KME) [29]

ρ

(

(1 −
Ṙ

c
)RR̈ +

3

2
Ṙ2(1 −

Ṙ

3c
)

)

=

(

1 +
Ṙ

c
+

R

c

d

dt

)(

pg −
2σ

R
−

4µṘ

R
− p

)

, (6)

in which overdots denote differentiation with respect to time. Here, the
pressure of the gas inside the bubble, pg, is supposed to change adiabatically
and p, the acoustic pressure at the location of the bubble center is defined as

p = p0 − pasin(ωt) . (7)

The linear theory of bubble oscillation leads to some approximate so-
lutions for predicting the bubble behavior. Therefore, it is helpful in ver-
ifying the results of the numerical algorithms applied in CFD simulations.
Linearization of the ordinary differential equation (ODE) for the bubble dy-
namics with the assumption of R(t) = R0 +R′(t), leads to an inhomogeneous
second order ODE as

R̈′ + βṘ′ + ω2
0R

′ = −
pa

ρR0

sin(ωt) , (8)

in which ω0 and β are the resonant frequency of the bubble and the damping
factor respectively published elsewhere [25].

The solution of Eq. (8) has the form of R′(t) = R′
asin(ωt+φ) in which the

phase shift φ depends on the initial radius of the bubble and the frequency
of the wave and R′

a is the amplitude of oscillations. The variation of bubble
radius obtained from Eq. (6) and Eq. (8) is shown in Fig. 1. The results are
compared for a pressure amplitude of pa=10 kPa, ultrasound frequency of
f=20 kHz and initial radius of R0=5 µm in Fig. 1-b. The value of 10 kPa is
adopted to check the validity of the linear theory, because this magnitude is
about ten percent disturbance in an equilibrium pressure of 101 kPa.

It is clear that for this range of pressure amplitudes, the linear theory
predicts the bubble behavior quite well. However, the solution of Eq. (6) in
the case of pa=120 kPa in Fig. 1-c, which is in the non-linear region, shows
that the linear approximation is pointless. Therefore, the average values re-
quired for calculating the primary Bjerknes and volume variation forces must
be obtained from Eq. (6) instead of Eq. (8). However, to verify the applied
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method in the software, for some simple test cases the results of linear theory
are mentioned and compared.
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Figure 1: Variation of radius of a 5 µm bubble excited by a 20 kHz wave.
(a): normalized acoustic pressure, (b): comparison between linear theory
(Eq. (8)) and Eq. (6) for pa=10 kPa and (c) Variation of bubble radius for
pa=120 kPa.

3. Numerical set-up

3.1. Procedure

All simulations are performed using OpenFOAM, a free software toolbox
for continuum mechanics, specially for CFD. First, one and two dimensional
(1D and 2D) computational domains are selected to verify the numerical
method. The wave equation in the frequency domain, Eq. (1), is solved and
the motion of a single bubble due to the primary Bjerknes force is investi-
gated. Since a comparison with analytical solutions is of interest, the simula-
tions are conducted for a pressure amplitude in the linear region. Thereafter,
a flow field is added to the simulation for a 1D problem and a single bubble
is investigated to be excited by acoustic pressure and convected by the flow.
The convection causes the bubble to move along the streamline while the
acoustic pressure amplitude as well as the radius of the bubble is changing.
The radial motion of the bubble is investigated using Eq. (6). The result
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is a relationship between acoustic pressure amplitude at each point and the
volume of a single bubble. This relationship could be justified to find an
equilibrium model for variation of the volume fraction of the bubbles and
the acoustic pressure amplitude in sonochemical reactors. Previously, it was
considered as a linear function [17, 30, 31]. The final step is applying the
same procedure to a 2D reactor with a large number of bubbles and compar-
ing the structure of bubbles with experiments [32].

3.2. Geometries, boundary conditions and physical properties

In sonochemical reactors used for mixing, the frequency of the ultrasonic
wave is in the range of kHz [6, 33]. In the present work, the selected frequen-
cies are about 20 kHz which is a common value for ultrasound transducers
used in sonochemistry. The liquid is water in which the speed of sound is
about 1500 m/s. Therefore, the wavelength of the wave approximately equals
to 7.5 cm. The length of the 1D domain is 10 cm and for the 2D linear test
case, a 10 cm×10 cm square is considered. Hence, the produced standing
wave can experience both nodes and antinodes. Schematics of the selected
domains as well as the boundary conditions applied to them are presented in
Fig. 2.

The boundary conditions for the flow field are prescribed values of veloc-
ity, turbulent kinetic energy and turbulent dissipation rate and zero gradient
for the other parameters at the inlet. At the walls, the no slip boundary
condition is imposed. The exit section is an outflow in which all gradients
are set to zero except for the hydrodynamic pressure. Since the majority of
experiments are conducted in stagnant liquids, the flow-field solver is only
examined for a simple 1D case. Nonetheless, applying an external convection
source is not a laborious task in OpenFOAM for the other test cases.

To solve the wave equation in the frequency domain, all the lateral walls of
the geometries are supposed to absorb the ultrasound waves. Thus, they are
modeled using Dirichlet type boundary condition with p =0 in the Helmholtz
equation. In the 1D simulations, the left end of the domain is the ultrasound
source which has a fixed pressure amplitude pa=10 kPa for linear analysis and
pa=180 kPa for nonlinear investigation. The right end is set as a pressure
release boundary, that is a Dirichlet boundary condition with p =0. For
the first 2D simulation, the upper boundary has a fixed pressure amplitude
pa=10 kPa and the other ones are pressure release boundaries. For the second
2D case, the pressure amplitude is calculated from the external power applied
to the sonotrode and physical and geometrical properties. In addition, the
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free surface and the side walls are pressure release boundaries while the side
of the sonotrode and the bottom wall are assumed to reflect the wave. Other
physical properties required for the simulations are set as follows: the heat
capacity ratio of the gas inside the bubble γ=1.4, the density of the gas inside
the bubble ρb=1.2 kg/m3, the surface tension σ=0.0725 N/m, the density
of the liquid, ρ=1000 kg/m3 and the viscosity of the liquid µ=0.001 Pa.s.
Several simulations are conducted to check the grid independency of the
results. Because of the simple geometrical configurations, the results of the
wave equation and flow field were almost similar for different number of grid
points. Finally, 10000 cells for the 1D test case and 200×200 cells for the
first 2D geometry test case are adopted.

4. Results and discussion

4.1. Orders of magnitude of the forces

Assuming the displaced mass of the fluid by the bubble as ρVb, the orders
of magnitude of the forces on the RHS of Eq. (2) per displaced mass of the
fluid are obtained as |g| for the gravitational force, U/Tf for the inertia and
the volume variation forces and ∇pa/ρ for the primary Bjerknes force. For

the drag force, this order is Uν/d2
b for Reb < 0.1 and U

2
/db for Reb > 0.1.

In these relations, U denotes the order of the velocity magnitude of the
bubble and the bulk of the medium and Tf is the time scale of the flow field.
For common sonochemical reactors, the nuclei of bubbles have the diameter
of about 10−5m. The reactors are normally filled with water as the bulk
medium with ν = 10−6m2/s and the mean velocity of the flow field and its
time scale are in the order of 1 m/s and 10−2s, respectively. Therefore, it can
be observed that the drag force is much stronger than the other forces and
depending on the gradient of the acoustic pressure, the primary Bjerknes
force could also be of great importance. For small amplitude of acoustic
pressure in which the linear theory is applicable, the primary Bjerknes force
is also negligible. However, for high amplitudes in the nonlinear region, this
force plays a substantial rule in determining the trajectories of the bubbles.
As the effect of this force on the bubbles trajectories is of interest in the
present study, the implementation of this force in the Lagrangian approach
is examined first.
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Figure 2: Geometries considered as the test cases with their boundary con-
ditions and dimensions. (a): 1D, (b): 2D to be compared with analytical
solution and (c): 2D to be compared with experiments.
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4.2. One-dimensional simulation

4.2.1. Single bubble motion- Linear oscillations

In the case of an acoustic standing wave as p(x, t) = p0 − pA(x)sin(ωt),
the average of the primary Bjerknes force during one acoustic cycle can be
obtained as

FBj1 = −
1

2
V ′∇pAcos(φ) , (9)

in which V ′ = 4πR2
0R

′
a is the amplitude of the oscillation of the bubble

volume [25]. According to Leighton [34], larger bubbles with initial radius
bigger than the resonant radius (cos(φ) >0) are attracted towards the pres-
sure nodes and smaller bubbles with R0 < Rres (cos(φ) <0) move towards the
pressure antinodes. The resonant radius is the radius of the bubbles whose
resonance frequency ω0 is equal to the frequency of the external acoustic
source ω .

Equation (1) in 1D reduces to p′′ + k2p = 0 and with the boundary
conditions illustrated in section 3.2, one can find a solution as pA(x) =
pasin(k(l− x))/sin(kl), k > 0 and kl 6= nπ for the amplitude of the acoustic
pressure and its gradient as ∇pA(x) = −pakcos(k(l − x))/sin(kl). On the
other hand, the solution of Eq. (8) leads to the following relationships for the
amplitude of the linear oscillations and the phase shift

R′
a =

pA(x)

ρR0

√

(ω2
0 − ω2)2 + (αω)2

, (10)

and

cos(φ) =
ω2 − ω2

0
√

(ω2
0 − ω2)2 + (αω)2

. (11)

By applying these two relations in Eq. (9), the primary Bjerknes force at
each point of the domain is obtained. Finally, the equation of motion for a
single bubble under the action of this force can be obtained as

ẍ + A · sin(2k(l − x)) = 0 , (12)
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where A is a constant which can be written as

A =
3

4

kp2
a(ω

2
0 − ω2)

ρρbR2
0sin

2(kl)((ω2
0 − ω2)2 + (αω)2)

. (13)

In deriving Eq. (13), it is assumed that due to the small oscillations of the
bubble radius, the mass of the gas inside the bubble remains constant. Equa-
tion (12) can be solved with the use of elliptic integrals or by a backward Euler
method (the 4th order Runge-Kutta method reduces to the Euler method for
this ODE). Here, the backward Euler method is used to find the solution.
The resonant radius of the bubbles with the external frequency of 20 kHz
is equal to 0.15 mm. Hence, two different cases, one with a radius smaller
and one with a radius larger than 0.15 mm are assumed. The bubbles with
initial radii of 5 µm and 0.5 mm are placed at x/L=0.026 in the geometry
of 1D model. Comparisons between numerical simulation and analytical so-
lution for the motion of the bubble are shown in Fig. 3. The bubble with
the initial radius of 5 µm starts to oscillate around the nearest antinode at
x/L=0.0625; while the other one tries to move toward the nearest pressure
node outside of the domain. If the boundary condition at x=0 is not defined
in the model, the bubble starts to oscillate around a virtual point outside
of the domain that is exactly located at the next node of the pressure field.
Hence, a boundary condition is defined at x=0 in a manner that if a bubble
reaches to this point, it will stick to the wall. This definition also has a phys-
ical meaning because the bubbles tend to stick to the wall due to the effect
of cohesion. The oscillation of the bubble with 0.5 mm in radius around the
nearest pressure node inside the domain is also investigated and confirmed.
The variation of the position has the same trend as Fig. 3-a and is not re-
peated. As it can be seen from the results, the FVM predicts the position of
the bubble precisely. It should be noted that in the FVM, the radius of the
bubble is changing due to the solution of Eq. (6) at each time step and the
primary Bjerknes force is obtained from Eq. (4) instead of Eq. (9). However,
because the amplitude of the acoustic source is not significantly high, the
amplitude of the oscillation of the radius is approximately 2 percent of the
initial radius (Fig. 1-b). Therefore, the variation of the radius can not affect
the RHS of Eq. (5) considerably.
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Figure 3: Normalized position of the bubble due to the effect of primary
Bjerknes force. Nondimensionalization is done by dividing the position to
the wavelength of the wave, λ. (a): R0 = 5 µm and (b): R0 = 0.5 mm.
Dashed line shows the position of the nearest antinode.
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4.2.2. Single bubble motion- nonlinear oscillations and convection

An inlet velocity of 10 m/s is applied to the model of section 4.2.1 to move
the bubble from left to right. This value is adopted to ensure pushing the
bubble to move along the domain without being hindered by the drag force.
The drag force is the only force which is considered here to resist against the
bubble motion due to the external convection source. If the Bjerknes force
is activated, the bubble may oscillate around some specific points and is not
able to experience all of the pressure amplitudes. The pressure amplitude at
the inlet is set as 180 kPa to ensure the non-linear oscillation of the bubble.
The initial diameter of the nuclei is 1.5 µm. Here, the goal is to find the local
volume fraction of bubbles (total void volume occupied by the bubbles per
unit volume) which is defined as

β =
4π

3
NR3 . (14)

Both N (number of bubbles) and R (their radius) are functions of pressure
amplitude. In some references, the value of N is specified and assumed as a
constant number, such as the works of Vanhille and Campos-Pozuelo [8] and
Louisnard [35]. Moreover, some authors have assumed that if the pressure
amplitude increases, the volume fraction of bubbles rises linearly [15]. The
former assumption does not see the change of N due to creating children by
the parent bubbles, even after violent collapse. In addition, the latter does
not separate the contributions of N and R in increasing the value of β. Since
the variation of R with respect to pressure amplitude can be derived in this
work using the KME at each computational cell, only a linear function is
assumed for changing the number of bubbles with pressure. It is supposed
that after the collapse of a bubble at higher pressures, it is fragmented into
smaller bubbles. The higher the value of the pressure, the higher the number
of children produced by the initial nuclei. As the overall physical background
is still unknown, here a linear function is applied and the method of its
application is described as followings.

The maximum radius of the bubble in one acoustic period is calculated by
Eq. (6) to find the volume of a single bubble at each point. It is assumed that
a bubble requires a space equal to its maximum volume during one cycle. For
a bubble with an initial diameter of 1.5 µm, the threshold of transient cavi-
tation is pa=184.5 kPa. At this pressure, the maximum radius of the bubble
reaches to about 58 times of its initial radius (Fig. 4). Up to this point, as
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Figure 4: Collapse of a bubble with initial diameter of 1.5 µm for two different
acoustic pressure amplitudes at frequency of 20 kHz.

the bubbles are oscillating almost linearly, their volume fraction is negligible
and does not increase substantially with pressure. Thus, a small value of
β = 10−4 is considered for this pressure amplitude. This value is adopted
since it is shown to have insignificant effect on wave propagation [15, 17].
By knowing this value and also the maximum volume of a single bubble, the
number of bubbles per unit volume at the beginning of the transient cavita-
tion region is estimated as 2.84 × 108. The same analysis can be done for a
volume fraction of 10−1 as the upper limit for β and a pressure amplitude of
pa=204 kPa. The upper limit for β is adjusted because the damping of the
ultrasonic wave for larger values does not allow the wave to propagate. In
addition, the coalescence among bubbles at larger volume fractions will be
dominant which leads to a so-called “saturated cavitation” phenomenon. The
pressure amplitude of 204 kPa is adopted because it is observed in the exper-
iment as the initial amplitude of the coalescence-dominated cavitation [36].
At this pressure, a bubble experiences a radius approximately 130 times of its
initial radius (Fig. 4), that is Rmax = 97.5 µm. Therefore, a value of about
2.61× 1010 is estimated for the number of bubbles per cubic meter. By con-
ducting this analyses, a linear relationship is obtained between the number
of bubbles and the pressure amplitude. This relationship as well as the vari-
ation of radius which is obtained from Eq. (6) can be applied to Eq.(14) to
predict the volume fraction of bubbles. The final results can be compared
with the experimental results from Akulichev [36] and are shown in Fig. 5 in
which the volume fraction is plotted as a function of the pressure amplitude.
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Figure 5: Comparison between experimental and numerical results for bub-
ble volume fraction versus the pressure amplitude. Experimental data are
from [36].

In the experiment, the volume fraction of bubbles is measured by inserting a
capillary in the cavitation zone. The cavitation zone is located under a cylin-
drical ring transducer, exactly on the axis. The method measures the change
of volume and is called dilatometric method (Rozenberg [37]). The result is
a “quasi-steady” bubble density which could be used to calculate the volume
fraction of bubbles. As can be seen from Fig. 5, after a threshold, transient
collapse of bubbles occurs and their volume fraction increases sharply. As it is
illustrated, the FVM results show good agreement in predicting the trend of
bubble volume fraction as observed in experiments. It can be concluded that
assuming a relation, even a linear one, between number of bubbles instead
of their volume fraction and pressure amplitude leads to reasonable results.
Nevertheless, the assumption made here could be modified by applying more
sophisticated physical models on the population of bubbles in acoustic fields.

4.3. Two-dimensional simulation

4.3.1. Single bubble motion- Linear oscillations

In a 2D domain, Eq. (1) is written as ∂2p/∂x2 + ∂2p/∂y2 + k2p = 0. By
applying the boundary conditions which are illustrated in section 3.2, the
solution of this equation can be obtained by a Fourier series

pA(x, y) =
∞
∑

n=1

4pa

nπsin
√

k2 − (nπ
l
)2H

sin(
nπx

l
)sin

√

k2 − (
nπ

l
)2y . (15)
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The gradient of this pressure distribution is substituted in Eq. (9). By as-
suming cn = nπ/l and dn =

√

k2 − (nπ/l)2, the equations of motion for a
single bubble under the action of the primary Bjerknes force can be written
as

ẍb + B

∞
∑

n=1

sincnxbsindnyb

nπsindnH

∞
∑

n=1

cosdnxsindnyb

lsindnH
= 0 , (16)

and

ÿb + B
∞
∑

n=1

sincnxbsindnyb

nπsindnH

∞
∑

n=1

sincnxbdncosdnyb

nπsindnH
= 0 , (17)

where B is a constant as

B =
24p2

a(ω
2
0 − ω2)

ρρpR2
0((ω

2
0 − ω2)2 + (αω)2)

. (18)

The same assumptions as in the 1D case are applied in deriving these rela-
tions. Again, using a backward Euler method, Eqs. (16) and (17) are solved
and the motion of a single bubble is compared to the results obtained by
FVM simulation. A bubble with the initial radius of 5 µm is placed at
x/L=0.5 and y/H=0.1 in the geometry of the 2D model (Fig. 2-b). The
comparison between the numerical simulation and the analytical solution for
the y-coordinate of the bubble position is shown in Fig. 6. It is observed that
the bubble starts to oscillate around the nearest antinode at y/H=0.275. Be-
cause of the symmetricity of the pressure around the line x/L=0.5, the bubble
does not move in x-direction. It is observed that the FVM gives reasonable
results for the position of the bubble in the 2D test case.

4.3.2. Multiple bubbles motion- nonlinear oscillations

An axi-symmetric 2D geometry with 24000 cells is considered to repro-
duce the conical structure of bubbles in the vicinity of an ultrasound source,
as observed in experiments [32]. In the experiment, a sonotrode with a di-
ameter of 120 mm, a frequency of 20.7 kHz and an acoustic intensity (power
per unit area of the sonotrode) of 8.2 W/cm2 is placed in a tank. The tank
made of glass walls is filled with water and has dimensions of 60 cm×100
cm×40 cm. The cone bubble structure is captured using a digital photo
camera which focuses on the cavitation zone. Although the tank is cubic in
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Figure 6: Normalized position of the bubble (R0 = 5 µm) due to the effect
of primary Bjerknes force in 2D domain. The dashed line shows the position
of the nearest antinode.

shape, assuming a cross section of a cylindrical tank in an axi-symmetric 2D
geometry leads to reasonable result. The reason is the large dimension of the
tank with respect to the smaller cylindrical sonotrode.

In order to apply the value of ultrasound power to the acoustic source in
the simulations, the acoustic pressure amplitude in the simulation should be
set as the boundary condition. This is done by the following relation [38]

pamp =
√

2ρcI , (19)

in which I denotes the acoustic intensity. For the present configuration, the
amplitude of pressure at the sonotrode is calculated as pa=4.96 bar. 1200
bubbles with an initial radius of R0 = 2 µm are distributed uniformly inside
the axi-symmetric geometry in the vicinity of the sonotrode. The compar-
ison between the results of simulation and the experimental observations is
shown in Fig. 7. Although the bubbles show a chaotic unsteady motion, they
accumulate around the pressure antinodes and also stick to the surface of the
ultrasonic source as a quasi-steady structure. In addition, they are repelled
from the pressure node and this leads to a conical shell with a highly popu-
lated base near the sonotrode, and a solitude zone inside the cone [35]. This
trend is also observed in the present numerical simulations.
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Figure 7: Conical structure of bubbles in the vicinity of ultrasonic horn.
1200 bubbles (R0 = 2 µm) are located uniformly near the sonotrode in a axi-
symmetric simulation (left). Right: reprinted from Ref. [32], with permission
from Elsevier. Acoustic intensity=8.2 W/cm2. frequency: 20.7 kHz.

5. Conclusions and Future works

The motion of cavitational bubbles under the action of ultrasonic pressure
is investigated numerically including bubble radial dynamics. The summa-
tion of the forces on any individual bubble is calculated and with the use
of the FVM, the velocities and positions of the bubbles are updated in a
Lagrangian frame. To verify the implemented method in OpenFOAM, two
benchmarks are considered and it is shown that the present approach, pre-
dicts the motion of the bubbles in a precise way. Since the radial dynamics
of the bubbles undergoes complex variations in the case of high amplitudes
of the acoustic source, the method is compared with experimental results in
the nonlinear regime. Results show that the method can be applied to com-
plex geometries with high number of nulcies to see the structure of bubbles
inside sonochemical reactors. Moreover, the increment of the bubble volume
fraction by increasing the acoustic pressure amplitude is verified. It is illus-
trated that by finding an appropriate relation for population of bubbles at
different pressure amplitudes, the experimental results can be reproduced by
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numerical simulations. The structure of bubbles in 2D simulation is also in
agreement with experimental observations. It is depicted that in the case
of high acoustic pressure amplitudes, the Bjerknes force is prevailing and
dominates the formation of the conical structure.
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