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Abstract

Recognition and analysis of Diabetic Foot Ulcers (DFU) using computer-
ized methods is an emerging research area with the evolution of image-based
machine learning algorithms. Existing research using visual computerized
methods mainly focuses on recognition, detection, and segmentation of the
visual appearance of the DFU as well as tissue classification. According to
DFU medical classification systems, the presence of infection (bacteria in
the wound) and ischaemia (inadequate blood supply) has important clini-
cal implications for DFU assessment, which are used to predict the risk of
amputation. In this work, we propose a new dataset and computer vision
techniques to identify the presence of infection and ischaemia in DFU. This
is the first time a DFU dataset with ground truth labels of ischaemia and
infection cases is introduced for research purposes. For the handcrafted ma-
chine learning approach, we propose a new feature descriptor, namely the
Superpixel Color Descriptor. Then we use the Ensemble Convolutional Neu-
ral Network (CNN) model for more effective recognition of ischaemia and
infection. We propose to use a natural data-augmentation method, which
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identifies the region of interest on foot images and focuses on finding the
salient features existing in this area. Finally, we evaluate the performance
of our proposed techniques on binary classification, i.e. ischaemia versus
non-ischaemia and infection versus non-infection. Overall, our method per-
formed better in the classification of ischaemia than infection. We found that
our proposed Ensemble CNN deep learning algorithms performed better for
both classification tasks as compared to handcrafted machine learning algo-
rithms, with 90% accuracy in ischaemia classification and 73% in infection
classification.

Keywords:
Diabetic foot ulcers, deep learning, ischaemia, infection, machine learning.

1. Introduction1

Diabetic Foot Ulcers (DFUs) are a major complication of diabetes which2

can lead to amputation of the foot or limb. Treatment of Diabetic foot3

ulcers is a global major health care problem resulting in high care costs and4

mortality rate. Recognition of infection and ischaemia is very important to5

determine factors that predict the healing progress of DFU and the risk of6

amputation. Ischaemia, the lack of blood circulation, develops due to chronic7

complications of diabetes. This can result in gangrene of the diabetic foot8

ulcer, which may require amputation of the part of the foot or leg if not9

recognised and treated early. Detailed knowledge of the vascular anatomy10

of the leg, and particularly ischaemia enables medical experts make better11

decisions in estimating the possibility of DFU healing, given the existing12

blood supply [1]. In previous studies, it is estimated that patients with critical13

ischaemia have a three-year limb loss rate of about 40% [2]. Patients with14

an active DFU and particularly those with ischaemia or gangrene should be15

checked for the presence of infection. Approximately, 56% of DFU become16

infected and 20% of DFU infections lead to amputation of a foot or limb17

[3, 4, 5]. In one recent study, 785 million patients with diabetes in the18

US between 2007 and 2013 suggested that DFU and associated infections19

constitute a powerful risk factor for emergency department visits and hospital20

admission [6].21

There are a number of DFU classification systems such as Wagner, Uni-22

versity of Texas, and SINBAD Classification systems, which include infor-23

mation on the site of DFU, area, depth, presence of neuropathy, presence of24
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ischaemia, and infection [7, 8, 9]. SINBAD stands for S (Site), I (Ischaemia),25

N (Neuropathy), B (Bacterial infection), A (Area), D (Depth). This paper26

focuses on ischaemia and infection, which are defined as follow:27

1. Ischaemia: Inadequate blood supply that could affect DFU healing.28

Ischaemia is diagnosed by palpating foot pulses and measuring blood29

pressure in the foot and toes. The visual appearance of ischaemia might30

be indicated by the presence of poor reperfusion to the foot, or black31

gangrenous toes (tissues death to part of the foot). From a computer32

vision perspective, these might be important hints of the presence of33

ischaemia in the DFU.34

2. Bacterial Infection: Infection is defined as bacterial soft tissue or bone35

infection in the DFU, which is based on the presence of at least two36

classic findings of inflammation or purulence. It is very hard to de-37

termine the presence of diabetic foot infections from DFU images, but38

increased redness in and around ulcer and coloured purulent could pro-39

vide indications. In the medical system, blood testing is performed as40

the gold standard diagnostic test. Also, in the present dataset, the41

images were captured after the debridement of necrotic and devital-42

ized tissues which removes an important indication of the presence of43

infection in DFU.44

In related work, Netten et al. [10] find that clinicians achieved low validity45

and reliability for remote assessment of DFU in foot images. Hence, it is clear46

that analysing these conditions from images is a difficult task for clinicians.47

In various image recognition applications, such as medical imaging and natu-48

ral language processing tasks, machine learning algorithms performed better49

than skilled humans including clinicians [11, 12, 13].50

The previous state-of-the-art image-based computer-aided diagnosis of51

DFU is composed of multiple stages, including image pre-processing, image52

segmentation, feature extraction, and classification. Veredas et al. [14] pro-53

posed the use of color and texture features from the segmented area and54

multi-layer neural network to perform the tissue classification to distinguish55

between healing-tissue and skin for healing prediction. Wannous et al. [15]56

performed tissue classification from color and texture region descriptors on57

a 3-D model for the wound. Wang et al. [16] used a cascaded two-stage58

classifier to determine the DFU boundaries for area determination of DFU.59

Major progress in the field of image-based machine learning, especially deep60
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learning algorithms, allows the extensive use of medical imaging data with61

end-to-end models to provide better diagnosis, treatment, and prediction of62

diseases [17, 18]. Deep learning models for DFU, predominantly led by works63

from our laboratory have achieved high accuracy in the recognition of DFUs64

with machine learning algorithms [19, 20, 21, 22].65

The major issues and challenges involved with the assessment of DFU66

using machine learning methods from foot images are as follows: 1) a major67

time-burden involved in data collection and expert labelling of the DFU68

images; 2) high inter-class similarity and intra-class variations are dependent69

upon the different classification of DFU; 3) non-standardization of the DFU70

dataset, such as distance of the camera from the foot, orientation of the image71

and lighting conditions; 4) lack of meta-data, such as patient ethnicity, age,72

sex and foot size.73

Accurate diagnosis of ischaemia and infection requires establishing a good74

clinical history, physical examination, blood tests, bacteriological study and75

Doppler study of leg blood vessels. These tests and resources are not always76

available to clinicians across the world and hence the need for a solution to77

inform diagnosis, such as the one we proposed in this paper. Experts working78

in the field of diabetic foot ulceration have good experience of predicting the79

presence of underlying ischaemia or infection simply by looking at the ulcer.80

We aim to replicate that in machine learning. To increase the reliability of81

the annotation, two experts predict the presence of ischaemia and infection82

from DFU images. Due to high risks of infection and ischaemia in DFU83

leading to patient’s hospital admission, and amputation [23], recognition of84

infection and ischaemia in DFU with cost-effective machine learning methods85

is a very important step towards the development of complete computerized86

DFU assessment system for remote monitoring in the future.87

2. DFU Dataset and Expert Labelling88

For binary classification of ischaemia and infection in DFU, we introduce89

a dataset of 1459 images of patient’s foot with DFU over the previous five90

years at the Lancashire Teaching Hospitals, obtaining ethical approval from91

all relevant bodies and patients written informed consent. Approval was ob-92

tained from the NHS Research Ethics Committee to use these images for this93

research. These DFU images were captured with different cameras (Kodak94

DX4530, Nikon D3300, and Nikon COOLPIX P100). The current dataset95
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(a) Infection (b) No Infection

(c) Ischaemia (d) No Ischaemia

Figure 1: Examples of foot images with DFU used for binary expert annotations for
infection and ischaemia.

we received with the ethical approval from NHS did not contain any records96

or meta-data about these conditions or any medical classification.97

Since there is no clinical meta-data regarding this DFU dataset, the ex-98

periment is performed on the images with handcrafted traditional machine99

learning and deep learning. This is the first time, recognition of ischaemia100

and infection in DFU is performed based on images, hence, there is no pub-101

licly available dataset. Here, we introduce the first DFU dataset with ground102

truth labels of ischaemia and infection cases. Expert labelling of each DFU103
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Figure 2: The number of DFU cases according to the area of DFU in full foot image of
the DFU dataset.
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according to the different conditions present in DFU according to the pop-104

ular medical classification system on this DFU dataset is particularly im-105

portant for this task. The ground truth was produced by two healthcare106

professionals (consultant physicians with specialisation in the diabetic foot)107

on the visual inspection of DFU images. Where there was disagreement for108

the ground truth, the final decision was made by the more senior physician.109

These ground truths are used for the binary classification of infection and110

ischaemia of DFU. A few examples of foot images with DFU used for bi-111

nary expert annotation are shown in Fig. 1. The complete number of cases112

of expert annotation of each condition is detailed in Table 1. The dataset,113

alongside its ground truth labels, will be made available upon acceptance of114

this article.115

3. Methodology116

This section describes our proposed techniques for the recognition of is-117

chaemia and infection of the DFU diagnosis system. The preparation of118

a balanced dataset, handcrafted features, and machine learning methods119

(handcrafted machine learning and deep learning approaches) used for bi-120

nary classification of ischaemia and infection are detailed in this section.121

3.1. Natural Data-Augmentation Technique based on Deep Learning Algo-122

rithm123

This section describes our proposed data augmentation method, called124

Natural Data-augmentation, which is based on deep DFU localization algo-125

rithm (Faster R-CNN).126

In the DFU dataset, the images (size )varies between 1600 × 1200 and127

3648 × 2736) depending on the cameras used to capture the data. In deep128

learning, data augmentation is envisioned as an important tool to improve129

the performance of algorithms. As shown in Fig. 2, approximately 92% of130

DFU cases have area between 0% to 20% on foot images. In common data-131

augmentation, the number of techniques used such as flip, rotation, random132

scale, random crop, translation, and Gaussian noise to perform augment in133

the dataset. Since DFU occupies a very small percentage of the total area134

of foot images, there is a risk of missing the region of interests by using im-135

portant augmentation technique such as random scale, crop, and translation.136

Hence, Natural Data-augmentation is more suitable for the DFU evaluation137

rather than common data-augmentation. This augmentation technique helps138
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(a) Image (b) Ist MAG (c) 2nd MAG (d) 3rd MAG

Figure 3: Natural Data-augmentation produced from the original image with different
magnifications (three magnifications in this experiment). MAG refers to magnification

in assisting the machine algorithms to pinpoint ROI of DFU on foot images139

and focus on finding the strong features that exists in this area. We used140

the deep learning-based localization method, Faster-RCNN with Inception-141

ResNetV2, to get ROI of the DFU on foot images [24, 25]. Depending upon142

the size of DFU and image, the natural data-augmentation on the DFU143

dataset with different magnification is demonstrated in Fig. 3. Flexible pa-144

rameters can be used to choose the number of magnification factors (3 in145

this classification), as well as magnification distance, which can be adjusted146

from a single DFU image by natural augmentation. After magnification, fur-147

ther, data-augmentation is achieved with the help of angles, mirror, gaussian148

noise, contrast, sharpen, translation, shearing using our proposed methods149

as shown in Fig. 4.150

As shown in Table 1, the number of DFU patches generated by crop-151

ping multiple DFU on foot images and augmented patches are generated152
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(a) Image (b) Mirror (c) 45◦ (d) 90◦

(e) Gaussian Noise (f) Salt and pepper (g)Translate (h)Shear

Figure 4: After magnification, different types of data-augmentation is achieved by the
proposed Natural Data-augmentation

by natural data-augmentation (Fig. 3) and different data augmentations153

(Fig. 4). The total number of cases for ischaemia and non-ischaemia in this154

DFU dataset is imbalanced (1249 cases vs 210 cases) whereas infection (628155

cases) and non-infection (831 cases) are fairly balanced as shown in Table 1.156

We performed binary classification of ischaemia and infection with machine157

learning algorithms because for multi-class classification, this DFU dataset158

is imbalanced especially for cases (Ischaemia and No Infection) as shown in159

5.160

3.2. Handcrafted Superpixel Color Descriptors161

We investigated the use of human design features with traditional machine162

learning on the binary classification of infection and ischaemia. Our first163

attempt was experimenting with texture descriptors (Local Binary Patterns164

and Histogram of Gradient) and color descriptors as used in related works165

[19, 21]. However, we achieved very poor results for these binary classification166

problems. Hence, we propose a novel Superpixel Color Descriptors (SPCD)167

to extract the colors region of interest from DFU images that could be the168

important visual cues for the identification of ischaemia and infection in DFU.169

In the first step, we used a SLIC superpixels technique to produce superpixel170

over-segmentation of DFU patches based on pixel color and intensity values171
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Figure 5: Distribution of ischaemia and infection cases as multi-class classification problem.

Table 1: The number of Infection and ischaemia cases, number of DFU patches and
augmented patches using Natural Data-augmentation in DFU Dataset

Category Definition Cases DFU patches Augmented patches

Ischaemia
Absent 1249 1431 4935

Present 210 235 4935

Total images 1459 1666 9870

Bacterial infection
None 628 684 2946

Present 831 982 2946

Total images 1459 1666 5892
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[26]. SLIC superpixels technique performs a localized k -means optimization172

in the 5-D CIELAB color and image space to cluster pixels as described by173

equations 1 - 4:174

S =

√
N

k
(1)

Ds = dlab +
m

S
dxy (2)

dlab =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2 (3)

dxy =
√

(xk − xi)2 + (yk − yi)2 (4)

where in eq. 1, S is the approximate size of a superpixel, N is the number175

of pixels and k is the number of superpixels; in eq. 2, Ds is the sum of the lab176

distance (dlab)and the xy plane distance (dxy); in eq. 3, l, a and b represent177

the lab colorspace; and in eq. 4, x and y represent the pixel positions.178

In the second step, the mean RGB color value of each superpixel is com-179

puted and applied to each superpixel (S ) denoted by:180

Si = mean(P (R,G,B)), i = 1, . . . , k (5)

where in eq. 5, P(R,G,B) is the pixel values of R,G,B channel in each ith181

position of S and k is total number of superpixels in the image.182

Finally, with a different number of superpixels and threshold values from183

each color channel, we extracted regions of two particular colors of inter-184

est that are red and black from the DFU patches. For these classification185

tasks, we used the number of superpixels (k=200) and threshold values (T1:186

0.40,0.45,0.50,.055,0.60; T2: 0.15,0.20,0.25,0.30,0.35) to extract the color fea-187

tures from DFU patches of 256×256. The threshold values are used to restrict188

the intensities of red and black pixels to be utilized as handcrafted features.189

Hence, we utilised a feature vector of 10 with SPCD algorithm along with190

texture descriptors (LBP, HOG) and color features (RGB, CIELAB) to train191

traditional machine learning approaches. The pseudocode for the SPCD al-192

gorithm is explained in Algorithm 1. The example of extracting color features193

using our novel SPCD algorithm is shown in Fig. 6.194

For these classification problems, we experimented with a number of clas-195

sifiers with standard hyper-parameters on these color features. BayesNet,196
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Algorithm 1 Pseudocode for the Superpixel Color Descriptors Extraction

1: Over-segmentation of DFU patch with SLIC superpixel is performed;
2: Mean RGB value of each superpixel is calculated and applied;
3: Initialize variable S Red & S Black to 0
4: procedure RedAndBlackRegion
5: for each Superpixel(Si) do
6: if Si(R) > T 1 ∗ (Si(R) + Si(G) + Si(B)) then return S Red=

S Red + 1

7: if Si(R) < T 2 & Si(G) < T 2 & Si(B) < T 2 then return
S Black= S Black + 1

8: RedColorFeature = S Red ÷ n
9: BlackColorFeature = S Black ÷ n

Figure 6: Example of extracting red and black regions from DFU patch with proposed
Superpixel Color Descriptor algorithm which was then used to inform identification of
ischaemia and infection. The k value of 200 for superpixel algorithm effectively overseg-
mented the DFU patches.
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Random Forest, and Multilayer Perceptron were selected and achieved the197

highest accuracy among other machine learning classifiers.198

3.3. Deep Learning Approaches199

For comparison with the traditional features, deep learning algorithms200

are used to perform binary classification to classify (1) infection and non-201

infection; and (2) ischaemia and non-ischaemia classes in DFU patches. For202

this work, we fine-tune (transfer learning from pre-trained models) the CNN203

models, i.e. Inception-V3, ResNet50, and InceptionResNetV2 [27, 28, 29].204

To train the CNN networks, we froze the weights of the first few layers of205

the pre-trained networks for common features, such as edges and curves.206

Subsequently, layers of networks are unfrozen to focus on learning dataset-207

specific features.208

Additionally, we utilized the Ensemble CNN method, which is a very209

effective CNN approach to obtain very good accuracy on difficult datasets.210

The Ensemble CNN model combines the bottleneck features from multiple211

CNN models (Inception-V3, ResNet50, and InceptionResNetV2), and use212

SVM classifier to produce predictions, as shown in Fig. 7.213

4. Results and Discussion214

Both infection and ischaemia datasets were split into 70% training, 10%215

validation and 20% testing sets and we adopted the 5-fold cross-validation216

technique. We utilized the natural data-augmentation technique for training217

and validation sets in both traditional machine learning and deep learning218

approaches. Hence, in this ischaemia dataset, we used approximately 11,564219

patches, 1,652 patches, and 3,304 patches in training, validation, and test-220

ing sets respectively whereas, in the infection dataset, we used 7,136 patches221

(training), 1,019 patches (validation), and 2,038 patches (testing) from the222

2611 original foot images. As mentioned previously, we used both hand-223

crafted traditional machine learning (henceforth TML) models and CNN224

models to perform the classification task and utilized 256×256 RGB images225

as input for TML and InceptionV3, AlexNet, and ResNet50. For Inception-226

ResNetV2, we resized the dataset to 299×299. For this experiment, Tensor-227

Flow is used for deep learning and Matlab is used for traditional machine228

learning approaches.229
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Figure 7: Extracting bottleneck features from CNNs and fed into SVM classifier to perform
binary classification of ischaemia and infection, where C1-C5 are convolutional layers, P1-
P5 are pooling layers and FC is fully connected layer. Note: The CNNs in this figure
are just representations of general CNNs architecture and do not represent
the original CNN architectures of Inception-V3, ResNet50, and InceptionRes-
NetV2.
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Table 2: The performance measures of binary classification of ischaemia by our proposed
handcrafted traditional machine learning and CNN approaches.

Accuracy Sensitivity Precision Specificity F-Measure MCC Score AUC Score

BayesNet 0.785±0.022 0.774±0.034 0.809±0.034 0.800±0.027 0.790±0.020 0.572±0.044 0.783

Random Forest 0.780±0.041 0.739±0.049 0.872±0.029 0.842±0.034 0.799±0.033 0.571±0.078 0.780

Multilayer Perceptron 0.804±0.022 0.817±0.040 0.787±0.046 0.795±0.031 0.800±0.023 0.610±0.045 0.804

InceptionV3 (CNN) 0.841±0.017 0.784±0.045 0.886±0.018 0.898±0.022 0.831±0.021 0.688±0.031 0.840

ResNet50 (CNN) 0.862±0.018 0.797±0.043 0.917±0.015 0.927±0.017 0.852±0.022 0.732±0.032 0.865

InceptionResNetV2 (CNN) 0.853±0.021 0.789±0.054 0.906±0.017 0.917±0.019 0.842±0.027 0.714±0.039 0.851

Ensemble (CNN) 0.903±0.012 0.886±0.035 0.918±0.019 0.921±0.021 0.902±0.014 0.807±0.022 0.904

Table 3: The performance measures of binary classification of Infection by our proposed
handcrafted traditional machine learning and CNN approaches.

Accuracy Sensitivity Precision Specificity F-Measure MCC Score AUC Score

BayesNet 0.639±0.036 0.619±0.018 0.653±0.039 0.660±0.015 0.622±0.079 0.290±0.070 0.643

Random Forest 0.605±0.025 0.608±0.025 0.607±0.037 0.601±0.069 0.606±0.012 0.211±0.051 0.601

Multilayer Perceptron 0.621±0.026 0.680±0.023 0.622±0.057 0.570±0.023 0.627±0.074 0.281±0.055 0.619

InceptionV3 (CNN) 0.662±0.014 0.693±0.038 0.653±0.015 0.631±0.034 0.672±0.019 0.325±0.029 0.662

ResNet50 (CNN) 0.673±0.013 0.692±0.051 0.668±0.023 0.654±0.051 0.679±0.019 0.348±0.028 0.673

InceptionResNetV2 (CNN) 0.676±0.015 0.688±0.052 0.672±0.015 0.664±0.039 0.680±0.024 0.352±0.031 0.678

Ensemble (CNN) 0.727±0.025 0.709±0.044 0.735±0.036 0.744±0.050 0.722±0.028 0.454±0.052 0.731

In Table 2 and 3, we report Accuracy, Sensitivity, Precision, Specificity, F-230

Measure, Matthew Correlation Coefficient (MCC) and Area under the ROC231

curve (AUC) as our evaluation metrics.232

When comparing the performance of the computerized methods and our233

proposed techniques, CNNs performed better in the binary classification234

of ischaemia than infection despite more imbalanced data in the ischaemia235

dataset, due to more cases of non-ischaemia in the dataset. The average per-236

formance of all the models in terms of accuracy in the ischaemia dataset was237

83.3% which is notably better than the average accuracy of 65.8% in infection238

dataset. Similarly, MCC Score and AUC Score are considered to be viable239

performance measures to compare the classification results. We obtained an240

average MCC Score and AUC Score for ischaemia classification of 67.1% and241
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Figure 8: ROC curve for all TML and CNN methods for ischaemia classification.

83.2% respectively, as compared to the infection classification of 32.3% and242

65.8% respectively. The ROC curves for all the algorithms, including TML243

and CNNs for binary classification of ischaemia and infection, are shown in244

Fig. 8 and 9. When comparing the performances in ischaemia classification245

of TML and CNNs, CNNs (86.5%) performed better than the TML models246

(79%). Similarly, in infection classification, the accuracy of CNNs (68.4%)247

performed better than TML (62.1%) with a margin of 6.3%. Notably, En-248

semble CNN method achieved the highest score in all performance measures249

in both ischaemia and infection classification.250

Sensitivity and Specificity are considered important performance mea-251

sures in medical imaging. The ensemble method yielded high Sensitivity for252

the ischaemia dataset with a margin of 6.9% from the second best perform-253

ing algorithm multilayer perceptron. Interestingly, a multilayer perceptron254

performed worst in the Specificity with a score of 79.5%. For Specificity in255

the ischaemia dataset, the ensemble method again obtained the highest score256

of 92.9% which is marginally better than ResNet50 (92.7%).257

In infection classification, both TML and CNN methods received mod-258

erate scores in the performance measures. Again, CNN methods performed259
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Figure 9: ROC curve for all TML and CNN methods for Infection classification.

better than TML methods achieving the highest score in all performance260

measures. The Ensemble CNN method performed better than other CNN261

classifiers especially for Specificity with a score of 74.4% in infection classi-262

fication with a notable margin of 8% than the second-best performing algo-263

rithm InceptionResNetV2(66.4%). For Sensitivity, all the CNNs performed264

marginally well with Ensemble method achieving the highest score of 70.9%.265

When comparing the performance of TML methods, Multilayer Perceptron266

(68.0%) performed well in Sensitivity, whereas BayesNet (66%) better in267

Specificity.268

4.1. Experimental Analysis and Discussion269

Assessment of DFU with computerized methods is very important for270

supporting global healthcare systems through improving triage and monitor-271

ing procedures and reducing hospital time for patients and clinicians. This272

preliminary experiment is focused on automatically identifying the important273

conditions of ischaemia and infection of DFU. The main aim of this exper-274

iment was to identify ischaemia and infection from images of the feet using275

machine learning. We have illustrated examples of correctly and incorrectly276

classified cases in both binary classifications of ischaemia (Fig. 10 and 11)277
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(a) (b) (c) (d)
Accurate non-ischaemia cases Accurate ischaemia cases

Figure 10: Examples of correctly classified cases by Ensemble-CNN on ischaemia dataset.
(a) and (b) represent non-ischaemia cases. (c) and (d) represent ischaemia cases.

(a) (b) (c) (d)
Misclassified non-ischaemia cases Misclassified ischaemia cases

Figure 11: Examples of misclassified cases by Ensemble-CNN on ischaemia dataset. (a)
and (b) represents non-ischaemia cases. (c) and (d) represents ischaemia cases.

(a) (b) (c) (d)
Accurate non-infection cases Accurate infection cases

Figure 12: Examples of correctly classified cases by Ensemble-CNN on Infection dataset.
(a) and (b) represents non-infection cases. (c) and (d) represents infection cases.

and infection (Fig. 12 and 13). As for the misclassified cases, there are huge278

intra-class dissimilarities and inter-class similarities between (1) infection and279

non-infection; (2) ischaemia and non-ischaemia cases in the DFU that make280

classifiers difficult to predict the correct class. Additionally, there are other281
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(a) (b) (c) (d)
Misclassified non-infection Misclassified infection cases

Figure 13: Examples of misclassified cases by Ensemble-CNN on Infection dataset. (a)
and (b) represents non-infection cases. (c) and (d) represents infection cases.

influencing factors in the classification of these conditions such as lighting282

conditions, marks and skin tone. In misclassified cases of non-ischaemia as283

shown in Fig. 11, the cases (a) and (b) are hindered by the lighting condi-284

tion (shadow) respectively, whereas in the (c) and (d) misclassified ischaemia285

cases, the ischaemia features may be too subtle to be recognised from the286

images by the algorithm. Alternatively it is likely we needed a more sensitive287

objective measure of the ground truth from vascular assessments. We found288

that shadows are particularly problematic because machine learning algo-289

rithms can be deceived by shadows especially in determining the important290

conditions such as ischaemia. In Fig. 13, misclassified cases of non-infection,291

the presence of blood in the case (a), whilst case (b) belongs to one of the292

rare cases with the presence of ischaemia and non-infection. In misclassi-293

fied infection cases, the visual indicators of infection were likely too subtle,294

or we needed more sensitive objective ground truth provided through blood295

analysis.296

In this work, we used the proposed natural data-augmentation with the297

help of DFU localisation to create DFU patches from full-size foot images.298

These patches are useful to focus more on finding the visual indicators for299

important factors of DFU such as infection and ischaemia. Then, we inves-300

tigated the use of both TML and CNNs to determine these conditions as301

binary classification. In this experiment, we received very good performance302

in terms of correctly classifying ischaemia despite the imbalanced cases in303

the DFU dataset. However, in the case of infection, the classifiers did not304

perform as well, since the condition of infection is hard to recognise from305

the foot images even by experienced medical experts specialized in DFU and306

therefore likely requires ground truth determined using objective blood tests307
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to identify bacterial infection.308

Current research focuses on ischaemia and infection recognition in med-309

ical classification systems, which requiring the guidance of medical experts310

specialized in DFU. To develop a computer-aided tool for medical experts in311

remote foot analysis, i.e. a remote DFU diagnosis system, the following are312

challenges need to be addressed:313

1. Recognition of the ischaemia and infection with machine learning al-314

gorithms as an important proof-of-concept study for foot pathologies315

classification. Further analysis of each pathology on foot images is316

required according to the medical classification systems, such as the317

University of Texas Classification of DFU [8] and SINBAD Classifica-318

tion System [9]. This requires close collaboration with medical experts319

specialized in DFU.320

2. Deep learning algorithms need substantial datasets to obtain very good321

accuracy, especially for medical imaging. This experiment included an322

imbalanced DFU dataset (1459 foot images) for both ischaemia and in-323

fection conditions. In the future, if these algorithms were to train with324

a larger number of a more balanced dataset, it can possibly improve325

the recognition of ischaemia and infection.326

3. A study of the performance of algorithms on different types of cap-327

turing devices is an important aspect of future work. This experi-328

ment evaluates the performance of machine learning algorithms on the329

DFU dataset collected with different cameras (heterogeneous sources of330

data). This leads to more variability of image characteristics. Since the331

algorithms have to deal with more heterogeneous patterns and charac-332

teristics that are not intrinsic to the pathology itself. In this experi-333

ment, we know that three types of devices were used, we do not have334

the information on the association of images and the type of devices.335

4. The current ground truth is based on visual inspection by experts only336

and not supported by the medical notes or clinical tests (vascular as-337

sessment for ischaemia and blood tests to identify the presence of any338

bacterial infection). Furthermore, DFU images were debrided before339

these images were captured. Hence, the debridement of DFU removes340

important visual indicators of infection such as colored exudate. There-341

fore, the sensitivity and specificity of these algorithms could be further342

improved in the future, by feeding in ground truth from clinical tests343

such as vascular assessments (ischaemia) and blood tests (to identify344
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the presence of any bacterial infection).345

5. Current clinical practice obtains the foot photo using different camera346

models, poses and illumination. It is a great challenge for a computer347

algorithm to predict the depth and the size of the wound based on non-348

standardized images. Standardized dataset, such as the data collection349

method proposed by Yap et al. [30] will help to increase the accuracy350

of the DFU diagnosis system.351

6. Dataset annotation is a laborious process, particularly for medical ex-352

perts to label the foot pathologies into 16 classes according to the Uni-353

versity of Texas classification system. To reduce the burden upon med-354

ical experts in the delineation and annotation of the dataset, there is355

an urgent need to focus on developing unsupervised or self-supervised356

machine learning techniques.357

7. Collecting the time-line dataset is crucial for early detection of key358

pathologies. This will enable monitoring of foot health and changes lon-359

gitudinally, where medical experts and computer algorithms can learn360

the early signs of DFU. In the longer-term, the DFU diagnosis system361

will be able to predict the healing process of ulcers and prevent DFU362

before it happens.363

8. A smart-phone app could be developed for remote triage and moni-364

toring of DFU. To scale-up the DFU diagnosis system, the application365

should run on multiple devices, irrespective of the platform and/or the366

operating system.367

5. Conclusion368

In this work, we trained various classifiers based on traditional machine369

learning algorithms and CNNs to discriminate the conditions of: (1) is-370

chaemia and non-ischaemia; and (2) infection and non-infection related to371

a given DFU. We found high-performance measures in the binary classifi-372

cation of ischaemia, compared to moderate performance by classifiers in the373

classification of infection. It is vital to understand the features of both condi-374

tions in relation to the DFU (ischaemia and infection) from a computer vision375

perspective. Determining these conditions especially infection from the non-376

standard foot images is very challenging due to: (1) high visual intra-class377

dissimilarities and inter-class similarities between classes; (2) the visual in-378

dicators of infection and ischaemia potentially being too subtle in DFU; (3)379

objective medical tests for vascular supply and bacterial infection are needed380

21



to provide more objective ground truth and further improve the classification381

of these conditions; and (4) other factors such as lighting conditions, marks382

and skin tone are important to incorporate into the prediction.383

With a more balanced dataset and improved data capturing of DFU,384

the performance of these methods could be improved in the future. Further385

optimization in hyper-parameters of both deep learning and traditional ma-386

chine learning methods could improve the performance of algorithms on this387

dataset. Ground truths enhanced by clinical tests for the ischaemia and infec-388

tion may provide further insight and further improvement of algorithms even389

where there is no apparent visual indicator by eye. In the case of infection390

even after debridement, ground truth informed by blood tests for infection391

may yield improvements to sensitivity and specificity even in the absence of392

overtly obvious visual indicators. This work has the potential for technology393

that may transform the recognition and treatment of diabetic foot ulcers and394

lead to a paradigm shift in the clinical care of the diabetic foot.395
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