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Abstract 7 

 8 

Investigations into the impact of micro plastics (MP) and microfibers (MFs) upon the 9 

freshwater aquatic environment are still in their infancy despite our growing awareness of 10 

their importance. Gammarus pulex have long been used as a study organism for 11 

ecotoxicology and several studies have already used them to investigate the impact of MFs.  12 

One area of research which has not been exploited is the extent to which G.pulex can detect 13 

MFs and whether or not they avoid eating them. To answer this question we developed a 14 

reliable and accurate method of exposing Gammarus to known amounts of MF embedded 15 

in algal wafers.  Here we show that when given the choice between control wafers and 16 

those contaminated with 2% or 3% MF Gammarus ingest fewer MF than would be expected 17 

if a random choice was made (2% W=7 P=0.01698, 3% W=13 P=0.03397). Their feeding 18 

behaviour also changes, with a significant reduction in time feeding (F1,18=21.3 P=0.0002) as 19 

well as significantly fewer visits to contaminated wafers (F1,18= 5.312 P=0.0333). This 20 

suggests that G.pulex are able to detect MF in the 200-500µm range and are partially 21 

repelled by them.   22 

  23 



Introduction 24 

Approximately 70% to 80% of microplastics (MPs) in marine environments are thought to 25 

originate from inland sources and be transported out from rivers to the oceans (Andrady, 26 

2011). Microplastics are defined as diverse plastics, including polyethylene and polystyrene, 27 

whose fragments are smaller than 5 mm in size, they can be particles or fibres, fibres being 28 

more than twice as long as they are thick and generally thinner than human hair  (Cole, 29 

Lindeque, Halsband, & Galloway, 2011).  They can be produced by the degradation of larger 30 

particles, for example through clothes washing (Browne et al., 2011; Napper & Thompson, 31 

2016), or are manufactured as microbeads for use in personal care products including 32 

toothpaste, sunscreen and facial scrubs (Duis & Coors, 2016; Fendall & Sewell, 2009; 33 

Kalčíková, Alič, Skalar, Bundschuh, & Gotvajn, 2017; Leslie, 2014).  34 

The highest volumes of MP pollution have been found in the Northern Hemisphere at water 35 

fronts and in enclosed waters near to urban areas (Cózar et al., 2014; Barnes et al., 2009). As 36 

well as accumulation in the environment (Cózar et al., 2014), MPs can accumulate in 37 

individuals (Browne et al., 2008) and they have even been found in human stools (Schwabl et 38 

al., 2018). Their size results in them being easily ingested by many aquatic organisms at 39 

various trophic levels and stages of development, including freshwater invertebrates (Cole et 40 

al., 2013; Scherer et al., 2017; Al-Jaibachi et al., 2018a, 2018b,; Aljaibachi and Callaghan, 41 

2018). By entering the food chain MPs can be readily transferred between trophic levels (Chua 42 

et al., 2014; Betts, 2008; Farrell and Nelson, 2013; Setälä et al., 2014; Davarpanah and 43 

Guilhermino, 2015).  44 

Studies to determine the impact of ingested MPs in smaller invertebrates such as copepods, 45 

isopods and zooplankton have concluded that MPs have no detrimental effect following 46 



ingestion, possibly because the MPs were too large to cross the midgut wall and were 47 

eliminated in faeces (Cole et al., 2013; Cole, 2015). This was found in the isopod Idotea 48 

emarginata (Hämer et al., 2014), cladoceran Daphnia magna (Al-jiabachi and Callaghan, 49 

2017) and dipteran mosquito Culex pipiens (Al-Jaibachi et al., 2018a, 2018b,; Aljaibachi and 50 

Callaghan, 2018).  In studies using the larger Gammarus fossarum, the impact of MP 51 

ingestion varied depending on the type of plastic (Straub et al. 2017). Petroleum-based MPs 52 

significantly reduced the assimilation efficiency of MP contaminated food in the long-term, 53 

whereas biodegradable plastic did not, although ingestion of both types of plastic led to 54 

significantly reduced growth compared to the control (Straub et al. 2017).  In other studies, 55 

Irregular MP fragments of polyethylene terephthalate (PET) had no negative effects on 56 

feeding in Gammarus pulex (Weber et al. 2019). 57 

A meta-analysis on the impact of MP on the aquatic environment  revealed that most studies 58 

had focussed on particles rather than fibres (Foley, Feiner, Malinich, & Höök, 2018). 59 

Microfibres (MFs) have been investigated in several marine crustaceans, including Sand 60 

Hoppers (Orchestia gammarellus), Shore Crabs (Carcinus maenas, Carcinus aestuarii ) and 61 

Langoustine (Nephrops norvegicus) concluding that  MF between 1-5mm were ingested 62 

(Piarulli et al., 2019; Watts, Urbina, Corr, Lewis, & Galloway, 2015; Welden & Cowie, 2016). 63 

Welden & Cowie (2016) found that the number and length of MF retained in the digestive 64 

tract of N. norvegicus was related to the gastric mill, an organ used to grind food in the 65 

upper gut, larger specimens had larger gaps and so more and larger fibres could pass 66 

through the gut and be excreted. They found that the only way for these trapped fibres to 67 

be lost was through moulting, where their gut lining and gastric mill was shed.  68 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polyethylene-terephthalate


Most studies into MF have focussed on the marine environment and have found that the 69 

majority of fibres from the deep sea benthos were of cellulose origin (80%) with the 70 

remainder being polyester or acrylic. Degradation in the ocean is linked to UV action, so that 71 

plastic MFs in the deep sea tend to persist for hundreds if not thousands of years (Browne 72 

et al., 2011; Sanchez-Vidal, Thompson, Canals, & De Haan, 2018). As the UV absorbance of 73 

freshwater is greater than saltwater, and there is likely to be turbidity, there is likely to be a 74 

similar problem in deeper river and lakes (Markager & Vincent, 2000). 75 

The freshwater shrimp G. pulex has been used as a model organism for investigating a range 76 

of topics within ecotoxicology, for example hormonal responses (Gismondi, 2018), 77 

metabolic responses (Lebrun, Perret, Geffard, & Gourlay-Francé, 2012), the effect of 78 

pesticides (Auber, Roucaute, Togola, & Caquet, 2011), and heavy metals (Duddridge & 79 

Wainwright, 1980). Gammarus pulex are especially useful for investigating the impact of MP 80 

because of their variable diet (Bloor, 2010, 2011; Kunz, Kienle, & Gerhardt, 2010). While 81 

predominantly shredders feeding on leafy detritus, they will predate several invertebrate 82 

taxa as well as feed upon carrion. In addition they are an essential food source for many 83 

small fish (Kunz et al., 2010; MacNeil, Dick, & Elwood, 1999) and represent a vector for 84 

plastics to enter the vertebrate food chain. Gammaridae are a diverse family of amphipod 85 

crustaceans with representatives in freshwater, brackish and marine environments. 86 

Therefore conclusions drawn from studying them are applicable all over the globe (Costa, 87 

Neuparth, Correia, & Helena Costa, 2005; Kunz et al., 2010).  88 

No recent studies have investigated how MP may affect feeding behaviour and may cause 89 

selective feeding in G. pulex, nor have G. pulex been exposed to MF. Previous studies have 90 

shown that several macroinvertebrates, including G.pulex, will ingest MP in a variety of 91 



presentations, from as a suspension that settles on food (Weber, Scherer, Brennholt, 92 

Reifferscheid, & Wagner, 2018). 93 

One difficulty in many studies into MFs has been that they are often studied without being 94 

incorporated into food sources and in concentrations well above environmentally relevant 95 

levels (Hanvey et al., 2017; Wagner et al., 2014). While some studies have  produced a 96 

method for exposing invertebrates to a reliable dose of MP alongside plant matter (Straub, 97 

Hirsch, & Burkhardt-Holm, 2017), it is unknown how well they work with MF or larger MPs.  98 

It has been shown that algae and grasses provide a vector for MP into taxa not obviously at 99 

risk of MP ingestion (Goss, Jaskiel, & Rotjan, 2018; Gutow, Eckerlebe, Giménez, & 100 

Saborowski, 2016), therefore this relationship must be thoroughly investigated. 101 

In this study we have adapted a method for dosing food with MFs that was originally 102 

developed to study plant litter decomposition and invertebrate consumption (Kampfraath 103 

et al., 2012). Our new method permits a reliable quantifiable method for exposing benthic 104 

macroinvertebrates to MFs. We used the method to identify whether G.pulex show any 105 

preference or repellence towards MF when they are part of a food source. This 106 

understanding is of utmost importance because it gives an idea as to the potential for 107 

environmental MF to enter the food chain. In order to gain a greater understanding 108 

behaviour must be investigated, previous studies have suggested that chronic exposure to 109 

MP impacts growth (Straub, Hirsch, & Burkhardt-Holm, 2017), thus making it less nutritious 110 

and could be a driver for food choice (Carrasco et al., 2019). However, if such avoidance is 111 

detected during the first exposure to MP then avoidance cannot be due to the lower 112 

nutritional value, as this has not yet been learned by individual organisms. 113 

 114 



Materials and Methods 115 

 116 

 G.pulex Collection Site 117 

The G. pulex were collected from Emm Brook, a tributary of the River Lodden, within Dinton 118 

Country Park in Reading, between the points (Decimal Degrees 51.440494, -0.874373 to 119 

51.442274, -0.874359). This site was chosen for its good population of G. pulex, ease of 120 

access and because of its relatively shallow depth of <90cm. Animals over 12mm in length 121 

were collected by kick sampling using a hessian net, placed in plastic bottles filled with 122 

stream water and transported to the laboratory. The animals were briefly rinsed with 123 

reverse osmosis (RO) water in the laboratory to remove silt and river water and then species 124 

confirmed using a key (Eggers et al., 2016) . 125 

In the laboratory G. pulex were placed in  45L plastic tanks (150 per tank) containing 40L 126 

aerated Organisation for Economic Co-operation and Development (OECD) reconstituted 127 

water (Hooper et al., 2006),maintained at 17⁰C with 12:12 light to dark ratio  and fed algae 128 

wafers (Wafer Algae Eater Fish Food, API).    129 

 130 

Microfibre Preparation 131 

Black 100% acrylic wool (Hayfield Bonus DK product code 5723101001, Hobbycraft, 132 

Farnborough) was used to generate MFs. The wool was cut into pieces to generate lengths 133 

of <5mm by wrapping a length 5 times around two nails placed into a piece of wood 10 cm 134 

apart to generate ten parallel lengths. The wool was sprayed with RO water until it was 135 

saturated and then frozen at -80⁰C for 1 hour. After an hour the wool was removed and the 136 

first and last cm removed using a metal scalpel (Swann-Morton No 11 blade) and then cut 137 



into 5cm lengths which were stored on ice until ready to be used. The wool lengths were 138 

further sliced into <500µm lengths and dried on a hot plate. 139 

 Wafer Production 140 

Algae wafers, were ground using a mortar and pestle for 1 min until they were powder and 141 

stored in an airtight lidded glass beaker to prevent contamination. To make the wafers, 1g 142 

of the algae powder was added to 0.5ml of RO water and mixed to form a paste. The paste 143 

was shaped into a flat cake 5mm thick and placed on a hot plate at 70⁰C for 2 hours to dry. 144 

Test wafers were prepared by adding 0.5%, 1%, 1.5%, 2%, 2.5% and 3% MF fibres by weight 145 

to the powder and then homogenized by grinding for a further 1 min before adding the RO 146 

water.   147 

Once dried each cake was cut up into 0.05 g wafers with a scalpel and placed in a separate 148 

lidded container to prevent contamination. To test the accuracy of this method for exposure 149 

of animals to known amounts of fibre, ten of each nominal concentration of test wafer were 150 

cut into quarters. Each quarter was crushed with a spatula and placed under a 10x binocular 151 

microscope (Optech Microtech) for counting.   152 

 Execution of Tests 153 

Eight individual Gammarus 12-20mm in length were placed in a 5L aquarium filled with 154 

aerated 2L reconstituted water and starved for 24h. The Gammarus were then individually 155 

placed into an aerated 5L aquarium filled with 2L reconstituted water along with one 0.05g 156 

wafer (either control or treatment) and left for 4 hours to feed. After 4 hours each 157 

Gammarus was removed from its tank, placed in a 5ml beaker and killed with 50⁰C water. 158 

Eight tanks were used per day for 5 days, with concentrations distributed randomly across 159 



the period, resulting in 10 replicates per treatment. Each day the aquariums were rotated in 160 

order to ensure that there was no impact from position. 161 

Guts were removed from dead Gammarus under a binocular dissection microscope at 10X 162 

magnification. To remove the gut, the telson was removed with a second cut immediately 163 

behind the eyes. The gut was then pulled whole from the body using fine point forceps and 164 

picked through, counting the number of fibres.  165 

 166 

Choice experiments were conducted using the same protocol, except each test aquarium 167 

had one 0.05g control wafer as well as a 0.05g test concentration wafer. The amount of time 168 

each G.pulex spent feeding on each wafer and the number of visits to each were recorded 169 

over four hours, this was referred to as behavioural data. 170 

 171 

 172 

 Data Analysis 173 

All data analysis was conducted using R and R Studio. Shapiro-Wilkes tests were used to test 174 

for normality. The wafer data met the assumptions for normality and Two Way Analyses of 175 

Variance were conducted to see if there was any significant difference between wafers or 176 

wafer quadrants within each concentration. ANOVA was conducted between the 177 

concentrations in order to confirm significant difference in the number of MF between the 178 

concentrations. 179 



The ingestion data met assumptions for normality therefore ANOVA was conducted to 180 

identify the relationship between the number of MF ingested and the concentration of MF 181 

in wafers. 182 

The choice data did not meet the assumptions for normality, therefore Kruskall-Wallis tests 183 

were used in place of ANOVAs to investigate MF ingestion between concentrations. It was 184 

expected that the number of MF ingested would be half that of the non-choice experiment, 185 

however it was found that approximately half G.pulex ingested no MF, these were ignored 186 

and  Wilcoxon Rank tests were used to investigate the difference between the treatments of 187 

choice and no choice of those G.pulex which did ingest MF. 188 

Behaviour data fit the assumptions for normality and so ANOVAs were used to identify the 189 

functional response.  190 

 191 

 192 

Results 193 

 Wafers 194 

All wafers dried and set as expected and were easily dissected. There was no significant 195 

difference in acrylic fibre counts between wafers or wafer quadrants within each 196 

concentration (Table S1). 197 

The number of fibres were directly proportional to the % of MF by mass added (Fig 1), and 198 

significantly different between concentrations F1,118=14766 P<0.0001.    199 

 200 



 201 

Figure 1. The number of fibres per quadrant of algae wafers made using different percentages (by mass) of 202 
200-500µm Acrylic fibres, N at each concentration = 40.  203 

 Ingestion 204 

The G.pulex readily fed on the test wafers and ingested MFs. Thirty percent of the 1% 205 

treatment and 10% of the 2% treatment ingested no MF.  There was a direct relationship 206 

between wafer concentration and the number of MF eaten (Fig 2), with a significant 207 

difference between test concentrations F 1,28=54.21 P<0.0001.   208 



Figure 2. The number of 200-500µm Acrylic fibres ingested by G.pulex in 4 hours at 3 test concentrations. N 209 
for each concentration = 10.  210 

 211 

 Choice experiments 212 

Gammarus ingestion of MF approximately halved when animals were given a choice 213 

between contaminated and uncontaminated food (Fig 3). There was no significant 214 

difference in the number of MFs ingested between the concentrations when given a choice 215 

of uncontaminated food H(2)=3.028 P=0.22. Of the 12 G. pulex at each concentration, 4 of 216 

the 1%, 6 of the 2% and 5 of the 3% had ingested no MF, equating to approximately half of 217 

each concentration. When those that had ingested no MF were removed from the data and 218 

the remaining results were compared to the no-choice data, those G. pulex with a choice 219 

ingested significantly fewer MF than those without a choice Fig 4 (2% W=7 P=0.017, 3% 220 

W=13 P=0.034).  221 

     222 
      Fig 3. Linear Regressions for the ingestion of 200-500µm Acrylic fibres by G. pulex, with and without the 223 
choice of non-contaminated food. N for each concentration = 12. 224 

A 225 



 226 

B   227 

 228 

Fig 4. The ingestion of 200-500µm Acrylic fibres by G. pulex with and without the choice of uncontaminated 229 
food at fibre concentrations (by mass) of 2% (A) and 3% (B) 230 

 231 

The observation tests revealed that G. pulex spent significantly less time feeding (F1,18=21.3 232 

P=0.0002) on and significantly fewer visits (F1,18= 5.312 P=0.0333) to contaminated wafers 233 

(Figure 5). 234 



A 235 

 236 

 237 

B 238 

 239 

Fig 5. The amount of time in minuets G.pulex spend feeding from uncontaminated wafers and wafers 240 

contaminated with 200-500µm Acrylic fibres (A) and the number of visits to each type of wafer (B).  241 

  242 

  243 



Discussion 244 

We have developed an accurate, cheap and easy method to produce wafers to investigate 245 

the impact of MFs on aquatic invertebrates based on the method of Straub et al., (2017).  246 

The wafers produced were homogenous within a concentration and MF counts were 247 

directly proportional to the % of MF used to produce the wafer. Therefore we can be 248 

confident that this method allows reliable dosing of MF which show a tendency to clump 249 

together without a solid matrix. G.pulex ingest plastic MFs in lengths up to at least 500µm in 250 

proportion to the concentration present.  251 

This method allows researchers to instigate worst case scenarios where invertebrates may 252 

be unable to avoid MF and can be used to study preference between different MFs. This 253 

method would work for smaller MF and MP, and should be suitable for other organisms 254 

which will feed upon algae wafers, enabling a standardised method for understanding the 255 

impact of various MPs upon a range of environments. 256 

There are several reasons why invertebrates may detect and avoid plastics in food, there 257 

could be chemical cues (De Lange, Sperber, & Peeters, 2006) or it could be they can 258 

physically feel their presence (Carrasco et al., 2019). If the main driving factor is the 259 

difference in texture between food and MP then the main food media texture should match 260 

the natural food texture as much as possible. An agar based gelatinous food source such as 261 

is used by Straub et al., (2017) produces a greater contrast between the food and the MP 262 

texture compared to this new method or natural food sources. 263 

When given a choice of contaminated vs uncontaminated food, Gammarus significantly 264 

avoided eating food with MFs, with fewer visits to the food and a reduction in time feeding. 265 



These observations were supported by quantitative data demonstrating a significant 266 

difference in MFs ingested.  Gammarus have previously avoided eating contaminated food 267 

including when chemical cues to bacteria and fungi are present (De Lange, Lürling, Van Den 268 

Borne, & Peeters, 2005; De Lange, Sperber, & Peeters, 2006). Furthermore there is evidence 269 

that animals can detect and avoid MPs.  Carrasco et al( 2019)  exposed Orchestoidea 270 

tuburculata to artificial food containing 8 μm particles of polystyrene MP spheres at 3 271 

different concentrations (0%, 5% and 10%). The animals consumed significantly more food 272 

when no MPs were present compared to food contaminated with 10% MPs.   As this study 273 

was a relatively short exposure (15 days)  it is possible that the avoidance mechanism is 274 

physical rather than biochemical.   275 

 In the current study contaminated wafers were eaten with no evident repulsion when no 276 

uncontaminated food was available.  This is in line with other studies which have recorded 277 

MF ingestion of fibres of up to 5mm in length by taxa larger than Gammarus, including 278 

crustaceans, molluscs, annelids and fish, (Farrell & Nelson, 2013; Foley et al., 2018; Straub et 279 

al., 2017; Watts et al., 2015). Similar results have been found in the smaller Daphnia magna 280 

with many studies showing that there is a positive relationship between concentration of 281 

MP and the number ingested (Canniff & Hoang, 2018; Jemec, Horvat, Kunej, Bele, & Kržan, 282 

2016; Rehse, Kloas, & Zarfl, 2016). However, Aljaibachi & Callaghan (2018) found that 283 

Daphnia seemed to be able to selectively ingest algal cells and avoid 2µm MP particles.  284 

These results are important in understanding the risk to the environment. It suggests that, 285 

at least Gammarus is able to avoid MF contaminated food, meaning that as long as their 286 

environment is not totally saturated with MF they could be ingested in rates lower than one 287 

might assume given environmental concentrations. As macroinvertebrates are the main 288 



vector for MP entering the higher trophic levels (Foley et al., 2018), including vertebrates 289 

and ultimately humans, their ability to limit MP ingestion would in turn limit the amount 290 

entering higher trophic levels. ￼ There is already a highlighted knowledge gap in this area 291 

(Horton, Walton, Spurgeon, Lahive, & Svendsen, 2017) and its understanding would help 292 

direct mitigation processes. 293 

  294 

Gammarus produce copious amounts of faecal pellets which are eaten by other freshwater 295 

macroinvertebrates and are important sources of organic matter for bacteria (Joyce, 296 

Warren, & Wotton, 2007) . Microfibres were clearly observed in faecal pellets with no 297 

evidence of being shortened which means that not only could G.pulex act as a vector for MP 298 

to enter higher trophic levels if they are eaten by fish or other invertebrates, but their 299 

faeces  provide a source of MP to enter lower trophic levels through faecal ingestion (Kelly, 300 

Dick, & Montgomery, 2002; Ladle & Griffiths, 1980) (Kelly, Dick, & Montgomery, 2002).  301 

 Despite their apparent ability to avoid ingesting MF contaminated wafers, it remains to be 302 

seen whether G. pulex predation on differentially contaminated prey would vary.   303 

 304 

 305 

 306 

 307 

 308 

 309 
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