
Asynchronous Epidemic Algorithms
for Consistency in Large-scale

Systems

Mosab M Ayiad

January 2020
Reading, UK

Asynchronous Epidemic Algorithms
for Consistency in Large-scale

Systems

By:
Mosab M Ayiad

Supervisor:
Dr Giuseppe Di Fatta

THESIS

Submitted in partial fulfilment of the requirement
for the degree of Doctor of Philosophy in the Department of Computer

Science at the school of Mathematical, Physical and Computational Sciences
(SMPCS)

January 2020
Reading, UK

Declaration

I, Mosab M. Ayiad, declare that this thesis titled, ”Asynchronous Epidemic Algorithms for
Consistency in Large-scale Systems” and the work presented in it is done wholly and mainly
while in candidature for a research degree at the University of Reading, UK. I confirm that
this is my own work and the use of all material from other sources has been properly and
fully acknowledged. Also, parts of the work presented in this thesis have been published in
peer-reviewed conferences.

Mosab M. Ayiad.

i

ii

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises
to Allah for His blessing, guidance, and vast giving in conducting this research work and
completing this thesis. Also, I am sending the blessing and the peace upon His prophet
Muhammad, the mercy and the teacher for humanity.

The accomplishment of this research work and thesis would not have been possible without
the help and support of many people and institutions who contributed mainly or subsidiary.
Through their continuous and valuable assistance, the carryout and the completion of this
PhD became a reality.

Firstly, I would like to express my sincere gratitude, appreciation and thanks to my
supervisor Dr Giuseppe Di Fatta for the support of my study and research, for his motivation
and broad knowledge. I appreciate him for empowering my research abilities and for assisting
me in developing as a research scientist. Also, I much value his encouragement and guidance
in carrying out publications which were not possible without his contribution and helpful
feedback. Surely, Dr Giuseppe Di Fatta support was a substantial foundation for achieving
this PhD.

I am also thankful to the monitoring committee: Prof Xia Hong and Dr Frederic Stahl
for their reassurance, insightful comments, and great support.

An exceptional thanking goes out to my friends and study mates: Dr Amogh katti and Dr
Pasu Poonpakdee. I am very grateful for their fabulous researches and their special support
which have assisted me in embarking investigation and exploration work during the literature
review stage. I am also thankful to them for their precious advice and feedback on my
research work.

I gratefully acknowledge and much appreciate the study scholarship received towards my
PhD from the Islamic Development Bank-Merit Scholarship Programme for High Technology
(IsDB-MSP)1. The award has enabled the complete concentration on research and PhD
activities. Although IsDB-MSP has funded the PhD study, they have no involvement in the
research precise theme or topic.

I am also grateful to colleagues and staff at Al Azhar University-Gaza for their unfailing
support and assistance before and during the sabbatical leave for the PhD.

I am thankful to everyone who supported and helped me during my PhD study.

1IsDB. Islamic Development Bank. [Online; accessed 5-August-2018]. 2018. url: https://www.isdb.
org/.

iii

https://www.isdb.org/
https://www.isdb.org/

iv

Dedications

To my Father Prof Mostafa A. Ayiad, despite his regretting absence since 13 years ago (passed
away 2006), his keen directions and frequent encouragement have empowered the motivation
for the PhD study;

To my great Mother, for her prayers for the sake of my success and to achieve my
endeavours, for her being strong and patient, despite myself being miles away, despite illness
and enormous sufferings;

To my gorgeous wife, lovely daughters, and sons, for their support, understanding, and
patience during tedious and painful moments throughout the study duration;

To my mother-in-law, for her prayers, for her support, and her directions to my wife;

To my brothers and the wonderful sister, for their sympathetic and encouragement;

To my relatives and friends for their encouragement and continuous support;

I dedicate this work.

v

vi

Abstract

Achieving and detecting a globally consistent state is essential to many services in the large
and extreme-scale distributed systems, especially when the desired consistent state is critical
for services operation. Centralised and deterministic approaches for synchronisation and
distributed consistency are not scalable and not fault-tolerant. Alternatively, epidemic-based
paradigms are decentralised computations based on randomised communications. They are
scalable, resilient, fault-tolerant, and converge to the desired target in logarithmic time with
respect to system size. Thus, many distributed services have adopted epidemic protocols
to achieve the consensus and the consistent state, mainly due to scalability concerns. The
convergence of epidemic protocols is stochastically guaranteed. However, the detection of
the convergence is probabilistic and non-explicit. In a real-world environment, systems are
unreliable, and epidemic protocols cannot converge to the desired state. Thus, achieving
convergence by itself does not ensure making a system-wide consistent state under dynamic
conditions.

The research work presented in this thesis introduces the Phase Transition Algorithm
(PTA) to achieve distributed consistent state based on the explicit detection of convergence.
Each phase in PTA is a decentralised decision-making process that implements epidemic data
aggregation, in which the detection of convergence implies achieving a global agreement. The
phases in PTA can be cascaded to achieve higher certainty as desired. Following the PTA,
two epidemic protocols, namely PTP and ECP, are proposed to acquire of consensus, i.e. for
the consistency in data dissemination and data aggregation. The protocols are examined
through simulations, and experimental results have validated the protocols ability to achieve
and explicitly detect the consensus among system nodes.

The research work has also studied the epidemic data aggregation under nodes churn and
network failures, in which the analysis has identified three phases of the aggregation process.
The investigations have shown a different impact of nodes churn on each phase. The phase
that is critical for the aggregation process has been studied further, which led to propose
new robust data aggregation protocols, REAP and REAP+. Each protocol has a different
decentralised replication method, and both implements distributed failure detection and
instantaneous mass restoration mechanisms. Simulations have validated the protocols, and
results have shown protocols ability to converge, detect convergence, and produce competitive
accuracy under various levels of nodes churn.

Furthermore, distributed consistency in continuous systems is addressed in the research.

vii

The work has proposed a novel continuous epidemic protocol with the adaptive restart
mechanism. The protocol restarts either upon the detection of system convergence or upon
the detection of divergence. Also, the protocol introduces the seed selection method for
the peak data distribution in decentralised approaches, which was a challenge that requires
single-point initialisation and leader-election step. The simulations validated the performance
of the algorithm under static and dynamic conditions and approved that convergence and
divergence detection accuracy can be tuned as desired.

Finally, the research work shows that combining and integrating of the proposed protocols
enables extreme-scale distributed systems to achieve and detect global consistent states even
under realistic and dynamical conditions.

viii

Contents

Declaration i

Acknowledgments iii

Dedications v

Abstract vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Publications xix

Glossary of Abbreviations xxi

Glossary of Variables xxiii

1 Introduction 1
1.1 Extreme-scale Distributed Systems . 1
1.2 Epidemic-based Protocols . 3
1.3 Towards Consistency of Epidemic Systems 4
1.4 Consistency Problem in Epidemic Systems 6
1.5 Research Objectives . 8
1.6 Methodology . 10
1.7 Contribution . 12
1.8 Scope of The Research Work . 14
1.9 Thesis Outline . 15

2 Literature Review 17
2.1 Data Dissemination and Aggregation Protocols 18

2.1.1 Push-Sum Protocol . 21
2.1.2 Push-Pull Protocol . 22
2.1.3 Symmetric Push-Sum Protocol . 23

ix

2.1.4 Flow Updating Protocol . 24
2.2 Topology Management and Pear-Sampling Protocols 26

2.2.1 Node Cache Protocol-Plus (NCP+) 27
2.3 Eventual Consistency and Distributed Consensus 29
2.4 Impossibilities in Real-world Systems . 30
2.5 Model of Epidemic Systems . 32
2.6 Summary . 33

3 Convergence Detection in Epidemic Systems 35
3.1 Convergence of Dissemination Process . 36
3.2 Convergence of Aggregation Process . 36
3.3 Local Convergence Detection . 39
3.4 Global Convergence Detection . 43
3.5 Convergence Speed and Detection Time . 47

4 Agreement in Epidemic Systems 55
4.1 Agreement in Centralised Distributed Systems 56
4.2 Phase Transition Algorithm (PTA) . 59
4.3 System Size Estimation Protocol (SSEP) . 60
4.4 Agreement in Epidemic Information Dissemination 62

4.4.1 Information Dissemination Application (IDA) 63
4.4.2 Phase Transition Protocol (PTP) . 63
4.4.3 Experimental Results for PTP . 65

4.5 Agreement in Epidemic Data Aggregation 68
4.5.1 Epidemic Consensus Protocol (ECP) 69
4.5.2 Experimental Results for ECP . 72

4.6 Discussions . 78

5 Robust Epidemic Aggregation under Churn 83
5.1 Node Churn in P2P networks . 84
5.2 Phases of Epidemic Data Aggregation Process 87
5.3 Push-Release Model . 93

5.3.1 Robust Epidemic Aggregation Protocol (REAP) 95
5.3.2 Experimental Results for REAP . 96

5.4 Pull-Release Model . 100
5.4.1 Robust Epidemic Aggregation Protocol-Plus (REAP+) 108
5.4.2 Experimental Results for REAP+ . 111

5.5 Discussions . 113

6 Consistent Epidemic Systems 119
6.1 Data Aggregation and Seed Selection Method 120
6.2 The Continuous Epidemic Protocol with Adaptive Restart Mechanism 122

x

6.2.1 Experimental Results for The Continuous Epidemic Protocol 124
6.3 Discussions . 127

7 Conclusions and Further Work 133
7.1 Recap of the Research Problem . 133
7.2 Conclusions . 135
7.3 Further work . 140

References 143

xi

xii

List of Figures

2.1 Push-Sum Protocol performance under asynchronous setting 22
2.2 Symmetric Push-Sum Protocol performance under asynchronous setting . . . 24
2.3 Flow Updating Protocol (Unicast) performance under asynchronous setting . 25
2.4 Node Cache Protocol-Plus (NCP+) broken-links removing under churn . . . 28

3.1 Performance of different methods for local convergence detection 44
3.2 Distribution of propagation delays . 51
3.3 The impact of cycle length on protocols performance 54

4.1 The convergence in System Size Estimation Protocol 61
4.2 A state digram for an item in Information Dissemination Application (IDA) 64
4.3 Percentage of nodes at each phase for a single information item in PTP . . . 67
4.4 Number of cycles to complete a phase transition in PTP 68
4.5 The convergence of item estimates in PTP phases 69
4.6 Convergence detection and phases transition in ECP 74
4.7 Phases completion times in ECP when varying simulations parameters . . . 75
4.8 Phases transition and completion times in ECP and other protocols 76
4.9 Communication overhead in ECP and other protocols 77

5.1 Performance of SSEP under various system conditions. 92
5.2 Messages exchange in Push-Release Model 94
5.3 Size estimation in the protocol REAP . 99
5.4 System mass in REAP under various churn rates 99
5.5 Estimation error in REAP under various churn rates 100
5.6 Messages exchange in Pull-Release Model . 107
5.7 Aggregation error of REAP and REAP+ under sudden node churn 113
5.8 Aggregation error of SSEP, REAP, REAP+ under continuous churn 114
5.9 Performance of REAP+ under churn of departing and joining nodes 117

6.1 The continuous protocol and adaptive restart mechanism in stable conditions 130
6.2 Probabilistic performance of the continuous protocol in stable conditions . . 131
6.3 The continuous protocol and adaptive restart mechanism in dynamic conditions132

xiii

xiv

List of Tables

3.1 Round-Trip Time of TCP traffic over various networks 50
3.2 The adopted Round-Trip Time, and propagation delays 50
3.3 Simulations parameters for the propagation delays 51
3.4 Parameters of the cycle length . 52

5.1 Churn rates in the P2P and Social networks 86

xv

xvi

List of Algorithms

1 Push-Sum Protocol . 21
2 Push-Pull Protocol . 23
3 Symmetric Push-Sum Protocol . 24
4 Flow Updating Protocol-(Unicast) . 25
5 NodeCache Protocol-Plus (NCP+) . 27

6 Phase Transition Algorithm (PTA) . 60
7 System Size Estimation Protocol (SSEP) . 62
8 Phase Transition Protocol (PTP) . 65
9 Epidemic Consensus Protocol (ECP) . 71

10 Robust Epidemic Aggregation Protocol (REAP) 97
11 Robust Epidemic Aggregation Protocol-Plus (REAP+) 110

12 The Continuous Epidemic Protocol with Adaptive Restart Mechanism 124

xvii

xviii

List of Publications

2019 M. M. Ayiad and G. Di Fatta. ‘An Adaptive Restart Mechanism For Continuous
Epidemic Systems’. In: Internet and Distributed Computing Systems: 12th International
Conference, IDCS 2019, Napoli, Italy, Ooctober 10-12, 2019, Proceedings (10th Oct.
2019). Cham: Springer International Publishing, 2019. url: https://idcs2019.
uniparthenope.it/. Submitted.

2018 M. M. Ayiad and G. Di Fatta. ‘Robust Epidemic Aggregation Under Churn’. In:
Internet and Distributed Computing Systems. Cham: Springer International Publishing,
2018, pp. 173–185. isbn: 978-3-319-97795-9. doi: 10.1007/978-3-319-97795-9_16

2017 M. M. Ayiad and G. D. Fatta. ‘Agreement in Epidemic Data Aggregation’. In: 2017
IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS).
Dec. 2017, pp. 738–746. doi: 10.1109/ICPADS.2017.00099

2016 M. Ayiad, A. Katti and G. Di Fatta. ‘Agreement in Epidemic Information
Dissemination’. In: Internet and Distributed Computing Systems: 9th International
Conference, IDCS 2016, Wuhan, China, September 28-30, 2016, Proceedings. Vol. 9864.
Cham: Springer International Publishing, 2016. Chap. 9, pp. 95–106. isbn:
978-3-319-45940-0. doi: 10.1007/978-3-319-45940-0_9

xix

https://idcs2019.uniparthenope.it/
https://idcs2019.uniparthenope.it/
https://doi.org/10.1007/978-3-319-97795-9_16
https://doi.org/10.1109/ICPADS.2017.00099
https://doi.org/10.1007/978-3-319-45940-0_9

xx

Glossary of Abbreviations

Abbreviation Definition Section
2PC Two-Phase Commit 4.1
3PC Three-Phase Commit 4.1

3PC-C Three-Phase Commit-Convergecast 4.1
ADSL Asymmetric Digital Subscriber Line 3.5
CDF Cumulative Distribution Function 3.5
CTP Collection Tree Protocol 4.1

CV Coefficient of Variation 3.3
ECP Epidemic Consensus Protocol 4.5

EMP+ Epidemic Memebership Protocol-Plus 2.2
FLP Michael J. Fischer, Nancy Lynch, and Mike Paterson 2.4
FU Flow-Updating 2.1

GPL General Public License 1.6
IDA Information Dissemination Application 4.4

IP Internet Protocol 2.5
IoT Internet of Things 3.5

LAN Local Area Netwrok 3.5
NCP Node Cache Protocol 2.2

NCP+ Node Cache Protocol-Plus 2.2.1
OSN Online Social Network 5.1
P2P Peer-to-Peer 1.2

PPG Push-Pull Gossiping 2.1
PSP Push-Sum Protocol 2.1
PTA Phase Transition Algorithm 4.2
PTP Phase Transition Protocol 4.4

PTP+ Phase Transition Protocol-Plus 4.5
SE Standard Error 3.3

SPSP Symmetric Push-Sum Protocol 2.1
SSEP System Size Estimation Protocol 4.3

REAP Robust Epidemic Aggrgation Protocol 5.3
REAP+ Robust Epidemic Aggrgation Protocol-Plus 5.4

RMSE Root Mean Square Error 3.3
RTT Round-Trip Time 3.5
TCP Transmission Control Protocol 2.5

UUID Universally Unique Identifier 6.1
WLAN Wireless Local Area Netwrok 3.5

WSN Wireless Sensor Network 3.5
WWW World-Wide Web 5.1

xxi

xxii

Glossary of Variables

Variable Scope Definition
C Local variable Local cache of nodes information.
e Local variable Local estimate.
k Global parameter Number of neighbour nodes, or out-degree value.
lQ Global parameter Maximum length of queue Q.
lC Global parameter Maximum length of cache C.
lP Global parameter Maximum length of cache P.
M Global parameter Number of agreement phases.
Mv Notation Total of initial values, or mass of values.
Mvp Notation Total of initial values in nodes joined propagation phase in

the aggregation process.
Mw Notation Total of initial weights, or mass of weights.
N Global parameter Number of nodes, or system size.
Np Global parameter Number of nodes joined the propagation phase in the

aggregation process.
P Local variable Local cache of aggregation information.
Q Local variable Local queue of estimates.

taction Notation Commit or action time.
tc Notation Convergence time.

toff Global parameter Initial synchronisation offset.
Ṫ Global parameter Default cycle length, cycles are fully-asynchronous.
T̈ Global parameter Experimental cycle length, used for synchronising cycles.

Ť, T̂ Global parameter Maximum expiry time, or maximum timeout.
v or vd Local variable Aggregation value.

va, vc, vp Local variable Aggregation value for (agreement, convergence, propagation)
phase.

V Notation The true target value, or desired target.
w or wd Local variable Aggregation weight.
wa,wp Local variable Aggregation weight for (agreement, propagation) phase.

x Local variable Initial data value.
ε Local variable Local estimation error.
ε Global parameter Error tolerance threshold, or accuracy threshold.

Υ Global parameter Consecutive cycles threshold.
ς Local variable Seed identifier.
δ Global parameter Propagation delay of system network.

xxiii

xxiv

Chapter 1

Introduction

The discipline of distributed systems is a very active topic of scientific research for the last
sixty years [1]. Recent communication technologies and computer networks have imposed
further problems and challenges to the distributed systems, especially when scalability and
synchronisation are a concern. The research presented in this thesis addresses the consistency
problem in large and extreme-scale distributed systems. It proposes achieving and detecting
of consistent states among system participants, although real-world systems are asynchronous
and dynamic. Detecting a consistent state in realistic conditions is a non-trivial problem,
and requires scalable, flexible, and robust solutions. This chapter gradually describes the
consistency problem in extreme-scale distributed systems. It also outlines the aims, objectives
and methodology of the research work. It summarises the main contributions and illustrates
the thesis layout at the end.

1.1 Extreme-scale Distributed Systems

Over the last decade, the scale of distributed systems has expanded in size and space.
The expansion of the distributed systems is a natural outcome to the enhancements in
communication networks and the rising number of users and services. The advanced technology
has enabled computing devices from different types and sizes and made them handy. Also,
almost all computing devices these days are connected to the Internet and come supported
with plenty of mobility capabilities and innovative functionalities. Furthermore, the emergence
of widely deployed networks such as Wireless Sensor Networks (WSN), Internet of Things
(IoT), and Cloud computing, together with the growth of users and services, have conveyed
the scalability in distributed systems to additional dimensions.

In the present, each software application is usually relying on a middleware distributed
system in one way or another. This reliance is promoted by the evolution of ubiquitous
services and pervasive computation. For example, online services are accessible from many
computing devices, whether a user is stationary or on the move [2]. Other types of services
are adaptable to changes in the surrounding context, such as the case in smart appliances,
vehicles, and spaces [3]. Recently, centralised services such as those in Cloud technology

1

1.1. EXTREME-SCALE DISTRIBUTED SYSTEMS

have been moved outside the computation center towards the edges for further processing
capabilities (a.k.a Edge Technology) [4]. Also, some services are entirely decentralised and
distributed, such as those in Blockchain technology [5]. Every service in the previous examples
is built using a system of widely distributed participants (e.g., nodes, processes, agents) which
are simultaneously running on several computing devices. The distribution of a system over
a vast network that comprises thousands or millions of nodes imposes many difficulties and
challenges in terms of scalability, synchronisation, and consistency.

In distributed systems, models of centralised algorithms and deterministic
communications are controversial due to common problems such as the single point of failure
and Bottlenecks [6]. Besides that, the unprecedented growth in systems scale arises further
issues, in particular, distributed services that require system-wide operations. For example,
synchronising distributed computational information among nodes or processes which are
entirely asynchronous [7, 8], or attaining consistency and agreeing on a state that is critical
for the operational continuity [9]. Moreover, acquiring a global control on nodes failures,
which are the norm rather than the exception [10], or handling network dynamism and
topology changes which may form an irregular structures [11]. Such issues are usually a
concern for services designers and developers.

In response to challenges in centralised approaches, decentralised algorithms and Peer-to-
Peer (P2P) communications have emerged as an alternative model of distributed systems
[12, 13]. The general concept of the P2P model is the distribution of computations across
system nodes such that they can collectively perform a task in a decentralised and scalable
manner. Nodes in P2P networks usually interact in a peer style where a pair of nodes
exchange information and each node potentially acting as both client and server, and hence,
nodes run similar networking protocols and software. Perhaps the most popular classes of
Internet applications nowadays is the P2P file sharing systems, conferencing applications,
and cryptocurrencies [5, 14, 15].

One distinct property in P2P systems is the construction of an overlay topology on top of
the physical network. It is vital for each node in a P2P system to retain a subset of peers
through indexing and discovery [11, 16]. Typically, nodes can identify and communicate with
each other using the local view of the overlay. However, pairwise information exchanging
is performed via the underlying network. The overlay topology formulates the relationship
among nodes, and therefore, overlay management is essential in the P2P systems [16, 17].

P2P overlays can be categorised to structured, unstructured and Hybrid systems. In
structured systems, nodes are imposed in a special linking structure (e.g. Trees and Distributed
Hash Tables) [18, 19]. In contrary, nodes in unstructured systems are not linked according to
any particular or deterministic manner (e.g. Gnutella and Gossip) [11, 15]. Hybrid systems
combine both structured and unstructured topologies to gain the benefits of both; for example,
they are more resilient than tree-based systems and have less overhead than gossip-based
systems [20]. However, unstructured topologies are also known as random topologies, and
they gain attention due to supporting rapid data diffusion in dynamic distributed systems;

2

CHAPTER 1. INTRODUCTION

also, large distributed systems are usually assumed to have arbitrary topologies.
The P2P model is an attractive architecture for distributed systems due to the

decentralisation feature. Mainly, the lack of a failure that can compromise or damage the
system makes the model fault-tolerant, in addition to the ability to formulate unstructured
overlays, which in consequence increases the model scalability. These characteristics of the
P2P model have enabled an essential paradigm for decentralisation and scalability in
distributed systems, the so-called Epidemic-based models. For instance, epidemic protocols
are a typical P2P system that implements random pairwise data exchanging alongside
decentralised computations over unstructured topologies, for which they form very flexible
designs that is considerably more scalable, fault-tolerant and resilient.

1.2 Epidemic-based Protocols

A typical epidemic-based paradigm consists of decentralised computing models based on
randomised communication models. The terminology and concept of epidemic protocols are
inspired by the phenomenon of infection in biological systems [21, 22]. Likewise, the term
’Gossip Protocols’ is a synonym concept as both social gossip and virus infection shares the
same diffusion properties. Epidemic models are known for a decade, primarily, for maintaining
replicas in distributed databases [23] and for decentralised routing across the Internet, i.e.,
P2P and ad-hoc networks [12]. However, modern distributed systems have applied epidemic-
based solutions for sophisticated problems on the contrary to other approaches which have
failed, either due to extreme system sizes or due to inconvenient network structures [22].
Mainly, epidemic protocols have inherited the capabilities of P2P model, and hence, they
have inspired the design of novel distributed protocols for large systems taking advantage of
their intrinsic properties such as natural diffusion, resilience, scalability and fault-tolerance.

Epidemic protocols have acquired the popularity due to the ability to accomplish two main
tasks: (1) information dissemination and (2) data aggregation. Information dissemination
protocols merely employ the diffusion process of epidemics or gossip to disseminate data
or queries from a participant to another, while data aggregation protocols use the diffusion
process to compute a synopsis value or more for a distributed set of data in a system. For
additional details on epidemic models for information dissemination a reader can refer to
these pivotal studies [12, 22, 23, 24, 25]. Also, key models for data aggregation are presented
in the following studies [26, 27, 28, 29, 30]. Also, Chapter 2 presents a review on additional
epidemic protocols for data dissemination and aggregation.

One essential feature of epidemic protocols is the ability to eventually converge to a desired
state. The convergence among nodes is critical for distributed services and it is excessively
studied in the literature [28]. The term ’convergence’ is a temporal concept describes the reach
to the desired state at each node in a system. In information dissemination tasks, convergence
consists when all nodes in a system have received a copy of a particular information or
update [31]. Also, the desired state in data aggregation tasks is typically a numeric value

3

1.3. TOWARDS CONSISTENCY OF EPIDEMIC SYSTEMS

that each node in a system attempts to compute. Technically, an epidemic protocol achieves
convergence when a locally computed result in each node gets arbitrary close to the target
value [26, 27]. In stable systems, the theoretical analysis of epidemic protocols provided
stochastic guarantees to the convergence of all nodes. In addition, practical studies proved
the ability of each node to detect convergence using only its local state [28, 32].

In real-world systems, asynchrony and dynamism have a detrimental effect on the efficiency
and the correctness of epidemic protocols [33, 34]. The inherent properties of epidemic models
cannot be ascertained and may vanish due to the unpredictable behaviour of nodes. Epidemic-
based services performance becomes questionable, and the tasks may not converge or may
converge to wrong states. Therefore, it is essential to maintain the robustness of epidemic
protocols under dynamical conditions to keep the dependent services operational. Further
research on achieving and detecting of distributed consistent states using robust epidemic
models can lead to adequate solutions for services in extreme-scale systems. The following
sections demonstrate the importance of evolving epidemic protocols to achieve a robust
consistent state for systems in a realistic environment.

As a note of terminology, an epidemic-based application is a software that incorporates
one or more of epidemic protocols to provide a designated service. In such an application,
internal components associated with a service (e.g., protocols) are located in each participant
forming a distributed system for that particular service. In the thesis, the term ’epidemic
system’ refers to an internal system of an epidemic-based service.

Definition 1.2.1. An epidemic system is a middleware distributed system that implements
one or more epidemic protocols to accomplish global services and operations.

Also, the term ’task’ refers to a complete mission which includes at least one process. For
instance, an aggregation task may consist of several parallel or sequent aggregation processes
and likewise, a dissemination task. In the other hand, the desired state that is targeted by
the computation in data aggregation tasks is denoted in the rest of the thesis as the ’target
value’.

1.3 Towards Consistency of Epidemic Systems

In extreme-scale distributed systems, global operations often utilise decentralised solutions to
monitor and maintain a system-wide consistent state. For example, an online service where
participants join and leave independently of the service may need to track the number of
active participants to successfully complete a specific task [27]. Also, distributed applications
for unmanned vehicles may repeatedly attempt to coordinate a universal speed limit to
optimise system performance or to avoid catastrophic scenarios [35]. In WSN, devices
frequently collect data from their sensors and require to have an up-to-date view of the
network with aggregated information about fresh data in all devices [36, 37]. Recent trends in
Edge computing have considered moving Cloud services away from centralised computation
and data centres towards the edges of the network. Edge computing can benefit from and

4

CHAPTER 1. INTRODUCTION

may even require decentralised monitoring and processing capabilities [4]. Also, Blockchain
platforms require certainty on data immutability in the distributed ledger, so, it is necessary
to continually keep a general agreement among nodes about all submitted transactions [5,
38].

The consistency of distributed systems refers to achieving a common object or state
among system participants [39, 40]. Traditionally, a consistent state indicates a replica
data of a distributed database, an outcome of a distributed transaction, a storage state
under simultaneous operations, etc. Also, consistency can be strong or weak, achieved
directly or eventually. Typically, distributed consistency is attainable through distributed
algorithms that ultimately converge to a global state (a.k.a Eventual Consistency). In similar
manner, algorithms for distributed consensus exhibit characteristics of those for distributed
consistency. The consensus is critical to many distributed services as nodes or processes are
often required to coordinate some action or agree on some value [1, 41]. In general, consensus
algorithms are effective techniques for achieving consistency. Through coordination among
participants, a distributed algorithm can achieve and synchronise a globally recognised state,
which allows the accomplishment of system-wide tasks such as termination, event ordering,
and decision-making.

Commitment protocols (e.g., Three-Phase Commit (3PC)) are typical examples for services
that make consistency of distributed systems, normally, by using decentralised collective
decision-making (or voting). The decision-making process is performed among participants
targeting the agreement on an output that is in a common interest of all participants. The
agreement target is usually a distributed state such as number of failures, commitment of a
transaction, formed opinion, elected leader or consent on replicas [42, 43]. The key fact is
that all participants must come to the same conclusion regardless of the problem they are
trying to agree on [9].

In a typical agreement process, each node proposes or starts with an initial value, nodes
exchange their values, and each node decide on one of the values. The agreement process
ends when all nodes have decided a common value [44]. For a correct agreement, i.e. globally
consistent state [43, 45], all nodes should eventually decide the same value and that value
should be one of initial or proposed values. On the other hand, gossip-based models are
widely used to achieve the distributed consensus and eventual consistency in distributed
systems [40]. In particular, gossip-based averaging is the conventional process for acquiring
agreement among nodes (a.k.a Approximate Consensus and Asymptotic Consensus). These
studies: [40, 46, 47, 48, 49] are a sample related work for the gossip-based consensus.

Definition 1.3.1. An agreement process is a distributed process that coordinates among
system participants to achieve consensus.

The consensus in 3PC is usually detected by a coordinator which exhibit same centralised
approaches pitfalls. Also, agreement process in distributed consensus and eventual consistency
models is probabilistic and it is approved to be achievable in stable and synchronised systems.
Large systems are more open, asynchronous and dynamic. Conventional agreement methods

5

1.4. CONSISTENCY PROBLEM IN EPIDEMIC SYSTEMS

either do not scale or are not adequate for such systems. Epidemic systems are scalable,
however, achieving and detecting a globally consistent state in epidemic systems is non-
trivial problem. It requires not only decentralised and resilient solutions but also robust and
continuous protocols that handle changes in a dynamic environment.

In epidemic systems, consistency supports the reliability and predictability of the system
by achieving a common state at asynchronously acting nodes. Consistency of epidemic
systems requires all nodes to achieve a particular state (or value) at the end of dissemination
or aggregation tasks [22, 46, 48]. The agreement process in epidemic systems aims to compute
a synopsis among initial system values and eventually, all system nodes converge to the target
value. The similarity of agreement processes in distributed consensus and data aggregation
process is an unsurprising finding due to the well-known guarantees on the convergence of
decentralised models. The ultimate convergence of decentralised models has motivated many
researchers to use achieving convergence as a synonym to reaching agreement in distributed
systems, primarily, when the target value is the interest of the consensus. This motivation
also points out the essential role of convergence in the consistency of epidemic systems.

The research work in this project studies the problem of achieving and detecting consistency
of epidemic systems. An epidemic system that regularly makes a consistent state can achieve
reliable performance and predictable behaviour. Investigations have addressed eventual
consistency and consensus problems in distributed systems to achieve the research objectives.
The pivotal proposition is that reaching a consensus among system nodes makes a consistent
state, and the process of agreement is the way to make and synchronise the global state.
The study mainly considers the decentralised algorithms for distributed consensus and the
distributed data aggregation problems in the sake of exploring potential techniques for robust
and continuous epidemic protocols.

1.4 Consistency Problem in Epidemic Systems

The convergence of decentralised models is the foundation block for achieving distributed
consistency in epidemic systems. However, acquiring of globally consistent state not only
requires achieving convergence, but also the detection of convergence. Convergence detection
in decentralised models is typically heuristic, and it is not guaranteed in real-world systems.
Moreover, recent applications are demanding efficient and reliable consistency, for which
the certainty on the system convergence requires explicit detection methods. The explicit
detection method aims to build awareness among participants about the convergence of the
system.

In stable epidemic systems, the ultimate reach to an agreement is supported by the
ultimate convergence as proven by theoretical and empirical analysis. Each node in a
synchronous system can directly discover the agreement by detecting the convergence, and it
can instantly decide the consensus. Also, models for asynchronous systems have used the
same assumption and rely on the inevitability of convergence in stable systems [27, 45, 48, 49,

6

CHAPTER 1. INTRODUCTION

50]. Asynchronous algorithms for consensus assume that a system will eventually converge
in a finite time and hence, the detection of convergence implies the agreement, and a node
can decide the consensus after bypassing a predefined interval. In general, the agreement in
previous models is entirely heuristic, and a node has no apparent certainty on the convergence
of other system nodes.

System convergence in real-world environments is neither can be ensured nor can be
detected. The problem of achieving and detecting convergence in epidemic systems which are
asynchronous and dynamic is described in the following points:

• Nodes achieve convergence at different times, and each node has no awareness about
other nodes’ state of convergence [51, 52]. Although a node may locally detect
convergence, it is not sure about other nodes which may achieve convergence as well,
or fail, or abort the agreement process.

• The grace interval before deciding the consensus in asynchronous models requires global
information about the system, and the interval has to be long enough for a correct
consensus, which is impractical in extreme-scale systems and challenging under the
presence of dynamical conditions.

• Computations in epidemic models are decentralised by nature, and the detection of
system convergence can only be obtained through the absolute reliance on local state
at each node. Moreover, the certainty of global detection of the convergence cannot
be directly presumed by local detection due to nodes asynchrony. In the lack of a
central authority like in commitment protocols (e.g., 3PC), it is a challenge to use only
locally available information at each node in acquiring the awareness of other nodes’
convergence.

In the context of the previous explanation, the consistency of epidemic systems is defined
as follows,

Definition 1.4.1. Consistency of an epidemic system is a model in which each participant
of the system achieves a globally desired state and achieves an explicit awareness about other
participants that have made the same state.

In contrary to conventional distributed and eventual consistency models, which typically
define the global target of consistency by the convergence to a common state, the prior
definition requires the acquiring of global awareness on the convergence of the system, i.e.,
the convergence of other participants. The proposed consistency model of epidemic systems
preserves the following general properties:

1) Termination, all non-faulty nodes should eventually decide or compute some value.

2) Agreement, the target is the same for all non-faulty nodes.

3) Validity, the target is among, or an aggregate of the set of proposed and exchanged
values.

7

1.5. RESEARCH OBJECTIVES

The proposed model of consistency for epidemic systems also exhibits the liveness and
safety properties of eventually converging distributed models [40]. Both properties are
guaranteed by the theoretical and empirical analysis of convergence in epidemic paradigms,
particularly, under stable conditions [22, 26, 27, 48, 50].

Definition 1.4.2. The liveness of the consistency model consists of the ability to converge
in a finite time. It is an intrinsic reflection of the diffusion process in the epidemic paradigms.

The safety property is also an outcome of the convergence feature of the epidemic models,
and it is defined as follows:

Definition 1.4.3. The model is safe, if all participants ultimately converge to the same
desired state in a finite time.

The liveness and safety properties are preserved in stable epidemic systems; however,
these properties are questionable in real-world systems where the convergence is detrimentally
influenced. One substantial aim of this research work is to achieve a global awareness among
system participants for a particular state, e.g., the convergence to the desired target. Making
system-wide awareness ensures the safety and liveness of the epidemic systems, even in
dynamical and unreliable environments.

In essence, the problem of consistency in epidemic systems is an extension of the distributed
consensus to the distributed data aggregation where the agreement is an epidemic aggregation
process. In order to achieve agreement on a particular matter, nodes in the system have to
(1) receive a particular data item or compute a local estimate of the target value using a
specified data aggregation function, (2) detect local convergence on the target, (3) acquire
explicit awareness on the convergence of the system. A typical example of the proposed
agreement process in actual epidemic systems is the local estimate of a data synopsis function,
where a node may need to achieve three different levels of information, the target value with
some approximation, awareness of local convergence to the target and certainty of a global
convergence on the target.

The decentralised data aggregation is the core of the agreement process and therefore,
the robustness of the aggregation process is important for making a correct agreement. In
dynamic conditions, aggregation process may not converge or results may deviate of the
target value, which invalidates the aggregation process and the agreement process as well.
Achieving a globally consistent state in real-world epidemic systems requires robust and
continuous models that adapt to new system conditions. Adaptive epidemic models make
correct consensus and consistency on the most recent state of the system in spite of the
asynchrony and dynamical conditions.

1.5 Research Objectives

The pivotal hypothesis of the research work in this project is to utilise epidemic paradigms
as adequate solutions for the extreme-scale systems, which are asynchronous and dynamic.

8

CHAPTER 1. INTRODUCTION

We address attaining the distributed consensus and making consistent states as a practical
application for the proposed epidemic protocols in this project, mainly due to the vital roles
that consistency and consensus services have in the large distributed systems nowadays. We
argue that current decentralised models for distributed consensus and eventual consistency
are inefficient for real-world epidemic systems, although theoretical and practical analysis
of decentralised models have provided guarantees on the convergence to a global state. We
propose that the consideration of realistic environments fundamentally needs to satisfy two
main conditions:

1) Each participant of an epidemic system should achieve and detect the desired state,
and

2) Each participant should detect convergence of the system to the desired state, not
depending on probabilistic assumptions only but also using an explicit detection method
that builds global awareness of the system state.

We also propose that epidemic models need to be continuous and adaptive to handle the
changes in the system due to dynamical conditions. The research project had the following
general aims:

1) To review and study decentralised and epidemic protocols for data dissemination and
aggregation in the literature. The analysis of existing epidemic models provides the
fundamentals for introducing novel protocols.

2) To investigate the principles and implications of systems synchrony, which are essential
for the proposal of new protocols. The traditional assumption of a proper
synchronisation in the system is impractical in the real environment. The project aims
to ustilse a practical system model that is asynchronous and realistic. On the other
hand, it is vital to understand the impossibilities of distributed systems. The
consideration of the impossible cases helps to adopt the typical synchrony model, in
which epidemic systems can operate.

3) To explore models of churn and dynamism in P2P networks to identify the most
practical model to use in validating the proposed epidemic protocols. The proposed
protocols should not be penalised by examining them under extreme scenarios that are
uncommon or rarely occurs.

4) To propose epidemic protocols that can achieve and detect globally consistent states
in epidemic systems and can allow services to operate predictably and reliably. The
proposed protocols are required making explicit awareness in the system, although it is
dynamic and asynchronous.

In the course to achieve the project aims, the following objectives are proposed:

9

1.6. METHODOLOGY

1) To define the level of synchrony in the system model. This includes using appropriate
synchronisation setting for cycles start times and length. It also includes determining the
density distribution of network propagation delays, typical messages size and transport
layer reliability.

2) To introduce innovative epidemic protocols for the correct making of a globally consistent
state under realistic conditions. The roadmap to achieve this objective starts by
investigating the convergence feature of the epidemic and decentralised models. The
investigations include determining the appropriate methods for convergence detection.
Then use the ideal detection method in the novel protocols. Additionally, it is an
objective to introduce an innovative approach for making and detecting global awareness
in the epidemic systems.

3) To study the performance of epidemic protocols in dynamic systems. The study
addresses the dynamic behaviour of nodes and examines the impact of nodes churn on
epidemic protocols, particularly, on data aggregation protocols. The research target
is also to introduce robust epidemic protocols that can converge under the dynamical
conditions.

4) To apply adaptive behaviour to the proposed epidemic protocols and make them
applicable for dynamic systems. The research target is to study potential methods to
discover the detrimental impact of the nodes’ churn on epidemic protocols, and upon
detecting any consequences of churn, the protocol adapts it self and takes appropriate
actions.

Finally, the research project involves the incorporation of proposed methods, mechanisms,
and protocols to introduce generic paradigms for robust and consistent epidemic systems
that can operate in spite of vast scale, asynchrony, and dynamism.

1.6 Methodology

The research study in this project is simulation-based. The utilisation of simulation is a
typical choice due to wide system sizes for which the epidemic models are designed. The
direct deployment of epidemic protocols in real-world systems for the purpose of examinations
is a complicated, expensive and impractical strategy. In contrast, computer modelling
and simulation provide adequate tools for the experimentation and enable the studying of
alternative designs and architectures.

The opted methodology follows a gradual research technique to facilitate investigations
and experimentations. At the start, the research has addressed epidemic models in steady
systems. After that, the study has involved the impact of churn and dynamic conditions.
In general, the research consists of the analysis of both theoretical concepts and empirical
results of epidemic protocols. For this purpose, some epidemic protocols from the literature

10

CHAPTER 1. INTRODUCTION

in addition to the novel protocols are implemented and examined using simulations. The
experimental results are inspected and verified in the shade of analytics and proofs in the
previous research studies. Also, the performance of the novel epidemic protocols is evaluated
and compared to other existing protocols.

The simulations are carried out using PeerSim [53] a Java-based discrete-event P2P
simulation tool that is provided under the (GPL) open source licence. The simulator is
developed primarily for evaluating decentralised protocols which are designed for extreme-scale
and dynamic distributed systems. Also, PeerSim can simulate different network topologies
such as structured and unstructured overlays.

There are two separate simulation engines in PeerSim: (1) Cycle-based and (2) Event-
based. In the cycle-based model, a protocol in each node is called upon at each cycle and
protocols communicate in a randomised manner. It is a simplified and well documented
simulation engine [54]. In the event-based model, events (e.g. message dispatching) are
scheduled based on their delivery times and a node protocol is called upon according to events
reception order. The usage of the event-based engine in PeerSim is not a straightforward
task due to substandard documentation [54, 55].

In another perspective, PeerSim has no graphical user interface but provides lightweight
Java packages for the simulation and basic statistical calculations and data collections. The
packages include many simple, extendable, and pluggable support components [53]. The
entry point to the simulator is command based, where a group of predefined instructions,
protocols, and parameters are inputted through a text configuration file.

The simulation of various conditions of real-world epidemic systems demanded additional
simulating components. In particular, the transport layer component in PeerSim is extended
to generate random delays following a specified statistical distribution. The new transport
component implements a Weibull distribution with a scale η, a shape β, and a location γ.
The Weibull distribution is flexible and can simulate probability density function against
the latency of various networks. Mainly, the parameter β can control the upper bound of
delays and can make short or long-tailed distribution according to the requirements of the
experiments. Also, the parameter η defines the average value or the distribution peak. The
parameter γ bounds the lowest value.

In this project, the event-based model is chosen for the implementation of the protocols,
because it is adequate for simulating actual systems. For this purpose, a programming
framework for epidemic protocols is implemented for PeerSim. The framework consists
of process-alike structure and events to control the life-cycle of Protocol component in
PeerSim, which is extended too to accommodate the new framework. Services in the
framework are accessible but not compulsory to protocols implements, thanks to default
methods in Java 8. The framework makes concurrency implementation and protocols
structures more controllable and understandable. The following describes the basic services
of the framework:

1) Initialise Service sets the initial state of a protocol. PeerSim initialisation

11

1.7. CONTRIBUTION

components usually use this service before the simulations start. This service can also
schedule the Start Event or Run Event for a calling protocol.

2) Start Service begins a protocol execution. This service schedules the Run Event
for a calling protocol at the beginning of the simulations. The service enables different
start times for protocol instances in a system.

3) Sleep Service reschedules the Run Event for the calling protocol during the
simulations.

4) Send Service passes information and data to the transport component in PeerSim
where the Message Event is scheduled for a random delivery time.

Also, the next list involves a description of the common events in the framework:

1) Start Event is an active thread of a protocol that runs only once at start time.

2) Run Event is an active thread that is usually called at each cycle. In this event, a
protocol should perform main computation and communication activities.

3) Message Event is a passive thread that runs upon the occurrence of the event only.
In this thread, a protocol processes a message from a peer and may sends a response.

Moreover, there are data collection and statistics components are developed for PeerSim
to ease the analysis and evaluation of experimental results. For example, a group of integrated
components to produce visual results such as figures and graphs are implemented. Additional
effort is also applied to tune the performance of examined protocols and optimise the usage
of memory and processor.

In summary, the lightweight package of PeerSim and command-based configuration
were ideally flexible for running several simulations in parallel. Also, PeerSim was able
to simulate up to 106 of nodes in mid-performance computer. Experiments durations were
ranging from several minutes for thousands of nodes to a couple of hours for one million
nodes. Generally, the simulation methodology has enabled this research to achieve intended
objectives and aims and present vital contributions to the epidemic systems and to the
discipline of decentralisation.

1.7 Contribution

The research work in this project has studied epidemic models of data dissemination and
aggregation. Additionally, it explored epidemic protocols for distributed consensus and
consistency in the context of achieving the project aims and objectives. It presents a distinct
combination of decentralised models for extreme-scale systems with those to distributed
commitment. The work has introduced innovative epidemic protocols for achieving and
detecting systems consistency under stable and dynamical conditions. It has also proposed

12

CHAPTER 1. INTRODUCTION

mechanisms to improve epidemic protocols’ robustness, which, when incorporated to epidemic
protocols for consensus, make modern epidemic paradigms that are scalable, asynchronous,
and robust for the real-world systems. In essence, the work presented in this thesis makes
the following novel contributions:

1) It defined the partial-synchrony model of epidemic systems. The model adopts
asynchronous communication and processing cycles. It also adopts a non-atomic
pairwise message exchange, and hence, messages interleaving are present with high
probability. Cycles of different nodes may overlap, and messages may deliver in
different cycles. However, it assumes a reliable underlying network. Cycle length is
also defined and analysed. The recommended cycle length is the RTT on the diameter
of the system network. The utilised cycle length allows non-atomic pairwise exchange
transactions to complete within the cycle with high probability. As a sub-contribution,
the adopted partial-synchrony setting has demonstrated the applicability of the
proposed protocols for real-world deployment.

2) It improved the heuristic methods for local detection of convergence in epidemic
protocols. The analysis has shown that conventional detection methods require global
information on the system, which hard to obtain, especially in dynamic environments.
The work in this project has introduced an evolved detection method that requires
no prior information about the system. Also, it has approved that although some
controlling parameters are needed, the setting of those parameters can have standard
values, and thresholds can be set according to application preference.

3) It introduced the Phase Transition Algorithm (PTA) for making globally consistent
states in epidemic systems. The PTA makes the transition into phases to acquiring
more certainty and global awareness on the desired states. Each phase of PTA is a
decentralised decision-making process that aims to attain explicit agreement on the
system state. The algorithm is further implemented in two protocols for reaching and
detecting agreement in data dissemination and aggregation, PTP and ECP respectively.
The algorithm is flexible and can achieve system awareness with as certainty as required.

4) It provided a survey on the nodes churn models, particularly in P2P networks and
systems. The survey aimed to adopt the typical churn model for studying epidemic
protocols. With some general assumptions on nodes departure, estimation for the
expected departure rates was obtainable from the statistical distributions of session
duration provided in the surveyed studies. The survey has shown that under normal
system conditions, 30% of nodes churn in the average should be expected. This result
implies that churn rates are usually moderate, and epidemic protocols should provide
the desired accuracy at the mid-level of churn.

5) It analysed the data aggregation process in which three implicit phases are identified.
The phase that is critical to the aggregation process is further studied, leading to

13

1.8. SCOPE OF THE RESEARCH WORK

introducing two robust epidemic aggregation protocols: REAP and REAP+. The
protocols implement an instantaneous failure detector and recovery mechanism to
compensate for the disturbance in the mass conservation property. The prompt
compensation method supports the aggregation process and makes it converge to a
more accurate approximation of the target value. The protocols produce results with
high accuracy even under severe nodes churn. The achieved accuracy is competitive,
and levels of errors under different churn rates have been specified.

6) It introduced a novel protocol for continuous epidemic services with the adaptive
restart mechanism. The protocol either restarts upon acquiring consensus on the global
convergence or upon the detection of divergence. Moreover, the mechanism generates
optimised communications overhead that can be piggybacked with regular message
exchanging. The protocol also implemented a decentralised selection method for data
aggregation tasks that require single-point initialisation, which was a challenge that
needs the leader election step. Furthermore, the detection accuracy of the protocol
can be tuned according to the application preference for good quick results or accurate
estimates that take longer to compute.

In general, the research work in this project has introduced several methods, mechanisms,
and protocols to the discipline of epidemic computing. The PTA protocols have provided
the explicit method for achieving and detecting consistent global states in the epidemic
systems. The method allows distributed services to accomplish any designated global action
or decision. The proposed robust data aggregation protocols and when integrated to PTA
protocols improve the convergence and the results under dynamic conditions. This makes
the acquiring of consistency achievable in dynamic systems. Furthermore, by combining
the adaptive restart mechanism, epidemic protocols can adapt to the most recent state and
can make correct system-wide decisions and actions. The introduced contributions provide
fundamental solutions for many services in modern distributed systems, especially when
global synchronisation, coordination, and consistency are required for services operations.

1.8 Scope of The Research Work

The research presented in this thesis is targeting distributed services in the large and
extreme-scale systems. Thus, decentralised solutions are adopted due to their scalability and
fault-tolerant properties. However, utilising of decentralised models exhibit higher overall
communications. Structured and centralised models can be adequate for small systems and
provide better performance and communications loads.

There are two popular applications for the decentralised models, including the epidemic
models: information dissemination and data aggregation. Any distributed service that applies
information dissemination and data aggregation as its primary operation or task can use any
of the proposed protocols in this project. The main objective of the project is to achieve a

14

CHAPTER 1. INTRODUCTION

globally consistent state in large systems under stable and dynamical conditions. Distributed
services that require achieving and detecting global consistency can merely implement one of
the PTA protocols. For instance, a service that consists of information or data dissemination
tasks can use the protocol PTP. Service that computes a synopsis of distributed data or for
system proprieties can use the protocol ECP for achieving consistency.

All previous services that desire to achieve consistency under dynamical conditions need
to consider combining or solely using protocols such as REAP+ and the continuous epidemic
protocol with the adaptive restart to make robust epidemic operations and tasks.

1.9 Thesis Outline

This thesis comprises seven chapters. Apart from this one, each chapter describes a stage of
the research work in this project. Chapters include sections facilitates the investigations and
protocols proposed at each stage. This thesis is organised as follows.

The next chapter describes the literature review stage and provides information on the
most relevant research which is required to explain the work conducted in the project. The
impossibilities in real-world distributed systems are specified in the chapter. The chapter also
describes the model that identifies the minimum requirements needed for epidemic protocols
to operate in the asynchronous environment.

Chapter 3 discusses the convergence of epidemic protocols. It explains heuristic and
explicit detection methods in the context of the given system model. The developed detection
methods presented in the chapter are the main foundation blocks in the proposed protocols.
The chapter ends, illustrating the convergence time from a practical point of view and
discusses mapping convergence time to true-time units.

Chapter 4 introduces the Phase Transition Algorithm (PTA), for achieving and detecting
consistent states in epidemic systems. In the chapter, the agreement process in centralised
distributed systems is explained emphasising the need for acquiring global awareness in the
distributed consistency problem. Also, a complete description for the PTA and the epidemic
agreement protocols is provided. Further discussions on the PTA are presented at the end of
the chapter.

Two protocols for robust data aggregation with a distributed failure detection and mass
restoration mechanisms are introduced in Chapter 5. In the chapter, research studies on the
node churn are surveyed to specify the typical churn model in P2P networks. The chapter
includes the analysis of epidemic data aggregation process where three distinct phases of
the process have been identified. The study has shown that node churn at each phase has
a different effect on the estimation error, resulting in a novel mechanism to address the
violation of mass conservation invariant.

The work in Chapter 6 introduces a novel epidemic protocol with an adaptive restart
mechanism. The mechanism restarts an epidemic task upon the detection of convergence
or divergence in autonomous and variant epochs. Also, the mechanism ensures correct

15

1.9. THESIS OUTLINE

convergence to the target for all nodes through aggregating nodes decisions and acquiring
consensus on the restart action. Moreover, the mechanism is producing small communication
overhead, which can be piggybacked on existing protocol messages.

The thesis ends with Chapter 7 that presents a summary of the work presented in the
thesis and the aims and objectives which have been achieved. Also, further research ideas are
provided.

16

Chapter 2

Literature Review

The work in this project extends distributed consensus problem to epidemic data aggregation
problem, in which both problems need to be studied. This chapter provides an exploratory
review of the literature that formed the initial stage of the project. In the chapter, the most
relevant research work and studies are described emphasising answers they provide for the
research questions of this project. In the beginning, studies and paradigms of the epidemic
information dissemination and data aggregation are presented. Mainly, the review was
questioning existing protocols that have been identified as decentralised and asynchronous.
Communication and computation models of epidemic protocols are carefully inspected,
and some essential techniques have been implemented and examined through simulations.
Distributed system models for which the explored epidemic protocols are proposed are
investigated too, targeting the ideal model of synchrony for the real-world systems.

The review also involved research studies on coordination, consensus and consistency of
distributed systems. At this stage, the review aimed to identify the key solutions for the
consistency problem, particularly when decentralisation and asynchrony are requirements.
Solutions to distributed consensus and consistency that adopt gossip-based or epidemic
algorithms are also considered. General assumptions, design and implementation decisions,
and results are analysed and investigated.

Topology management and peer-sampling services have a considerable impact on the
robustness of the epidemic protocols. Thus, epidemic protocols for managing overlay topologies
and peer-sampling are presented and review in this chapter. In dynamic systems where
topologies may change or disconnect, peer-sampling services typically have a vital role in
supporting epidemic protocols efficiency and accuracy, particularly, data aggregation protocols
which are highly influenced by the dynamical conditions.

The impossibilities of asynchronous and dynamic distributed systems are also discussed in
the chapter. Principally, the review investigates the suitability of epidemic protocols to deal
with the impossibility cases, and under what assumptions, can epidemic protocols operate.
The chapter describes the partial-synchrony model adopted throughout the research project
and demonstrates the level of asynchrony in the computations and communications.

17

2.1. DATA DISSEMINATION AND AGGREGATION PROTOCOLS

2.1 Data Dissemination and Aggregation Protocols

Demers et al. [23] introduced the earliest well-known epidemic algorithm for updating database
replicas on the Internet for Xerox Corporation. Mainly, the work aimed to introduce a reliable
and rapid algorithm that copes with the increasing size of the corporate network. The work
has proved the efficiency of randomised data exchange as an alternative to the deterministic
model. Also, it showed that randomised communication algorithms are straightforward and
simple to implement, and achieve information convergence in logarithmic time concerning the
network diameter. The work of Demers et al. has also proposed randomise pairwise exchange
that distinguishes anti-entropy and rumor-mongering modes. Typically, anti-entropy implies
each replica regularly contacts a random server and resolves differences, whereas in rumour-
mongering, a node which had or received a new update, disseminate the update to a random
peer, and after some time this update encounters less interest and so can be removed. Demers
et al. algorithm is a randomised information dissemination to make the eventual agreement
on replicas.

Rumours dissimulation is investigated in [56]. Authors have analysed the problem of
spreading rumours in a distributed environment using synchronised rounds and randomised
communications. They considered the lifetime of the rumour and analysed the transmission
and time complexities of Push and Pull communications, which led to introducing a
Push-Pull model as the more efficient and provides lower complexity. The major issue that
has been addressed by the work is how nodes decide whether the rumour shall be forwarded
to a peer or not, and the global termination mechanism. They prove that the number of
transmissions can be reduced significantly when rumours are sent in both directions. They
also mentioned examples of theoretical work for data consistency in the persistence of failures.
The work was precocious notice for the need of global convergence detection in epidemic
information dissemination.

The basic mechanism for periodic information dissemination, which is decentralised and
based on local information was introduced by [12, 57]. Formally, all nodes are involved in the
information dissemination, and every node stores every piece of information it receives into a
buffer, and continuously forwards all information to a peer or set of peers that are randomly
selected at every time. The work defined several variants, e.g. length of the buffer that may
limit inbound information, number of cycles needed to spread information over a system,
and set of peers for the random information exchange. Typically, information dissemination
quality and efficiency may vary base on these parameters and the network size.

An optimisation to epidemic information dissemination was Spatial Gossip where, instead
of selecting a random peer, nodes select peers based on a distance metric [24]. This method
noticeably reduces the load on bottleneck links which connecting communities of nodes. In
Spatial Gossip, nodes choose peers that are closer in the topology, thereby reducing the
load on long-distance links, but pay the cost of slower spreading speed. In the same respect,
a comprehensive systematic survey of many recent epidemic algorithms for information
dissemination is provided in [22]. The algorithms described in this work are interdisciplinary

18

CHAPTER 2. LITERATURE REVIEW

tools from Markov chain theory, Optimization, Percolation, Random graphs, Spectral graph
theory, and Coding.

A known study for exchanging information for computing in an arbitrarily connected
network of nodes, e.g. WSN is presented in [25]. Constraints such as dynamic topology and
limited computational, communication, and energy resources have motivated the work to
address epidemic algorithm for WSN systems. The work has analysed the problem from many
aspects, and provided guarantees on the convergence of a network with arbitrary matrix of
values derived from natural random work and without any central coordination.

Montresor A. and Jelasity M. studies are common and recent source of epidemic data
aggregation and peer-sampling protocols. Mainly, the authors have proposed aggregation
protocols to compute global aggregates, e.g. average and count, inspired by the anti-entropy
protocols [58]. They showed that date aggregation generalises the differences resolving to
a numeric form of computation. Their work is proactive and hence, has no performance
bottlenecks, and the aggregate results are present continuously at all nodes. They indicate
the adequacy of aggregate protocols for collective decision making and automatic system
consistency based on global information in a fully decentralised fashion. Márk was also
interested in the dynamics of the diffusion of information and has defined the terminology of
epidemiology whereas each node can be in one of three states, Suscepitble, Infcted, or Removed
[59]. The author introduced these models, which are derived from node states and based
on Push-Pull model. Mainly, the author aim was to update all nodes while minimising
the redundant message transmissions and keeping the algorithms simple. In addition to
introduce a general framework for solving the security and malicious behaviour problem
in epidemic systems [60], demonstrate the efficiency and robustness of epidemic protocols
theoretically and experimentally under stable and dynamic scenarios [27], proposed topology
management and peer-sampling services for robust and efficient epidemic data dissemination
and aggregation [13, 61], and they have implemented and provided the simulation tool, i.e.
PeerSim, which has been adopted for work in this project [53].

In the literature, distributed data aggregation is widely popular, and essential for a broad
range of services because it is independent of the overlay topology and the underlying network
which gives the data aggregation broad flexibility for various applications. The following
sample of studies, which have been reviewed, highlights the popularity of data aggregation
algorithms in large-scale distributed systems.

The work in [62] introduced a Tiny AGgregation service (TAG) for low-power WSN. TAG
allows the spread and execution of queries over an ad-hoc network of sensors connected by
radio. In [63], the Generic Aggregation Protocol (GAP) is introduced to collect data from
devices for network management purposes in a scalable and robust manner. Authors in
[64] proposed a Gossip Time Protocol (GTP) for decentralised time synchronisation in the
P2P network. The protocol is self-management, and hence, time samples evaluation and
gossiping frequency are entirely a local decision of nodes. Also, the work of [65] presented
a monitoring and global load estimating epidemic algorithm. Information about CPU load

19

2.1. DATA DISSEMINATION AND AGGREGATION PROTOCOLS

and memory usage are exchanged from a peer to another peer chosen from the network.
From another perspective, authors in [47] showed that epidemic broadcast algorithms indeed
almost converge to a consensus with less overhead in contrast to standard retransmission
mechanisms in lossy networks.

Furthermore, epidemic protocols in data mining is introduced in [66]. Authors have
proposed a fully distributed k-means based on an epidemic algorithm. The algorithm is a
clustering solution that can approximate the centroid over the aggregated data as closely
as desired without global communications and is intrinsically scalable and fault-tolerant.
An example of decentralised reputation computation is presented in [67]. A differential
gossip-based algorithm is proposed to exchange votes among a node and its neighbours. The
authors in [68] proposed a set of algorithms for failure detection inclusive of an algorithm
based on gossiping with an additional component to achieve consensus. After the detection of
a failure, the epidemic algorithm disseminates failure information to all non-faulty processes
in the system. A consensus on a failure is achieved by utilising the same disseminating process
to compute the number of the informed nodes. In another perspective, epidemic algorithms
for peer-sampling services and topology construction and maintenance are also proposed [11,
69, 70], for instance, authors in [33] introduced an epidemic protocol to maintain connectivity
in dynamic networks of low degree distribution.

The work in [71] has found two hurdles in designing algorithms for the data aggregation
problem, the wide distribution due to the vast scale of the system, and the continuous
changes due to a network or a nodes churn. Changes to the set of distributed data can
take place even while the aggregate is being computed. Hence, the validity of the aggregate
function becomes unclear [71]. Authors also define the nations of validity for data aggregation
algorithms. They show that data aggregation approaches in P2P networks can practically
achieve approximated validity rather than computing strong valid aggregates. Additionally,
authors in [28] have evaluated a range of data aggregation algorithms. They prove that data
aggregation robustness and accuracy are compromised in the real-world environment. They
found that in practice, data aggregation is a non-trivial problem in realistic scenarios when
requesting solutions for a distributed environment where no single node holds a global view
of the system.

In additions to the previously reviewed work for data dissemination and aggregation,
several main data aggregation algorithms are further implemented and examined through
simulations. The experimental study aimed to make a deep understanding of the data
aggregation problem. Mainly, the practical review addressed two properties of the data
aggregation protocols, convergence when a uniform gossiping with dynamic topologies is
adopted, and when system asynchrony and dynamism is present. The outcomes have adjusted
the direction of the research work in the project and helped to make critical design and
implementation decisions. The following sections describe the practical review work.

20

CHAPTER 2. LITERATURE REVIEW

2.1.1 Push-Sum Protocol

Asynchronous epidemic data aggregation protocols that based on Push only model is
introduced in the work of [26]. Authors conducted a theoretical and practical analysis and
proposed several extend aggregate functions beyond regular summation and average functions.
The protocol is fully decentralised and can be used to achieve global tasks, for example,
random samples, quantiles, and answer several data aggregate queries. Small and randomised
data Push messages are adopted for simplicity and fault-tolerance. The analysis provides in
work [26] has provided stochastic guarantees on the convergence of the protocol results to
the correct answer exponentially fast. Primarily, the Push-Sum protocol is a simple and
natural protocol to compute the summation and average. Algorithm 1 illustrates the protocol
for a system of N nodes. For the aggregate summation, a small change need to be applied,
instead of all nodes starting with weight wi,t0 = 1, only one node starts with weight 1, while
all others start with weight 0.

Algorithm 1: Push-Sum Protocol
Require: a peer-sampling service, e.g. NCP+.
Initialisation: vi = xi; for average, wi = 1; for summation wı̂ = 0 at a single node ı̂

and wi = 0 at all other nodes; 0 < i ≤ N ; where vi, wi are
aggregation parameters at each node i, and xi is the initial value of i.

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 v = v

2 // divide aggregation pair
4 w = w

2
5 send 〈v, w〉 to j // a Push message to node j

6 At event ’receive message m from j’ at node i and time t:
7 v = v +m.v // update local pair
8 w = w +m.w
9 e = v

w
// local estimate of this step

At every cycle, each node divides the local sum values by two and sends the pair of values
to a random peer. In the peer node, the local values are updated. The aggregate result e can
be estimated at every node by ei,t = vi,t

wi,t
. The accuracy of the produced estimate will tend to

increase along each cycle, converging to the correct value.
The authors in [26] have defined a vital system property, so called, mass conservation

invariant. System mass is the aggregate of all initial set of distributed data, where the average
of all sum values vi,t is always the correct average, and the sum of all weights wi,t is always
N , this property is further described in Section 3.2. Aggregation protocols that violate the
conservation invariant cannot converge to the true results. The authors have assumed the
existence of a failure detection mechanism, that allows nodes to detect when a Push message
did not reach its destination. In this situation, the mass can be restored by sending the
undelivered message to the node itself. They also stated that the assumption of synchronous

21

2.1. DATA DISSEMINATION AND AGGREGATION PROTOCOLS

cycles is not truly necessary for the Push-Sum protocols. Instead, nodes may simply follow
their own clocks in deciding when to contact a peer and the mass conservation is still ensured.

Figure 2.1 is a sample of the experimental review in the project. The figure illustrates
the performance of the Push-Sum protocol. The protocol is simulated under asynchronous
setting: random dynamic overlay, cycles among different nodes may overlap, and messages
typically arrive at different cycle.

0

2000

4000

6000

8000

10000

12000

14000

16000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

co
un

t e
st

im
at

io
n

average of local estimates
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

es
tim

at
io

n
er

ro
r

average of local errors

Figure 2.1: Push-Sum Protocol perform nodes counting under asynchronous setting, N = 104,
k = 30, Ṫ = 250ms, toff = 250ms.

2.1.2 Push-Pull Protocol

There are several algorithms for the Push-Pull protocol, e.g. [28, 29, 58, 72]. However, the
algorithm that is illustrated in this section is the simple form of the protocol introduced by
Montresor A. and Jelasity M. [58]. The authors have proven that the protocol converges
independent of network size and the increase in system size will not slow convergence down
and will not increase resource requirements on particular nodes. They presented the smooth
distribution of computation and communication over the system. However, the overall traffic
increases linearly concerning system size. Push-Pull aggregation is efficient and provide
results very quickly at all nodes due to the exponential convergence. In [27], authors have
extended the protocol to propose practical solutions for proactive aggregation in dynamic
environments accompanied by robust topology management. Algorithm 2 illustrates the
protocol.

Push-Pull protocols exhibit better convergence due to the pairwise data exchange.
Periodically, each node sends its current aggregated value to a random peer and waits for
the response with the remote aggregate value. The aggregation function is applied to both
values in sender and receiver nodes. Unlike Push-Sum protocols, this protocol does not use
weight sum, imposing greater atomicity requirements on the interaction between node pairs.
However, the version that adopts atomic-pairwise exchange of the protocol is inefficient for
real-world systems because it requires synchronising cycles among nodes. The protocol does
not converge under asynchrony. Hence, no results have been presented in this section.

22

CHAPTER 2. LITERATURE REVIEW

Algorithm 2: Push-Pull Protocol
Require: a peer-sampling service, e.g. NCP+.
Initialisation: vi = xi, 0 < i ≤ N .

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 send 〈v〉 to j // a Push message to node j
4 receive 〈v〉 from j // a Pull message from node j

5 vi = vi+vj
2 // update local pair

6 At event ’receive message m from j’ at node i:
7 send 〈v〉 to j // a Pull message to node j
8 v = v+m.v

2 // update local pair

2.1.3 Symmetric Push-Sum Protocol

Symmetric Push-Sum Protocol (SPSP) is firstly introduced in [30]. It is asynchronous, non-
atomic Push-Pull protocol that preserves the accuracy of Push-Sum protocols, achieves
double convergence speed as any Push-Pull protocol, and provides means of configuration
for various data aggregation functions. SPSP computes global aggregates in a decentralised
manner and require no synchronous pairwise data exchange. The protocol SPSP used simple
Node Cache Protocol (NCP) to select a peer from the system uniformly at random in every
cycle (uniform gossip). NCP and its extended version NCP+ are described in Section 2.2.1.
The authors have adopted a fixed length cycle structure for the simulations. The cycle
structure ensures no overlapping messages among different cycles and provides a simple
mechanism for varying simulation parameters. Algorithm 3 shows the asynchronous pairwise
data exchange in the protocol. A complete analysis of using the symmetric push-sum model
in the global decentralised aggregation is provided in Section 3.2.

SPSP is a novel epidemic data aggregation protocol that can aggregate data on a system
of any scale. Also, it is robust and preserves the mass conservation invariant in the absence
of node or network failures. The protocol has been experimentally examined in the project,
and results have validated the protocol, and it has outperformed other protocols for different
aggregates and under asynchrony. However, further, inspection is required to study the
performance of the protocol in dynamic and faulty networks. Due to the intrinsic features
of SPSP, it has been used, and the symmetric push-sum style has been adopted in other
research studies, for example, epidemic membership protocol proposed in the work of [68],
and failure detection and consensus protocol in the work of [33], and it is adopted for this
project as well. Figure 2.2 is a sample of the experiments on SPSP in the project. The
figure illustrates the performance of the SPSP algorithm. The protocol is simulated under
asynchronous setting: random dynamic overlay, cycles among different nodes may overlap,
and messages typically arrive at different cycle.

23

2.1. DATA DISSEMINATION AND AGGREGATION PROTOCOLS

Algorithm 3: Symmetric Push-Sum Protocol
Require: a peer-sampling service, e.g. NCP+.
Initialisation: vi = xi; for average, wi = 1; for summation wı̂ = 0 at a single node ı̂

and wi = 0 at all other nodes; 0 < i ≤ N .

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 v = v

2 // divide aggregation pair
4 w = w

2
5 send 〈v, w, reply = true〉 to j // a Push message to node j

6 At event ’receive message m from j’ at node i and time t:
7 if m.reply then
8 v = v

2 // divide aggregation pair
9 w = w

2
10 send 〈v, w, reply = false〉 to j // a Pull message to node j

11 v = v +m.v // update local pair
12 w = w +m.w
13 e = v

w
// local estimate of this step

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

si
ze

 e
st

im
at

io
n

average of local estimates

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

es
tim

at
io

n
er

ro
r

average of local errors

Figure 2.2: Symmetric Push-Sum Protocol, size estimation under asynchronous setting,
N = 104, k = 30, Ṫ = 250ms, toff = 250ms.

2.1.4 Flow Updating Protocol

Flow Updating (FU) is an averaging based aggregation algorithm introduced by [73]. The
algorithm tolerates high levels of message loss; a feature that was lacking in previous
approaches. Message loss often violates the mass conservation invariant. The algorithm
achieves faster convergence speed compared to other algorithms. Also, it is simple and can
be executed in a synchronous model. In principle, the averaging Flow Updating protocol has
a unique way of preserving the mass invariant; it keeps the distributed mass at every node in
a variable rather than sending it in messages. The key idea is to use the exchange of the flow
to perform update operations, which is the key to its unique robustness capabilities. Flow
Updating makes accurate aggregations at all nodes and converges to the correct result.

The work in [74] brought to attention the vulnerabilities of averaging techniques when
experiencing failures and dynamic networks. This limitation is not easy to fix in regular

24

CHAPTER 2. LITERATURE REVIEW

approaches. The authors introduce a dynamic version of Flow Updating algorithm were
entries for neighbours are added or removed according to the current node participation. This
simple design adapts to dynamic changes in a network with a good level of accuracy. Flow
Updating outperforms previous strategies, and it operates continuously without requiring
restarts.

Algorithm 4: Flow Updating Protocol-(Unicast)
Require: Di set of adjacent neighbour nodes, 0 < i ≤ N .
Initialisation: flows: fij,∀j ∈ Di, initially fij = 0; estimates: eij,∀j ∈ Di, initially

eij = 0; vi local value.

1 At each cycle at node i:
2 send 〈fik, eik〉 to k // a flow message to node k

3 At event ’receive message m from j’ at node i:
4 fij ← −fji // state-transition
5 eij ← eji

6 ei =
(vi −

∑
j∈Di fij) +∑

j∈Di eij
|Di|+ 1

7 k ←− chooseRandomNeighbor(Di)
8 fik ← fik + (ei − eik) // update
9 eik ← ei

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

av
er

ag
e

es
tim

at
io

n

average of local estimates

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

es
tim

at
io

n
er

ro
r

average of local errors

Figure 2.3: Flow Updating Protocol (Unicast), peek distribution averaging under
asynchronous setting, peak value is N , N = 104, k = 5, Ṫ = 250ms, toff = 250ms.

In the project, we investigated the protocol Flow Updating, Algorithm 4 presents the
Unicast’ version of the protocol. Figure 2.2 shows a sample of the experiments. The figure
illustrates the performance of the FU algorithm when simulated under asynchronous setting:
cycles among different nodes may overlap, and messages typically arrive at different cycle.
However, it was not possible to simulate the protocol in dynamic topologies as it adopts
static overlays.

FU algorithm is base on message exchanging with neighbour nodes (neighbour gossip). It
requires local flows and estimates to be symmetrically pushed to every pair of neighbours,
which requires cycle synchronisation in addition to maintaining symmetric links among

25

2.2. TOPOLOGY MANAGEMENT AND PEAR-SAMPLING PROTOCOLS

neighbours. Global knowledge of the topology is assumed beforehand for Flow Updating to
operate, and the protocol is limited to static topologies. Also, the work [75] has validated
the protocol for achieving the aggregate average, and it is not clear how to apply other
aggregation function.

2.2 Topology Management and Pear-Sampling
Protocols

Peer-sampling services are critical to distributed systems and P2P networks. In large
and extreme-scale systems, it is impractical for each node to maintain a complete list of
membership for all other nodes in the system. Also, such a list is unachievable in dynamic
systems where nodes may join or depart. The needed for synchronisation and maintenance
makes a complete membership list at each node unrealistic approach [11, 33]. In epidemic
systems, membership protocols usually form and maintain a partial view of the system at
each node, which is used to provide the random node selection service. For applicability,
membership protocols are typically epidemic services that use decentralised algorithms to
process the partial views, and randomised communications to exchange local views. Another
aspect of the distributed set of local views in a system is the formation of an overlay topology,
which is periodically and randomly changes at every protocol cycle. The formation of overlay
topologies independently of the physical networks is an efficient decentralised method for
distributed nodes to identify and communicate with other nodes. Nodes can identify other
peers using the links in the local view but communicate with peers via the underlying network.

Peer-sampling services and membership protocols are topology managers, and they can
have a significant impact on the accuracy and robustness of the epidemic services. A topology
manager can improve the quality of an epidemic service by forming adequate topology for the
service. They can also recover and maintain the connectivity of the overlay topology [13, 16,
33]. Moreover, peer-sampling protocols can boost the quality of the service by detecting and
excluding crashed nodes, and membership protocols can manage the impact of nodes joining
or leaving a system for the interest of the epidemic service. It is impractical to assume an
epidemic system without a robust peer-sampling service or membership protocol that helps
the system services in some way or another.

The design space of membership protocols were proposed by [11]. The author aimed
to establish abstract model for peer sampling services to enable simple implementation
of other membership protocols. There are many membership protocols for maintaining
unstructured topologies in distributed and epidemic systems, For example, Cyclon [16], Eddy
[76], Epidemic Membership Protocol-Plus (EMP+) [33], and the protocol that has been
improved and adapted in this work is the Node Cache Protocol-Plus (NCP+). The protocol
NCP+ is a simple and lightweight overlay manager that produces random topologies. The
protocol has been implemented to provide broken-links removal in addition to the inherited
features of the NCP as introduced in [30, 33]. NCP+ runs in parallel with other epidemic

26

CHAPTER 2. LITERATURE REVIEW

protocols and attains three main functionalities, forming unstructured and dynamic overlay,
making a random selection of peers from the system (uniform gossip), and finally reducing
redundant broken links in the overlay topology. However, apart from the randomised selection,
NCP+ has no particular mechanism for recovering or maintaining connectivity. For systems
where connectivity is a concern, the protocol EMP+ implements an innovative technique that
can recover topologies after partitioning. In general, any membership protocol that generates
unstructured topologies can be utilised for the epidemic protocols and services proposed in
this project.

2.2.1 Node Cache Protocol-Plus (NCP+)

Algorithm 5: NodeCache Protocol-Plus (NCP+)
Require: maximum cache size lC ; default expiry time Ť; initial set of physical

neighbour nodes Di.
Initialisation: at time t0 and at each node i:

Ci ←− {`1, . . . , `lC}, where κa ∈ Di, `a = 〈κa, t0 + Ť〉 and 0 < a ≤ lC .

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 send 〈C, reply = true〉 to j // send a copy of Ci to node j

4 At event ’receive message m from j’ at node i and time t:
5 if m.reply then
6 send 〈C, reply = false〉 to j // send a copy of Ci to node j

7 Ctemp = Ci ∪ Cj
8 Ci ←− ∅
9 Ci ∪ {〈j, t+ Ť〉}

10 while |Ci| < lC and Ctemp 6= ∅ do
11 Randomly select and remove link ` from Ctemp
12 if ` has not expired then
13 Ci ←− Ci ∪ {`}

14 function getRandomPeer() // public service to select a ranodm peer
15 Select a random link ` from Ci
16 return ` // return random node information

The NCP+ maintains a local cache Ci of fixed length lC in each node i. The cache Ci is
the local subset of the overlay and the local source for information about other peers, e.g.
peers’ identifiers. Typically, lC is an application parameter presenting the overlay graph of
k-regular initialisation. Links in Ci are uniformly distributed, and the protocol converges in
O(logN) steps to uniform independent samples of the well-connected initial set of nodes [30].
Also, the NCP+ provides the service ’getRadomPeer()’ to other epidemic protocols in the

27

2.2. TOPOLOGY MANAGEMENT AND PEAR-SAMPLING PROTOCOLS

0.0x10
0

1.0x10
4

2.0x10
4

3.0x10
4

4.0x10
4

5.0x10
4

6.0x10
4

7.0x10
4

8.0x10
4

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15
N

um
be

r
of

 b
ro

ke
n

lin
ks

Cyclon
Eddy

EMP
+

NCP
NCP

+

0.0x10
0

1.0x10
4

2.0x10
4

3.0x10
4

4.0x10
4

5.0x10
4

6.0x10
4

7.0x10
4

8.0x10
4

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

N
um

be
r

of
 b

ro
ke

n
lin

ks

Cyclon
Eddy

EMP
+

NCP
NCP

+

(a) Ť = 10 cycles for all protocols. (b) Ť = 5 cycles for all protocols.

Figure 2.4: NCP+ and other membership protocols broken-links removing under churn. For
all protocols, N = 104, k = 30, Ṫ = 250ms, toff = 250ms. Shuffling length in Cyclon, Eddy
and EMP+ is 24 entries. The minimum disparity among caches in Eddy is 3 entries.

same node such as SSEP and ECP to request a random link from the local cache for a peer
node from the system. The protocol NCP+ is illustrated in Algorithm 5.

In each cycle, each node exchanges Ci with a randomly selected peer. On the reception of
a remote cache Cj in the node i, it merges the two caches into Ctmp such that Ctmp = Ci ∪Cj ,
and then it refreshes all entries in Ci by replacing them with other entries removed randomly
from Ctmp until |Ci| = lC − 1 or |Ctmp| = ∅. Also, NCP+ merges an entry for the sender node
j hence Ci∪{j} as a refreshing mechanism [13, 33], which principally mean that node sending
a Push message is an alive node. This way, active nodes in the system constantly get their
identifiers injected in the cache Ci with a fixed expiry time (Ť). Also, expired identifiers in
the merged cache Ctmp are detected and removed. Thus, broken links are gradually removed
from the system. However, broken-links removal is not instantaneous in NCP+, and under
severe churn, some broken links may remain in the system despite their expiry.

The NCP+ and some other protocols are simulated, and their performance in removing
broken-links is examined1. In the experiments, 60% of system nodes are enforced to fail
between cycles 10 and 30, and using an external observer, the number of broken links is
aggregated in every cycle. Figure 2.4 shows the number of broken links in the system during
and after the dynamic conditions. In Figure 2.4.a, the NCP+ outperforms the classical NCP
and Cyclon; however, broken-links removing mechanisms in EMP+ and Eddy protocols show
better results. The results in Figure 2.4.b presents an improvement in NCP+ performance
due to using shorter expiry time. In general, EMP+ and Eddy are very complex protocols
and require special configurations, whereas NCP+ is simple to implement and use.

Although the peer-sampling services and membership protocols can improve epidemic
tasks quality and maintain overlays connectivity, they cannot guarantee optimum robustness

1Credits to Dr Pasu Poonpakdee for providing prototypes for Cyclon, Eddy, and EMP+ protocols from his
work in [33].

28

CHAPTER 2. LITERATURE REVIEW

or eliminate faulty links. Epidemic tasks such as data aggregation are typically got damage
due to the violation of the mass-conservation invariant caused by nodes failure and churn.
Furthermore, some epidemic services may wish to use lightweight membership protocols
that is simple rather than robust for the sake of optimisation, e.g. decentralised services in
OSN, IoT, and agent-based systems. Therefore, the robustness of the data dissemination
and aggregation is still essential and require further research, and with the help of robust
peer-sampling services or membership protocols, epidemic services may achieve the optimum
robustness.

2.3 Eventual Consistency and Distributed Consensus

The work of Demmer [23] mentioned earlier in this chapter might be among the earliest
epidemic algorithms for a consensus among replicas, for which the agreement process is based
on randomised information dissemination. Also, authors in [56] presented a comprehensive
analysis and provided transmission and computation complexities of the randomised
information dissemination. The shared key point is the convergence, which is guaranteed by
the theoretical analysis under a few assumptions. The work of [46] proposed gossiping
algorithm to achieve consensus, and presented a theoretical analysis of the performance of
the algorithm under crash failures. The study shows that the gossip consensus algorithm can
tolerate f crashes and achieve consensus in O(f) time and O(n log f) messages. Authors in
[77] proposed an averaging protocol for the consensus. The protocol is based on the data
propagation among neighbour nodes in WSN. Through analytics, the paper characterised the
convergence of the broadcast averaging protocol, which approved to be scaling better than
pairwise averaging. Authors in [78] presented theoretical results for the consensus under
dynamic topology and variable communication in multi-vehicle cooperative control.

In [79], authors reviewed the average consensus problem and presented probabilistic
consensus over large scale network. The work considers algorithms which do not converge
to the average, but, under certain circumstances, to some good approximation of it. In the
analysis, assumptions such as symmetric rounds and communications are released. However,
this led to asymmetric gossip that does not preserve the exact global average. The analysis
in [48] studied a variety of consensus and averaging algorithms, taking into consideration
topology changing. It proves that averaging algorithm (agreement algorithm) guarantees
asymptotic consensus under semi-static topology, but, the agreement and its convergence
may suffer severely in a fully dynamic topology.

Authors in [39] proposed gossip-based protocol to achieve eventual consistency in the
total ordering of replica updates. However, their work interestingly differs because they
do not perform consensus or explicit agreement. In essence, they proposed a gossip-base
protocol that disseminates and delivers the update information without ensuring the global
order of the updates. Thus, some old updates may arrive after having subsequent updates
applied. In this case, the replica has to roll-back, apply the past update, and re-apply all

29

2.4. IMPOSSIBILITIES IN REAL-WORLD SYSTEMS

followed updates. The authors showed that reaching consistency without storing all updates
is possible with high probability. A direct advantage is replicas need not too aware of the
existence of some old updates as they are undelivered messages. Also, nodes can achieve
eventual consistency in an asynchronous system due to releasing the need for consciousness
on the global ordering.

The work in [40] facilitates the eventual consistency paradigm as an alternative solution
for distributed systems, although safety is not assured. The paper describes the eventual
consistency as achieving convergence by exchanging information that can take any form,
e.g. broadcast, flooding or pairwise. It also lists characteristics of the systems that adopt
eventual consistency such as simplicity and relaxed constraints, e.g. communication latency
consideration. The paper has explained that with eventuality, the safety property of systems
cannot be guaranteed. For instance, algorithms and protocols which eventually converge to a
consistent state, or requests that ultimately receive a response; have no certainty on what
may finally happen. This property supports the hypothesis of the project, in which more
steps are needed to acquire assurance and maintain systems safety. Moreover, the paper
illustrates several examples of the real-world systems where eventual consistency has been
applied.

The approximate consensus is introduced in [80], and it is a paradigm of achieving efficient
rather than exact common distributed state, aiming for optimisation of the agreement process
in the large-scale systems. In a recent study [49], the analysis proposed the agreement
through averaging to achieve the approximate consensus in structured dynamic networks,
i.e. trees. The authors concluded that achieving approximate consensus under dynamic
conditions is more suitable than the exact consensus because it does not require reliable
connectivity. Another practical work addressed the approximate consensus is proposed in
[81]. The work proposed epidemic algorithm for the consensus on failure detection, in which
communication is traded for consensus detection accuracy. In the algorithm, the awareness
of failure detection is tolerated to reduce communication for the consensus.

The selected studies presented in this section demonstrated the wide spread of using the
global averaging as a synonym of the global agreement. Many of the studies analysed and
inspected the averaging process under different assumption and conditions while considering
the agreement process. It might be a standard style of research to represent distributed
consensus in the form of the aggregation of global average. However, it is vital to manifest
that the achieved consensus is probabilistic, and additional steps are needed to attain the
explicit consensus. Further review on the agreement process through distributed coordination
is presented in Section 4.1.

2.4 Impossibilities in Real-world Systems

The correct addressing of the environment for which epidemic algorithms are implemented is
essential for the efficiency and the applicability of those algorithms. In realistic conditions,

30

CHAPTER 2. LITERATURE REVIEW

epidemic systems are asynchronous and fault-prone similar to any other distributed system.
Typically, systems asynchrony refers to the absence of bounds in processes execution times
and communication delays [1]. Also, the potential failure of a node or a network is a norm
rather than an exception. In consequence, the real-world model of distributed systems adopts
no assumptions about time intervals of any execution or transmission, which eventually limit
or prevent algorithms performance in such systems.

The common behaviour in distributed systems that nodes may fail or lose communication.
In consequence, the impossibility result presented in [82] (a.k.a. the FLP result) refers to the
impossibility of detecting consensus (or agree on a consistent state) in fully asynchronous
and unreliable distributed systems. Although the FLP result was presented for deterministic
asynchronous systems, it has formed a notable matter for the researchers [83]. The result
showed that the termination condition in the consensus problem is unachievable even with
the presence of a single node failure under full asynchrony. The unachievable termination
occurs due to the inability to distinguish a failed node from an undelivered response as a
result of communication delays.

The FLP result has motivated the identification of the minimal properties of distributed
systems that are necessary to solve the consensus problem [84]. In particular, the adoption
of randomised communication reduces the potential causes of the impossible case [85]. Also,
the global agreement can be achieved in a partially synchronous model with prior defined
bounds on the communication delays and process execution times [44, 86]. The systems
supported by a failure detection service can also attain the consensus [86, 87, 88]. Interestingly,
asynchronous protocols that can be adapted to terminate efficiently in practice can agree on
a consistent state too [44, 86, 89].

Epidemic systems naturally exhibit fault tolerant and randomisation properties. They
consist of decentralised computations with randomised P2P communications, and thus,
they lack the disastrous single point failure and implement significantly efficient diffusion
process [22, 26]. Moreover, epidemic protocols eventually compute a common value with
high probability which implies the ability to satisfy the termination condition in consensus
problem [27, 90].

It is apparent that algorithms and protocols in epidemic systems are by nature capable of
attaining the consistency mainly due to their ultimate convergence property. However, the
convergence property is attainable in ideal system conditions [22, 26]. In dynamic conditions,
a system cannot converge to the true target but probably converge to an approximation of the
target [26, 27, 34]. This behaviour is due to the disturbance in ’mass conservation’ property
which is the aggregate of all initial values in a system. The quality of the convergence depends
on the level of damage or loss in the initial system mass. Because the detection of convergence
is essential in acquiring consistency, it is also vital to ensure the quality of the convergence,
especially, in dynamic conditions. However, it is impossible for a system to converge to the
exact target under dynamic conditions.

In general, epidemic protocols are required to tolerate a small error value in the local

31

2.5. MODEL OF EPIDEMIC SYSTEMS

estimates to be able to detect convergence locally [32, 91]. The detection methods are though
heuristic and the tolerated error value is a tuning parameter which can be adjusted as desired.
However, the remaining problem is how to improve the performance of epidemic protocols to
attain good approximation of the target in dynamic conditions? The answer prepares the
way towards the reliable achieving of the consistency in unreliable systems.

The research work in this thesis adopts partial-synchrony settings following the work
in [44], in which process execution times have a fixed bounding, and an upper bound on
the communication delays is defined but it is unknown to the system. Furthermore, the
research project has proposed heuristic and explicit convergence detection methods which
satisfy the termination condition in the consensus problem. In addition to proposing robust
aggregation algorithms that can converge under dynamic conditions to a good approximation
of the target.

2.5 Model of Epidemic Systems

The model of the epidemic system consists of a large number of nodes N . Nodes are connected
to the Internet as part of an application or a service. Each node is assigned a unique identifier
(e.g. IP address) and communicates using pairwise message exchanging with another peer
node selected uniformly at random from the system (a.k.a uniform gossip [56]). Epidemic
protocols in the system adopt the asynchronous model of SPSP, which is described in Section
2.1.3. The pairwise exchange model of SPSP is non-atomic Push-Pull scheme that does
not lock for a response after sending a Push message. Messages order is not guaranteed and
a node may receive multiple Pull messages in one cycle, and hence, messages interleaving is
present at all times [28, 33].

Protocols in each node generate a Push message in each ’Cycle’ (a.k.a gossip period [50]).
A cycle start is entirely a local node decision and each node follows its own clock. Time drift
among nodes clocks is assumed to be small and negligible. Cycles are time intervals of fixed
length denoted (Ṫ). Subsequent cycles do not overlap. However, among various nodes, cycles
may overlap and global cycle synchronisation is not enforced. The parameter Ṫ is typically
set to be greater than the Round Trip Time (RTT) on the diameter of the network (e.g. the
Internet), and the interval between two consecutive cycles is sufficient for the delivery of
most messages with high probability [13, 29]. Although the parameter Ṫ is relatively long,
messages may experience longer delays and may cross time boundaries among cycles (a.k.a
out-of-cycle messages [29, 92]), and some messages may have infinite delays. More details on
cycle length settings are provided in Section 3.5.

In addition to the Internet physical topology, the system comprises a dynamic overlay
topology that is maintained for the decentralised identification and pairwise communication
among nodes. The overlay network is formed by a peer-sampling service that provides each
node with a subset of peers from the system (a.k.a neighbours). Nodes can identify other
peers using the local links in the subset but still communicate via the underlying network.

32

CHAPTER 2. LITERATURE REVIEW

The model assumes a random, dynamic, and directed overlay topology with adequate uniform
degree distribution and sufficient connectivity among nodes. The presumed peer-sampling
service should perform three general tasks: (1) forming an unstructured and dynamic overlay,
(2) providing a communication peer from the system independently and uniformly at random
(uniform gossip), (3) reducing redundant broken links in local views of the overlay in the
presence of dynamic conditions. Practically, the Node Cache Protocol-Plus (NCP+) is adopted
as an epidemic peer-sampling protocol that runs in parallel with other epidemic protocols in
the system. Any other peer-sampling service and membership protocol can also be utilised,
e.g. [33]. The NCP+ is further explained in Section 2.2.1.

From another perspective, the underlying network is assumed connected and reliable
unless otherwise stated in the text. In this regard, nodes of the studied system are connected
to the Internet through a reliable transport protocol (e.g. TCP) [27, 33]. In consequence, all
exchanged messages are eventually delivered, and the reliable delivery of messages limits the
expected types of failures in the system to nodes failure and nodes churn.

The research in the project addresses dynamic epidemic systems that comprises N nodes
in a particular time t. As time evolves, nodes simultaneously join and depart the system in
a collective behaviour composing the churn. Nodes departure is not specified either being
voluntary or adversary and both cases are treated uniformly. The fractions of joined and
departed nodes in a specific time interval ∆t define the churn rates in the system. Distribution
of nodes arrivals or departures over ∆t varies from a network type to another. The rates of
nodes churn in P2P is discussed in Section 5.1. Malicious behaviour of nodes and Byzantine
failure are not considered in the present research, however, the reader can refer to [60] for
detecting and removing misbehaviour in the epidemic systems.

2.6 Summary

This chapter has presented several studies from the literature reviewed in the early stage of
the research project. Initial studies on epidemic algorithms and protocols for the distributed
systems are mentioned. The review gradually listed the related work from the oldest up to
the most recent and relevant. Also, practical review for epidemic protocols is provided to
demonstrate the foundations of the following work of the research. A number of selected
studies on the eventual consistency and the distributed consensus are briefly explained. The
chapter ended describing the impossibilities in real-world distributed systems and the model
of epidemic systems.

In essence, epidemic algorithms and protocols proposed in this project adopts the
asynchronous model of SPSP, and take advantage of its intrinsic properties. The protocol
NCP+ has been developed and improved to provide peer-sampling service to the epidemic
system in the project. In theory, the convergence in consensus and consistency is guaranteed;
in practice, the achieved agreement is probabilistic and lack of global awareness on the
convergence. The safety property can not be assured in systems adopting eventual

33

2.6. SUMMARY

consistency and approximate consensus techniques. Undoubtedly, further work is needed to
attain explicit system consistency. Epidemic algorithms and protocols are randomised,
fault-tolerant and guaranteed to converge in stable systems, and thus, they satisfy the
termination condition for the consensus in asynchronous distributed systems. However, the
performance of the epidemic algorithms under node churn and network failure require
additional research. Epidemic systems in this project adopt a partial-synchrony model with
reliable underlying network and bounded delays. The model does not impose messages to
arrive in the same processing cycle and does not enforce cycles synchronisation. The model
adopts equivalent asynchrony to real-world systems.

Next chapter describes in details the convergence of asynchronous epidemic data
dissemination and aggregation. Also, the chapter discusses the convergence detection
methods.

34

Chapter 3

Convergence Detection in Epidemic
Systems

The convergence of epidemic protocols is a descriptive term to define the moment in which
local states of nodes approaches the desired target [31, 93]. Although the convergence is
guaranteed through the theoretical analysis, the practical consideration of epidemic protocols
requires each node to detect the convergence locally. The detection of convergence is critical
in epidemic systems; for instance, it is needed to measure total communication overhead
during an aggregation task [51]; also, it can be used to minimise the aggregation time
via adjusting the accuracy threshold [94]. Typically, a good quick estimation might be in
favour than an accurate one that takes longer to compute. It is also a prerequisite for the
execution of a designated action or decision such as termination or restart [27, 93], and it has
a substantial role in achieving system convergence [32], and achieving global agreement [52,
92], i.e., the global consistent states. Furthermore, it is a fundamental element for acquiring
consistency in distributed systems [40]. In general, the decentralised detection of convergence
can significantly improve the overall performance and efficiency of epidemic algorithms and
systems.

This chapter analyses epidemic data dissemination and aggregation processes, and
characterises the convergence model of each process. It discusses the conventional heuristic
detection methods in the context of real-world epidemic systems, which are asynchronous
and dynamic. It also introduces and describes our developed method for local convergence
detection, which does not require any system information in advance. Additionally, it
discusses the need for an explicit detection method for the system convergence. Detection
methods presented in this chapter are the main foundation’s blocks in the novel protocols of
the project. The chapter ends, illustrating the convergence time from a practical point of
view and discusses mapping convergence time to true-time units, especially in the presence of
asynchronous data exchanging and processing.

35

3.1. CONVERGENCE OF DISSEMINATION PROCESS

3.1 Convergence of Dissemination Process

In information dissemination process, convergence to the desired state is a convergence of
content and is accomplished when all nodes in a system have received a copy of an information
[25, 31]. Information can take any form of data that can be in the interest of others, for
example, news, updates, failure notification or failures count, etc. Basically, a node generates
an information item and starts a diffusion process into the system for that item. The diffusion
process may use one of the common propagation models such as broadcast, flooding, or
gossiping. Generally, convergence speed and time are usually affected by the propagation
model; however, the convergence eventually consists of the reception of information in each
node. The convergence in the dissemination process is found as promising and efficient as
nature diffusion of epidemics [23].

Definition 3.1.1. The convergence of epidemic data dissemination consists of receiving
particular information content by each of the system nodes.

On the other hand, the detection of local convergence in information dissemination process
is straightforward. Each node considers the reception of an information item as achieving
convergence on that particular item [23, 56]. However, one essential problem is to make
global convergence of an information item in epidemic systems [52, 95]. For example, consider
the total ordering of updates in a system of distributed replicas, in which it requires each
update information to be applied at most once at each replica and any two updates to be
applied in the same order at all replicas. In practice, formulating a universal conclusion
on the dissemination of particular update information or its global order is a complicated
problem and theoretically impossible [82]. It is not instantly feasible to system nodes in
which order an update has been generated until each node receives a new update that is in
prior order than the one it already has.

However, eventual consistency algorithms apply weaker assumptions and provide efficient
methods for ordering updates [23, 39]. They provide guarantees that the contents of distributed
replicas eventually converge if they can independently communicate for a long enough period.
Despite the assurance of eventual consistency algorithms, they have a similar downside of
the heuristic determination of convergence as described earlier in this thesis. The attaining
of consistent state on an information item requires the explicit detection of convergence and
agreement on that particular item. Section 4.2 introduces an innovative epidemic protocol to
achieve global convergence and agreement in information dissemination.

3.2 Convergence of Aggregation Process

The common fundamental characteristic of distributed data aggregation tasks is the ultimate
convergence of the resulting aggregates to the desired target. The convergence feature formed
the baseline of many decentralised services such as the computing of system-wide properties,
reaching consensus, and acquiring consistency [27, 39, 49]. In the literature, data aggregation

36

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

algorithms are extensively studied and the theoretical and practical analysis in the studies
have provided guarantees on the convergence of the aggregation results [26, 28, 48, 50,
58]. Although the achieving of convergence is independent of the overlay topology and the
underlying routing, the convergence speed, robustness and quality are usually influenced
and may differ from a network to another. Therefore, the determination of the moment of
achieving convergence is essential to identify convergence properties. In general, the formation
of convergence expands along the aggregation process which starts from the initialisation of
distributed data in each participating node to the moment of which each node computes a
close approximation of the desired target.

In a data aggregation process, a numeric value is usually representing the desired target
which is the intended numeric outcome of the computation in each node, and it is denoted in
the thesis as V. In general, a data aggregation process ultimately converges to the target
value V. However, V usually corresponds to the range of initial data values in a system
and to the applied synopsis function (e.g., average, sum, max, sample, etc.). For example,
in the leader election problem, a protocol may wish to compute the maximum of initially
distributed values or the largest value among nodes identifiers [51, 92]. Thereby, the target
is the leader node value or leader node identifier. Also, the intended V for an aggregation
process in a network of climate sensors differs from a target of the aggregation process for a
system size. There are many other data aggregation protocols that eventually converge to
the intended target in the literature, for example calculating system size, resource capacity,
and average uptime [26, 27].

Each node i participates in a data aggregation process, typically starts with an initial
value xi,t0 where 0 < i ≤ N and t0 is the start time. As time evolves, each node performs
a pairwise data exchange with one or more peer nodes using a particular communication
model. Each node then updates a local estimate ei,t with a fresh value computed by a specific
synopsis. Formally, an aggregation process achieves convergence when ei,t in each node i get
arbitrary close to V.

Definition 3.2.1. The convergence of epidemic data aggregation consists of computing V

by the local estimate ei,t = f() at each node i. The convergence typically consists after
some evolved time t when ei,t = V± εi,t, where V is the desired target value, ei,t is the local
estimate at node i, f() is the global aggregate function (e.g., average, sum, etc.), and εi,t is
a local small error that can be tolerated.

The model of pairwise exchange that is adopted for protocols in this project is the
symmetric push-sum, which can be initialised to accomplish several data synopsis functions,
specifically, for the averaging and summation tasks [30]. This analysis describes the formation
of convergence in the adopted aggregation model. Initially, each node i starts with a local
value xi where 0 < i ≤ N . Also, each node maintains a tuple for a pair of aggregates (vi,t, wi,t).
The value vi,t is the data aggregate and initially, it is set to vi,t0 = xi, whilst, the weight wi,t
is a determinant that depends on the required aggregate function [26, 30]. For averaging
problems, the initial weight is ideally set to wi,t0 = 1 in all participating nodes and so by

37

3.2. CONVERGENCE OF AGGREGATION PROCESS

the design each node should converge to wi,t ≈ 1. However, in summation problems, the
weight is initially set to wî,t0 = 1 at a single designated node î that can be predetermined,
elected or randomly selected [26, 30], and the weight in other nodes is set to wi,t0 = 0 where
0 < i ≤ N and i 6= î. The weight at each node in a summation problem ultimately converges
to wi,t ≈ 1

N
.

At each cycle, a node i divides its aggregate pair into to halves, retains the half (vi,t2 ,
wi,t

2),
and sends the other half in a Push message to a random peer j. Upon the reception of
a Push message from node i, node j divides its aggregate pair by 2, retains a half, and
responds to node i by sending the other half in a Pull message (or symmetric push message).
Next, both nodes i and j update their local aggregate tuple, for instance, the node i performs
(vi,t, wi,t) = (vi,t + vj,t, wi,t + wj,t), and computes a fresh local estimate ei,t using ei,t = vi,t

wi,t
.

Eventually, a node achieves local convergence when ei,t get arbitrary close to V and an
aggregation process converges if local estimates in the participating nodes get close to V.

Another fundamental property for a consistent aggregation process and for a robust
convergence is the ’mass conservation’ invariant [26]. This property must remain constant
during the aggregation process, and merely it is the aggregate of all initial values of
participating nodes,

Mv =
N∑
i=0

vi,t0, Mw =
N∑
i=0

wi,t0, (3.1)

however, during the aggregation process, the pairwise data exchanging diffuses and aggregates
the initial system mass Mv,Mw. After a sufficient number of cycles at time tc, the system
mass is distributed evenly over all participating nodes,

(vi,tc, wi,tc) = (Mv

N
,
Mw

N
), 0 < i ≤ N, (3.2)

and hence, tc is the moment of achieving convergence in the aggregation process. Thereafter,
each node can approximate the target value through the local estimate as follows ei,t̂ = vi,t̂

wi,t̂

where t̂ ≥ tc. After achieving convergence, the exchanging of aggregate pairs and the
computation of local estimates at all nodes always give an approximation of V and this
behaviour remains the same as long as system mass invariant is not violated [26, 34, 51].

In principle, the typical aggregation of the target value can be computed by V = Mv
Mw

.
From that, the target value for the averaging is computed by V =

∑N

i=0 vi,t0
N

and the target
in the summation process is given by V =

∑N

i=0 vi,t0
1 . Also, the count aggregate function is

a special summation process in which initial data values are set to vi,t0 = 1,∀i, 0 < i ≤ N

and hence, the target of the counting function is V =
∑N

i=0 vi,t0
1 = N . From this perspective,

the counting aggregate function is fundamental in the decentralised estimation of system
size. The System Size Estimation Protocol (SSEP) is a typical application of the counting
aggregate function and it is explained in Section 4.3.

The analysis of convergence in the data aggregation process indicates that decentralised
detection of convergence is achievable through monitoring of local estimates. Every node

38

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

can detect the convergence locally by verifying how close the estimate ei,t is to the target
V. However, in more realistic scenarios, global information about system initialisation such
as the target V or the size N may not be available and thus obstructing the detection of
the convergence. The remaining of this section inspects the convergence detection methods
taking into consideration some practical issues encountered during the research project.

3.3 Local Convergence Detection

The detection of local convergence in data aggregation process is usually heuristic and
requires some application-specific parameters. In a general method [51, 92, 94], a tolerance
threshold (a.k.a accuracy threshold) is used to evaluate local estimates accuracy with respect
to V. Tolerance threshold is a global parameter that is determined according to application
preference, and it is used to tolerate or control the estimation error (a.k.a residual error)
in the local estimate. The convergence detection should consist only upon verifying the
estimation error became as small as desired. The method also includes the counting of the
number of consecutive cycles in which an estimation error is under the tolerance threshold.
This is principally important due to the fluctuation in local estimates during the aggregation
process that may cause precocious detection of the convergence [51, 92].

In the general method for local convergence detection, each node i usually (1) computes
the estimation error εi,t in the estimate ei,t at every cycle t using the typical formula

εi,t = |ei,t − V|
V

, (3.3)

and the method monitors the error εi,t approaching the given tolerance threshold ε as a result
of variance reduction in the aggregation process, and (2) it verifies the criterion εi,t < ε until
it becomes true for a presumed number of consecutive cycles Υ, which after confirming it
the detection of convergence consists.

Theorem 3.3.1. There is time tc such that for all t ≥ tc, the local estimation error εi,t at
each node i is at most ε for a number of consecutive cycles greater than or equal to Υ.

At the time tc, each node can locally detect the convergence by verifying the local
estimation error to the given thresholds ε and Υ. The complete proof of this theorem
presented in these studies [26, 51].

The parameters ε and Υ are used in the general method and they are application-specific
parameters, which are provided beforehand to data aggregation protocols. However, the
practical consideration of the detection method and the control parameters reveal some issues
that may limit the applicability of epidemic protocol in real-world systems. There are two
primary issues to address here, first, the evaluation formula that calculates the error εi,t
in the detection method requires the knowledge of the target V in advance. Second, the
determination of correct values for the parameters ε and Υ also demands prior information
about the initialisation and the size of the system. Notably, the parameter Υ is tricky; if

39

3.3. LOCAL CONVERGENCE DETECTION

it is set to a smaller value than the necessary number of cycles for a particular system, a
protocol may quickly detect a false convergence. Whilst a larger value of the parameter Υ
may introduce extra delays and hence penalising the protocol performance [51, 92].

Although control parameters are application-specific, they have a vital role in the
convergence detection in data aggregation protocols. Therefore, the utilisation of the correct
settings for a particular system is essential for the efficiency and the robustness of protocols
in that system. However, system-wide settings should not request any global information
because usually, this information is unavailable or hard to obtain, especially in realistic
conditions. For example, it is very challenging to provide beforehand a precise size value in a
large dynamic system, which in consequence may force using approximated values for the
control parameters and so influence protocols performance. In general, the reliance on any
global information that might restrict or limit epidemic protocols’ performance should be
minimised. One way to achieve this aim is to use system-independent values or scales for the
control parameters.

The work of Poonpakdee et al. [94] proposed a novel method for local convergence
detection which has been adopted and improved in our work in [92]. The technique in
Poonpakdee’s method adopts a moving-average mechanism to analyse the latest estimate
through a sliding subset of running estimates. Technically, each node i maintains a history
queue Qi, upon the reception of a message from node j, the receiver node i enqueues its local
estimate and the received estimate, so Qi = Qi ∪ {ei,t, ej,t}. The queue Qi has a fixed length
lQ and hence, it dequeues two elements when |Qi| = lQ. In each cycle t, the node i calculates
a statistical synopsis for the estimates in Qi, in particular, the Root Mean Square Error
(RMSE) is used in the original version of Poonpakdee’s method. However, the utilisation of
the RMSE requires a reference to the target value V, for which requesting global information
about the system. Poonpakdee has attempted to substitute the reference to V by using the
local estimate at each node, based on the assumption that all nodes will eventually converge
to the target value. It is apparent that the previous assumption is not valid for dynamic
systems as described earlier in the thesis.

εi,t =
√√√√ 1
|Qi|

∑
e∈Qi

(e− ei,t)2, (3.4)

We developed Poonpakdee et al. method and proposed a new version that implements the
Coefficient of Variation (CV) instead of the RMSE. The CV is computed using the following
formula:

εi,t = Qi.s

Qi.ē
, (3.5)

where Qi.ē is the average of estimates in Qi given by

Qi.ē = 1
|Qi|

∑
e∈Qi

e (3.6)

40

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

and Qi.s is the standard deviation calculated by

Qi.s =
√√√√ 1
|Qi − 1|

∑
e∈Qi

(e− Qi.ē)2. (3.7)

The new method for convergence detection has eliminated the need for prior knowledge
about the target V in the evaluation formulas in contrast to the general formula in 3.3. The
implementation of CV in the method has improved the detection accuracy especially in data
averaging problems. Also, the practical analysis of the protocols that implemented the new
method has provided useful information about convergence properties especially in terms of
speed and quality. Moreover, the CV typically delivers outputs in the relative measurement
units which provides a unified setting for the proportional and unit-less comparisons. For
instance, a constant percentage can be applied as a tolerance threshold to analyse convergence
quality among different epidemic protocols or to analyse aggregation problems in various
system sizes or under different data initialisations. The unified settings determine the default
parameters values that can be applied in the majority of epidemic systems upon the actual
implementation.

Although the utilisation of the CV in the convergence detection methods is preferable
on the usage of the RMSE, some aggregation problems may impose the use of absolute
metrics in the detection methods, particularly, the aggregate of counting in dynamic epidemic
systems [34]. For example, the correctness of the system size estimation protocol requires a
minimum tolerance threshold since the lower the residual error, the higher the size estimation
accuracy. Practically, setting of the threshold ε with the universal relative value may tolerate
a substantial error in the equivalent quantity, and thus the protocol may achieve an incorrect
convergence detection.

To clarify, we had a case in validating the proposed protocols in this project, in which
the CV was inappropriate. Assume a system size aggregation task, also, assume the task
wishes to measure estimation error caused by system dynamics. In the task, the convergence
detection method uses the CV and sets the parameter ε to the ratio 1%. Upon the detection
of local convergence, size estimation in each node will tolerate 1% of actual system size due
to the tolerance threshold. In this case, it is ambiguous to decide whether the source of error
in local estimates is detection method or nodes churn. Consequently, the parameter ε should
be very precise to minimise the tolerated error. In similar scenarios, the detection of local
convergence with an accurate size estimation demands a correct adjustment for the tolerance
threshold ε for that particular system, which means requesting size information beforehand.
Also, dynamic systems may require reasonably continuous adjustment for the threshold ε to
cope with the changes in the system size.

To overcome the inadequacy of using the CV in the validation of epidemic protocols under
dynamical conditions, and to propose the option of using absolute values in threshold settings,
the Standard Error (SE) is used instead [34]. Technically, the new method reuses the history
queue Qi in each node i and replaces the computation of the CV with the calculation of the

41

3.3. LOCAL CONVERGENCE DETECTION

SE for the buffered estimates, and the local estimation error is given by:

εi,t = Qi.s√
lQ
. (3.8)

where the Qi.s is the standard deviation provided by the formula 3.7 and lQ is the fixed length
of the queue Qi as described earlier.

Like the CV, the calculation of the SE does not require any reference to the correct target
value in its formula. Also, it gives less uncertainty in error measurement around the mean in
comparison to variance and standard deviation. Moreover, the utilisation of the SE in the
convergence detection method has allowed the settings of the tolerance threshold ε to the
absolute values, which is an advantage as it can generally be the minimum well-known value.
In practice, the detection method with the SE was sufficient for summation aggregation
protocols in general, and system size estimation in particular [34]. The detection method is
used with constant control parameters across several experimentations of various system sizes.
For instance, the tolerance threshold is set to ε = 1 which is the minimal error to tolerate
concerning counting nodes in a system and the criterion εi,t < ε, and the parameter Υ is
set to Υ = 3 for all system sizes, limiting its purpose to the prevention of early convergence
detection.

Mainly, the issue is the determination of universal settings for the control parameters ε and
Υ such that they can smoothly be applied to different aggregation problems without requiring
any global information. A generic solution for the determination of correct parameters
settings in dynamic systems could be establishing a dedicated aggregation protocol or process
inline with the main aggregation task to set the parameters according to a system situation.
Although this is achievable, we chose to adopt a simpler technique in the research project,
which is the usage of CV and SE in the detection methods.

To demonstrate the performance of the new detection methods, particularly, the method
with CV and the one with SE, several experiments are carried out using the size estimation
protocol SSEP which is described in Section 4.3. Methods are applied to the protocol and
examined with various settings for the tolerance threshold ε, while the parameter Υ is set
to a constant. Figure 3.1 illustrates the local convergence detection in opposite to the true
convergence, whereas the latter is detected using a dedicated oracle observer using the general
error formula 3.3. The figure shows the percentage of nodes which have locally detected
convergence using the new methods and the percentage of nodes which actually achieved
local convergence. Figures 3.1.a and 3.1.b show the impact of the parameter ε on the method
with the CV formula. Whilst Figures 3.1.e and 3.1.f show that setting the parameter ε to
the minimum value that can be tolerated made the method with the SE to achieve the
correct detection. It apparent in the Figures 3.1.a and 3.1.e that by tolerating more error,
i.e., accepting less accuracy may lead to detecting local convergence before nodes actually
converge.

Figures 3.1.c, 3.1.g, 3.1.d, 3.1.h present statistical summery for experimenting the protocol

42

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

SSEP with each detection method for 30 runs. The figures show minimum, average and
maximum percentage of nodes that have converged. Generally, there are three findings
extracted from the figures: (1) each figure illustrates the range percentage of nodes that
converge at a particular time. (2) they also show the minimum and maximum time needed
to achieve a specific percentage. (3) The figures clearly validates the thresholds settings
for the correct detection of convergence, as in all figures no overlapping is present between
true convergence curves and local convergence detection. The detection of local convergence
always follows the true convergence with a small-time difference.

In summary, Poonpakdee’s method for local detection of convergence is altered to compute
the CV and SE because these statistical formulas do not require any prior information about
the system, and provide more accurate convergence detection. The method with CV requires
a ratio-based accuracy threshold such as setting ε to a common percentage. The method
with SE can be used for problems that require absolute accuracy threshold, and the threshold
ε can universally be set to the minimum possible value. Moreover, the utilisation of the
history queue and the settings for CV and SE in the detection methods have bounded the
purpose of parameter Υ to the prevention of precocious detection of convergence during the
aggregation process, and it becomes independent of system size. The parameter Υ can be set
to a constant for all problems, e.g., Υ = 3. In general, the adopted methods and settings
for local convergence detection require no information about the system, and can be used as
default settings for many epidemic systems.

3.4 Global Convergence Detection

In epidemic systems, protocols can locally detect convergence by monitoring the residual error
in local estimates as explained in the former section. However, achieving a globally consistent
states requires the explicit detection of system convergence, namely the Global Convergence,
that describes the moment in which all system nodes have detected local convergence. In
real-world systems, nodes achieve local convergence at different times and each node has no
awareness about other nodes’ state of convergence [51]. Therefore, although a node may detect
local convergence, it requires an additional method to detect the convergence of other nodes
which may achieve convergence as well, or make divergence or adversely fail. Achieving global
convergence in a system makes a consistent state about that system, which is considered
a very useful property for many decentralised services [25, 94, 96], especially, for services
which require global agreement among nodes to perform an action or to accomplish a task
[52, 92]. This section inspects conventional methods for the detection of global convergence
in distributed systems and introduces the bases for which the novel detection methods is
proposed in this project.

Definition 3.4.1. Global Convergence is a term that describes the moment on which all
system nodes have achieved and detected local convergence, and implies convergence of the
system.

43

3.4. GLOBAL CONVERGENCE DETECTION

Local convergence
detection using CV

Local convergence
detection using SE

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

true convergence
local convergence

(a) ε = 0.01,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

true convergence
local convergence

(e) ε = 100,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

true convergence
local convergence

(b) ε = 0.0001,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

true convergence
local convergence

(f) ε = 1,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 14 16 18 20 22 24 26 28 30 32 34 36 38 40

seconds= 8 10 12 14 16 18 20

%
 o

f n
od

es

Minimum %
Average %

Maximum %

(c) True convergence,
ε = 0.0001,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 14 16 18 20 22 24 26 28 30 32 34 36 38 40

seconds= 8 10 12 14 16 18 20

%
 o

f n
od

es

Minimum %
Average %

Maximum %

(g) True convergence,
ε = 1,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 14 16 18 20 22 24 26 28 30 32 34 36 38 40

seconds= 8 10 12 14 16 18 20

%
 o

f n
od

es

Minimum %
Average %

Maximum %

(d) Local convergence,
ε = 0.0001,Υ = 3

0

0.2

0.4

0.6

0.8

1

cycles= 14 16 18 20 22 24 26 28 30 32 34 36 38 40

seconds= 8 10 12 14 16 18 20

%
 o

f n
od

es

Minimum %
Average %

Maximum %

(h) Local convergence,
ε = 1,Υ = 3

Figure 3.1: Performance of different methods for local convergence detection in SSEP,
V = N = 104, k = 30, lQ = 10, T̈ = 500ms.

44

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

In distributed systems, methods for global convergence detection are usually centralised
[42, 45]. Typically, a predefined coordinator takes the mission of collecting information
about local convergence from system nodes and the broadcasting of information about global
convergence detection. This technique is usually used in general protocols for achieving
coordination and commitment. A typical example is the Three-Phase Commit protocol (3PC),
which applies the transition into phases mainly to acquire certainty among nodes before the
implementation of commitment. In the 3PC protocol, a coordinator starts a commitment
process by sending a request to all nodes, and this phase ends upon the collection of all nodes’
acknowledgements. In the second phase, the protocol processes information collected in the
previous phase and sends the result back to the system, nodes receive results and respond
(Local Convergence), and nodes responses declare their explicit acceptance or agreement. The
second phase provides the coordinator with certainty on nodes readiness for the commitment
(Global Convergence). In the third phase, the coordinator instructs system nodes to commit.
However, epidemic systems require decentralised protocols that can only rely on the local
estimates for detecting global convergence [52, 92].

Traditionally, researchers dealt with local convergence in epidemic protocols as a promising
outcome that eventually occurs in a finite time. This principle has been applied to synchronous
and asynchronous protocols [8, 39, 93, 96, 97]. Consequently, studies attention was analysing
local convergence time and speed to define an upper bound of time for attaining a convergence
in high probability regardless of system initialisation or scale. The upper time bound is then
used to determine a designated action or event (e.g. termination) [25, 96]. In theory, this
reduces the need to detect global convergence because system nodes will eventually converge
in finite time. However, this principle is based on assumptions that are impractical and
inapplicable for many applications in real-world dynamical systems, for example, assuming
synchronous or static systems.

Decentralised methods for achieving and detecting global convergence in distributed
systems are also proposed [51, 98, 99]. The work of Bahi et al. [32, 51] is one of the most
relevant studies. Bahi’s study presented analytical proof and practical consideration for an
efficient method to achieve and detect global convergence in the algorithm of asynchronous
iterations. The detection method does not require any additional information on the system
but only the local states of nodes, while always ensuring correct detections. In Bahi’s work,
the general method of local detection of convergence described in Section 3.3 is used as
a prerequisite for detecting global convergence. Bahi’s method for the detection of global
convergence consists of running a leader-election process in parallel with the main iterative
process. After a leader node identifies itself, the leader node checks to detect local convergence,
and upon the correct detection, it broadcasts a verification message into the system. Non-
leader nodes detects local convergence too and acknowledge the leader node. The leader node
then gathers nodes acknowledgements and sends verdict message into the system to confirm
or deny the detection of global convergence.

The algorithm presented in Bahi et al. work applies additional steps (leader-election) after

45

3.4. GLOBAL CONVERGENCE DETECTION

detecting local convergence for the detection of global convergence which implies that global
convergence is not directly linked to local convergence and the two cannot be assumed at the
same time. Also, it collects nodes responses to build a local awareness on the convergence of
other nodes at the leader node. It then diffuses the awareness information to those nodes for
their self-awareness. In the result, the algorithm formulates a global system awareness about
the local convergence of all nodes which principally is the global convergence. However, the
reliance on a leader or coordinator in decentralised algorithms is subject to the single point
failure problem.

Another relevant study to achieve global convergence in epidemic systems is presented
in the work of Poonpakdee et al. [94]. The study presents a novel epidemic algorithm to
achieve and detect global convergence from only local state of nodes. In the algorithm, each
node i runs multiple independent instances of a desired epidemic aggregation protocol. Let
assume that m is the number of protocol instances in each node. Each protocol instance
is initialised with the same local value vi,j,t0 = xi where 0 < j ≤ m and 0 < i ≤ N . As
time evolves, each protocol j performs an independent random peer selection and pairwise
message exchanging. Eventually, each protocol j in a node i converge to the target value
at time tc, and therefore, a sample mean ēi,tc can be computed form the local m protocols
as follows ēi,tc = 1

m

∑m
j=1 ei,j,tc where ei,j,tc is the local estimate in each protocol j. Also, a

standard deviation si,tc can be calculated by si,tc =
√

1
m−1

∑m
j=1(ei,j,tc − ēi,tc)2.

In Poonpakdee’s method for global convergence detection, the criterion si,tc < ε is defined
as a trigger for the local convergence detection. The global convergence detection is anticipated
heuristically by determining the lower bound of time tc at which the criterion si,t < ε, ∀t ≥ tc

is true. For the sake of the typical tc value, Poonpakdee’s study carried out many practical
experimentations for various settings of the algorithm and with several system sizes.

Although Poonpakdee’s method can detect global convergence without dedicated
communications to acquire global awareness in contrast to Bahi’s method, the utilisation of
the typical tc comes with additional communication costs, which is m− 1 times the cost of a
single aggregation protocol. Also, the method is entirely heuristic and does not provide
explicit awareness of convergence among nodes. From another perspective, the
implementation of multiple protocol instances has revealed a possible research direction for
global convergence detection in dynamic systems. Further explanation is given in Section 6.2.

Theorem 3.4.1. There is time tc such that for all t ≥ tc, all nodes verify their local
estimation error such that εi,t ≤ ε for all cycles greater than Υ.

The theorem implies that at time tc all system nodes has achieved and detected the
local convergence. However, the theorem assumes an oracle that can observe local states
of all system nodes to define the correct value of tc. Also, the theorem lacks the certainty
on the convergence of the system. There is no awareness available at any node about the
convergence of other nodes in the system. The empirical and theoretical proofs of the theorem
are presented in the studies [51, 94].

Generally, the detection of global convergence in information dissemination is equivalent to

46

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

the detection of global convergence in data aggregation. In both tasks, the detection aims to
acquire awareness about the system convergence on specific information or on a target value.
Interestingly, the awareness strategy applied in Bahi’s algorithm [32, 51] is also applied in
the centralised protocols for commitment [42, 45]. It is thus clear the significance of building
awareness among participants in distributed systems to achieve the desired level of certainty
and consistency. The formation of global awareness is attained through a decision-making
or a poll-alike process, where every node places a vote after the occurrence of a local event
(i.e., convergence). Upon the completion of the poll, results are disseminated to participating
nodes which then have local certainty on the occurrence of the event in other nodes, and
therefore the global awareness has been consisted.

The formation of global awareness of a convergence detection in epidemic systems is
challenging. Protocols cannot rely on a single coordinator to perform awareness acquiring
process although a coordinator is determined using a decentralised method (e.g. leader
election). On the other hand, the lack of global awareness in epidemic protocols limits
their suitability for demanding services such as achieving consensus and making consistency.
Consequently, the acquiring of global awareness in epidemic systems may require additional
stages of decentralised computations at which a local detection of convergence implies the
detection of global convergence. This principle of global convergence detection comes with
extra cost of communications.

In epidemic systems, the detection of global convergence is critically required to perform
system-wide actions or accomplish global tasks and to put a system in a consistent state.
Technically, the detection of global convergence in each node requires two mandatory stages,
(1) the local detection of convergence to the desired state, which can be achieved using one of
the detection methods described in this chapter. (2) The local detection of convergence to the
desired state in other nodes, which can be achieved using explicit detection methods. Chapter
4 introduces two innovative epidemic protocols to achieve convergence and agreement using
explicit detection methods without the reliance on any form of centralised coordination.

3.5 Convergence Speed and Detection Time

Convergence speed (a.k.a Convergence Rate) is a crucial performance factor that characterises
how fast a particular model can attain convergence. Achieving convergence is essential for
decentralised applications, and it is in the core of many epidemic services as described earlier.
Also, convergence properties such as speed and duration are vital indicators for efficiency and
applicability of epidemic services. This section addresses general convergence properties of
epidemic models within the context of the system model of this project. Mainly, it highlights
the speed of convergence in the symmetric push-sum model which has been described earlier
in Section 3.2.

Models that implements asynchronous Push-pull model such as SPSP can achieve
convergence faster than those using other schemes such as Push-Sum or atomic Push-

47

3.5. CONVERGENCE SPEED AND DETECTION TIME

Pull [30, 59]. The non-atomic pairwise data exchanging and the uniform gossiping result in
exponential diffusion speed, in which the convergence can be achieved in a logarithmic number
of cycles with a time complexity O(logN). In general, convergence rate of dissemination
and aggregation tasks usually corresponds to the characteristics of the diffusion process.
Therefore, the convergence rate in epidemic tasks is typically equivalent to the exponential
diffusion rate.

The convergence rate in data aggregation tasks depends on the variance reduction rate
towards the synopsis target [27]. An aggregation process usually starts a diffusion process
for each value in the set of initially distributed values. During the diffusion of values, the
distributed computation reduces the variance among initial values by a uniform factor [13].
Eventually, the variance among local estimates reaches very high precision and composes
the convergence. Also, the reduction of variance is a direct consequence of the redistribution
of initial system mass, which is in the peak case, a distribution of a single value over a
whole system. Therefore, the minimum number of cycles required to achieve convergence is
generally logarithmic concerning the system size. However, the convergence speed of data
aggregation tasks may vary due to system initialisation and the desired synopsis.

In practice, the convergence speed is defined by the cycle length Ṫ [13, 29, 72]. The
parameter Ṫ is pivotal in determining convergence duration and convergence detection
moment in unit time. The choice of Ṫ value can be an application-specific; however, it is
essential to the epidemic task to select the adequate cycle length considering the latency
of the underlying network. Choosing a short Ṫ may cause a faster convergence due to the
increase in communication rate per unit time [13]. Also, a Ṫ that is too short will flood
the underlying network with messages, and the convergence speed will be susceptible to
communication delays e.g. message queuing and congestion. The increase in transmitted
messages will make them more vulnerable to network faults and may cause severe damage
to epidemic tasks due to losing some system mass in the network [29, 72]. On the other
hand, a large Ṫ value makes reaching convergence slower and may expose epidemic tasks
unnecessarily longer to system dynamics. In summary, the sufficient length of the parameter
Ṫ should allow a system to converge reasonably fast and with very high probability.

There are two views for the determination of the typical cycle length. The first view
claims that cycle length should be ideally short to achieve faster convergence [72]. The other
view adopts a cycle length that is just long enough for most messages to deliver before the
next cycle starts [13, 29]. The delivery of all exchange messages within the same cycle allows
each node to complete the exchange transaction and achieve definitive local estimates. From
the perspective of some applications, it is more sensible to use short cycle length as epidemic
tasks will eventually converge, and take advantage of the fast convergence in reliable and
stable networks. Other services may prefer using longer cycle length to support epidemic
tasks stability and robustness.

Let ∆i,t be the aggregate length of all delays that node i may experience to complete
a pairwise exchange transaction. Also, let ∆t be the maximum delay among all system

48

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

nodes ∆t = max({∆i,t}), where 0 < i ≤ N . An epidemic protocol will require cycles to
be greater of ∆t to conserve the system mass in every cycle assuming a stable system and
reliable underlying network, so Ṫ ≥ ∆t. It is apparent that finding the correct length of ∆t

requires global information about all system nodes [29]. In real-world systems, assuming a
global synchronisation among cycles is not trivial to achieve due to the inherent problems in
distributed systems such as clock drifting and coordination, e.g. not all nodes join and start
an epidemic task at the same time. Thus, synchronising cycles boundaries among nodes is
impractical in actual systems, and using long cycles will not prevent some messages from
crossing boundaries among cycles [29, 72].

The symmetric push-sum communication model makes two data messages on average
in every cycle [30, 52, 92], the Push message is sent at each cycle, and the Pull message
is sent in response to the Push message. In principle, each node sends a Push message
completes its exchange transaction when it receives the Pull message as a response. Due
to the non-atomicity and asynchrony of the model, choices for the parameter Ṫ are flexible
and can have any value that is compatible with the propagation delay of the system network.
Therefore, the length of Ṫ in the system model is defined as twice as typical propagation
delay, which corresponds to the time needed for a pairwise exchange transaction to complete.
In essence, let δ denotes a relatively large propagation delay, so

Ṫ = RTT = 2× δ (3.9)

Although the previous definition of the cycle length does not guarantee the delivery of
all messages within Ṫ in real-world systems, it is still recommended due to the following;
it is adequate for most system nodes to complete their pairwise exchange transactions and
compose reliable estimates in each cycle; also, it is compatible with the system network, and
it sensibly achieves rapid convergence. Therefore, for a realistic system in which a portion of
messages may deliver late or not deliver, setting the parameter Ṫ to the round-trip time and
utilising a reliable transport layer are the most practical choices for epidemic services.

From another perspective, implementing epidemic models in real-world systems requires
expressive specification of the RTT in the system network, not only in relative time units
such as cycles but also in absolute units, e.g. seconds. Using classical units in specifying
the parameter Ṫ makes the analysis of performance more comparative and convenient. For
instance, in dynamic systems, churn rates are usually specified in actual time measurements; to
make a valid matching and determine the exact range of churn during a typical epidemic task,
it is essential to specify convergence detection times in actual units too. Moreover, describing
performance in absolute time units provides a valuable scale for system configuration, and it
is an additional attribute for analytical comparisons among research findings.

Internet is the presumed underlying network of the systems in this project. The typical
round-trip time of the Internet is the ideal cycle length, and the correct value for the parameter
Ṫ. Table 3.1 provides RTT measurements of the TCP traffic over different physical networks.
The measurements are summaries of research studies from the literature, and the RTT values

49

3.5. CONVERGENCE SPEED AND DETECTION TIME

are carefully collected inclusive of connection setup to fit pairwise communications in epidemic
systems. In the table, short RTT values are the median of the shortest measurements, and
long values are the median among the longest. The average is the arithmetic mean of all
measures of a particular network. As expected, RTT of local-area networks is considerably
shorter than wide-area networks. Also, the average RTT in wired networks is shorter than
wireless networks, and this applies to both local and wide networks. In general, the RTT
measurements of wide-area networks is adequate for epidemic systems, unless an epidemic
system is specially made for serving local-area networks. Noticeably, the long RTT in wired
networks and the average RTT in cellular networks are approximately equivalent.

Physical network RTT in milliseconds

Short Long Average

ADSL & Broadband [100, 101, 102, 103, 104] 48 258 172

Cellular [101, 105] 57 1135 289

LAN [101, 106] 1.3 5.1 3.8

IoT, WSN, & WLAN [107, 108] (One-hop delay) 1.7 310 14.2

Table 3.1: RTT of TCP traffic over various networks.

In the context of previous measures of RTT, it is feasible to define a default setting for
the protocols in this project and epidemic systems in general. Although the setting is not
precise and may vary in practice, it is useful in specifying convergence speed and detection
time in absolute units. Table 3.2 presents the adopted values for the round-trip time and the
associated propagation delay.

Parameter Values in milliseconds

Min Max

RTT 50 250

δ 25 125

Table 3.2: The adopted values for RTT and the propagation delay δ.

The project is simulation based, hence, communications are simulated through the
transport layer component as described in Section 1.6. The settings of simulations have been
adjusted to the values in Table 3.2. Mainly, propagation delays in the simulation network
are randomly generated using a Poisson process that follows the Gaussian distribution. In
particular, the transport layer implements a Weibull distribution of three parameters: a scale
η, a shape β, and a location γ. Values from Table 3.2 are used in settings of the Weibull
parameters as shown in the next Table 3.3.

Experimental results have demonstrated that propagation delays followed a normal
distribution around the desired mean and within the intended spread. Figure 3.2 shows

50

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

Parameter Value Description

γ 25ms minimum delay, γ = δmin

η 50ms η = δmax − δmin
2 , and the average delay δavg = δmin + η

β 4 bounds the delay δmax to 125ms, δmax = δmin + 2× η

Table 3.3: Values of the parameters η, β, and γ for simulating propagation delays.

the results from a dedicated observation component, which is developed for PeerSim to
capture and analyse traffic in the transport layer. The results summerise the outcome of 30
experiments, each experiment is executed for 60 cycles using different random seeds. Figure
3.2.a illustrates the density of messages against the propagation delays. In Figure 3.2.b
presents the Cumulative Distribution Function (CDF) of the generated delays.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 20 30 40 50 60 70 80 90 100 110 120 130

N
um

be
r

of
 M

es
sa

ge
s

Propagation delay (milliseconds)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 20 30 40 50 60 70 80 90 100 110 120 130

C
D

F

Propagation delay (milliseconds)

(a) (b)

Figure 3.2: Distribution of propagation delays in simulations, N = 104, k = 30, δ = [25, 125].

Another important implication of expressing RTT in absolute time units is the
determination of actual cycle length. There are two cycle length definitions in this project,
the cycle length Ṫ, which is the default and the recommended for epidemic systems. The
parameter Ṫ is previously defined in Equation 3.9. The second cycle length is denoted (T̈),
and the setting of the parameter assumes that it is long enough for all pairwise exchange
transactions to complete within the cycle boundaries. The parameter T̈ is primarily used for
experimental and simulation purposes. In simulations, some experiments are targeting the
mass conservation invariant, and therefore, the portion of mass transmitted through the
underlying network in every cycle needs to be stabilised to make a correct assessment of
protocols performance. In those experiments, the cycle length is set to the parameter T̈, and
the experimental results are described in term of the adopted cycle length. The parameter T̈

is defined as follows,

T̈ = RTT + toff (3.10)

The parameter toff is a synchronisation offset, and it is defined as the maximum time

51

3.5. CONVERGENCE SPEED AND DETECTION TIME

offset between any pair of nodes in the system [30]. The parameter toff is applied to simulate
non-simultaneous nodes starting and execution times in the real-world systems. It also
includes time skew and drifts in the local clocks of nodes. Assume asynchronous system
where all pairwise exchange transactions complete within the RTT. For any two nodes, i and
j, assume that each node has a different cycle sequence and both nodes have started a new
cycle at ti and tj respectively, where ti ≤ tj. The offset between the starting times of the
two arbitrary cycles is less or equal the typical cycle length, tj − ti ≤ RTT , otherwise, tj will
be large to coincide the next cycle in node i, tj ≥ RTT + ti. In consequence, adding the
artificial interval toff to the cycle length ensures that pairwise exchanging transactions in
two different cycles do not overlap and allows system mass to stabilise before the start of the
next cycle. The following table describes the adopted cycle length parameters in this project,

Parameter Definition Description

Ṫ Ṫ = RTT = 2× δmax = 250ms Default cycle length, cycles are fully-
asynchronous and messages may deliver
in different cycles.

toff toff = 250ms Synchronisation offset

T̈ T̈ = RTT + toff = 500ms Experimental cycle length, used to
synchronise cycles and ensure messages
delivery within the cycle.

Table 3.4: Parameters of the cycle length.

It is presently possible to describe epidemic tasks performance in expressive way that
is compatible with the real-world systems. Performance attributes such as convergence
speed and duration, detection moment, and task termination can be specified in relative
and absolute time units, which provide useful information about the behaviour of epidemic
systems. In simulations, experiments description will state the adopted cycle length, and
experimental results will be illustrated using cycles and actual time units. Figure 3.3 presents
a sample of the experimental results of this project. The figure shows the results of simulating
the SSEP protocol from Section 4.3. In the left column of the figure, the simulation of the
protocol has adopted cycle length to the typical value of Ṫ as described in Table 3.4. Also,
the protocol is simulated using the cycle length T̈ and the results are shown in the right
column.

In Figures 3.3.a and 3.3.b, the aggregates of initial system mass, Mv and Mw are correct
at cycle 0; however, the drop in system mass in the subsequent cycles is due to the portion of
mass in the exchanged messages that are not yet delivered. The figures also show that under
stable conditions, the portion of mass that leaves the system due to pairwise communications
is the same as the portion that returns to the system. In opposite, results in Figures 3.3.e
and 3.3.f show the correct aggregate of mass at all cycles because all exchanged messages
are delivered within the boundaries of every cycle. Figures 3.3.c,d,g and h, illustrate the
convergence of the epidemic task to the correct size in the same number of cycles. The figures

52

CHAPTER 3. CONVERGENCE DETECTION IN EPIDEMIC SYSTEMS

also show the corresponding actual time based on the adopted cycle length.
An interesting finding which can be observed in Figures 3.3.c and Figures 3.3.g is that

some nodes have achieved convergence to the target value at the cycle 10, and the number of
converged nodes increases in the subsequent cycles. Also, Figures 3.3.d and Figures 3.3.h
confirms that local detection of convergence under the desired accuracy is actually performed
between the cycles 15 and 30.

Further experiments have targeted the parameter β of the delay distribution. Varying of
the parameter β makes the distribution function to generate some very long delays, which
exceed the defined upper bound in the system, i.e. unbounded delays. The system model
adopts a reliable network, and hence, all messages are eventually delivered. The results
showed no major impact on the performance of the SSEP neither on the convergence or
on the detection method. The only nearly noticeable observation was a small delay in
achieving the convergence. Such delay is expected as some messages will arrive in late cycles.
However, these experiments approved that adopted the convergence detection method, and
the proposed protocols are operating in a fully asynchronous environment. The results are
removed as they make no significant contribution.

In conclusion, describing epidemic task performance and behaviour in different time units
such as cycles and seconds is an effective way of comparing research findings and helpful guide
for implementation in real-world systems. Mainly, convergence properties such as speed and
duration are essential indicators for the applicability of epidemic services. This section has
explained a practical procedure to specify convergence properties using relative and actual
time units. Also, the section has demonstrated analytically and through simulations, the
relation among pairwise exchange, cycle length and task duration.

The analysis of an epidemic task performance is mainly based on the convergence speed
and detection in the task. Convergence speed is subject to the diffusion rate and variance
reduction of data dissemination and aggregation processes. The detection of convergence
is achieved using methods that need application-specific parameters. Detection methods
and parameters determine convergence duration and detection moment. The analysis of
convergence of different epidemic tasks under various system conditions is investigated in the
following chapters.

53

3.5. CONVERGENCE SPEED AND DETECTION TIME

Simulation using Ṫ = 250ms Simulation using T̈ = 500ms

(a)
 0

 2000

 4000

 6000

 8000

 10000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

T
ot

al
 M

as
s

N
System mass of Mv

(e)
 0

 2000

 4000

 6000

 8000

 10000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

T
ot

al
 M

as
s

N
System mass of Mv

(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

T
ot

al
 M

as
s

System mass of Mw

(f)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

T
ot

al
 M

as
s

System mass of Mw

(c)
 1

 10

 100

 1000

 10000

 100000

 1×10
6

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

S
ys

te
m

 S
iz

e

Average of local estimates

(g)
 1

 10

 100

 1000

 10000

 100000

 1×10
6

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

S
ys

te
m

 S
iz

e

Average of local estimates

(d)
 0

 0.2

 0.4

 0.6

 0.8

 1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15

%
 o

f n
od

es

True convergence
Local convergence

(h)
 0

 0.2

 0.4

 0.6

 0.8

 1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

True convergence
Local convergence

Figure 3.3: The impact of cycle length on protocols’ performance, N = 104, k = 30,
δ = [25, 125]. Convergence is detected using the SE method in 3.8, lQ = 10, ε = 1, Υ = 3.

54

Chapter 4

Agreement in Epidemic Systems

Decentralised coordination is the way to achieve consistency in epidemic systems. Typically,
coordination is an agreement process to acquire consensus among system nodes on a
particular target or matter. Although there are many algorithms for distributed consensus in
the literature, they are not adequate for epidemic systems. Achieving agreement in epidemic
systems is challenging due to decentralisation, asynchrony, and complete reliance on local
states of nodes. The formation of the global agreement requires the detection of global
convergence using a decentralised decision-making process. The detection of global
convergence is described in Section 3.4.

This chapter introduces the first innovative contribution of the research work in this
project. It proposes the Phase Transition Algorithm (PTA). The algorithm achieves global
convergence and agreement using a decision-making method that is explicit and decentralised.
The PTA is a generalised model of transition into subsequent phases, which aims to acquire
global awareness in epidemic systems that are asynchronous and stable. It extends the style
of coordination in centralised approaches, e.g., commitment protocols, and the model of
epidemic consensus in synchronised systems as presented in the work [68]. The algorithm is
entirely decentralised and does not require any coordinator or leadership. Also, it inherits all
the intrinsic properties of epidemic models such as scalability, resiliency, and fault-tolerance.
Two novel protocols that implements PTA are also proposed and presented in this chapter.
The Phase Transition Protocol (PTP) and Epidemic Consensus Protocol (ECP) are developed
for making distributed consistent states in epidemic information dissemination and epidemic
data aggregation respectively.

In the chapter, models of agreement in centralised and distributed systems are discussed
in the next section emphasising the need for acquiring global awareness among system nodes.
Section 4.2 describes the PTA and its general formation. The System Size Estimation Protocol
(SSEP) is presented in section 4.3. Agreement protocols, PTP and ECP are introduced in
sections 4.4 and 4.5 respectively. Further discussions on the PTA is presented in Section 4.6.
The work presented in this chapter has been published in the papers [52, 92].

55

4.1. AGREEMENT IN CENTRALISED DISTRIBUTED SYSTEMS

4.1 Agreement in Centralised Distributed Systems

The coordination among participants in distributed systems is typically targeting the consensus
[42, 43]. The consensus is the eventual result of an agreement process, which has different
formations. In the general formation, each participant proposes or starts with an initial value
and exchanges it with other participants. All participants follow the exact process to decide on
a common output or value [44]. Principally, all participants should achieve the same outcome
regardless of the problem they are trying to agree on [9]. The distributed formation of the
agreement process is usually based on distributed data aggregation algorithms, for instance,
the computation of averaging [46, 48, 49]. Also, decentralised data aggregation algorithms
are the conventional method for acquiring an agreement in gossip-based applications. This
section explains the agreement process based on distributed data aggregation and presents
examples of the agreement protocols for the structured and centralised systems.

Distributed data aggregation protocols generally provide global information about a
system by computing a synopsis function, e.g. {average, sum, sample, etc.} over a distributed
set of data values [26, 58]. In a system of N nodes where each node i has a set of neighbours
and holds a numeric value vi = xi that describes a property in node i or in its environment.
The aggregation protocol at node i exchanges vi with neighbours to compute a particular
global function. Upon receiving a message from node j, the node i updates its local value
vi = f(vi, vj). After a sufficient number of data exchanges, all nodes in a system converge to
the same output V, which is the aggregation target.

The optimum performance of distributed data aggregation is obtained when the
computation of the synopsis function is distributed over a structured topology such as trees
[19, 20]. There are two communication models to perform data aggregation over trees,
Broadcast-Convergecast and Convergecast only. In the
Broadcast-Convergecast, a root node disseminates a request for the aggregation over
system tree and collects responses that carry data values from non-root nodes. In the
Convergecast model, the data aggregation starts from the deepest nodes and results are
sent towards the root node. A typical example of the Convergecast model is the
Collection Tree Protocol (CTP) [19, 109] that provides a faster gathering of results at the
root node. Each non-root node i in CTP computes v̀i = f(vi, v̀1, . . . , v̀mi) where mi is the
number of child nodes at the node i and v̀1, . . . , v̀mi are the aggregate results at child nodes.
Thereafter, node i sends v̀i to its parent node. After a sufficient number of steps, the root
node receives v̀1, . . . , v̀mi from child nodes and calculates the final target value v̀root ≈ V.

In CTP and similar schemes, the aggregate result v̀root is eventually known to the root
node only. In the consensus problem, v̀root is the final result, and it is in the interest of all
participants and hence, the root node needs to disseminate the final result back to the tree.
After disseminating the final result, the agreement is ostensibly achieved, principally, because
the final result becomes known to all nodes [43, 110]. However, in unreliable systems, the
root node is no more certain about the reception of the final result at all non-root nodes
that have sent their local aggregate results formerly. A failed node in the tree topology may

56

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

prevent a whole branch from receiving the final result. For instance, in the tree Two-Phase
Commitment (2PC) protocol [42], the root node collects acknowledgements from all nodes
to acquire certainty about the reception of v̀root. Afterword, and as a confirmation of the
agreement, the root node informs all other nodes about the global reception of the final
result, and nodes can then accomplish a global task or take a system-wide decision.

Commitment protocols such as 3PC protocol can also achieve consensus in dynamic
systems [42, 43, 99]. The agreement process in the 3PC protocol make transition in three
phases to achieve the consensus on the output of an aggregation function. The protocol begins
in (Broadcast phase) in which a coordinator node broadcasts a ’request’ message into the
system and collects acknowledgements from nodes. Each node i receives the request message
sends v̀i in the acknowledgement to the sender node which can be the coordinator node, a
parent node or a neighbour node based on the adopted topology, where v̀i = f(vi, v̀1, . . . , v̀mi),
and mi is the number of collected acknowledgements from peers at the node i and v̀1, . . . , v̀mi
are the aggregate results at peer nodes. In consequence, the aggregate results of nodes
propagate towards the coordinator node. The successive phase is the (Pre-Commit phase)
and in the absence of faulty nodes, the coordinator computes the final result v̀root ≈ V and
disseminates it back to the system.

Since the final result v̀root is disseminated to all nodes in the Pre-Commit phase, each
node become aware of the result and ready to commit. Nodes end the Pre-Commit phase
and acknowledge their readiness through ’accept’ message. Upon the collection of acceptance
messages from all nodes, the coordinator has achieved the certainty on the reception of the
final result, and so it broadcasts ’commit’ message and starts the (Commit phase). On
the reception of ’commit’ message, nodes can commit and can make a designated action
or decision. Otherwise, the coordinator may send ’abort’ message or nodes approach the
timeout threshold, and either case, nodes abort the agreement process.

Paxos is a distributed consensus protocol that lacks the centralised coordinator and
more complicated than the 3PC protocol. The protocol achieves reliable agreement among
participants on some value in the presence of dynamical conditions [86, 111]. In the general
formation of Paxos protocol, each protocol instance in a node can have one of the following
roles: proposers or acceptors. Also, the protocol can have multiple consensus tasks running
simultaneously for an agreement on the same target. An instance of Paxos protocol proceeds
in two phases. During Phase-1, a proposer that wishes to submit a value sends a ’request’
message to a quorum of acceptors. Upon receiving a request message, acceptors make a
global selection for the latest consensus task using the one with the higher identifier, and
they respond to the proposer confirming the currently accepted request. The second phase
starts when the proposer receives answers from all acceptors in the quorum.

In Phase-2, the proposer also selects the consensus task with the higher identifier and
then sends an ’accept’ message to the same quorum of acceptors. The acceptors either
acknowledge receiving of the ’accept’ message and confirm reach to the consensus, or they
respond to the proposer informing a new consensus task. However, further steps are used in

57

4.1. AGREEMENT IN CENTRALISED DISTRIBUTED SYSTEMS

the Paxos protocol to avoid scenarios on which proposers compete indefinitely, e.g. a leader
node can be elected. For a further explanation on the Paxos protocol, the reader may refer
to [86, 111, 112].

One of the interesting findings in the previous explanation is the transition in consecutive
phases to attain the required certainty on the global agreement. In the CTP, nodes make
awareness of the final result just after disseminating it by the root node; however, they
still need additional confirmation step to achieve global awareness. Also, nodes in the 3PC
protocol make a local awareness about the final result at the end of the Pre-Commit phase.
In the Commit phase and by receiving the ’commit’ message, nodes achieve the global
awareness on the final result, which implies acquiring of the global agreement and so the
consensus. The Paxos protocol exchanges ’request’, ’accept’, and acknowledgement messages
among proposers and acceptors to attain the certainty on the correct consensus task and
achieve global awareness on the consensus target.

Moreover, it is notable the need for global information about the system size, the number
of non-faulty nodes or the quorum for the agreement formation. Typically, the decision-
making requires the collection of the same number of confirmations from participating or
quorum nodes to conclude the consensus. For example, the variation in the number of
acknowledgements in a coordinator or proposer node between the first phase and the second
phase of the agreement process can lead to the abortion of the process. In general, the
agreement process in the coordination problem makes the transition into phases to ensure
global awareness and achieve the consensus. Typically, the distributed result of the data
aggregation is the target of the agreement process. The data aggregation process eventually
achieves local and global convergence, which can be utilised to acquire awareness.

In contrast to using convergence in the distributed averaging to reach the consensus and
consistency, which is probabilistic, and solely possible in reliable and static systems. Also, in
contrary to the fast computation of the final result in the CTP, the 3PC protocol can achieve
the consensus in unreliable systems, and with the optimum overhead when used over tree
topologies. However, it still susceptible to the single-point of failure problem, for instance,
the failure of the coordinator node in the Commit phase. On another hand, static trees
are not ideal in the real-world systems due to nodes failure and dynamics [27]. Dynamic
trees are introduced to cope with the real conditions but dynamic trees require additional
overhead to establish the tree for every change in the system [109]. Generally, the robustness
of tree-based schemes relies on the consistency of the underlying network, and dynamic trees
require additional effort for the tree construction and maintenance.

Algorithms for the consensus in distributed systems are typically probabilistic, and it
is theoretically assured in stable systems; this conclusion is the synopsis of the extensive
review of the literature presented in this section and Section 2.3. However, algorithms for
the consensus in unreliable distributed systems adopted the transition into phases to attain
the global awareness on the agreement. Recently, transition into phases is also used in an
epidemic algorithm for the consensus on the failure detection. The algorithm is introduced in

58

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

[68], and it makes the transition into phases in the synchronous systems to achieve distributed
consensus on the number of the detected failures in the system. The next section describes
the Phase Transition Algorithm (PTA) for epidemic systems.

4.2 Phase Transition Algorithm (PTA)

The PTA is an epidemic algorithm to achieve explicitly detected consistent states in epidemic
systems. The algorithm extends and generalises the model presented in [68] to asynchronous
epidemic systems that are usually stable. PTA consists of several successive phases. Each
phase is a separate epidemic data aggregation process that is typically used to achieve global
synopsis targets such as average, summation and count [26, 30], and the aggregate results
eventually converge to the target value V. The epidemic data aggregation and convergence
have been described in Section 3.2.

The PTA has two main processes: a Task process that can be a dissemination or an
aggregation task; and an Agreement process. The task process is the first phase, while the
agreement process involves several consecutive phases. The transition among different phases
is performed after the detection of convergence in each phase using one of the detection
methods described in Section 3.3. The number of consecutive phases determines the desired
level of certainty about the targetted system state, and it is an application-specific parameter.
Each phase in the agreement process aims to achieve and detect global convergence explicitly.
For this purpose, the formation of data aggregation process in each phase is in fact a
decentralised collective decision-making process, in which the count aggregate function
is used. The method aggregates each node that achieves and detects local convergence.
The aggregation process of each phase is targeting the initial system size N . The global
convergence (i.e., global awareness) is achieved when all system nodes converge and locally
detect the correct system size N .

Algorithm 6 illustrates the PTA for the coordination in epidemic systems. In the algorithm,
Phase-1 is dedicated to the main dissemination or aggregation task. In this phase, nodes
need to detect local convergence before making the transition to the next phase. The local
detection of convergence in Phase-1 at node i implies its awareness of the target value. To
achieve global awareness and agreement, node i proposes itself to the decision-making process
in Phase-2 and makes the transition to the phase. The aggregation process in Phase-2
increases the aggregate results by one for each node participating in the phase. Eventually
and after a sufficient number of cycles, all system nodes will join Phase-2, the aggregate
result at each node will also converge to N . Each node can detect global convergence by
verifying the local convergence to N . By the end of Phase-2, all nodes will detect the global
convergence, at which global awareness and agreement on the main task target are achieved.
Also, nodes will make the transition to Phase-3, in which nodes may apply a system-wide
action or decision, or may complete Phase-3 to detect global convergence of the process in
Phase-2. Due to the asynchrony and during Phase-2, nodes achieve global agreement on

59

4.3. SYSTEM SIZE ESTIMATION PROTOCOL (SSEP)

Algorithm 6: Phase Transition Algorithm (PTA)
1 At each node i, 0 < i ≤ N :

// Task process

Phase-1, perform the distributed data dissemination or aggregation step.
Monitor the local state ei, and upon the detection of convergence, i.e. ei ≈ V,
propose i to the next phase and make the transition.

// Agreement process

Phase-2, perform the distributed step of the aggregate count. Monitor the local
state ei and upon the detection of convergence, i.e. ei ≈ N , propose i to the next
phase and make the transition.

Phase-3, perform the distributed step of the aggregate count. Monitor the local
state ei and upon the detection of convergence, i.e. ei ≈ N , propose i to the next
phase and make the transition.

......
// The desired level of certainty achieved

Phase-m, apply a designated action or decision.

the target of the process in Phase-1 at different times and have no awareness about the state
of nodes in Phase-2. Therefore, allowing all nodes to achieve convergence in Phase-2 is
critically required for taking global actions. More explanation about local and global actions
is discussed in Section 4.6.

Agreement process in the PTA requires the knowledge of the system size N beforehand
to verify the convergence in each phase. For this purpose, the PTA includes a dedicated data
aggregation protocol to compute the size of epidemic system. The protocol runs in parallel
with the primary task process in Phase-1, and therefore, it can provide an estimate for
the size before starting the agreement phases. The following section describes the adopted
epidemic protocol for size estimation in the PTA.

4.3 System Size Estimation Protocol (SSEP)

Size estimation is a data aggregation process that targets the number of nodes in the system,
and the process can provide a correct aggregate result at each node in stable systems. SSEP
implements the SPSP for data aggregation described in Section 2.1.3 and adopts the settings
for the global count function [26, 30]. SSEP is illustrated in Algorithm 7.

In SSEP, each node i holds a pair of local values vi, wi to perform the global aggregation
process, where vi is the value and wi is the weight. Initially, the protocol sets the pair to
vi = 1, wi = 0 at all nodes, except one node î that has the initial weight set to wî = 1. The
initialisation of the weight follows a peak distribution for the global summation function [26,
30]. At each cycle, every node i divides the local pair values into two halves vi = vi

2 , wi = wi
2

and sends half to a random peer in a Push message. When a node receives a Push message

60

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

from node j, it divides the local pair values and sends half as a response to node j in a Pull
message. Finally, after receiving a Push or a Pull message, nodes i and j update their local
values (vi, wi)←− (vi + vj, wi + wj).

As described in Section 3.2, after a sufficient number of cycles the protocol will converge
to the target value V, where V = Mv

Mw
and Mv, Mw are the aggregate of initial system mass.

Eventually, the local aggregation pair in each node i will converge to vi = 1, wi = 1
N

, and the
size estimation can be computed locally by vi

wi
.

Although interleaving messages are present in the system and as long as the mass invariant
holds, the aggregate result vi

wi
at each node i will quickly converge to N with a very small

error [26, 27, 30]. However, since the protocol is continuously executed, it can also adapt to
changes in dynamical systems. This project proposes a continuous and adaptive protocol in
Section 6.2.

Figure 4.1 shows the experimental results of simulating the protocol SSEP. Results validate
the protocol ability to achieve correct size estimations for systems of various sizes. In Figure
4.1.a, results present the percentage of nodes that have achieved local convergence in a system
after a sufficient number of cycles. The figure confirms that 100% of nodes will converge to
the correct size. It also shows the variation in convergence speed and times concerning the
system size. It is apparent that despite the logarithmic increase in sizes, the interval from
the first detection of convergence to the achieving of global convergence is approximately
the same and ranges between 10 to 12 cycles. However, the first detection of convergence
takes longer to achieve as system scale increases. Figure 4.1.b confirms that aggregate results
at all nodes eventually converge to the same target. The figure shows a variation among
local estimates in the early cycles of the aggregation process. The variation reduces quickly
in later cycles to precision at which the variation is hardly noticeable. After convergence,
aggregate results and size estimations remain correct as long as the system is stable.

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

%
 o

f n
od

es

N=10
2

N=10
3

N=10
4

N=10
5

N=10
6

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

A
ve

ra
ge

 o
f e

st
im

at
ed

 s
iz

e

N=10
2

N=10
3

N=10
4

N=10
5

N=10
6

(a) (b)

Figure 4.1: The convergence in SSEP to true size N . Convergence is detected using the
general method in 3.3, ε = 0.01, Υ = 5. T̈ = 500ms, k = 10.

61

4.4. AGREEMENT IN EPIDEMIC INFORMATION DISSEMINATION

Algorithm 7: System Size Estimation Protocol (SSEP)
Require: a peer-sampling service, e.g. NCP+.
Initialisation: at each node i, v = 1, w = 0, except one node has w = 1.

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 v = v

2 , w = w
2 // divide aggregation pair

4 send 〈v, w, reply = true〉 to j // a Push message to node j

5 At event ’receive message m from j’ at node i:
6 if m.reply then // m is a Push message
7 v = v

2 , w = w
2 // divide aggregation pair

8 send 〈v, w, reply = false〉 to j // a Pull message to node j

9 v = v +m.v, w = w +m.w // update local pair

10 function size() // public service to get size estimation
11 size = ∅
12 if wi > 0 then size = vi

wi
13 return size

4.4 Agreement in Epidemic Information
Dissemination

Achieving consensus on the information dissemination is essential to the data consistency in
epidemic systems. Information can take any form of data that are in the interest of others,
for example, news, updates, failure notification or failures count, etc. Typically, a node
generates an information item and starts a propagation process into the system for that item
[23, 56, 57]. Each node stores each item it receives into a buffer and continuously forwards all
information in the buffer to a peer that is randomly selected at each cycle. The convergence
in information dissemination is a convergence of content, and the propagation process of a
particular information item achieves convergence upon the reception of the item at all system
nodes. The efficient diffusion of epidemics guarantees the convergence of the propagation
process [23].

The formation of consensus in epidemic information dissemination has to be decentralised.
Also, the consensus requires the explicit detection of convergence and agreement, as stated in
the PTA. For the sake of the clarity, we adopted an Information Dissemination Application
(IDA) to simulate the distributed generation of information items for which propagation and
global agreement are required. The protocol PTP is introduced as a part of IDA to manage
and achieve consistency on information items. The PTP achieves the consistent state for an
item through acquiring global agreement on the dissemination of that particular item. The
next section presents the conceptual design and practical scenario of IDA.

62

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

4.4.1 Information Dissemination Application (IDA)

In the IDA, each node randomly generates new information items with a given probability.
New items are assigned unique identifiers (ID) using the next locally incremental ID with
no global or centralised coordination. This way, items with a specific ID can be generated
simultaneously at different nodes, and ID duplication must be resolved.

Each information item is associated with one of three possible states: Propagation,
Agreement and Commit. The state diagram in Figure 4.2 shows the states and the
transition criterion as stated by the PTA. The same item can be associated with different
states at different nodes. The ultimate goal is for each item to reach the final state (Commit)
at all nodes, which corresponds to achieving global agreement on that item.

The node at which an information item is generated is called the originator. Each new
item is represented by a tuple, which includes the item ID, the originator ID and the item
state. Also, each node is started with an empty information cache C. The tuple of new item
is added to the local cache C with initial state Propagation. Each tuple also contains some
numerical variables that are used by the consensus protocol, and they are described later.
Each node periodically disseminates the items that are present in its local cache C in the
system by sending it to a randomly chosen peer. When a node receives a message with a
remote information cache, it updates its local cache by merging the local and remote entries,
aggregating identical items and resolving ID duplicates.

Typically, nodes have no prior knowledge of the system size N . Thereby, each node
runs the protocol SSEP in parallel with the consensus protocol as stated in the PTA. SSEP
runs independently of the consensus protocol, and its communication exchanges are separate
and may have different propagation patterns. On the other hand, IDA involves the Phase
Transition Protocol (PTP), which is the consensus management protocol that determines
and updates states of information items. Also, the application includes the peer-sampling
service NCP+ as described in Section 2.5.

Generally, the IDA is a simplified model which may find applications in diverse domains,
such as failure detection and consensus, transactions in distributed databases, or consent on
replicas, etc. The consensus protocol PTP is explained in the next section.

4.4.2 Phase Transition Protocol (PTP)

PTP is the consensus protocol that manages successive phases of the PTA and determines the
states of the information items. The protocol is a cascade of three phases which correspond
to the states of information items in IDA, and each phase in PTP is an epidemic data
aggregation process that converges to a specific target. Mainly, each phase aggregates the
number of nodes in the system which have a particular item in a specific state, respectively,
at Propagation and Agreement states. When the aggregate results match the system
size N with some error under the tolerance threshold, the state of the local copy of the
item is updated to the next state (phase transition). The action taken at the transition

63

4.4. AGREEMENT IN EPIDEMIC INFORMATION DISSEMINATION

Propagation
(vp, wp)

Agreement
(va, wa)

Commit

item received,
vp = m.vp+ 1,
wp = m.wp,
va = m.va,
wa = m.wa

item genereted,
vp = 1, wp = 1,
va = 0, wa = 1

Propagation
process converged
to N , va = va + 1

Agreement process
converged to N

Figure 4.2: IDA state diagram for an information item

to the Commit state is application-specific and it is further discussed in Section 4.6. The
illustration of the protocol PTP spans over two parts of Algorithm 8.

PTP maintains a local cache Ci of information items at each node i. The local cache is
initially empty and will be used to store items either generated locally or received from other
nodes. Each item in Ci is represented by a tuple, as described earlier. The tuple also contains
two aggregation pairs. The pair (vp, wp), is used by the process in Propagation phase to
estimate the number of nodes which have received the item, i.e. the (p)ropagation count.
The second pair (va, wa), is used to estimate the (a)greement count that is the number of
nodes holding the item in the Agreement phase.

Algorithm 8 demonstrates the action of PTP at each event. At the event of new information
item is generated at node i, the protocol selects the next unique identifier (line 2) and inserts
a new tuple into Ci (line 4). Also, at each cycle, each node i divides the aggregation pairs of
each tuple in the cache Ci and sends a copy of Ci to a random peer in a Push message. Then,
the protocol manages items in Ci by verifying the criterion of the transition from a phase
to the next for each item. On the event of receiving a message from a peer, the protocol
responds in a Pull message as shown in lines 13-15, and it updates the local items in Ci

using the received times in the remote cache.
In the second part of Algorithm 8, two local procedures are defined. The MangeItmes

procedure obtains the estimated system size N from SSEP using the service size(). Also,
it verifies the state of each tuple τ in Ci, the criterion in line 5 decides upon the transition
from the Propagation to the Agreement phase. The detection of convergence in the
Propagation phase uses the formula 3.3 of the general method described in Section 3.2.
The method verifies the error in local estimates to the system size being under the relative
tolerance threshold ε for a number of consecutive cycles Υ. Cycles threshold Υ ensures a
robust transition to the next phase and avoids early false transitions. The transition to the

64

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

Commit phase is associated with a similar verification on the Agreement phase (line 9).
In IDA, information items of the same ID may generate at different nodes and times. The

procedure UpdateItems of Algorithm 8 adds new items if not exists in Ci in line 20. Also, it
updates the tuples and resolves duplicates by keeping either the oldest tuple or keeping the
one with the lowest originator ID if the tuples have the same creation time. Tuples related to
the same information item are updated in line 16, and duplicate IDs are resolved in line 18.

4.4.3 Experimental Results for PTP

In simulations, the following settings have been adopted. Each experiment run is associated
with different random seeds to validate performance and enforce randomisation. The system
default size is N = 104 nodes, and the maximum experiment length is 100 cycles. NCP+

maintains the overlay topology with k = 10. Simulation cycles are of fixed length, and a cycle
adopts the structure used in [30, 52]. In general, the cycle length is defined long enough for
all nodes to complete the pairwise exchange transaction, which follows the partial synchrony
model adopted in this project for the cycle length T̈ as described in Section 3.5. In the model,

Algorithm 8: Phase Transition Protocol (PTP)
Require: a size estimation service, e.g. SSEP; a peer-sampling service, e.g. NCP+;

tolerance threshold ε; cycles threshold Υ;
Initialisation: at each node i: C ←− ∅; C is the local cache of items defined as

C = {τ = 〈id, o, t, vp, wp, va, wa, state〉, . . .}, where ’id’ is the item
identifier, ’o’ is the originator identifier, ’t’ is the item generation
time, (vp, wp) is the propagation pair, (va, wa) is the agreement pair
and ’state’ is the item state;

1 At event ’new item generated’ at node i:
2 id←− next locally unique identifier
3 t←− current cycle
4 C ←− C ∪ {〈id, i, t, 1, 1, 0, 1,Propagation〉}

5 At each cycle at node i:
6 j ←− getRandomPeer()
7 foreach τ ∈ C do // divide aggregation pairs for each local tuple
8 τ = 〈τ.id, τ.o, τ.t, τ.vp2 , τ.wp2 , τ.va2 , τ.wa2 , τ.state〉
9 send 〈C, reply = true〉 to j // a Push message to node j

10 MangeItems() // manage the states of local tuples

11 At event ’received m message from j’ at node i:
12 if m.reply then // m is a Push message
13 foreach τ ∈ C do // divide aggregation pairs for each local tuple
14 τ = 〈τ.id, τ.o, τ.t, τ.vp2 , τ.wp2 , τ.va2 , τ.wa2 , τ.state〉
15 send 〈C, reply = false〉 to j // a Pull message to node j

16 UpdateItems(m.C) // resolve duplicate and update local tuples

65

4.4. AGREEMENT IN EPIDEMIC INFORMATION DISSEMINATION

17 procedure ManageItems()
18 foreach τ ∈ C do // manage the states of local tuples
19 switch τ.state do
20 case Propagation do
21 if size() > 0 and

∣∣∣∣ size()− τ.vp
τ.wp

size()

∣∣∣∣ ≤ ε for at least Υ cycles then
22 τ.state = Agreement // make the transition
23 τ.va = τ.va+ 1

24 case Agreement do
25 if size() > 0 and

∣∣∣ size()− τ.va
τ.wa

size()

∣∣∣ ≤ ε for at least Υ cycles then
26 τ.state = Commit // make the transition

27 case Commit do
/* Take some application-specific action or decision. */

28 procedure UpdateItems(Cr)
Input: remote items cache Cr;

29 foreach τ0 ∈ Cr do
30 if C contains τ1 where τ0.id == τ1.id then

// remote item exists in the local cache
31 if (τ0.t == τ1.t and τ0.o == τ1.o) then

// remote item is identical, update local tuple
32 τ1 = 〈τ1.id, τ1.o, τ1.t,

τ1.vp+ τ0.vp, τ1.wp+ τ0.wp, τ1.va+ τ0.va, τ1.wa+ τ0.wa,
τ1.state〉

33 else if (τ0.t == τ1.t and τ0.o < τ1.o) or (τ0.t < τ1.t) then
// remote item is a duplicate, retain the oldest

34 τ1 = 〈τ0.id, τ0.o, τ0.t, τ0.vp+ 1, τ0.wp, τ0.va, τ0.wa, τ0.state〉
35 else

// remote item not exists, add a copy to the local cache
36 C ←− C ∪ {〈τ0.id, τ0.o, τ0.t, τ0.vp+ 1, τ0.wp, τ0.va, τ0.wa, τ0.state〉}

the maximum communication latency corresponds to the round trip time on the diameter of
the network, and in principle, some messages may take very long to arrive and deliver in later
cycles (Out-of-Cycle Message). However, out-of-cycle messages slightly delay the convergence
in SSEP and PTP protocols due to potential loss of mass in transportation, which is restored
when out-of-cycle messages deliver.

All protocols introduced in this section are simulated using the event-driven engine in
PeerSim, where two common events are defined. The Run Event occurs at every cycle,
and in this event, generating of information items, sending Push messages and making the
transition among phases are performed. The event stops when a maximum number of cycles
is reached. The Message Event occurs when a node receives a message from a peer. At
this event, the incoming message is processed.

The simulations of PTP included the validation of generating single information item

66

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

and of generating multiple items. Due to randomization, the generation of new items in the
PTP is adjusted to stop after the completion of 50% of the experiment cycles to observe the
protocol performance in the residual cycles. The propagation of a single item is shown in
Figure 4.3, where the percentage of nodes that have achieved a particular phase for the item
is illustrated. Furthermore, experiments on the single item propagation have investigated the
impact of changing the thresholds ε and Υ values. Figure 4.4 summarises the results and
shows the number of cycles needed to complete a phase transition for an item when varying
Υ and the value of ε.

From the results presented in Figure 4.4, it is apparent the increase in the number of
cycles required to achieve convergence when values of Υ and ε are set for higher accuracy. The
results support the previous analysis for choosing adequate values for the application-specific
parameters and thresholds to avoid faster incorrect convergence and to prevent penalising
epidemic protocols. Figures 4.4.a, 4.4.b, and 4.4.c summarise the results of running the PTP
protocol for 30 times under different values of Υ and ε. The illustrated values are the average
of exported results and the error bars shows the variance among the results.

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

seconds= 5 10 15 20 25 30 35 40 45 50

%
 o

f n
od

es

Propagation Phase
Agreement Phase

Commit Phase

Figure 4.3: Percentage of nodes at each phase for a single information item in PTP, N = 104,
ε = 0.001, Υ = 5, k = 10, T̈ = 500ms.

The convergence of the Propagation and Agreement phases in PTP is demonstrated
in Figure 4.5. For a single information item, Figure 4.5.a shows the variance of local estimates
over all nodes; while Figure 4.5.b shows the average of the estimates in the system. The
results show a quick reduction in the variance and the average of estimates indicating the
correct convergence to the target value. Moreover, PTP is examined for the propagation of
50 distinct items in the presence of item duplication. Figure 4.5.c shows the variance of the
estimates over all items and all nodes; while Figure 4.5.d shows the average of the estimates
for all items and nodes too. It can be inferred that the protocol correctly manages items
duplication and that local estimates in the nodes correctly converge to the system size N in
both phases of PTP.

In conclusion, PTP in particular and the PTA in general provide an adequate solution for
the decentralised consensus problem, and they can achieve global agreement and coordination

67

4.5. AGREEMENT IN EPIDEMIC DATA AGGREGATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3 5 7 10

C
yc

le
s

 3 5 7 10

Propagation
Agreement

Commit

 3 5 7 10

 0

 5

 10

 15

 20

 25

 30

 35

 40

S
e

c
o

n
d

s

(a) ε = 0.01 (b) ε = 0.001 (c) ε = 0.0001

Figure 4.4: Number of cycles to complete a phase transition in PTP for a single item varying
the cycles threshold Υ ∈ {3, 5, 7, 10} and the tolerance threshold ε, N = 104, k = 10,
T̈ = 500ms.

without deterministic communications such as those in centralised approaches. The PTA is
flexible and can have more phases to acquire additional certainty on the coordination target.
The certainty of the PTA comes with noticeable overall communications overhead. However,
the overhead is distributed over the network diameter and execution time, and it is only two
exchange messages per node at every cycle. The solution is epidemic-based and inherits their
features such as scalability and fault-tolerance, which are critical for services in extreme-scale
distributed systems.

4.5 Agreement in Epidemic Data Aggregation

Data aggregation is essential for a wide range of services, especially in distributed systems.
The aggregation process is typically independent of the overlay topology and the underlying
networks, which gives the aggregation process the flexibility and applicability for various
applications. For example, the distributed aggregation process can be used to calculate system
size, resource capacity, and average uptime [26, 27]. Also, it is used to achieve distributed
consensus, consistency, and coordination [48, 78, 113]. Epidemic models for data aggregation
are scalable, which made many distributed services to adopt epidemic data aggregation
models. For example, for failure detection [68], for distributed data mining [66], for global
attribute computation [113], and for coordination and consistency [35, 39].

As described earlier in Section 4.1, distributed data aggregation protocols compute a
global synopsis for an aggregate function over a distributed set of data values [26, 58]. The
aggregation protocol exchanges local values among nodes to compute a particular function.
Eventually, all nodes in a system converge to the same output V, which is the aggregation
target. The process of epidemic data aggregation and its convergence is described in Section
3.2.

The problem presented in this section is the extension of the distributed consensus
problem to distributed data aggregation problem where the agreement process is an epidemic

68

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

10
−5

10
0

10
5

10
10

10
15

cycles= 10 20 30 40 50 60 70 80 90 100

seconds= 10 20 30 40 50

V
ar

ia
nc

e
of

 e
st

im
at

es

Propagation phase
Agreement phase

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

cycles= 10 20 30 40 50 60 70 80 90 100

seconds= 10 20 30 40 50

A
ve

ra
ge

 o
f e

st
im

at
es

Propagation phase
Agreement phase

(a) Variance of estimates for a single item (b) Average of estimates for a single item

10
−5

10
0

10
5

10
10

10
15

cycles= 10 20 30 40 50 60 70 80 90 100

seconds= 10 20 30 40 50

V
ar

ia
nc

e
of

 e
st

im
at

es

Propagation phase
Agreement phase

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

cycles= 10 20 30 40 50 60 70 80 90 100

seconds= 10 20 30 40 50

A
ve

ra
ge

 o
f e

st
im

at
es

Propagation phase
Agreement phase

(c) Variance of estimates for multiple
items (50 distinct items)

(d) Average of estimates for multiple items
(50 distinct items)

Figure 4.5: The convergence of item estimates in PTP phases, N = 104, ε = 0.001, Υ = 5,
k = 10, T̈ = 500ms.

aggregation task. In order to achieve global agreement on a particular target, nodes in
the system have to (1) compute a local estimate of the target value using a specific data
aggregation function, (2) detect local convergence on the target, (3) acquire explicit awareness
on the convergence of the system. A typical example of the proposed agreement process in
epidemic systems is the local estimate of a data synopsis function, where a node may need to
achieve three different levels of information, the target value V with some approximation,
awareness of local convergence to the target and certainty of a global convergence on the
target. The main contribution presented in this section is the proposing of the Epidemic
Consensus Protocol (ECP). The protocol ECP is a typical implementation of the PTA for
achieving consensus on epidemic data aggregation with a high certainty on the convergence
of the system.

4.5.1 Epidemic Consensus Protocol (ECP)

ECP consists of four subsequent phases: Aggregation, Convergence, Agreement and
Commit. The Aggregation phase is the primary task process and it is determined by a
service or an application. The three successive phases compose the agreement process. ECP

69

4.5. AGREEMENT IN EPIDEMIC DATA AGGREGATION

maintains a tuple containing three aggregation pairs (vd, wd) for primary aggregation process,
(vc, w) and (va, w) for the aggregation processes of Convergence and Agreement phases
respectively. The tuple also contains leader for the computation of the election. The leader
election is explained later in this section. Also, ECP requires two other services to run in
parallel with the protocol, size estimation service, e.g. SSEP and peer-sampling service, e.g.
NCP+.

In the Aggregation phase, ECP computes the global average for the distributed set
of initial data values in the system, although any other basic or complex aggregation can
be accomplished. Each node i initialises the pair (vdi, wdi) where vdi is set to local value
xi and the weight is set to wdi = 1. At each cycle, node i divides the values of the pair
(vdi2 , wdi

2) and the half is sent to a random peer alongside other aggregation pairs in a Push
message. Upon receiving a message from node j, node i divides the pair values, and the half
is sent to node j in a Pull message with other pairs values. Also, node i updates its local
pair values (vdi, wdi) = (vdi + vdj, wdi +wdj). In consequence, the initial pair (xi, 1) at each
node i is divided and evenly distributed to the entire system. After a number of cycles, data
values eventually converge to 1

N

∑N
i=1 vdi and weight values converge to 1

N

∑N
i=1wdi = 1. An

approximation of the global average can be obtained at each node i by vdi
wdi

at any cycle.

The Convergence phase is the first phase in the agreement process. In this phase nodes
attain awareness about the convergence of other nodes in the Aggregation phase. Following
the PTA, the explicit global awareness is obtained using the decision-making method by
aggregate the count of nodes in the Aggregation phase which have achieved convergence to
the target. For this purpose, each node i holds the pair (vci, wi), where vci = 1 at all nodes,
wı̂ = 1 at a single node ı̂ and wi = 0 at all other nodes, 0 < i ≤ N, i 6= ı̂. Eventually, wı̂ will
distribute equally in the system and the weight w in each node will converge to 1

N
. Also,

an estimation of the number of nodes in the phase is given by vci
wi

at every node i, whereas
1
N

∑N
i=1 vci = 1 and 1

N

∑N
i=1wi = 1

N
.

The next phase is the agreement process is the Agreement phase that follows the same
procedure as in the Convergence phase, but this time to acquire the certainty on the
global agreement. The pair (vai, wi) is used for the decision-making process in the phase.
Noticeably, the weight wi is used in the pairs of the Convergence and the Agreement
phases for the optimisation as described later in this section. Finally, the agreement process
in ECP ends in the Commit phase, which implies the achieving of the global agreement, the
reach to the consensus, and the right moment to take a system-wide decision or action.

In the data aggregation, the target value V is unknown to the aggregation process unless
it has been provided explicitly by the service or application. Also, ECP has no information
about the target value for the aggregation process in the Aggregation phase. In realistic
scenarios, it is challenging to obtain the correct target value beforehand, especially under
dynamic conditions. Therefore, an innovative detection method is required for the ECP to
allow each node has the protocol to locally detect the convergence. ECP adopts the heuristic
detection method of Poonpakdee et al. [94] with the CV as described in Section 3.3.

70

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

Algorithm 9: Epidemic Consensus Protocol (ECP)
Require: a size estimation service, e.g. SSEP; a peer-sampling service, e.g. NCP+;

tolerance thresholds ε1, ε2; cycles threshold Υ; queue length lQ;
Initialisation: at each node i, vd = x, wd = 1, vc = 0, va = 0, w = 0;

phase=Aggregation; Q←− ∅ and |Q| = lQ; leader = i;

1 At each cycle at node i:
2 j ←− getRandomPeer()
3 vd = vd

2 , wd = wd
2 , vc = vc

2 , va = va
2 , w = w

2
4 send 〈leader, vd, wd, vc, va, w, reply = true〉 to j // Push message to node j

/* detect convergence and make phase transitions */
5 switch phase do
6 case Aggregation do

7 if
Q.s

Q.ē
≤ ε1 for at least Υ cycles then

/* make transition to the Convergence phase */
8 phase = Convergence
9 vc = vc+ 1

10 if leader has not changed for at least Υ cycles then
11 if leader == i then w = 1

12 case Convergence do // attain global convergence
13 if

∣∣∣ size()− vcw
size()

∣∣∣ ≤ ε2 for at least Υ cycles then

/* make transition to the Agreement phase */
14 phase = Agreement
15 va = va+ 1

16 case Agreement do // attain global agreement
17 if

∣∣∣ size()− vaw
size()

∣∣∣ ≤ ε2 for at least Υ cycles then

18 phase = Commit

19 case Commit do
/* take some application-specific decision or action */

20 At event ’received m message from j’ at node i:
21 if m.reply then // m is a Push message
22 vd = vd

2 , wd = wd
2 , vc = vc

2 , va = va
2 , w = w

2
23 send 〈leader, vd, wd, vc, va, w, reply = false〉 to j // Pull message to node j

24 Q←− Q ∪ { vd
wd
, m.vd
m.wd
} // enqueue estimates to Q

25 vd = vd+m.vd, wd = wd+m.wd, // update local pairs
vc = vc+m.vc, va = va+m.va, w = w +m.w

26 leader = max(leader,m.leader) // select a leader node

71

4.5. AGREEMENT IN EPIDEMIC DATA AGGREGATION

The convergence in the Aggregation phase is detected as follows. Each node i maintains
a fixed length history queue Qi and uses Qi to store the local estimate ei,t and a remote
estimate ej,t after receiving a message from node j at cycle t, Qi ∪ {ei,t, ej,t}. At each cycle,
each node computes the local estimation error εi,t using the formula of the CV, εi,t = Qi.s

Qi.ē
for

all elements in Qi, where Qi.s is the standard deviation (formula 3.7) and Qi.ē is the average
(formula 3.6). The local convergence is detected upon verifying the criterion εi,t ≤ ε1 for a
number of consecutive cycles Υ. On another hand, local convergence detection in the phases
of the agreement process uses the general detection method and the formula 3.3.

There are two error tolerance thresholds in the ECP ε1 and ε2, to allow different accuracy
requirement to be applied for the primary aggregation and agreement processes. The error
threshold ε1 is used in the convergence detection of the Aggregation phase and ε2 is
used in all the subsequent phases. The determination of the thresholds is an application
requirement that trades-off convergence speed to the desired accuracy. Also, the consecutive
cycles threshold Υ is used to avoid precocious convergence detection in all phases.

In ECP, an epidemic leader-election process is performed to appoint a single node as
a leader [30, 32]. The leader node ı̂ is used to set the weight value wı̂ to wı̂ = 1 as an
initialisation requirement for the summation aggregation [26, 30]. Leader-election process has
a simple assumption that each node has a unique identifier, e.g. IP address. The leader is
the node with the highest identifier. The convergence to a leader node is achieved when the
local leader estimate holds for Υ cycles. Leader-election process is performed in parallel with
the Aggregation phase to allow early propagation of wı̂ and enabling faster convergence in
the subsequent phases.

The ECP is illustrated in Algorithm 9. At each cycle, the protocol divides the aggregation
pair of each phase and sends them to a random peer (lines 1-4). In lines 5-19, the protocol
detects convergence of each phase and makes the transition upon verifying the associated
criterion. Also, the protocol detects the convergence of the leader-election process in line
10, and sets the value of w to 1 at the leader node. At the event of receiving a message,
ECP responds in the lines 20-13, and in line 24, the protocol enqueues the local and remote
estimates of the Aggregation phase in Q for the convergence detection in the next cycle.
In line 25, the protocol updates the local pairs and selects a new leader in line 26.

4.5.2 Experimental Results for ECP

Simulations model is fully event-based and uses the event-driven engine in PeerSim. Two
events are defined in the model: (1) The Run Event is scheduled to occur at every cycle
and stops after a predefined number of cycles. At this event, a node contacts a random peer
and makes the transition among phases. (2) The Message Event occurs when a node
receives a message from a peer. At this event, the incoming message is processed. The local
aggregation pairs are updated, and a leader is selected.

The simulation model includes four protocols, ECP, PTP+ and two tree-based 3PC
protocols. The protocol PTP+ is a typical implementation of the PTP as described in

72

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

Section 4.4. However, PTP+ has an additional data aggregation phase that assumes a single
aggregation item exists at all nodes at the start of the system, and the target is to achieve
the consensus on the aggregation item. PTP+ is used in the simulations to analyse the
performance of PTP+ in comparison to ECP.

The protocol 3PC is simulated over a static binary tree [114]. The simulation of 3PC
protocol is made purposely over a binary tree to achieve fair performance comparisons with
the ECP, which sends two messages in average per-node at every cycle. Nodes identifiers
in 3PC protocol are assumed globally unique and incremental. The node with identifier 0
is the coordinator node and each node i has two child nodes 2i+ 1 and 2i+ 2. The tree is
constructed in a binary structure by a dedicated initialiser prior to the simulations. 3PC is
implemented to achieve the global agreement on the outcome of the distributed averaging
over the same data distribution that is used in ECP and PTP+. Two versions of 3PC protocol
are used in the simulations, a classic 3PC and a modified version of 3PC motivated by the
CTP [109] namely Three-Phase Commit-Convergecast or (3PC-C). In 3PC-C, the step of
broadcasting compute message is omitted and the protocol starts in a Convergecast step
from the depth of the tree towards the coordinator. The subsequent phases of 3PC-C proceeds
as same as in classic 3PC. This optimisation is expected to improve the total time required
for 3PC-C to achieve consensus and thus challenge the performance competition with ECP.

The performance and communication overhead of ECP, PTP+, 3PC and 3PC-C are
monitored at every cycle using dedicated observation modules. All protocols continue after
the global agreement is achieved, and a simulation experiment terminates when the total
number of cycles is reached. Different random seeds are used in each experimental run to
enforce randomisation and each experiment is repeated for tens of times to validate the
settings and ensure results. The protocols are initialised by a Peak data distribution where
vdı̂ = N in a single node ı̂ and vdi = 0 where 0 < i ≤ N and i 6= ı̂. Application-specific
parameters for ECP and the other protocols are carefully chosen based on the experimental
results which are described later in this section. The error thresholds ε1 and ε2 are set to
ε1 = ε2 = 0.01. The cycle threshold is set to Υ = 5. The length of the history queue Q is set
to lQ = 10. NCP+ is configured to maintain a random k-regular overlay with k = 10.

The detection of convergence and the phases transition towards the global agreement in
the ECP is illustrated in Figure 4.6. Figure 4.6.a shows the percentage of nodes in each phase
over time. The figure also illustrates the smooth transition from a phase to the successive.
Figure 4.6.b shows the average of estimates in each phase. It is apparent that estimates in
each phase converge to the same target at all nodes. In the Aggregation phase, local
estimates converge to 1 which is the correct target value for spreading vdı̂ = N over N nodes.
Estimates in the Convergence and Agreement phases converge to N as expected. In
Figure 4.6.c, the variance of estimates over all nodes is tending towards a very small value
indicating the reduction in estimation error and the reach of convergence among nodes in each
phase. Results in Figure 4.6 validates the ability of ECP to locally detect convergence, makes
the transition in phases and attain the certainty of the global agreement on the outcome of

73

4.5. AGREEMENT IN EPIDEMIC DATA AGGREGATION

(a)
0

0.2

0.4

0.6

0.8

1

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

%
 o

f n
od

es

Aggregation
Convergence

Agreement
Commit

(b)

10
−4

10
−2

10
0

10
2

10
4

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

A
ve

ra
ge

 o
f e

st
im

at
es

Aggregation
Convergence

Agreement

(c)
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

V
ar

ia
nc

e
of

 e
st

im
at

es

Aggregation
Convergence

Agreement

Figure 4.6: Convergence detection and phases transition in ECP, N = 104, ε1 = ε2 = 0.01,
Υ = 5, lQ = 10, k = 10, Ṫ = 250ms.

the global averaging.

The performance of the ECP is also examined under different settings of the application
parameters. The error thresholds ε1 and ε2 are used in different phases, the effect of each
one can be recognised by monitoring the convergence of the corresponding phase, and hence,
both parameters are set to the same value. Figure 4.7 shows linear rising in the completion
times of each phase when error thresholds are set for a higher accuracy. The values of ε1
and ε2 can be tuned to trade-off between accuracy and convergence speed. For instance, a
repetitively small error threshold can be used in Aggregation phase, while some accuracy can
be tolerated in the Convergence and Agreement phases to speed up the convergence. On
another hand, the use of higher values for the parameter Υ significantly slows the detection
of convergence in each phase. Thereby, Υ is set to 5 which allows feasible convergence speed
for large network sizes up to one million nodes. In contrary, a small delay in the completion
time in the Aggregation phase is noticed when the length lQ of the history queue increases
as shown in Figure 4.7.b. and thus the use of minimum reasonable length is preferable for
faster convergence and less computation load. The results presented in the Figures 4.7.a and
4.7.b are summery of 30 runs of the protocol ECP. The illustrated values are the average of
exported results and the error bars shows the variance among the results..

Figure 4.8 shows the phase transition and the completion times of the protocols ECP,
PTP+, 3PC and 3PC-C. The summary in Figure 4.8.a shows the linear increase in the

74

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

 0

 20

 40

 60

 80

 100

 120

 140

 3 5 7 10

C
yc

le
s

3 5 7 10

Aggregation
Convergence

Agreement
Commit

3 5 7 10
0

5

10

15

20

25

30

35

S
ec

on
ds

ε = 0.01 ε = 0.001 ε = 0.0001
(a) Varing values of the cycles thershold Υ ∈ {3, 5, 7, 10}

for three values of the error thershold ε,where in simulations ε = ε1 = ε2.

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20

C
yc

le
s

5 10 15 20

Aggregation
Convergence

Agreement
Commit

5 10 15 20
0

5

10

15

20

25

30

35

S
ec

on
ds

ε = 0.01 ε = 0.001 ε = 0.0001
(b) Varing the legth lQ ∈ {5, 10, 15, 20}

for three values of ε, where in simulations ε = ε1 = ε2.

Figure 4.7: Phases completion times in ECP when varying simulations parameters, N = 104,
k = 10, Ṫ = 250ms.

completion times in ECP concerning the system size. However, it shows faster completion
times in comparison to PTP+, which presents the impact of the early leader election mechanism
in ECP. The completion times of 3PC and 3PC-C protocols significantly rise with respect
to the system size. The spanning of the tree depth increases the convergence time in 3PC
and 3PC-C protocols. The ECP shows similar performance to other protocols in small sizes
but performs much better in large sizes. Also, ECP outperforms tree-based 3PC and 3PC-C
protocols without the need to establish any network structures. A sample of results for the
protocols performance over various system sizes is presented in Figure 4.8.b.

The communication overhead in ECP, 3PC and 3PC-C protocols are illustrated in Figure
4.9. Figure 4.9.a shows the average number of messages at each cycle in ECP. Each node
sends two messages in average at every cycle, one to contact a random peer and one to reply
to an incoming message. Figure 4.9.a illustrates the distribution of communication load
among all nodes in ECP. Figure 4.9.b illustrates the total number of sent messages in each
phase. ECP produces higher overhead in each phase due to the continuous communication
nature of epidemic protocols.

The communication overhead in tree-based 3PC and 3PC-C protocols are shown in Figures

75

4.5. AGREEMENT IN EPIDEMIC DATA AGGREGATION

(a)
 52
 56
 60
 64
 68
 72
 76
 80
 84
 88
 92
 96

 100
 104
 108
 112
 116
 120
 124
 128
 132
 136
 140

N=10
3

N=10
4

N=10
5

N=10
6

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

C
yc

le
s

S
ec

on
ds

ECP
PTP

+

3PC−C
3PC

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1
seconds= 5 10 15 20 25 30 35

E
C

P

Aggregation
Convergence

Agreement
Commit

 0 5 10 15 20 25 30 35

 0 5 10 15 20 25 30 35

 0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

P
T

P
+

Aggregation
Propagation
Agreement

Commit

0

0.2

0.4

0.6

0.8

1

3P
C

−
C Convergecast

Agreement
Commit

0

0.2

0.4

0.6

0.8

1

cycle= 20 40 60 80 100 120 140

3P
C

N=10
3

Broadcast
Agreement

Commit

0 20 40 60 80 100 120 140

N=10
4

0 20 40 60 80 100 120 140

N=10
5

0 20 40 60 80 100 120 140

N=10
6

Figure 4.8: Phases transition and completion times in ECP, PTP+, 3PC and 3PC-C protocols
for various system sizes, ε1 = ε2 = 0.01, Υ = 5, lQ = 10, k = 10, Ṫ = 250ms.

76

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

Average communication overhead per-cycle

 0

 0.5

 1

 1.5

 2

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s Overhead

 0

 0.2

 0.4

 0.6

 0.8

 1

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s Overhead

(a) ECP 1 (c) 3PC (e) 3PC-C

Total communication overhead in each phase

0.0x10
0

1.0x10
5

2.0x10
5

3.0x10
5

4.0x10
5

5.0x10
5

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

N
um

be
r

of
 m

es
sa

ge
s

Aggregation
Convergence

Agreement

0.0x10
0

5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35
N

um
be

r
of

 m
es

sa
ge

s

Broadcast
Agreement

Commit

0.0x10
0

5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

cycles= 20 40 60 80 100 120 140

seconds= 5 10 15 20 25 30 35

N
um

be
r

of
 m

es
sa

ge
s

Aggregation
Agreement

Commit

(b) ECP (d) 3PC (f) 3PC-C

Figure 4.9: Communication overhead in ECP, 3PC and 3PC-C, N = 104, ε1 = ε2 = 0.01,
Υ = 5, lQ = 10, k = 10, Ṫ = 250ms.

4.9.c-4.9.f. In general, nodes in 3PC and 3PC-C protocols send two compute messages to child
nodes in Broadcast step and two acknowledgement messages are sent back to the parent
node in Convergecast step in each phase. Broadcast messages and Convergecast
messages occur at different cycles and encounter different latency, hence two messages are sent
in average per-node at each cycle. As the structure of the tree expands towards the depth, the
number of messages increases in the Broadcast step and decreases in the Convergecast
step until nodes reach the global agreement. At the most depth of the tree, the number of
sent messages is N

2 + 1 and thus in the corresponding cycle, around 1
2 message is sent in

average per-node. Figures 4.9.c and Figure 4.9.e illustrate this effect in 3PC and 3PC-C
protocols. Figures 4.9.d and Figure 4.9.f, shows the total number of messages in each phase
which is noticeably less than ECP protocol. In summary, ECP achieves consensus faster than
tree-based protocols in large system sizes. Tree-based protocols have optimal communication
overhead whilst ECP has higher overall overhead. The overhead in ECP is distributed over
system nodes and execution time and hence, the per-node and per-cycle communication
overhead is perfect.

The conclusion is the presentation of an innovative protocol for the consensus, consistency

1In this experiment, nodes of ECP are enforced to stop in ∆ cycles after the detection of convergence,
where ∆ > Υ.

77

4.6. DISCUSSIONS

and coordination in epidemic systems. Services and applications looking for a practical,
decentralised, scalable and fault-tolerance coordination solution should consider the epidemic
consensus protocol. The ECP is introduced for the determination of the consensus on
the convergence of distributed data aggregation, and it can be altered for any distributed
coordination task. Also, the protocol adopts a novel method for the local detection of
convergence and makes phase transitions to achieve the explicit detection of convergence and
global agreement. Experimental results have shown that ECP can achieve global agreement in
lesser time in comparison to structured and centralised protocols that are not fault-tolerance
and require structure maintaining. However, ECP produces higher communication overhead,
which is typically distributed over the network diameter in extreme-scale systems. Finally,
ECP is a typical implementation of the PTA and has proved the applicability of the algorithm.
Further research may amend PTA to attain consistency and coordination in dynamic systems.

4.6 Discussions

The previous sections have introduced the phase transition algorithm PTA for achieving
distributed consistent states in large and extreme-scale epidemic systems. Also, they have
presented two novel epidemic protocols PTP and ECP, which are practical implementations
of the PTA. Experimental results and the analysis of the performance of PTP and ECP
have proven their ability to achieve global consistency in various epidemic tasks and with the
explicit detection of the global agreement. The results have validated the applicability of the
PTA and its performance in practice. The PTA is flexible, and the agreement phases can be
cascaded to achieve additional certainty and global awareness on the target. The algorithm
inherits the intrinsic properties of epidemic algorithms and can achieve the global agreement
without deterministic communication or network structures. It is a typical decentralised,
scalable and fault-tolerant solution to modern services in extreme-scale distributed systems.
This section discusses some findings and matters of the PTA and its implementations, i.e.,
PTP and ECP.

• A note on the time complexity of the protocols PTP and ECP. Each protocol makes
the transition into phases to achieve the globally consistent state, i.e., global agreement
or Commit phase. Each phase is an epidemic process that eventually converges to the
target value. Following the analysis of the convergence in epidemic protocols described
in Section 3.2 and the general time complexity of Push-Pull protocols [26], the time
needed for each protocol to achieve the consistent state is O(M log(N)), where M is
the number of phases in the protocol and N is system size. And the time taction in
which system nodes achieve the consistent state is defined as follows:

Definition 4.6.1. Let tc be the convergence time of a phase defined as tc = log(N) +
log(1

ε
) + Υ. There is time taction = M × tc such that for each t ≥ taction each node i has

achieved Commit phase and can apply a designated action or decision.

78

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

Epidemic protocols usually exhibit high communications overhead due to their intrinsic
nature. Protocols of PTA have a typical overhead with the general complexity O(2N).
As shown in the experimental results, the protocols PTP and ECP generate only 2
messages per node per cycle. System nodes are widely distributed over the system
network. Hence, communications overhead is spread over the whole network as well,
which minimises the probability of traffic congestions and bottlenecks. However, the
amount of messages required per each node to achieve a global consistent state on a
target is O(2taction), and the overall overhead is O(2Ntaction).

• In an epidemic system, services usually need to perform an action or take a decision
after achieving global agreement using one of the PTA protocols. Nodes of an epidemic
system do not converge at the same time due to the asynchrony, and nodes have no
explicit knowledge of the convergence of other nodes. During Phase-2, nodes achieve
global agreement on the target of the process in Phase-1 at different times and have
no awareness about the state of nodes in Phase-2. Therefore, it is critical to all nodes
to converge in Phase-2 to correctly achieve global agreement. Nodes that promptly
implement a local action such as stop or leave after they detect global convergence can
cause a detrimental effect on the aggregation process in Phase-2 and prevent other
nodes in the phase from achieving convergence. This effect is an expected result of
violating mass-conservation invariant caused by the nodes that have stopped or left
the phase. To avoid such effect, nodes must continue participating in the aggregation
process for a sufficient time (e.g., tc) to allow other nodes in the phase to converge. At
this stage, N is known to all nodes, and reasonable value of tc can be computed.

In the same context, making a system-wide action or decision after achieving global
agreement is also a matter, e.g. restart or terminate. The first node that detects global
agreement in Phase-2 can start the global action and begin the propagation of the
action information. However, other nodes may receive information on the action before
they achieve convergence, and in this case, they are enforced to apply the action. Any
service that does not wish to apply the global action in the current phase can merely
add another subsequent phase, and nodes in the new phase have to implement the
action upon the convergence.

• In PTA, each phase (e.g., Phase-2) in the agreement process is a separate decision-
making process using the aggregate function count. The distinct property of the
decision-making in Phase-2 is the decentralised fashion of the decision. Each node
decides to join the aggregation process upon the detection of local convergence in a
prior phase, i.e. Phase-1. In Phase-2, each node decision propagates to other nodes
until the aggregate results converge to the system size, i.e., all nodes have decided. Also,
each node can detect the convergence of the phase locally, which is very convenient for
large systems. Moreover, the method achieves the explicit global decision made by each
participating node on the agreement target.

79

4.6. DISCUSSIONS

• In realistic scenarios, some nodes may wish to abort the agreement process due to
a private event or reason. In this case, a node may withhold itself from joining the
decision-making process, causing the process to converge to the incorrect value. Also,
in dynamic conditions, some nodes may fail or leave before they decide, which prevent
the decision-making process from achieving convergence. In a more complicated case, a
node may wish to withdraw its decision after it has been made. Two cases need to be
distinguished here, nodes that decide to abort the process voluntarily, and nodes that
fail or depart the system non-reportedly.

The decision-making method in Phase-2 can detect abort and leaving requests of nodes
by adding another aggregation process for the aggregate count to the phase. In essence,
Phase-2 would have two parallel aggregation processes, one for counting converged
nodes and the other for counting nodes that want to abort or leave. Eventually, the
aggregate results of the two processes can be used to detect the convergence of the
phase. Moreover, the convergence of the second aggregation process to non-zero results
implies a request to abort the agreement process, in which a predefined action may
need to be globally executed. However, the two proposed decision-making methods are
not sufficient and will not converge under dynamic conditions [34].

Typically, nodes may fail or depart in adversary way at any time during the agreement
task. In consequence, all involved data aggregation processes may not converge, for
instance, the SSEP and phases of the PTP and the ECP protocols, which degrades
the applicability of PTA in real-world systems. Data aggregation is the core of the
agreement protocol, and hence, the robustness of the aggregation process requires
practical solutions. Two techniques are proposed in this project to deal with the
robustness of epidemic data aggregation in dynamic systems. An algorithm for instant
support of the epidemic aggregation process during the convergence time is described
in the next chapter. Another mechanism to detect churn impact on the convergence
and adapts the epidemic task to new system conditions is described in Chapter 6.

• Phases of the agreement process in the PTA require global parameters for the
convergence detection. In particular, the tolerance thresholds ε1, ε2 and the
consecutive cycles threshold Υ are adjusted according to the application preference and
need to be available beforehand. In real practice, settings of the application-specific
parameters require global information about the system, which hard to obtain and may
limit protocols applicability, especially in dynamic systems. The protocol ECP has
used the heuristic detection method with the Coefficient of Variance as a formula for
computing the estimation error, which does not need any global information and
taking advantage of the evolved method, which is described in Section 3.2.

• In other respect, the setting of aggregate function in data aggregation requires some
deterministic initialisation, especially, adjusting the data aggregation process for the
summation function (i.e., sum and count). In the PTA, the protocol SSEP and the

80

CHAPTER 4. AGREEMENT IN EPIDEMIC SYSTEMS

aggregation process in the agreement phases uses the global aggregate function count,
in which the initial weight wi of the aggregation pair (vi, wi) needs to be set to 1 at a
single node ı̂ and to 0 at all other nodes, 0 < i ≤ N, i 6= ı̂. The determination of node
ı̂ is problematic. For example, the protocol ECP uses leader-election mechanism to
initialise the phases in the agreement process. Also, node ı̂ can be selected randomly
with some defined probability. However, the problem arises when the node ı̂ fails before
starting the diffusion in the aggregation process. To overcome this initialisation issue,
we introduce a seed selection method in Chapter 6.

Insight to future, the PTA and the PTP, in particular, can achieve explicit consensus
on each information item, and hence, the PTP can be adapted to maintain the consistency
of transactions information, especially when the total ordering of transactions is required.
Consider, for example, the Blockchain technology, in which certainty on data immutability
in the distributed ledger is required [38]. Each transaction information in the Blockchain
platform needs to be applied at most once at each node of the distributed ledger and any
two updates have to be applied in the same order at all ledger nodes. The PTP and via
continuous communication among ledger nodes can exchange new transactions, and the
agreement process can acquire the certainty on each transaction. The decentralised decision-
making method can either verify the transaction or abort the agreement process due to
incorrectness of the transaction or due to violation of transactions order.

In summary, this chapter has introduced the PTA for achieving globally consistent states
in epidemic systems. Also, two epidemic protocols for the practical implementation of the
PTA are proposed in this chapter. Experimental results have proven the efficiency and
applicability of the protocols in PTA for epidemic systems in particular and decentralised
services in general. The protocols are capable of achieving the consensus, maintain the
consistency, and attaining any other coordination service. The PTA is flexible and can be
adapted to acquire explicit certainty on the target. The data aggregation process is the
main foundation of the PTA, and convergence detection is the key feature of the aggregation
processes. However, the data aggregation process can damage in the presence of dynamical
conditions, and the agreement task as well. Therefore, further research is required to maintain
the robustness of the data aggregation in unreliable systems. The next chapter presents the
second contribution of the research work, which achieves robust epidemic data aggregation
under churn.

81

4.6. DISCUSSIONS

82

Chapter 5

Robust Epidemic Aggregation under
Churn

Distributed data aggregation has been addressed in many parts in the thesis due to the
substantial role it has in the formation of distributed services in general and the proposed
protocols in this project in particular. The data aggregation process is independent of
the overlay topologies and the underlying networks, which makes the process flexible and
efficient for a wide range of distributed applications [27, 48]. It usually computes a synopsis
function over a set of distributed data values to provide global information about a system
property or state. Nevertheless, epidemic data aggregation protocols are scalable, resilient
and considered the practical alternatives to centralised models [20]. In the literature, there
are many distributed services that have adopted epidemic data aggregation [52, 66, 68, 92].

Computations and communications of the epidemic data aggregation provide stochastic
guarantees on the convergence of results to the target value in logarithmic time concerning
the system size [26, 27]. However, the convergence to the target is expected under stable
conditions. In dynamic systems where churn is usually present, the accuracy of the aggregation
results cannot be guaranteed and the results may significantly differ from the correct target
value [27, 115]. This detrimental impact of churn is a direct result of the violation of the
mass-conservation invariant [30]. The failure or unreported departure of nodes determines
the loss of the mass stored in these nodes, hence violating the conservation invariant and
leads to an estimation error of the target value that depends on the local state at nodes
departing the system.

There are number of contributions presented in this chapter. The next, Section 5.1 explains
and discusses an inspection survey that has been accomplished in the research project aiming
to collect information about ideal churn models and rates in the P2P networks. The Section
provides the model of churn in epidemic system that is adopted for the project. In Section
5.2, our work has investigated the epidemic data aggregation process, in which three distinct
phases of the process have been identified. The study has shown that node churn at each
phase has a different impact on the estimation error. In particular, one of the three phases is
critical for the robustness of the aggregation process, and it is further investigated, resulting

83

5.1. NODE CHURN IN P2P NETWORKS

in a novel mechanism to address the violation of mass conservation invariant. Consequently,
we proposed two protocols for robust epidemic data aggregation in Section 5.3 and Section
5.4, respectively. The protocols implement distributed failure detection and mass restoration
mechanisms that takes advantage of the findings of the analysis in the Section 5.2. The
protocols have been verified and found able to detect convergence even under severe churn
rates. Finally, the chapter ends discussing the outcomes of the work presented. The research
in this chapter has been published in a full conference paper [34].

5.1 Node Churn in P2P networks

The analysis of churn impact on networks structure and systems behaviour is a popular
research area that accrues significant attention. The general theme of the research was
to correctly identify a churn model that is typical and realistic to common types of P2P
networks. Therefore, researchers have extensively studied real-world network traces and
revealed several empirical and statistical models of churn with good accuracy. Measurements
on the node churn are required to evaluate churn impact on the epidemic systems, particularly,
the expected churn rates in short periods (e.g. within one minute). The reason for analysing
the studies to find a churn model of short time intervals that is compatible with the time
needed by an epidemic task to accomplish the intended mission. The previous chapter has
shown different epidemic tasks that can achieve global convergence in one minute. However,
there are common impediments in the research studies, which made adopting a typical churn
model a challenging task. For example, the churn rates notably vary from one study to
another [15]. Also, and due to large system sizes and data acquisition methods, e.g. crawlers
or trackers, the minimum time interval considered in the provided statistical distributions
usually expand for several minutes. Moreover, the studies usually introduce their findings in
synopsis measurements such as average, median, or CDF, which conceal vital information
about churn rates in short intervals.

The survey work presented in this section aims to identify the typical churn rates of
nodes in P2P networks in general and epidemic systems in particular. The hypothesis is that
encountering a high or severe churn rate in a distributed system that is widely-deployed,
uses decentralised services, and composed of many nodes is rarely to happen [15, 116]. In
such systems, although nodes may fail or join a system, the failure and join events are either
highly distributed or only affecting a specific part of the system. The P2P systems exhibit
adequate resilience and fault-tolerance properties towards churn, and they are capable of
providing services under various conditions [117]. Also, the survey targeted churn rates in
short periods, particularly expected rates within intervals of one minute. However, acquiring
precise information about global churn rates in short periods is not possible due to the way
information is collected. Therefore, the results presented in this section serve as general
indicators, and the adopted churn rates are expectations of the normal and worse scenarios.

In the studies, characteristics of a churn model are usually recognised by the duration of

84

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

sessions in which nodes were active, and by the interval between the start of two sessions
(a.k.a inter-arrival times). A node join a system to provide a service to other nodes or to
consume other nodes services. After a certain time, the node departs the system either
graciously or adversary. This join-participate-depart period is known as a session [15, 118].
Nodes sessions in P2P networks are known to have heterogeneous durations because some
nodes may participate in a system for long periods while other nodes stay a little. Also,
the number of participants in a system may vary during day times or among week days. In
addition to sessions durations, some studies [15, 119, 120] have considered nodes availability
as a key factor to characterise churn models in P2P networks. The availability of a node is
defined as a ratio of total online sessions to the overall lifetime of the node which includes
offline periods [116]. Although the study of nodes availability is crucial to some distributed
applications (e.g. resource sharing [120]), we only address models of active and online sessions
in this section. Furthermore, sessions are considered of various nodes and not necessarily of
the same node, and each session is of a different node.

The description of a churn model usually comprises two separate rates: the joining rate
and the departure rate. Principally, the joining rate corresponds to and can be computed from
sessions inter-arrival times. The departure rate corresponds to intervals between the departure
of different nodes or their failure, which is usually a result of combining inter-arrival times
and sessions durations. However, the surveyed studies use session duration as a standard
metric. The distribution of sessions durations can be used to estimate the departure rate
under the following general assumptions: that a node departs without informing other nodes
and each node departure is a fail-stop event. In this respect, the term churn rate refers to all
node departure types, and the terms joining rate and churn rate will be used in the remaining
of the thesis.

Let us consider a P2P system with N nodes. Assume that at a random time t, all nodes
are online and each node would remain online for a session duration that is derived from a
survival distribution function R(t) [15, 119, 121]. After some time ∆, a number of nodes f
have turned offline and departed the system. The failure rate λ is the rate at which nodes have
departed the system during the interval [t, t+ ∆] and so, λ = f

∆ is the probability of a node
to fail per unit time. From this perspective, the characteristics of a typical failure distribution
F (t) can be identified from the sessions durations distribution R(t). The probability of a
node to remain in a system longer than ∆ denoted as P (T > ∆) is given by R(t) and the
probability of a failure to occur before or at ∆ is denoted as P (T ≤ ∆), and it is given
by F (t) = 1− R(t). The probability of a failure P (T ≤ ∆) is typically the proportion (i.e.
percentage) of nodes in a system that have failed before time t+ ∆.

Results illustrated in the studies have presented several probability distributions for the
duration of sessions and inter-arrival times, in which a duration ranges from a few minutes to
several hours. Also, cumulative distributions of the observed durations are provided, and
they are usually tailed exponential distributions. The table 5.1 presents various churn rates
estimation extracted from the studies for several P2P networks. The table also includes

85

5.1. NODE CHURN IN P2P NETWORKS

Network

Session Duration
P (T ≤ ∆),

∆ = 1 minute

Average
Inter-Arrival

Times

Gnutella [15, 122] 15% 2 seconds

Bit-torrent [15, 122] 20% 10 seconds

Skype [14] 5% 30 minutes

OSN [118] 25% less

Facebook [123] 30% than

WWW [122, 124] 90% one second

Table 5.1: Churn rates in the P2P and Social networks.

estimations for Online Social Network (OSN)1and the World-Wide Web (WWW), although
these networks are not P2P, there are many P2P applications and services which are built to
work for these networks, e.g. mobile apps.

The rates in Table 5.1 indicate that 30% of system nodes depart the system in one minute,
which are the expected dynamical changes in normal working conditions of those P2P systems.
The table also shows the churn rates in online services, which are notably higher. Also, join
rate is greater than online services than conventional P2P systems. In general, churn rates in
the table imply the need for robust epidemic systems, and that strong robustness techniques
are required for online epidemic services. Also, having a typical strategy for dealing with
nodes join within particular interval is essential.

From another perspective, in the surveyed studies, one minute is a relatively short interval
of observation, which makes the estimated join rate and churn rate approximately constant
in the interval. In consequence, it is practical to distribute the proportion of affected nodes
uniformly over the interval, e.g. assuming a constant failure rate. Also, at any moment,
several nodes depart the system while other nodes join it. Hence, N is changing over time,
and the overall join rate equals the churn rate, which prevents the system from expanding
forever and from vanishing [15]. A direct implication of this constant behaviour is that in
addition to the robustness of the epidemic systems, they need to be continuous to adapt to
change overtime.

The model of the epidemic system in this project is dynamic where nodes may join or
depart the system at any time and with moderate rates. Nodes departure are not specified
gracefully or ungracefully, and both cases are treated as generic node failure. A node failure
is a fail-stop event, and nodes that may rejoin the system are considered new nodes. In the
system, failing nodes may violate the initial system mass invariant and usually leave invalid
cache entries in the peer-sampling service (a.k.a broken-links) [33], and churn may also affect
the overlay structure. At this stage of the research work, new nodes may join the system
at any time, but they do not participate in the current epidemic task. In next chapter, the

1The study in [118] includes Linkedin, MySpace, Hi5, and Orkut

86

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

continuous epidemic systems are proposed. A continues epidemic task consists of consecutive
epochs, and new nodes restrain themselves during the current epoch and start contributing
in the following epoch [27]. The fractions of joined and departed nodes in a specific time
interval define the churn rates. The distribution of churn rates over time intervals is not
assumed constant and there must be a time at which the system is sufficiently stable to allow
convergence.

The remaining of this chapter describes two innovative epidemic protocols for robust
data aggregation in the presence of node churn. The two protocols propose decentralised
replication and failure detection mechanisms for the instantaneous recovery of initial system
mass, which makes the aggregation process converges to good approximation results of the
target value. In the next chapter, i.e., Chapter6, a continuous epidemic protocol is proposed
with a novel adaptive restart mechanism to detect and adapt the system according to the
churn impact.

5.2 Phases of Epidemic Data Aggregation Process

The epidemic data aggregation is a process to compute a synopsis for the set of distributed
initial data values and provides global information about the system [26, 30]. The computation
of aggregate functions such as average, sum, min, max, etc. is distributed over system nodes,
and through randomised communications, nodes exchange their local values. Computations
and communications follow a designated protocol to achieve a specific global aggregation
task. Results of the distributed aggregation are locally available at each node, and due to
the iterative reduction in the variance among local estimates, they eventually converge to the
target value with an error as small as desired. Section 2.1 describes popular data aggregation
protocols.

In this section, the process of epidemic data aggregation is investigated, and three distinct
phases of the process are identified. Also, the phase that is critical for producing accurate
results in the presence of node churn is further studied, resulting in a novel mechanism to
address the violation of mass conservation invariant. Without loss of generality, the problem
of estimating system size is chosen for the investigations, in which the distributed computation
corresponds to the global summation function ’count’ [26, 30]. The process for the aggregate
count is initialised for the peak data distribution resulting from the diffusion of the single
weight value over the system. In consequence, the duration needed to achieve convergence
to the size is relatively longer than other data aggregation functions (e.g. average). The
longer the aggregation process requires achieving convergence, the more errors it gets due
to the system dynamics. Also, the protocol SSEP is used in the analysis and verification
experiments. SSEP is described in Section 4.3.

The fundamental characteristic of the epidemic data aggregation is the ultimate
convergence to the desired target. As explained in Section 3.2, the target value V is a
numeric value that usually corresponds to the initial set of distributed data values in the

87

5.2. PHASES OF EPIDEMIC DATA AGGREGATION PROCESS

system and the required synopsis function. The formation of convergence is typically
spanned from the start of the diffusion process of initial system values to the moment of
which each node estimates the target value. At this moment, each node can detect the local
convergence using one of the detection methods described in Section 3.3.

The summation function ’count’ requires a particular initialisation setting: the value vi,t0
is set to the count unit, i.e. vi,t0 = 1, and the weight is set to wı̂,t0 = 1 at a single node ı̂
whilst wi,t0 = 0, 0 < i ≤ N, i 6= ı̂, where t0 is the system starting time and the node ı̂ is an
arbitrary node that can be selected randomly or determined by a leader election method [92].
We called the node ı̂ the (seed node) due to its purpose of holding the initial seed value for
the peak distribution. During the aggregation process, the pair (vi,t, wi,t) at each node i is
exchanged at each cycle, and so propagated and aggregated. Eventually, the aggregate of
all pair values in the system is evenly distributed over all nodes. After some time tc where
tc > t0, the local estimate ei,tc at each node i converges with a high probability to V, which
is the count of system nodes N with some local error εi,tc:

ei,tc = vi,tc
wi,tc

= N ± εi,tc (5.1)

On the other hand, the aggregates of the initial system mass Mv,Mw are time-invariant.
Considering the formulas in Equation 3.1, which are the typical aggregate of initial system
states. Thus, the totals of the initial pair values in the aggregation of the count function
always gives the following results:

Mv =
N∑
i=1

vi,t0 = N, Mw =
N∑
i=1

wi,t0 = 1

As a result of the diffusion and the aggregation of the initial values during the base
process, the mass is distributed and equalised in all system nodes, see the Equation 3.2 on
page 38. In the ideal system conditions and absence of churn, the variance among local
estimates of nodes approximates the minimal tolerated error, and the system achieves the
ultimate global state, which is the convergence. Also, the local estimate ei,t at each node i
computes the target value N at the convergence time tc as follows:

ei,t =
Mv
N
Mw
N

=
∑N
i=1 vi,t∑N
i=1wi,t

= N

1 ± εi,t ∀t ≥ tc (5.2)

Evidently, when the mass invariant holds due to the ideal system conditions, the local
estimate ei,t converges to the correct value N and the local estimation error εi,t tends to a
minimum value that can be tolerated [26]. The tolerance value ε is a verification threshold
for the estimation error, and it is an application parameter. Also, it has been discussed
earlier alongside the consecutive cycles threshold Υ in Section 3.3. In the section, detection
methods typically detect the convergence by periodically computing the estimation error
εi,t in the local estimate ei,t. The parameterεi,t keep decreasing as a result of the iterative
reduction in the variance among local estimate until it approaches the minimal value that

88

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

can be tolerated, εi,t ≤ ε. However, the variance reduction operation continues as long as
the pairwise communication lasts and hence, the detection criterion is constantly true after
convergence.

The case differs for the convergence under dynamical system conditions and when node
churn is present. Two issues need to be addressed here. First, the target value (i.e. system
size) is a time variant function. Although the protocol could be restarted periodically to
follow the changes in the system size [27], a single global target value must be defined in
each aggregation process to detect the convergence. Second, the mass-conservation invariant
does not hold and node churn affect the accuracy of the estimates and may even prevent
the convergence. In the following, we show that partitioning of the aggregation process into
phases helps to address these issues.

Considering the aggregation process for the global count function, the target is achieved
with the process starting at t0 and initiated at the seed node ı̂, which holds the weight
wı̂,t0 = 1. The seed node initiates the exponential diffusion process of the non-null weight.
The computation at a generic node with the weight wi,t0 = 0 are ineffective to the aggregation
process until the node joins the diffusion process of the non-null weight, wi,t > 0, either by a
Push or a Pull message. The convergence is achieved at time tc when each node i holds
a similar fraction of the initial weight wi,tc = wı̂,t0

N
= 1

N
. At the time t ≥ tc, although the

pairwise exchanging continues, the local estimate ei,t at every node i holds to approximately
the same aggregation result due to the decreasing error and the equal distribution of the
system mass among nodes.

In the context of the previous analysis, each node i can be in one of the following three
phases during the aggregation process:

1. Initial phase, when wi,t = 0 and t ≥ t0,

2. Propagation phase, when wi,t > 0 and local convergence is not yet achieved, t0 ≤
t < tc, and

3. Convergence, when local convergence is detected at tc, t ≥ tc.

To analyse the impact of node churn on the accuracy of local estimates during each phase,
let us consider node i in the Initial phase. At each time t ≥ t0, the local estimate ei,t is not
available due to the null weight value. Message exchanges with other nodes in the same phase
do not contribute nor modify estimate values, either local or remote. A message exchange
with a node in the Propagation phase determines a local phase transition. Although the
failure of a node i in the Initial phase does alter the system mass Mv, it has no impact
over the convergence or the accuracy of the aggregation process because the more critical
system mass Mw is preserved. As a consequence, the unexpected departure of a node i in
the Initial phase only affects the target value from N to N − 1, as if the node i was never
part of the system. There is no need to address churn in the Initial phase, apart from
redefining the target value Np that refers to the number of nodes which have entered the
Propagation phase. The new target value Np can be defined as Np = N − finit,t (t ≤ tp)

89

5.2. PHASES OF EPIDEMIC DATA AGGREGATION PROCESS

where finit,t is the total number of nodes which departed the system whilst in the Initial
phase and tp is a moment of time when all existing nodes have entered the Propagation
phase.

Definition 5.2.1. Let finit be the number of nodes departed before joining an aggregation
process, N be the initial system size, Np = N−finit is the number of nodes in the aggregation
process.

Likewise, node churn in the Convergence phase has no impact on the accuracy of the
estimations concerning the redefined target value Np. This is due to the equal distribution of
the initial mass Mv,Mw among existing nodes. The pairwise exchanging and the computation
at each node in the Convergence phase always produce the result that the system has
converged to with a very small error. This can be proven as bellows, where for simplicity we
assume ideal system conditions and that all nodes have entered the Propagation phase,
Np = N and finit,t = 0. Considering the formula 5.2 at start time t0, the target value would
be: ∑N

i=1 vi,t0∑N
i=1wi,t0

= N,

and hence,
N∑
i=1

vi,t0 = N
N∑
i=1

wi,t0, (5.3)

and the local estimate of each node i in the Convergence phase is a good approximation
of the target value with a tolerated error:

ei,t = N =⇒ N = vi,t
wi,t

,

and so the following relation also holds:

vi,t = Nwi,t ∀t ≥ tc (5.4)

Assume a node j in the Convergence phase has failed at time t ≥ tc. In this case, the
system mass has deprived of the pair (vj,t, wj,t). Also, the target can be estimated as

ei,t =
∑N
i=1 vi,t0 − vj,t∑N
i=1wi,t0 − wj,t

,

and by using the formulas (5.3) and (5.4), it is possible to compute the following aggregation
result:

ei,t =
∑N
i=1 vi,t0 − vj,t∑N
i=1wi,t0 − wj,t

= N
∑N
i=1wi,t0 −Nwj,t∑N
i=1wi,t0 − wj,t

∀t ≥ tc (5.5)

The previous analysis proves that the departure of a node in the system after it has
converged does not change the result of the aggregation process. Any node still in the system
maintains an asymptotic convergence to the same target value, which corresponds to the
number of nodes which have entered the Propagation phase, Np. Thus, there is no need

90

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

to address churn in the Convergence phase.

It is now apparent that the Propagation phase is the critical phase concerning the
convergence and the accuracy of the data aggregation process. Unexpected departure of nodes
in the Propagation phase need to be addressed explicitly. Any node i in the Propagation
phase has the weight wi,t > 0 that is a portion of the total weight mass Mw. Also, wi,t 6= Mw

Np

because node i did not achieve convergence yet. Nodes in this phase hold critical information
needed for the correct convergence to the target value. At start time t0, the seed node ı̂ is
the first node in the Propagation phase and the most critical node. At a time t > t0, other
nodes make the transition from the Initial phase to the Propagation phase during the
diffusion process. Additionally, the probability of losing a local weight value is very small
at t0. However, it exponentially increases with the diffusion process. At the same time the
portion of the weight mass held at each node in the Propagation phase decreases over time.
Thus, the impact of losing some weight values also decreases.

To demonstrate the impact of node churn on the performance of the data aggregation
process, the protocol SSEP is simulated under ideal and dynamic conditions. Figure 5.1
illustrates the results of the simulations. In the left column, the protocol is simulated in the
ideal conditions, and the right column shows the protocol performance under gradual node
churn. Figure 5.1.a and 5.1.d shows the average of local estimates converging to the target
value. Also, figures 5.1.b and 5.1.e are zoom-in of the figures 5.1.a and 5.1.d respectively.
The estimation error is presented in the figures 5.1.b and 5.1.f.

Simulation results show the perfect and accurate convergence of all nodes under the
ideal conditions. The system size N and the number of nodes that made a transition to the
Propagation phase Np, alongside the average of local estimates, converge to the correct
target N . Also, local estimation error tends to a very small value at all nodes and continue
decreasing despite the achieving of convergence. Under the node churn, system size N changes
every cycle and the number of nodes in the Propagation phase is less than the initial
system size, Np < N , which implies some nodes have departed the system during the Initial
phase. Moreover, the average of local estimates shows the convergence of nodes, but to an
incorrect value that is neither N nor Np. The local estimation error also shows a higher
value indicating the existence of errors in all nodes. In general, the data aggregation process
can converge under moderate dynamic conditions; but, it converges to wrong results at all
nodes. Additionally, although some detection methods can detect local convergence, they
cannot specify whether results have achieved the correct target or not.

The loss of mass due to node churn causes an estimation error during the aggregation
process. To maintain a robust and correct convergence in the presence of churn, the local state
(vi,t, wi,t) in each node i needs to be protected while the node is in the Propagation phase,
t0 ≤ t < tc. The next section describes the Push-Release model and its implementation,
the Robust Epidemic Aggrgation Protocol (REAP) that adopts an embedded failure detection
and immediate mass restoration mechanisms to achieve robustness and accuracy.

91

5.2. PHASES OF EPIDEMIC DATA AGGREGATION PROCESS

Under ideal conditions Under node churn

(a)
10

0

10
1

10
2

10
3

10
4

10
5

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

N
Np

Average of local estimates

(d)
10

0

10
1

10
2

10
3

10
4

10
5

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

N
Np

Average of local estimates

(b)
7000

8000

9000

10000

11000

12000

13000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

N
Np

Average of local estimates

(e)
7000

8000

9000

10000

11000

12000

13000

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

N
Np

Average of local estimates

(c)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

E
rr

or
 v

al
ue

Average of local estimation error

(f)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

cycles= 5 10 15 20 25 30 35 40 45 50 55 60

seconds= 5 10 15 20 25 30

E
rr

or
 v

al
ue

Average of local estimation error

Figure 5.1: Performance of SSEP under ideal and dynamic system conditions, N = 104,
T̈ = 500ms; On the right, the protocol encounters gradual churn rate: a node fails at every
second.

92

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

5.3 Push-Release Model

Dynamic system conditions such as node churn and network failure cause a direct violation
of the system mass invariant, which needs to be conserved during the epidemic task to
achieve the intended target. The data aggregation process is a typical example of major
epidemic tasks and the common building unit for many epidemic services and applications.
In particular, the aggregate count is the most susceptible process to the dynamical conditions,
since the seed node holding the initial peak value. In the previous section, three phases of
the aggregation process are identified, the Initial, Propagation, and the Convergence
phase. It is also verified in the section that the Propagation phase is the most critical
phase for the accuracy of the aggregation process.

Practically, existing nodes in a system join or participate in a particular aggregation task
promptly after receiving a request or according to a pre-defined instructions. Either case, not
all nodes start at the same time, but they have been presumed part of the system. Moreover,
although they are included in the system, and they are aggregated into the initial mass that
needs to be preserved, they are not effective to the aggregation process until they join the
Propagation phase. Nodes in the Propagation phase hold critical information needed
for the correct convergence to the target value, and this information needs to be protected.
Also, after achieving convergence, node churn has no impact on the aggregation results, and
hence, protecting nodes states is not necessary.

Replication is the fundamental technique to achieve fault-tolerance and data availability
in distributed systems. Through sharing information and redundant resources, a distributed
service ensures data consistency, reliability, and accessibility. However, replication protocols
in distributed systems also have restraints, such as the central points of failure and the limited
scalability. However, many epidemic solutions are used as alternative approaches [23, 39]. In
general, an effective distributed replication service requires a reliable failure detector and
coordination protocol, which are complicated tasks for a process that intended to be a simple
component such as the data aggregation process.

As an example of using failure detection to achieve robust aggregation, the work in [75]
presented a robust aggregation protocol that implements a failure detector to recover from
the damage to the system mass. However, the failure detector is based on symmetric values
exchanging and correlation among neighbour nodes. Also, the correct detection of nodes
failure takes a certain amount of time in addition to a noticeable delay that is needed for
local estimates to re-converge to a correct value. An other example is the work in [68], which
presented a failure detector that uses epidemic data aggregation to achieve the consensus
on the failure information. Although the failure detection protocol has reduced the time
to the consensus, it takes longer time than the needed for a data aggregation to achieve
convergence. From another perspective, several studies proposed supporting the accuracy
of the data aggregation through maintaining robust topology manger protocols [13, 33, 76].
Although those attempts have build membership and peer-sampling services that are robust
in one extent or another, the accuracy of the aggregate results is not ideal, in addition to

93

5.3. PUSH-RELEASE MODEL

time needed for the topology maintenance. Furthermore, modern services require lightweight
and resilient solutions for data aggregation and topology management, e.g. OSN and IoT
applications.

The following introduces the Push-Release model, which achieves robust data aggregation
in the presence of node churn and network failures. The model implements a decentralised
replication and failure detection mechanism that is compatible with the epidemic data
aggregation process. It also provides instantaneous recovery and mass restoration. The model
mainly addresses nodes in the Propagation phase and apply the new mechanism to protect
the data, which is critical for the aggregation process to achieve correct results. The model
applies the symmetric-push sum exchange model and sends a Push message to random peer
at every cycle. Also, it detects the local state, which is critical to the aggregation process. In
consequence, each node j receives a remote state with a critical data flag from node i, creates
a replica of the remote state and stores it in a local cache. In the followed cycle, node i sends
a Release message to node j to delete the local state of node i received in the previous
cycle. However, when node j does not receive the Release message for a predefined timeout,
it restores the state into the system using the local aggregation pair. Through the Release
message, nodes can detect the failure of other nodes, and they can restore the missing mass
using the replicas in the local cache. Additionally, replicas in the local cache of each node are
either deleted in the next cycle or remain only for a few cycles until they are restored, which
prevent overflowing the cache and keeps memory usage minimum. The sequence of messages
in the Push-Release model is described in Figure 5.2.

Node i

-

Node j

Replicate pi,t1
if it has critical
data

Delete pi,t1

-

Node k

Replicate pi,t2
if it has critical
data

-

Cycle t1 t1

Cycle t2 t2

Push tuple p
i,t1

Pull

Release p
i,t1Push tuple pi,t

2

Pull

Figure 5.2: Messages exchange in Push-Release Model

In addition to inheriting all the intrinsic features of the epidemic aggregation process,
the model supports the process by the detection of nodes failure and the prompt recovery
from the damage due to the loss in system mass. Failure detection and mass restoration

94

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

mechanism is performed along the line with the regular decentralised computations, and
hence, it does not require any complicated external services and does not produce significant
overhead, except for the Release message which is generated by nodes in the Propagation
phase. The model is called ’Push-Release’, because it generates two symmetric messages in
two consecutive cycles, i.e. the Push and the Release messages. The next describes the
Robust Epidemic Aggregation Protocol REAP, which implements the model.

5.3.1 Robust Epidemic Aggregation Protocol (REAP)

REAP is a novel epidemic protocol to achieved robust data aggregation in the presence of
node churn and network failures. The protocol REAP detects nodes in the Propagation
phase to recognise the critical aggregation data and to flag the pairwise data exchange as
follows. Each node i joins the Propagation phase when it receives a non-null weight wj,t > 0
from node j and exits the phase when node i detects the convergence locally. The local
detection of convergence is accomplished using the heuristic detection method of Poonpakdee
et al. [94], which is described in Section 3.3. Each node i maintains the queue Qi and
computes the local estimation error using the Coefficient of Variation formula, εi,t = Qi.s

Qiē
,

where Qi.s is the standard deviation and Qi.ē is the arithmetic mean. The convergence is
detected at each node i when εi,t falls below the error threshold ε for a number of consecutive
cycles Υ. The error threshold ε controls the desired level of aggregation accuracy and Υ is
used to prevent precocious convergence detection during the aggregation process.

Also, each node i in the Propagation phase sends two messages to the random node
j, a Push message and a Release message at two consecutive cycles. Assume the node i
has sent a Push message to node j at cycle t1, so it sends the Release message in cycle
t2, Figure 5.2 illustrates messages exchange in REAP. The Push and Release messages
correspond to a cycle t should carry identical information, which helps REAP to handle the
asynchronous exchange of messages where a Release message may deliver before the prior
Push message. REAP distinguishes the type of messages by the reception order. Typically,
the Release message specifies the sender node situation, node i determines j as failed when
the Release message from node j does not arrive before T̂, and T̂ is the maximum timeout
value.

The protocol also maintains the cache P for the Push messages to manage the Push-Release
operation. Each cycle the protocol inserts an entry pi,t of the current Push information in P.
Each entry pi,t contains the receiver node id, the current time t, and the local aggregation
pair, pi,t = 〈~α, t, vi,t, wi,t〉. In the following cycle, the protocol sends the Release message
using the information in the entry pi,t. After sending the Release message, the entry pi,t is
removed from P, and so the cache size is kept minimum.

Nodes in the Propagation phase assign a flag to each Push message indicating that the
message has a critical information. On the reception of a Push message with a critical flag,
the receiver node i updates its local aggregation pair, replicates the local pair, and stores the
replica in the local cache R using the entry rα,tα = 〈α, tα, t̂, v, w〉, where α is sender node id,

95

5.3. PUSH-RELEASE MODEL

tα is the Push time and it is used to break ties when receiving a Push message from the
same node i at different cycles, t̂ is the maximum time to wait for the Release message and
(v, w) is the aggregation pair. In the subsequent cycle, node i receives a Release message
and deletes the corresponding entry in R. In case the Release message does not arrive for
T̂ cycles, the protocol assumes that sender node, say node k is the sender, has failed and
the corresponding recovery entry is used in the mass restoration procedure. The replicated
pair values in rk,tk are applied to the local pair (vi,t, wi,t) = (vi,t + rk,tk .v, wi,t + rk,tk .w). The
applied amount is then propagated and distributed among nodes through the regular message
exchanging. However, the restored mass portion will encounter a small diffusion delay before
it corrects local estimates in the existing nodes.

At the node j and after receiving a flagged Push message from node i, node j creates
the recovery entry ri,ti = 〈i, ti, T̂, vj,t, wj,t〉. The tuple ri,ti includes a replica for the local pair
values of the node j, which is replicated after sending the Pull message to node i and after
updating the pair. Therefore, the replica has the latest state and the one which node i will
achieve after receiving the Pull message from node j. Also, in case the node i has failed
before it receives the Pull message, the sum of the lost values includes the aggregation pair
at node i after the Push message and the pair at node j before the update, which equals the
replica pair values after the update at node j.

As shown in Algorithm 10, at each cycle, the protocol detects the Propagation phase
and sets the Push flag in line 2. In lines 3-5, the protocol performs the Push operation.
The protocol sends the Release message in lines 6-8 and inserts a new entry in P (lines
9-10). The detection of node failure and the mass restoration procedure are performed in
lines 11-15. The protocol specifies the Push and Release messages in line 17 and line 18.
The Pull message is generated in lines 22 and 23. The protocol inserts the local and the
received estimates in the queue Q in the line 24. The critical state is replicated, and the
entry r is stored in R (line 27). The local convergence is detected in line 28.

5.3.2 Experimental Results for REAP

The protocol REAP is simulated using the event-driven engine in PeerSim. Two events
are used in the simulation: (i) The Run Event is scheduled at every cycle, and the event
stops after a predefined number of cycles. At this event, a node sends Push and Release
messages, detects node failure and performs the mass restoration. (ii) The Message Event
occurs when a node receives a message. At this event, the incoming message is processed,
the local aggregation pair is updated, and the detection of convergence is performed.

Two protocols are examined in the simulations: SSEP and REAP. The performance and
the accuracy of the protocols are monitored and recorded at each cycle using a dedicated
external observer. The communication latency is adjusted for all messages to be delivered in
the same global cycle. This adjustment is necessary to avoid the transition of some system
mass Mv,Mw across cycles during the aggregation process. The adjustment is applied only
for the sake of the simulations and can be relaxed in the realistic contexts. In each simulation

96

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

Algorithm 10: Robust Epidemic Aggregation Protocol (REAP)
Require: a peer-sampling service, e.g. NCP+; tolerance thresholds ε; cycles

threshold Υ; queue length lQ; and maximum timeout value T̂.
Initialisation: each node i has:

v = 1, w = 0, except one seed node has w = 1; a flag for critical data
ρ = false; a flag for local convergence ρ̂ = false; a cache for Push
entries P = {p = 〈~α, t, v, w〉, ...}, where ~α is peer’s id, t is current
time, and (v, w) are aggregation pair; a recovery cache
R = {r = 〈α, tα, t̂, v, w〉, ...}, where α is sender’s id and tα is the
Push time, t̂ is Release receiving timeout, and (v, w) are replica
pair; Q = ∅.

1 At each cycle t at node i:
2 ρ←− (w > 0 ∧ ¬ρ̂) // detect Propagation phase

3 j ←− getRandomPeer()
4 v = v

2 , w = w
2

5 send 〈v, w, t, ρ, reply = true〉 to j // a Push message to node j

6 foreach p ∈ P do // send Release messages for entires in P

7 send 〈p.v, p.w, p.t, ρ = true, reply = true〉 to p.~α
8 P←− P− {p}

9 if ρ then // this Push is critical, create an entry in P

10 P←− P ∪ {p = 〈j, t, v, w〉}

11 foreach r ∈ R do // failure detection and mass restoration
12 r.t̂←− r.t̂− 1
13 if r.t̂ == 0 then // timeout, restore mass
14 v = v + r.v, w = w + r.w
15 R←− R− {r}

16 At event ’receive message m from j’ at node i:
17 if m.reply then // m is a Push message
18 if ∃r ∈ R where r.α == j and r.tα == m.t then // m is a Release

message
19 R←− R− {r} // delete the recovery entry r
20 return // end the procedure and do not update
21 else
22 v = v

2 , w = w
2 // a Pull message to node j

23 send 〈v, w, ρ = false, reply = false〉 to j

24 Q←− Q ∪ { v
w
, m.v
m.w
}

25 v = v +m.v, w = w +m.w // update local aggregation pair

26 if m.ρ then // m has a critical data
27 R←− R ∪ {r = 〈j,m.t, T̂, v, w〉}

28 ρ̂←− (Q.s
Q.ē
≤ ε for Υ cycles) // detect local convergence

97

5.3. PUSH-RELEASE MODEL

run, a different random seed is applied to enforce randomisation, and each experiment is
repeated tens of times to validate the setting and the results. The protocols are initialised by
a peak data distribution whereas vi,t0 = 1, 0 < i ≤ N ; w0,t0 = 1 at seed node 0 and wi,t0 = 0,
1 < i ≤ N . Global parameters are adjusted to certain values as described in [52, 92]: the
timeout value is set to T̂ = 3 cycles, the tolerance threshold is set to ε = 1%, the minimum
number of consecutive cycles is set to Υ = 5 cycles, the length of the Q is set to 10 elements.
On another hand, the protocol NCP+ is the peer-sampling service, and it is configured to
maintain a random k-regular overlay with k = 30 and link expiry value Ť = 10.

The performance of REAP is examined in static network conditions. Figure 5.3.a shows
the smooth transition of nodes among phases and the correct computation of the entry and
exit points of the Propagation phase. Also, Figure 5.3.b presents the percentage of nodes
that have locally detected the convergence. Nodes detect convergence after they make a
transition to the Convergence phase. In Figure 5.3.c the local estimate value of a randomly
chosen node is illustrated for SSEP and REAP showing the performance similarity when
churn is absent. Figure 5.3.d shows the communication overhead of both protocols, and
REAP produces only one new message for a small period during the Propagation phase.

To evaluate the protocol REAP under the dynamical conditions, the protocol is simulated
against SSEP in the presence of node churn with the following rates: {0%, 1%, 5%, 10%,
20%} of the system size N . Nodes are selected randomly at each cycle from cycles [0, 30] and
removed from the system by an external actor. The number of removed nodes at each cycle is
a distribution of the total number of failures over the 30 cycles. This ensures the occurrence
of node churn in different phases during the aggregation process. Also, the external observer
detects the changes in the system size N and counts the number of failed nodes finit,t in the
Initial phase. It then computes the correct size of nodes participating in the aggregation
process Np, where Np = N − finit,t ∀t ≤ tp, and tp is the time when all existing nodes have
joined the Propagation phase. Afterwards, the local estimation error is computed at each
cycle t using εi,t = |ei,t−Np|

Np
. The results are illustrated in Figure 5.4 and Figure 5.5.

Figure 5.4 shows the recorded totals of the system mass Mv,Mw during the aggregation
process. The figure shows the correction in the mass amount in comparison to SSEP as a
result of the mass restoration mechanism in REAP. The improvement of accuracy in REAP
is shown in Figure 5.5. The figure summarises the results of ten experiments on each of
the given churn rates. In the first case, no churn is present, and estimation error tends to
a minimal value indicating the correct convergence to the target value. In the rates less
than 10%, the estimation error rises to 1%, while the error exceeds 1% for the higher rates.
Generally, estimation error in REAP is lower than the SSEP, which validates REAP ability
to improve the accuracy of the epidemic data aggregation and to provide better results.
However, some error still present in the aggregation results of REAP.

In summary, the partitioning of the data aggregation process into phases has helped
understand the process and specified the most critical phase for the accuracy of the process
results. Also, the protocol REAP is introduced to address the vital phase of the data

98

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50

seconds= 5 10 15 20 25

%
 o

f n
od

es

Initial phase
Propagation phase

Convergence phase

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50

seconds= 5 10 15 20 25

%
 o

f n
od

es Initial phase
Propagation phase

Convergence phase
Local detection

(a) Percentage of nodes in each phase. (b) Local convergence detection.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

cycles= 5 10 15 20 25 30 35 40 45 50

seconds= 5 10 15 20 25

E
st

im
at

e
va

lu
e

SSEP
REAP

1

2

3

cycles= 5 10 15 20 25 30 35 40 45 50

seconds= 5 10 15 20 25

N
um

be
r

of
 m

es
sa

ge
s

SSEP
REAP

(c) Local estimate in a single node. (d) Average number of messages per node.

Figure 5.3: Size estimation in REAP, N = 104, ε = 1%, Υ = 5, lQ = 10, T̈ = 500ms.

7500

8000

8500

9000

9500

10000

cycles= 10 20 30 40 50

seconds= 10 20

SSEP

 0 10 20 30 40 50

 0 10 20

REAP

 0%
 1%
 5%

10%
20% 0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

cycles= 10 20 30 40 50

seconds= 10 20

SSEP

 0 10 20 30 40 50

 0 10 20

REAP

 0%
 1%
 5%

10%
20%

(a) Total system mass Mv. (b) Total system mass Mw.

Figure 5.4: System mass in REAP under various churn rates, N = 104, ε = 1%, Υ = 5,
lQ = 10, T̈ = 500ms.

99

5.4. PULL-RELEASE MODEL

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

seconds= 10 20

S
S

E
P

 0 10 20 0 10 20 0 10 20 0 10 20

Max
Avg
Min

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

cycles=10 20 30 40 50

R
E

A
P

0%

0 10 20 30 40 50

1%

0 10 20 30 40 50

5%

0 10 20 30 40 50

10%

0 10 20 30 40 50

20%

Figure 5.5: Estimation error in REAP under various churn rates, N = 104, ε = 1%, Υ = 5,
lQ = 10, T̈ = 500ms.

aggregation process and achieve robust results in the presence of node churn and network
failure. REAP is a robust epidemic data aggregation protocol that performs basic aggregate
functions similar to other protocols such as SSEP and SPSP. However, it has been verified
that REAP can achieve better accuracy under moderate churn.

Although REAP is robust, the protocol has shown degraded efficiency when examined
under high churn rates, which in some cases results accuracy was similar or even worse than
the existing aggregation protocols, e.g SSEP. Thus, further investigation on the performance
of the protocol REAP may improve the efficiency of the protocol and the data aggregation in
general. The next section describes additional work that has been carried out on REAP and
introduces the protocol REAP+, the enhanced version of REAP.

5.4 Pull-Release Model

The previous section introduced the protocol REAP, which is a robust aggregation protocol
that recognises the phases of the aggregation process which have been identified in Section 5.2.
REAP is able to achieve good accuracy under moderate node churn; however, the produced
accuracy under higher rates of churn was close to other aggregation protocols. This section
investigates the efficiency and performance of REAP, targeting further improvement to the
epidemic data aggregation process.

The protocol REAP has been simulated alongside the protocol SSEP to assess the
performance and capture behaviour pitfalls and trends. The aggregation error (i.e. estimation
error) produced by REAP was lower than SSEP when low and moderate node churn rates are
used in the simulations. Despite that, REAP was not able to eliminate the error in the local

100

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

estimates and achieve the ideal robustness. Technically, the protocol has achieved convergence
to a result that has approximately 10% error of the target, and the target was the size of a
dynamic system. Some services may tolerate 10% error in the aggregation results, for example,
a coordination service that uses the protocol ECP may adjust the decision-making process to
tolerate losing some participating nodes, and achieve the consensus of the majority rather
than the full agreement. However, there are applications which demand higher accuracy.
Furthermore, the moderate node churn (about 30%) is expected in extreme-scale systems, and
it would be a great advantage when REAP achieve robust aggregation under the unexpected
levels of churn. Table 5.1 shows expected churn rates in several real-world networks.

Typically, there are circumstances when churn and failures become very high and severe,
e.g. a large system where 60% to 90% of nodes fail in less than one minute. More catastrophic
scenarios are also possible, on which the overlay topology is disconnected, and the system
network is partitioned [16]. Those cases required different solutions, e.g. [33], and they
are not addressed in the present study. Under very high churn, the protocol REAP and
SSEP exhibits approximately similar behaviour, and in some occasions REAP has achieved
results with aggregation error higher than SSEP. This undesirable performance has motivated
the investigation to identify sources of error which prevented REAP from achieving better
accuracy, although it implements a failure detection and mass restoration mechanisms.

The investigation involved the development of additional simulation modules to capture
more information about the aggregation process in REAP and SSEP protocols. Information
such as nodes which have failed and their local states, recovery entries and the enclosed
replicas, detected and undetected failures and more have been recorded and studied. The
simulations also included examining the protocols under different churn rates and types,
such as sudden and gradual churn with rates ranging from 30%− 90%. Simulation cycles
are further divided into sub-rounds, and nodes failure are distributed over the rounds to
experience different scenarios, such as a node that fails before sending the Push message or
before receiving the Pull message. Intensive experiments have been carried out, and many
results have also been logged and analysed. The following list describes the investigation
outcome, which determines the sources of aggregation error and proposes some solutions.

I) Data Initialisation:

In an epidemic system, each node i holds a data value xi, 0 < i ≤ N , which presents a
property, a sensor data or an internal parameter. Initially and before the aggregation
process starts, the node i assigns a pair of aggregation values (vi, wi) for the process, vi
is set to the local data value, vi = xi, and the weight wi is determined according to
the required aggregation function [26, 30]. After the start of the aggregation process,
nodes exchange their pair values and compute local estimates. However, due to the
asynchronous message exchanging, interleaving messages are present at all times [33,
125], which resulting in asymmetric values at each node. In the protocol REAP, nodes
in the Initial phase have a null-weight, but some nodes exchange their local data
value vi with nodes in the Propagation phase, and they leave the system before they

101

5.4. PULL-RELEASE MODEL

enter the Propagation phase. Nodes in the Initial phase should not contribute to
the total mass of the aggregation because they are not part of the process.

Consider the size estimation process corresponding to the count aggregation function,
in which vi = 1 at all nodes and Np is the number of nodes in the Propagation phase.
Let Mvp be the sum of vi values for all nodes in the Propagation phase, Mvp = ∑Np

i=1 vi.
Obviously, the statement Mvp = Np should be true. However, investigation results
have shown that Mvp 6= Np due to sharing a portion of the mass with nodes in the
Initial phase which have failed. Eventually, aggregation results will converge to an
incorrect estimation of Np.

Data initialisation in the protocol REAP is a potential source of errors in the aggregation
results. To limit errors from nodes in the Initial phase, all nodes should be initially
assigned a null-values for the aggregation pair until they join the Propagation phase,
except for the seed node where the pair has to get the correct values. At the beginning,
the local pair should be nulls, (vi, wi) = (0, 0) at each node i, 0 < i ≤ N , except of ı̂
which has (vı̂, wı̂) = (xı̂, w), where w is determined by the required aggregation function,
e.g. w = 1 for the summation function. When a node i receives a non-null pair (vj, wj)
from a remote node j and wj > 0, node i enters the Propagation phase and sets the
local pair (vi, wi) as follows (vi, wi) = (xi + vj, wi + wj). This initialisation mechanism
eliminates errors from the exchange of messages with nodes in the Initial phase.

Another initialisation issue is the determination of the seed node. For instance, a seed
node can be elected or randomly selected [32, 92]. However, this requires additional
beforehand computation, and it is ultimately susceptible to a single-point failure. The
requirement of a single-point for initiating the peak data distribution in epidemic tasks
has been a challenge for a long time. In Section 6.1, we propose the decentralised seed
selection mechanism to overcome this challenge.

II) Detection method and error tolerance threshold:

The detection method of local convergence has a vital role in the protocol REAP. In
each cycle the protocol associates a boolean flag with the Push message to indicate that
the message is holding a critical data from a node in the Propagation phase. Also,
the receiver node makes an entry for the critical data in the recovery cache whenever
the Push message is flagged. The boolean flag is set by each node in the Propagation
phase and Push messages are not flagged when nodes make the transition to the
Convergence phase. Nodes are required to detect the local convergence to make
the transition, and the precise moment of convergence is determined by the detection
method.

The convergence detection method in REAP is the heuristic method of Poonpakdee
et al. [94], which is described in Section 3.3. The method computes the aggregation
error ε using the coefficient of variance formula, which produces relative error values.
Thus, the tolerance threshold ε is also specified in relative values, e.g. 10% or 0.01.

102

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

The verification of the threshold conceals some error which is neglected due to the
threshold value, and it is usually a percentage of the target value. For example, 10%
makes REAP to tolerate 104 nodes in a system of 106 nodes, which is a large amount
of error for the size estimation task. Figure 5.3.b shows some nodes that had detected
convergence before they truly converge to the target Np.

Mainly, nodes in the Propagation phase may detect the local convergence earlier than
required, which cause nodes to set the critical data flag off. Also, receiver nodes will
stop replicating data and detecting failures before nodes achieve the correct convergence
and thus, any node failure at this point increases the error in the aggregation results.

The detection method can achieve higher accuracy by either adjusting the relative
threshold to higher precision or using the absolute value for the threshold setting as
described in Section 3.3. For instance, the Standard Error (SE) formula can be utilised
with a tolerance threshold set to the minimum desired error. Figure 3.1.d illustrates
the convergence detection in SSEP when the heuristic method is used with SE formula
and ε = 1 node. Although the use of SE may delay the detection of convergence, it
provides better accuracy and requests minimum information about the global system
initialisation.

III) After-push failures:

In principle, all epidemic Push-Pull protocols including REAP select a random peer
in each cycle and send a Push message to the peer. Typically, the sender node has no
information on the state of the peer node and whether it is active or has failed. In
this scenario, a node i randomly select a node j and sends a Push message to node
j. If node j has failed before receiving the Push message, the protocol REAP has no
way to recover the mass which is sent to node j. Fortunately, REAP is a Push-Pull
protocol as well, and thus, node i can detect the failure of node j by monitoring
the Pull message of node j. This mechanism can easily be implemented using the
Push information and the recovery cache R. After sending the Push message, node i
replicates the local state in a recovery tuple ri,t = 〈j, t, t̂, vi,t, wi,t〉 and stores it in the
cache R, where j is the receiver node and t is current time at node i, i.e. the Push
time. Later, the node i deletes the entry ri,t upon the receiving of the Pull message
from node j. The mechanism allows the node i to recover the values sent in the Push
message in case the Pull message is not received within the given timeout.

The absence of Release messages is the initiator for the mass restoration procedure.
In the real-world networks, Release messages can have random delays and may deliver
after the timeout, in which case node i has restored the values to the system. The
setting of the timeout period is another source for the error, although it has a small
probability. In another respect, the use of Pull messages to detect the failure of
receiver nodes suggests that maybe sending the Release message in the next cycle
after receiving the Pull message makes more sense. However, this raises some issues

103

5.4. PULL-RELEASE MODEL

too. For example, the Pull and Release messages will experience random delays,
which might be in total higher than the timeout period, thus, causing a mass restoration
at the receiver node. In general, the timeout value can be defined to minimise errors,
and any Pull or Release messages that deliver after the timeout period should be
ignored.

Additional source of the aggregation error in REAP is the non-flagged Push messages
from a node in the Convergence or Initial phase. Assume a receiver node j is in
the Propagation phase while the sender node i is not. The critical data flag controls
the insertion of the recovery entries, which only considers the node i’s data. The Pull
message from the node j also carries critical data to the node i, which is not protected
against node i failure. REAP was at the ignorance of this case because no entry is
added to the recovery cache for this transaction and no Release message is expected.

IV) Before-push failures:

Investigations have shown that nodes failing before sending their next Push message is
the major source of aggregation error in the protocol REAP. In the scenario, each node
i sends a Push message at every cycle and when the Push is flagged, the receiver node
j replicates the data and adds an entry in the recovery cache. In the same cycle, node
i receives one or more Push messages from other nodes, updates its local state, and
fails before sending a new Push message in the following cycle. Due to the failure of
node i, the system has lost the updates in the local state of the node i. Also, the mass
restoration procedure at node j will restore an out-of-date replica for the node i.

We called the error caused by the Before-push failure, the ’Compensation Error ’ and it
is denoted by (ε̃). The presence of the compensation error is unavoidable situation due
to the asynchronous message exchanging and the interleaving messages. In essence and
after the timeout period, node j restores the pair values in the replica ri,t = 〈i, ti, 0, v, w〉
to the system. However, the values which are lost due to the failure of node i are not
equivalent. Also, the difference between the lost mass and its replica is usually higher
when node i fails before it receives the Pull message from node j. The difference
between the lost values and the restored replica values are calculated as follows:

∆vi = vi,t − rj,t.v, ∆wi = wi,t − rj,t.w, (5.6)

where i is the sender node that has failed and j is a receiver and mass restoration node,
and ∆vi, ∆wi are the difference values. The total compensation error caused by all
failed nodes during the aggregation process can be computed as follows:

ε̃ =

∣∣∣∣∣
∑Np
i=1 ∆vi∑Np
i=1 ∆wi

∣∣∣∣∣
Np

. (5.7)

The leading cause of the compensation error is the updates, which the replica has

104

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

missed. The replica needs to be updated whenever the local state of the original node
is modified to overcome the formation of the compensation error, which is not trivial
due to the required overhead for synchronising replicas. A mechanism for matching
the replicas to their original values are needed. For instance, creating a new replica for
each new update and deletes the previous one. Also, only one replica for each node
is required to remain in the system. The matter is how to synchronise replicas in a
decentralised manner for the highly distributed systems. The protocol REAP+ provides
a solution technique, and it is explained later in this section.

V) Cascading failures:

In very high dynamic conditions where nodes churn is severe, the failure of the sender
node and the node which holds the replica is very likely to occur. In consequence,
the system mass has deprived the values in the aggregation pairs in the failed nodes.
Moreover, the mass restoration mechanism has failed as well. In essence, node i sends
a Push message to node j and node i fails at time t1. Node j fails too at time t2,
where t2 ≤ T̂ and T̂ is the maximum timeout value. Also, t1 and t2 can be in the same
cycle or t2 can be in a later cycle, t2 ≥ t1. Thus, the aggregation error is caused by the
presence of the cascading failures.

Cascading failures have the most detrimental effect on the performance of REAP due
to the damage it causes to the mass restoration mechanism. During this project, there
were attempts to solve this issue by creating more replicas. However, every replica
requires additional messaging to release other replicas. Otherwise, the mass restoration
will be inconsistent. Other techniques such as pinging and heart-beating are also
investigated, and the techniques which have been suggested made the robust protocol
very complicated and produces higher overhead. Also, the outcome was not feasible to
achieve better performance and higher accuracy. It is an objective of this project to
make robust protocols lightweight, rapid and resilient, hence, the restraint on using the
pairwise mechanism for the failure detection and mass restoration in REAP and later
in REAP+.

The maximum timeout parameter of T̂ can be used to reduce the effect of cascading
failures. A shorter timeout value can limit the time in the face of churn, however,
timeout value has to handle network latency and messaging delays as well. Generally,
the protocol REAP has no mechanism to deal with the cascading failures when severe
churn is present.

The previous list has described potential sources of aggregation error in the protocol
REAP. Some sources can be overcome by making the correct adjustment, such as data
initialisation and the threshold parameters of the convergence detection method. The Before-
push and After-push failures can be handled by adopting new mechanisms and altering the
protocol. However, the cascading failures are unavoidable in severe dynamic conditions, and
the protocol is incapable of dealing with the resulting impact. The following explains the

105

5.4. PULL-RELEASE MODEL

model Pull-Release that makes up-to-date replicas and reduces the effect of the compensation
error.

The model Pull-Release adopts a different strategy on the creation and deletion of replicas,
and in the same time, it preserves the intrinsic asynchronous exchanging and rapidity features
of the Push-Release model. In principle, the creation of a replica follows the same procedure,
a receiver node makes a replica after receiving a Push message and before sending the Pull
message. However, in the model of Pull-Release, a sender node changes the remote replica
and the host node of the replica whenever an update is received from another node, typically
by a Push message. The new replica host is the node which has sent the latest Push message.
Also, the new replica is for the aggregation values after the update and it is sent to the host
node using the Pull message.

In the data aggregation, each update transaction includes two nodes: sender and receiver,
and two messages: Push and Pull. The update transaction in the Pull-Release model
makes three replicas as follows:

Prep is a local replica in the sender node for the values which are sent in the Push message
to a random peer node. This replica will be deleted when the corresponding Pull
message arrives. Otherwise, the sender node assumes that the peer node has failed and
Rrep values are restored to the system after the given timeout.

Srep is a remote replica for the sender node in the receiver node. Upon the reception of the
Push message, the receiver node updates the local aggregation values and makes a
replica for them. This replica belongs to the sender node. The receiver node deletes
this replica either by a Release message or by the mass restoration procedure.

Rrep is a remote replica for the receiver node. Upon receiving the Pull message in the
response to the previous Push message, the sender node deletes the local replica Prep,
updates the local values, and insert new replica: Rrep for the node which has sent the
Pull message, i.e. receiver node. Rrep is deleted by a Release message or by the
mass restoration procedure.

The replica Prep protect the mass against the failure of the receiver node and hence,
handle the relevant issues of the After-push failures. Also, replicas Srep and Rrep are copies
of the latest aggregation values after performing the local update, which minimises the
compensation error that is caused by the Before-push failures. Moreover, the model changes
the host of the replica Srep each time it receives a Push message, which means the replica is
always up-to-date.

In the model, a Release message is sent each time the replica Srep has a new host node,
and the host is the node which sent the Release message, and it sends the message only
after receiving the Pull message. Figure 5.6 illustrates the message exchange in the model.
A node that receiving a Pull message also receives information about the previous host
node of the replica Srep. The new host uses this information to send the Release message

106

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

to the previous node. The Release message is only sent after the Pull message to protect
Srep from the failure of the new host node and the failure of the Srep owner node.

Node i

-

Node j

Create Srep〈αi,t1〉

Store αi,t1 in
release cache

Delete Srep〈αi,t1〉
& Delete αi,t1 from
release caches

-

Node k

Create Prep〈αk,t1〉

Delete Prep〈αk,t1〉
Create Rrep〈αk,t1〉

-

Cycle t1 t1

Cycle t2 t2

Push tuple α
i,t1

Pull tuple αi,
t1

Push tuple α
k,t1

Pull tuple αk
,t1
, r̃i

Release tuple αi,t1

Figure 5.6: Messages exchange in Pull-Release Model.

For the management of the replicas and to control the execution flow of the model, two
new parameters are used. The replica identifier α and the replica tuple r̃. The parameter α
is a globally unique identifier that defines each replica in the system at any time. A replica
identifier can be a hash number, a random number, or any other form of universally unique
identifiers. The function Fα(i, t) generates the unique identifier αi,t that can be used globally
from the inputs: node identifier and current time t. The replica identifier is used to process
and recognise the replicas in the recovery cache. Any insert, update or remove operation
requires the replica identifier to be accomplished.

The parameter r̃ is a local tuple at each node and holds information on the current replica
and the node that host the replica. Each time the host node of the replica is changed, the
tuple r̃ is updated to follow the new replica host. Also, the tuple is sent with the Pull
message to the new host, which uses the information in the tuple to identify the old host and
to send the Release message. At start time, some Pull messages may have null replica
tuples because receiver nodes are in the Initial phase and have no replicas in the system.

Each replica in the Pull-Release model is subject to certain operations during its lifetime
in the system. Figure 5.6 shows the operations on the replicas. Starting by the replica Prep
at node i, in which node i creates it for its current aggregation values with a unique identifier
αi,t1 = Fα(i, t1), and t1 is the current time. The node i stores the replica in the local recovery
cache and sends the values to a random peer j in a Push message with the replica identifier
αi,t1. Also, the local tuple r̃i is set to r̃i = 〈αi,t1, j〉 to reference the replica Srep hosting node,
i.e. node j. Upon the reception of the Push message, node j updates the local values and
creates the replica Srep and use the parameter αi,t1 to identify the replica. In the Pull

107

5.4. PULL-RELEASE MODEL

message, node j sends the aggregation values, the parameter αi,t1, and the tuple r̃j. The
node i recognises the parameter αi,t1 in the Pull message and deletes replica Prep with the
identifier αi,t1. Then after, node i creates the replica Rrep for the local aggregation pair after
the update and use αi,t1 to identify it. Also, node i sends a Release message using the
information in the tuple r̃j. The replica identifier α and the tuple r̃ have a vital role in the
management of replicas. However, the model controls the replicas and operations without
using any extra messages or creating non-atomic operations. All replicas are created and
updated asynchronously, and at each cycle, there is a single replica, i.e. replica Srep, for
each node at a different host node. In case of the failure of any node, the mass restoration
procedure restores the replica.

Due to asynchronous communications, sometimes node i receives a Release message
from another node, say h, before receiving the Pull message from node j, which implies that
node j has changed the host of the replica Srep from i to h, however, node i does not have
a replica Srep for node j. To preserve the consistency of the replicas, Pull-Release model
stores the Release message in a cache with a timeout period. Upon the receiving of the
Pull message, the model deletes the replica Prep corresponding to the prior Push message,
deletes the replica Srep with the identifier in the Pull message and deletes the Release
message in the cache.

In the simulations, we adopted simple implementation for function Fα(i, t) which generates
unique integer values from the node identifier i and the current time t using the mathematical
bitwise operations. The integer values are used as replica identifiers, where αi,t defines each
replica by the node which created it and sent it in a Push message, and by the time of
creation. The time of creation is used to break the ties in case two replicas of the same
owner exists at any node, which makes the replica identifier valid over the system at all times.
Implementation of the function Fα(i, t) is as follows:

Fα(i, t) = (t� 32 ∨ i), Fα ∈ Z+ (5.8)

Although identifiers generated by the function Fα are limited to 64-bit integers, the generated
identifiers preserve the natural order of the numbers, and it is globally unique for the lifetime
of all replicas. The protocol REAP+ is introduced next, and the protocol implements the
Pull-Release model.

5.4.1 Robust Epidemic Aggregation Protocol-Plus (REAP+)

The protocol REAP+ is illustrated in Algorithm 11. The protocol implements the Pull-
Release model to achieve robust data aggregation. REAP+ adopts a new method for the
data initialisation and the convergence detection. It also uses Start Event to start the
first cycle. The protocol requires access to a peer-sampling service, i.e. NCP, and requires
information about the desired threshold values in advance.

Initially, the data values at each node i are held in the pair (xinit, winit), where xinit is the

108

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

data value that represent a local property, sensor data, or implicit decision, and the winit
is the aggregation determinant and it is set globally according to the required aggregation
function [26, 30]. Also, the aggregation pair (vi,t, wi,t) are used in each node i and are initially
set to nulls.

The protocol defines two caches and a tuple at each node: the recovery cache R = {r =
〈α, t̂, v, w〉, ...}, which stores the replicas of type Prep, Srep and Rrep, and it is used by the
failure detection and mass restoration procedure. The cache R̂ = {r̂ = 〈α, t̂〉, ...} is used for
the temporary storage of Release messages until receiving the corresponding Pull message
or timeout. Also, the replica tuple r̃ = 〈α, ~α〉 is used in the protocol to refer to the current
replica and the current host node. The parameter α is the replica identifier, and it is assigned
a new universal value at each cycle, as shown in the procedure PushAndReplcate. Also, t̂
is the timeout counter, and it is set to the maximum timeout value T̂ whenever an entry is
inserted in the caches.

The protocol REAP+ adopts the improved heuristic method for the detection of local
convergence and defines the queue Q at each node. The method is described in Section 3.3.
In REAP+, the estimation error ε is computed using the Standard Error (SE), formula 3.8.
By using the SE, the protocol avoids the potential residual errors that is tolerated due to the
setting of thresholds in the detection method. The protocol detects the convergence at the
start of each cycle (line 4, Algorithm 11), where all updates of previous cycles are applied
and before sending the Push message which, in this case, holds the latest convergence state.

In REAP+ the aggregation pair (vi,t, wi,t) is initially set to nulls. The protocol updates
the pair values at each node when receiving a message from a node in the Propagation
phase. After update, the receiver node makes the transition to the Propagation phase too.
To ensure the correct flow of the exchange and update transaction, the protocol detects the
first massage with a critical data flag and updates the pair (vi,t, wi,t) using the initial pair
(xinit, winit) as shown in lines 10-11 in Algorithm 11. The update at this point indicates that
the node has joined the Propagation phase, and it can share the local pair values with
other nodes with a flag for the critical data.

The protocol calls the procedures PushAndReplicate at each cycle. In the procedure, a
universal replica identifier αi,t is generated and Push message is sent. Also, the procedure
stores the replica Prep in the recovery cache R using the identifier αi,t when the node is in
the Propagation phase. The procedure updates the tuple r̃ with the new host node and
the identifier αi,t. Procedure ReleaseReplica is performed before the procedures
PushAndReplicate. It releases the remote replica before setting the new one in
PushAndReplicate and updates the recovery cache should be any Release messages in the
cache R̂. The procedure MassRestoration detects nodes failure and restores their mass.
The mass is applied to the local pair values of the node. On the other hand, when a message
is received (line 9 Algorithm 11), the protocol recognises the type of the message and
performs a certain action for each type following the algorithm. Also, the protocol updates
the local pair values, inserts the local and remote estimates in the queue Q, and makes a

109

5.4. PULL-RELEASE MODEL

recovery entry for Srep in the recovery cache R.

Algorithm 11: Robust Epidemic Aggregation Protocol-Plus (REAP+)
Require: a peer-sampling service, e.g. NCP+; tolerance thresholds ε; cycles

threshold Υ; queue length lQ; and maximum timeout value T̂.
Initialisation: each node i has:

initial data pair (xinit, winit); aggregation pair (v = 0, w = 0); a flag
for critical data ρ = false; a flag for local convergence ρ̂ = false; a
recovery cache R = {r = 〈α, t̂, v, w〉, ...}, where α is tuple id; t̂ is
timeout counter, and (v, w) is the replica pair; a cache for Release
messages R̂ = {r̂ = 〈α, t̂〉, ...}; a tuple for the remote replica data
r̃ = 〈α, ~α〉, where ~α is the remote node, r̃ = ∅; Q = ∅.

1 At start time t0 at node i:
2 PushAndReplicate() // send and replicate Push message

3 At each cycle t at node i:
4 ρ̂←− (Q.s√

lQ
≤ ε for Υ cycles) // Detect local convergence

5 ρ←− (w > 0 ∧ ¬ρ̂) // Detect the Propagation phase

6 ReleaseReplica() // send Release to the replica host
7 PushAndReplicate() // send and replicate Push message
8 MassRestoration() // detect failed nodes and restore thier replica

9 At event ’receive message m from j’ at node i:
10 if ¬ρ ∧m.ρ then // currently in Initial phase, assess m
11 v = xinit, w = winit // make transition to Propagation phase

12 if m is Push then // m is a Push message
13 v = v

2 , w = w
2 // a Pull message to node j

14 send Pull= 〈m.αi,t, v, w, ρ = (ρ ∨m.ρ), r̃〉 to j
15 r̃ ←− 〈m.αi,t, j〉 // update local tuple of the remote replica

16 if m is Pull then // m is a Pull message
17 R←− R− {r} where r.αi,t == m.αi,t // delete the Push entry
18 if m.r̃ 6= ∅ then // a Release to node m.r̃.~α
19 send Release= 〈m.r̃.αi,t〉 to m.r̃.~α

20 if m is Release then // m is a Release message
21 R̂←− R̂ ∪ {r̂ = 〈m.αi,t, T̂〉}
22 return // end the procedure and do not update

23 Q←− Q ∪ { v
w
, m.v
m.w
}

24 v = v +m.v, w = w +m.w // update local aggregation pair

25 if m.ρ then // m has a critical data
26 R←− R ∪ {r = 〈m.αi,t, T̂, v, w〉}

110

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

27 procedure PushAndReplicate()
28 j ←− getRandomPeer()
29 v = v

2 , w = w
2

30 αi,t ←− Fα(i, t) // generate global tuple id
31 send Push= 〈αi,t, v, w, ρ〉 to j // a Push message to node j

32 if ρ then // the Push has critical data
33 r̃ = 〈αi,t, j〉 // record the remote replica
34 R←− R ∪ {r = 〈αi,t, T̂, v, w〉} // create entry in R

35 procedure ReleaseReplica()
36 if r̃ 6= ∅ then // a Release message to replica host
37 send Release= 〈r̃.αi,t〉 to r̃.~α
38 r̃ = ∅

39 foreach r̂ ∈ R̂ do // process Release messages in R̂

40 r̂.t̂←− r̂.t̂− 1
41 if ∃r ∈ R where r.αi,t == r̂.αi,t then
42 R←− R− {r} // the Pull αi,t is recieved, delete entries
43 R̂←− R̂− {r̂}
44 else
45 if r0.t̂ == 0 then
46 R̂←− R̂− {r̂} // timeout, delete entry

47 procedure MassRestoration()
48 foreach r ∈ R do
49 r.t̂←− r.t̂− 1
50 if r.t̂ == 0 then // timeout, restore mass
51 v = v + r.v, w = w + r.w
52 R←− R− {r} // delete entry

5.4.2 Experimental Results for REAP+

The protocol REAP+ is simulated using the event-driven engine in PeerSim. Three events
are used in the simulation: (i) The Start Event occurs only once at the start time of
each node. At this event, nodes create the first replica identifier and send the first Push
message. (ii) The Run Event is scheduled at every cycle, and the event stops after a
predefined number of cycles. At this event, a node detects the current phase of the aggregation
process and sends Push and Release messages, detects node failure and performs the mass
restoration. (iii) The Message Event occurs when a node receives a message. At this
event, the incoming message is processed, the local aggregation pair is updated, and the
recovery replica insertion is performed.

Three protocols are examined in the simulations: SSEP, REAP, and REAP+. The
communication latency is adjusted for all messages to be delivered in the same global cycle.
This adjustment is necessary to avoid the transition of some system mass Mv,Mw across

111

5.4. PULL-RELEASE MODEL

cycles during the aggregation process. In each simulation run, a different random seed is
used, and each experiment is repeated 30 times to collect extensive results. The protocols are
initialised by a peak data distribution whereas xinit = 1 at each node i; winit = 1 at seed node
0 and winit = 0 at all other nodes. Global parameters are adjusted as follows: the timeout
value is set to T̂ = 3 cycles, the tolerance threshold is set to ε = 1% and the minimum number
of consecutive cycles is set to Υ = 5 cycles for the protocols SSEP and REAP. The thresholds
for the protocol REAP+ are adjusted to ε = 1 and Υ = 3. All protocols have the length of
the Q set to 10 elements. On another hand, the protocol NCP+ is the peer-sampling service,
and it is configured to maintain a random k-regular overlay with k = 30 and link expiry
value Ť = 10.

In the simulations, the protocols are examined under two different scenarios. The first
scenario aims to investigate the impact of churn at different times during the aggregation
process. As described in section 5.2, the probability of losing mass at the start of the
aggregation process is small, but the impact can be higher. Due to the diffusion process and
the distribution of system mass, the impact decreases as the aggregation process approaches
convergence. In this scenario, sudden node churn is applied, where nodes suddenly fail at a
particular period, and then the system continues steadily. The simulation time is divided
into four intervals as follows {[0 − 10[, [10 − 20[, [20 − 30[, [30 − 60]}, the impact on each
interval is examined separately. Experiments consist of enforcing 30% of system nodes to fail
within the given interval.

Figure 5.7 illustrates the results of experiments in the first scenario. The results present
the average aggregation error calculated from the outcome of 30 experiments for each interval.
The results of the fourth interval give no useful information and have been omitted. In
general, results have shown the expected behaviour and nodes churn has a higher impact on
the early intervals. However, the impact is reduced in the later intervals. Also, Figure 5.7
presents three error indicators, the total error, the error caused by the cascading failures, and
the compensation error. In REAP the error indicators are higher than the protocol REAP+

in all intervals. The figure also shows that the cascading failure is leading the errors at all
times. The compensation error has been seen in the results of the protocol REAP+, although
it is less than REAP. This implies that there are other sources of the compensation error
rather than the Before-push failures, which has been dealt with in REAP+. Mainly, a node
may fail after receiving a Push message and before sending the Pull message. Although
the node hosting the replica Rrep for the failed node will perform the mass restoration, the
restored values may cause some compensation error.

In the second scenario, nodes churn was continuous during the simulations, from the
start to the end of the simulation time. This is an important case because some aggregation
protocols fail to converge under constant dynamic conditions. In experiments, three levels
of churn are used, {30%, 60%, 90%}, which range the churn from the moderate to severe.
The results are statistical synopsis of 30 experiments under each level of churn. Figure 5.8
illustrates the recorded aggregation error in each level of churn. In general and as presented

112

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

in the figure, the protocol REAP+ outperforms the protocols SSEP and REAP under all
levels of churn. However, REAP+ takes more time to detect convergence due to the precise
detection method and due to mass restoration. The figure also presented the numerical value
of the recorded errors to give clear limits on the achieved accuracy.

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

0−10 10−20 20−30

E
rr

or
 %

 o
f N

p

Total Error
Cascading Error

Compensation Error

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

0−10 10−20 20−30

E
rr

or
 %

 o
f N

p

Total Error
Cascading Error

Compensation Error

(a) Errors of REAP (b) Errors of REAP+

Figure 5.7: Aggregation error of REAP and REAP+ under sudden node churn; N = 104,
lQ = 10, k = 30, T̈ = 500ms, T̂ = 3; for REAP+: Υ = 3, ε = 1; for REAP: Υ = 5, ε = 1%.

In summary, this section has introduced the robust protocol REAP+ which implements the
model of Pull-Release. The protocol involved novel mechanisms to handle issues and problems
in the previous version. The experimental results have shown that REAP+ produces higher
accuracy among other aggregation protocols, under the sudden and continuous dynamic
conditions. However, higher accuracy of the protocol REAP+ comes with a price of longer
convergence time. The next section discusses the findings and outcomes.

5.5 Discussions

In this chapter, the problem of distributed data aggregation under nodes churn and network
failures have been studied. Typically, the data aggregation process is susceptible to damage
from the churn of nodes and may produce incorrect results or may not produce results at
all. The detrimental impact on the data aggregation process in the dynamic conditions
is due to the violation of the mass-conservation invariant, which needs to be constant for
the process to converge to the target value [26, 27]. The analysis of the data aggregation
process presented in section 5.2 has led to the identification of three implicit phases in the
process. Investigations have shown that the nodes churn have a different impact on each
phase. Also, the phase which is critical for the aggregation process is identified and has
received further study, leading to introducing new robust data aggregation protocols that
recognise the implicit phases, and achieve higher accuracy in the presence of nodes churn.

Two protocols are introduced in this chapter, REAP that implements the Push-Release
model and REAP+ which implements the Pull-release model. The protocols are robust
epidemic data aggregation protocols that converge to a good approximation of the target
value when churn is present. The protocols are scalable, resilient and can be used in
combination with any peer-sampling service or membership protocol. They can be used to

113

5.5. DISCUSSIONS

0.01

0.1

1

10

100

cycles= 20 22 24 26 28 30 32 34 36 38 40

seconds= 10 12 14 16 18 20
er

ro
r

%
 o

f N
p

ssep
reap

reap
+

5.6

0.04

40.1

2.1

13.3

4.8

0.02

33.5

1.9

11.6

0.7

0.02

5.1

0.5

1.9

(a) Churn rate 30%

0.01

0.1

1

10

100

cycles= 20 22 24 26 28 30 32 34 36 38 40

seconds= 10 12 14 16 18 20

er
ro

r
%

 o
f N

p

ssep
reap

reap
+

10.4

0.47

47.0

6.6

27.4

4.9

0.20

62.2

3.2

12.9

3.2

0.09

16.4

1.3

7.7

(b) Churn rate 60%

0.01

0.1

1

10

100

cycles= 20 22 24 26 28 30 32 34 36 38 40

seconds= 10 12 14 16 18 20

er
ro

r
%

 o
f N

p

ssep
reap

reap
+

18.6

0.18

89.6

11.4

48.7

9.5

0.35

40.6

3.3

22.3

3.6

0.03

27.4

2.2

9.4

(c) Churn rate 90%

Figure 5.8: Aggregation error of SSEP, REAP, REAP+ under continuous churn; N = 104,
lQ = 10, k = 30, T̈ = 500ms, T̂ = 3; for REAP+: Υ = 3, ε = 1; for REAP and SSEP: Υ = 5,
ε = 1%.

114

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

build scalable decentralised services independent of the underlying topologies. Moreover, the
protocols implement an innovative, distributed pairwise replication mechanism. In addition
to the distributed failure detection and instantaneous mass restoration mechanisms. The
following discusses the work presented in this chapter:

• The protocols REAP and REAP+ have preserved the intrinsic time complexity of
Push-Pull protocols, which is O(log(N)) [26], and they can achieve convergence in the
time tc = (log(N) + log(1

ε
) + Υ) under stable conditions. In dynamic conditions, some

nodes may leave the system before and during the aggregation process. Let Np be the
number of nodes that have joined the aggregation process and f is the number of nodes
of Np that have departed during the aggregation proposes, the protocols can achieve
convergence in time tc = (log(Np−f) + log(1

ε
) + Υ). The communication complexity in

protocols REAP and REAP+ increases by one message at the Propagation phase, i.e.,
3 messages per node per cycle. After convergence, messages number retains equivalent
to the Push-Pull protocols, i.e., 2 messages per node. At t < tc the overall overhead
is O(3Np) and O(2Np) otherwise.

• In the context of comparing the performance of the protocols REAP and REAP+ to
others related work, the research presented in this chapter has adopted the aggregation
error (i.e. estimation error) as a standard metric to measure the accuracy of the
protocols. Also, the work has introduced several precise statistics for the expected error
under different levels of churn. In the literature, research studies presented the achieved
accuracy in other metrics which sometimes do not provide the needed precision for
comparative analysis. Mainly metrics such as convergence factor, relative error and
coefficient of variance are used to describe the convergence accuracy. The work in [13]
used ’Newscast’, a dynamic topology manager to support epidemic data averaging
under dynamic conditions. The results are shown to converge under 50% of sudden
churn, however, no precise estimation error is provided. In [72], The convergence under
different types of churn in several aggregation protocols is presented. Results showed
that some protocols have achieved nearly convergent, and others have not converged,
and the error in the convergent is not specified. About 8% error is monitored in the
results of [36] for 50% churn in a structured Chord network. In [75], more than 1%
error is observed under continuous churn of 25%. In general, the proposed protocols
REAP and REAP+ achieve competitive accuracy in comparison to other aggregation
protocols.

• Although the achieved accuracy in REAP and REAP+ is adequate for many epidemic
services under churn, there is a residual error in the produced results, especially in high
churn rates. Investigations have discovered unavoidable sources for the aggregation error,
i.e., due to compensation mechanism and due to cascading failures, which impacted the
restoration procedure accuracy. However, these sources formed small portion of the
total error, and in particular, the protocol REAP+ was able to handle other sources of

115

5.5. DISCUSSIONS

error. It is a challenge to achieve ultimate accuracy in realistic conditions of epidemic
systems due to the asynchrony and dynamism. This complies with the impossibilities
of distributed systems that are described in Section 2.4.

• One vital achievement of the robust protocols REAP and REAP+ is: they can detect
convergence under all levels of churn. The robust protocols adopt asynchronous message
exchanging and processing cycles, and because they can detect convergence, they can
eventually and effectively terminate. This contribution satisfies the requirements for
asynchronous distributed systems to achieve agreement and acquire consensus [44, 86,
89]. Although, epidemic protocols eventually converge in high probability in stable
networks [27, 90], the work in this chapter has empirically proved that the robust
epidemic protocols converge and detect convergence under dynamic conditions, and
even under the worst churn scenarios.

The protocols have achieved convergence in dynamical conditions through the adopted
heuristic method for the detection of local convergence. The method recognises the
state of convergence in aggregation results when the target value is not available. In
stable systems, data aggregation protocols that used the heuristic method have detected
the convergence to the target value with a desired error that is tolerated [92, 94]. In
dynamic conditions, the method enabled the robust data aggregation protocols to detect
the convergence on a good estimation of the target value, and the estimation accuracy
depends on the level of the node churn.

A typical example of the advantage of the robust data aggregation protocols is the
epidemic protocol for consensus ECP described in section 4.5. ECP can use the
robust data aggregation protocol in the agreement process and achieve consensus or
coordination in the presence of node churn. However, the decision-making process in
the agreement phases may need to tolerate the expected portion of the departing nodes,
which implies that the achieved consensus is on the majority rather than complete.

• The accomplished survey presented in Section 5.1 aimed to adopt the typical churn
model for studying the epidemic data aggregation process. During the survey, it was
difficult to extract accurate churn rates for short time intervals due to the acquisition
methods that are used in the research studies. However, and with general assumptions
on node departure, estimation for expected departure rates were obtainable from the
statistical distributions of the session duration provided in the studies. The survey has
shown that in normal system conditions, 30% of nodes churn in the average should
be expected. This result implies that churn rates are usually moderate, and data
aggregation protocols are required to provide acceptable accuracy in this level of churn.
Higher churn levels are also considered; however, the higher levels have a low probability
of occurring. Additionally, it has limited global impact on decentralised systems which
are deployed over a large-scale network.

The churn model in this chapter has focused on the departure of nodes as the primary

116

CHAPTER 5. ROBUST EPIDEMIC AGGREGATION UNDER CHURN

source of churn. Nodes joining the system also cause a detrimental impact on the data
aggregation protocols. A typical mechanism to deal with joining nodes is proposed in
[27]. In the mechanism, the aggregation task operates in consecutive epochs, and new
nodes can join a system at any time. However, new nodes do not participate in the
current epoch of the ongoing aggregation process, and they participate in the followed
epoch. The restraint of fresh nodes is applied to allow the aggregation process in the
current epoch to achieve convergence.

• In this project, joining nodes are studied and simulated using the robust protocols
proposed in this chapter. Figure 5.9 shows a sample result of the simulations. The
model description and results explanation are omitted due to the limited space and
time. In this part of the investigations, we noticed that new nodes have to recognise the
start of a new epoch in order to begin participating in the aggregation process. This
requires the new nodes to perform regular message exchange with the existing nodes.
Additionally, the adopted peer-sampling service does not specify nodes, either new or
old. In consequence, the service may select a new node as a random peer, causing
an existing node to share some mass with a new node. Also, some of new nodes may
fail before they participate in the aggregation task. In summary, the robust protocol
requires a mechanism to avoid sharing any mass among existing and new nodes, and
new nodes have to promptly return the values that they may receive to the system.

0

10000

20000

30000

40000

50000

60000

70000

80000

cycles= 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

seconds= 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

S
ys

te
m

 s
iz

e

N
Np

Estimation of REAP
+

Figure 5.9: Performance of REAP+ under churn of departing and joining nodes; initial
N = 104, churn and join rates are 50%, lQ = 10, T̈ = 500ms, T̂ = 3, Υ = 3, ε = 1.

Two remaining problems obstruct the work of this project from achieving the perfect
decentralised, fault-tolerant and consistent epidemic system:

1) The determination of the seed node problem, in which a single node (seed node) is
needed for the initialisation of the aggregation process, i.e. count aggregation. All data
aggregation protocols need the single-point initialisation in this project, e.g. SSEP,
ECP and the REAP+. Also, the problem is a widely known challenge for distributed
and epidemic data aggregation [26, 30]. A data aggregation protocol can determine a

117

5.5. DISCUSSIONS

seed node using a leader election method or random selection with a given probability.
However, the seed node is subject to single-point failure problem.

2) Although robust epidemic data aggregation such as REAP+ converges under the
presence of churn; the protocol cannot specify which convergence is achieved to the
target value or another value. The tolerance threshold controls the aggregation error
that can be tolerated in the local estimates of the protocol, but it does not determine
the results and how close they are to the true target.

The next chapter, i.e., Chapter 6 introduces an alternative decentralised mechanism
for the single-point initialisation, the chapter also proposes a restarting mechanism that
detects the correct convergence to the target, and enable achieving continuous consistency
and adaptability in the epidemic systems.

118

Chapter 6

Consistent Epidemic Systems

Services in large and extreme-scale distributed systems require continuous solutions for
achieving the consistency and operational monitoring. The previous research presented in
the thesis has proven that epidemic data aggregation is adequate tool for achieving global
consistent state and for state determination, monitoring and consensus. However, in dynamic
systems where churn is usually present, the accuracy of the aggregation results cannot
be guaranteed and the results may significantly differ from the correct target value [27,
115]. The work in the previous chapter has identified the critical phase that has a direct
impact on the robustness of the aggregation process. Also, two protocols for robust epidemic
data aggregation are proposed with a distributed failure detection and mass restoration
mechanisms.

The robust data aggregation protocols have detected the convergence of the aggregation
process under severe level of churn, although the protocols adopt asynchronous message
exchanging and processing cycles. This vital feature of the protocols has been proved through
extensive practical experimentations. The adopted heuristic method for the local detection
of convergence in the protocols is accurate and does not require any prior information about
the target value. The method enabled the to detect the convergence on a good estimation
of the target and the estimation accuracy depends on the level of the node churn. Despite
that, robust aggregation protocols, e.g., REAP+ cannot specify which convergence has been
achieved; whether it to the target value or to another value? The thresholds control the
aggregation error that can be tolerated in the local estimates of the protocol; however, the
detection method in the protocols has no way to determine how close the results are to the
desired true target.

The consistency in an epidemic system can be achieved by merging the robust epidemic
protocols and the protocols for epidemic consensus. This way, the epidemic systems and
services can make the most advantage of both approaches. However, large-scale distributed
services requires continuous solutions for monitoring consistency and adaptability. The
introduced protocols are usually presented as an epidemic task of one mission that may
terminate after achieving the desired state. Real characteristics of the consistent systems
are the constant operations, frequent updates, and adapting the system to changes in users

119

6.1. DATA AGGREGATION AND SEED SELECTION METHOD

or nodes [4, 37]. In consequence, a consistent epidemic system or service require exhibiting
similar properties, which imposes the need for continuous data dissemination and aggregation
protocols that frequently achieve global up-to-date state.

Existing continuous epidemic protocols are either restart periodically at fixed epochs or
apply changes in the system state instantly producing less accurate approximations. In the
literature, a simple restarting mechanism for epidemic protocols was introduced in [27], where
global restarting was achieved using fixed-length epochs with incremental epoch identifiers.
Nodes that receive a higher epoch identifier is enforced to join the new epoch with fresh
initial data and discard the current state. Authors in [72] proposed a technique that restarts
two overlapping aggregation processes in epochs of fixed hops. The protocol improves the
aggregation results in dynamical conditions. The work in [36] introduces a continuous epoch-
less data aggregation protocol. The protocol is atomic Push-Pull with a timeout, and
it can produce correct results when prior information about system and churn rates are
available. In the work of [75], FU aggregation protocol is introduced. The protocol operates
under dynamic conditions without requiring periodic restarting. The protocol is proposed for
averaging problems and requires symmetric exchange and correlation among nodes.

The work presented in this chapter introduces continuous epidemic protocol with a
novel restart mechanism that enables systems adaptability. The proposed mechanism is
adaptive, and restarts the epidemic task upon the detection of convergence or divergence in
autonomous and variant-length epochs. Also, the mechanism ensures correct convergence
to the target for all nodes through aggregating nodes decisions and acquiring consensus
on the restart action. Moreover, the mechanism produces small communication overhead,
which can be piggybacked on existing protocol messages. The proposed continuous protocol
consists of several aggregation processes, sequential and parallel. Most processes are initiated
for the global summation function, in which the initial weights follow a peak distribution
and require a single node (seed node) to set the initial aggregate of weights [26, 30]. The
determination of the seed node is a known challenge that requires a leader election process
beforehand. However, the seed node is subject to single-point failure problem. The following
section describes the seed selection method that is proposed in this project to overcome the
single-point initialisation in epidemic data aggregation protocols. Section 6.2 describes the
continuous protocol and the adaptive restart mechanism. The chapter ends with a discussion
on the results and findings.

6.1 Data Aggregation and Seed Selection Method

In the global summation function, each node i initially starts with a data value xi, 0 < i ≤ N

that represents a local measurement, attribute, or an implicit decision. The node also
maintains a tuple of aggregate elements τi = 〈ςi, vi, wi〉, where vi is the data element and
initialised with xi, vi,t0 = xi, and t0 is start time; wi is the weight element of the tuple and σi
is an identifier further described below. The initialisation of wi determines the aggregation

120

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

function. For the global summation and at start time t0, it is required to set wî,t0 = 1 at
a single node î (seed node), and wi,t0 = 0 at all other nodes. In real-world decentralised
systems, the determination of seed node î is challenging, and a seed node î is vulnerable to
fail causing serious damage to the aggregation process.

To overcome this initialisation problem, we introduce the seed selection method as follows.
The tuple identifier ςi is the seed element and it is used as a ’seed’ selector. It is a synopsis
of the minimum function and a target for the selection process. The seed element is a
Unique Universal Identifier (UUID) generated by a global function F(). There are two
implementations of the function F in this work. Fα(i, t) which computes a UUID given a
node identifier i and the current time t. The output of Fα(i, t) preserves the nature order,
such that for any two UUIDs: Ui = Fα(i, ti) and Uj = Fα(j, tj), there is:

Ui < Uj, ⇐⇒ ti < tj ∨ (ti = tj ∧ i < j) (6.1)

A practical sequence of the function Fα(i, t) is given in 5.8. The output of the function
Fα(i, t) is a UUID that preserves the natural order, such that it is comparable to other UUIDs
generated in the system. Moreover, the function parameters, which are node identifier i and
current time t are used to ensure that for any two nodes, the generated UUIDs are different
even if they used the function at the same time. On the other hand, the function Fβ(i)
generates a random UUID using node identifier as a random seed.

Initially, all nodes are seed nodes and the tuple τi is initialised to τi = 〈F(), xi, 1〉, where
ςi,t0 identifies the tuple and the wight wi,t0 in the system. The initial diffusion process in the
aggregation process selects only one seed in the system for this epoch. During the diffusion
process, seeds propagate in the system following a random-walk fashion. In line with seeds
propagation, the selection process is carried out, targeting the oldest seed or the minimum
seed identifier [52]. Each node retains the tuple with the lowest seed identifier and discards
other seeds. In this way, nodes failure does not affect the aggregation process. In case a node
with the minimum seed identifier fails before it propagates, the system will select the seed
with the prior in order identifier.

The aggregation process works as follows, at each cycle, node i divides the data elements
vi,t, wi,t in two halves, and sends the tuple 〈ςi,ti ,

vi,t
2 ,

wi,t
2 〉 to a random peer j in a Push

message. Upon the reception of a Push message from j, node i selects the minimum seed
element, ςκ,tκ = min(ςi,ti , ςj,tj). In case a new seed tuple is selected, node i resets its local
tuple to 〈ςκ,tκ , xi, 0〉. Next, node i divides the elements vi,t, wi,t in two halves and response to
node j in a Pull message, which in turn performs the seed selection too, then both nodes
update the tuple τ . The update in node i is accomplished, only and only if ςi,ti = ςj,tj and so
τi = 〈ςi,ti , vi,t + vj,t, wi,t +wj,t〉. Also, at each cycle, a fresh local estimate ei,t can be computed
by ei,t = vi,t

wi,t
, and a node i achieves convergence when ei,t get arbitrary close to V.

The convergence of the data aggregation process is described in section 3.2. In summary,
the initial mass is the aggregate of all initial values in the system, Mv,Mw. During the
aggregation process, the initial mass is propagated and aggregated. Eventually at time tc,

121

6.2. THE CONTINUOUS EPIDEMIC PROTOCOL WITH ADAPTIVE RESTART
MECHANISM

the system converges and the mass distributes evenly over all nodes, The local estimate
converges to the target value ei,tc ≈ V, and the value of the target is V =

Mv
N

Mw
N

= Mv
Mw

. Thus,

the target of the summation is V =
∑N

i=0 xi
1 , and in counting is V =

∑N

i=0 1
1 = N , while the

target of averaging is V =
∑N

i=0 xi
N

.
The aggregate count is a special case of the summation, where vi,t0 = xi = 1, 0 < i ≤ N ,

and τi = 〈ςi,t0 , 1, 1〉. Aggregation of other functions such as average, min, max is simple
because initially all nodes have the same weight element. The initial tuple at each node i is
τi = 〈ςi, xi, 1〉, and the seed element is a constant e.g. ς = 0 at all nodes. In consequence,
there is only one seed propagating in the system and no selection process is required.

The seed selection method removes the difficulty in determining a single node before the
start of the aggregation process. It also protects the aggregation process from the single-
point failure problem. The seed selection method is a decentralised method and generates
no additional overhead. The method can be generalised and used for any selection and
determination task. However, the method takes some time to converge to the correct seed
due to the propagation delay in the diffusion process. The next section describes the adaptive
restart mechanism and presents a practical example of the use of the seed selection method.

6.2 The Continuous Epidemic Protocol with Adaptive
Restart Mechanism

The continuous protocol and the adaptive restart mechanism are illustrated in Algorithm
12. The protocol is a set of epidemic processes that run over sequential epochs, where each
epoch has an incremental global identifier (ι). The epoch is the inter-restart interval, and two
subsequent epochs identifiers may exist in the system for some time after restart. Nodes are
enforced to join the epoch with the higher identifier. Epoch length is variant and depends
on the detection of convergence or divergence. Some epidemic processes in the protocol are
sequential and others are parallel. The process A corresponds to the intended mission of
the epidemic task, which can be used for data dissemination and data aggregation too. The
process C is a subsequent phase for achieving consensus. Nodes are joining the Consensus
phase after they achieve local convergence in the process A, i.e., content convergence or
aggregation convergence. Also, the protocol encompasses a tuple P of several aggregation
processes such that each p ∈ P runs in parallel with the process A. Processes in the tuple
P are used for convergence detection, and their results define the convergence state, i.e.,
convergence or divergence.

The intended epidemic task defines the initialisation of the process A. The process C and
processes in P are all initialised for the aggregate count. The process C counts nodes which
have achieved local convergence in the process A, and each process p estimates the total
number of nodes joined the process A. Each process p ∈ P initially start with a different
random seed identifier at each node in the system. During the aggregation process, seeds of

122

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

all processes in P are piggybacked and propagated with the messages from the process A.
The seed selection method makes a random selection for each process due to the random
seed initialisation. Moreover, a node failure will affect a random seed of each process and
causes each process to achieve different convergence. Convergence state can be verified using
local estimates ep,t, ∀p ∈ P. A correct convergence is confirmed when all local estimates in P

converges to the same target, ∀ep,t ≈ V, p ∈ P. Otherwise, ∃ep,t 6≈ V indicates a divergence,
which implies experiencing dynamical conditions during the main epidemic process, i.e., the
process A.

The convergence detection method is presented in Procedure DetectConvergence. The
method calculates the average of estimates in P every cycle and enqueues the average in
Q. Eventually, estimates average will converge to an approximation result, and the error
among elements of Q becomes very small. The method verifies the detection of convergence
using the SE of Q and monitors the error approaching the tolerance threshold ε1 for several
consecutive cycles Υ. Next, the method verifies the state of the convergence using the SE
of estimates in P. The criterion validates that errors among estimates in P is above the
tolerance threshold ε2. A true criterion implies the existence of errors among the estimates of
the parallel processes in P, which means a divergence has been detected. The thresholds ε1,
ε2 and Υ are global application parameters as previously described in Section 3.3.

Upon the detection of divergence in a node i, the node initiates a global restarting
process using a new epoch identified ιi + 1. The restart steps are described in Procedure
Restart. Also, upon the detection of a correct convergence, node i makes a transition to the
Consensus phase by starting the process C. Other nodes may join the phase at the same
time or later when they converge. The seed selection process unifies the seed elements, and
each node participates in the phase by adding 1 to the total data mass in the process C. In
the Consensus phase, the detection method records the estimate of the process C in Q at
every cycle. Each node uses the SE of Q and the thresholds ε1 and Υ to locally detect the
convergence of the Consensus phase.

Achieving convergence in the Consensus phase indicates the agreement among nodes to
restart the epidemic task as they all have converged to the correct target. However, some
nodes in the Consensus phase are enforced to join the next epoch, although they did not
yet detect convergence, which optimises the inter-times between epochs. Also, it adapts the
epidemic task should it experience any dynamical conditions during the Consensus phase.

Procedure ResolveEpoch has two duties: (1) discovering and joining new epochs, and (2)
applying the seed selection method to unify seed elements in different processes. Each node
receives a new epoch identifier starts a new epoch and reinitialise local process tuples, as
shown in Procedure Restart. Also, the procedure updates the local tuples upon the detection
of a new seed with the smaller identifier. The protocol in lines 7-9 continues processing the
received message and responses to the sender node by a Pull message with the adopted
epoch identifier and seed elements. In lines 14-16, the protocol updates the tuple for each
process.

123

6.2. THE CONTINUOUS EPIDEMIC PROTOCOL WITH ADAPTIVE RESTART
MECHANISM

6.2.1 Experimental Results for The Continuous Epidemic
Protocol

The protocol is examined and validated via simulations. Three events are used in the
simulation: (1) Start Event occurs only once at the start time of each node. At this event,
nodes initialise their seed and data elements. (2)Run Event is scheduled at every cycle,
and the event stops after a predefined number of cycles. At every cycle, a node detects
convergence and sends Push messages. (3) Message Receive Event is a notification event, in
which a receiver node identifies new epochs, applies seed selection method and updates local
tuples.

The task of process A is initialised for the aggregate count targeting system size estimation;
and it is initiated so for the validation purposes only. It is worth to clarify that size estimation
is a peak epidemic process and it is the most vulnerable process for the dynamical conditions.
In consequence, seed elements of process A at all nodes are set using the function Fα(i, ts),
where ts = [0, toff [, and toff is a start time synchronisation offset as defined in Section 3.5.
The settings of threshold parameters follow previous work recommendations in Section 4.5
and 5.4, and they are set to ε1 = 0.5, ε1 = 1, Υ = 3, and lQ = 10. The protocol NCP+ is
used with k-regular overlay initialisation, and k = 30 and Ť = 10.

Algorithm 12: The Continuous Epidemic Protocol with Adaptive Restart
Mechanism

Require: tolerance thresholds ε1 and ε2; cycles threshold Υ; estimates queue length
lQ, processes tuple length lP.

Initialisation: at each node i: ι = 0; Q = ∅; P̃ = {A,C} ∪ P; and
∀p ∈ P̃, p −→ 〈∞, 0, 0〉.

1 At start time t0 at node i:
2 Restart(1, i, t0)
3 Push(i, t0)

4 At each cycle t at node i:
5 DetectConvergence(i, t)
6 Push(i, t)

7 At event ’receive message m from j’ at node i:
8 ResolveEpoch(i, t,m)
9 if m.reply then

10 P̂ = ∅
11 foreach p ∈ P̃ do // Divide data elements and copy tuples
12 p −→ 〈p.ς, p.v2 ,

p.w
2 〉, P̂ ∪ p

13 Send 〈ιi, P̂i, reply = false〉 to j // a Pull to node j

14 if m.ι == ι then // Update local tuples in all processes
15 foreach p ∈ P̃ do
16 if m.p.ς == p.ς then p −→ 〈p.ς,m.p.v + p.v,m.p.w + p.w〉

124

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

17 def avg(H = {a1, . . . , an}): 1
n

∑
a // Average

18 def se(H = {a1, . . . , an}): 1√
n

√
1

n−1
∑(a− avg(H))2 // Standard Error

19 procedure Restart(ι,i, t)
20 if ιi == ι then return // Not a new epoch, stop
21 ιi = ι
22 phasei = Aggregation
23 Ai −→ 〈Fα(i, t), xi, 1〉 // Reset processes
24 Ci −→ 〈∞, 0, 0〉
25 foreach p ∈ Pi do p −→ 〈Fβ(i), 1, 1〉

26 procedure Push(i,t)
27 P̂ = φ

28 foreach p ∈ P̃i do // Divide data elements and copy tuples
29 p −→ 〈p.ς, p.v2 ,

p.w
2 〉, P̂ ∪ p

30 j ←− getRandomPeer() // Get random peer
31 Send 〈ιi, P̂i, reply = true〉 to j // a Push to node j

32 procedure DetectConvergence(i,t)
33 switch phase do
34 case Aggregation do
35 Qi ∪ avg({p.e : ∀p ∈ Pi}) // Insert estimates average in Pi
36 if se(Qi) < ε1 for Υ cycles then // Detect local convergence
37 if se({p.e : ∀p ∈ Pi}) > ε2 then // Detect divergence
38 Restart(ιi + 1, i, t) // Start a new epoch
39 else // Make transition to Consensus phase
40 if Fα(i, t) < Ci.ς then Ci −→ 〈Fα(i, t), 1, 1〉
41 else Ci −→ 〈Ci.ς,Ci.v + 1,Ci.w〉
42 phase=Consensus

43 case Consensus do
44 Qi ∪ Ci.e
45 if se(Qi) < ε1 for Υ cycles then // Detect global convergence
46 Restart(ιi + 1, i, t) // Start a new epoch

47 procedure ResolveEpoch(i,t,m)
48 if m.ι > ιi then Restart(m.ι, i, t) // New epoch discovered
49 if m.ι == ιi then // Resolve seed elements
50 if m.A.ς < Ai.ς then Ai −→ 〈m.A.ς, xi, 0〉
51 if m.C.ς < Ci.ς then
52 Ci −→ 〈m.C.ς, 0, 0〉 and if phase==Consensus then Ci.v = 1
53 foreach p ∈ Pi do
54 if m.p.ς < p.ς then p −→ 〈m.p.ς, 1, 0〉

The results in Figure 6.1 illustrate performance of the continuous epidemic pyrocoll, in
particular, the seed selection method and restart mechanism behaviour. In these experiments,

125

6.2. THE CONTINUOUS EPIDEMIC PROTOCOL WITH ADAPTIVE RESTART
MECHANISM

nodes churn is disabled and the result shows the protocol behaviour under stable conditions.
The results for the processes A and C are distinguished for the clarity. The figure 6.1.a
and 6.1.b show the variation in initial system mass Mv, Mw over time. In the figures, data
elements approach the correct value as a result of the selection method. Particularly, the
figure 6.1.b presents the decrease in Mw value due to the selection of the correct seed and
discarding of other seeds.

Figures 6.1.c, 6.1.d and 6.1.e illustrate the convergence in each phase and the correct
detection of convergence. The results validate the efficiency of the protocol and the restart
mechanism. The protocol in each node makes transition to the Consensus phase after the
detection of the convergence in the Aggregation phase. Also, it restarts the aggregation
task after achieving convergence in the Consensus phase. The figure 6.1.d shows the
reduction in variance of nodes’ estimates in the Aggregation phase. The estimation
error continue decreasing among nodes although some nodes have converged and join the
Consensus phase. This behaviour is due to retaining data exchanging and computations for
the processes A and P active even for nodes in the Consensus phase. This is very important
to allow nodes which still in the Aggregation phase to converge. Figure 6.1.e shows that
100% of nodes achieve and detect true convergence in both phases, and nodes restart and
join the new epoch in a uniform asynchronous manner.

To demonstrate the probabilistic performance of the protocol, the results of 30 experiments
are collected and used to export statistical summery of the protocol performance. Figure
6.2 presents the summery results. The results in Figure 6.2.a are collected using a dedicated
oracle observer, and they show nodes that have achieved true-convergence in processes A

and C. The figure clearly shows that despite the probabilistic natural of the protocol, all
nodes in process A achieve true-convergence before they make transition to the Consensus
phase. Also, nodes in the Consensus phase achieve true-convergence before they restart.
Figure 6.2.b confirms previous results and shows small variance in estimation errors in all
epidemic processes. Further experiments are carried out for Figure 6.2.c, which shows results
for various system sizes. The figure shows logarithmic increase in inter-restart times as system
size increases. It also presents the variation in the inter-restart times for different sizes due
to the probabilistic behaviour of the continuous protocol.

Results in figures 6.3.a and 6.3.b illustrate the behaviour of the protocol under dynamic
conditions. Two experiments are carried out for nodes churn in the simulations. The first
experiment examines the protocol sensitivity to a single node failure and to moderate churn
rates. Figure 6.3.a shows the results for a single failure injected at cycle 5 followed by the
failure of 30% of the system in cycles [60− 120]. The second experiment tests the protocol
under severe dynamical condition when a system loses 75% of its nodes during an epidemic
task. Figure 6.3.b shows the failure of 75% of the system between cycles [15, 195]. In both
experiments, results prove the ability of the protocol to detect divergence and it can restart
for as small as a single failure. The protocol continues until the system stabilises before it
can return a correct estimation and enters the Consensus phase.

126

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

The impact of varying the parameter lP has also been examined; however, The results have
shown that the effect was negligible under stable conditions while causing a small increase in
overhead to the underlying network. In dynamic conditions, the increase in the number of
processes in P makes validation of convergence more accurate, especially, for the detection
of divergence. Although precision is essential for the detection of a small amount of churn,
e.g. single node failure, as shown in figure 6.3. The tolerance thresholds can also control the
accuracy, and with low cost, and hence, the description of experiments on the parameter lP

are omitted. From another perspective, the amount of error that the protocol can tolerate
corresponds to the lost portion of the initial system mass. In early cycles of an aggregation
process, node failure may cause a major loss in the system mass, however, after convergence
the impact of churn fades, see the analysis in Section5.2. Therefore, even large churn rates at
late cycles can not result in divergence detection, the figure 6.3.b shows this scenario in the
cycles [15, 60].

Simulation results have validated the performance of the protocol in stable and dynamic
conditions. Epidemic services and systems can adopt the restart mechanism and achieve
efficient and reliable restart. The method is capable of restarting epidemic processes to adapt
to changes in the system. Through periodic restarting, epidemic processes can detect and
adapt to new conditions. In addition, services such as WSN can also track changes in sensor
nodes. The change in captured values in this epoch can be recorded and aggregated for the
followed epoch. Moreover, network failures and message loss can also be handled to some
extent.

6.3 Discussions

In large and extreme-scale distributed systems, continuous epidemic protocols are useful
services for systems consistency and adaptability. Through periodic restarting, epidemic
processes can detect and adapt to new conditions. The work in this chapter has introduced
our latest contribution, which is a novel continuous epidemic protocol with an adaptive restart
mechanism. The protocol restarts either upon acquiring consensus on the global convergence
of the epidemic task or upon the detection of divergence. Up to our knowledge, the ability of
distinguishing convergence state, i.e., correct convergence or divergence, under dynamical
conditions has not been addressed before in the literature. Typically, it is known that epidemic
protocols do not converge in unstable systems [27, 33, 115]. The continuous epidemic protocol
proposed in this chapter has the ability not only to converge under churn but also to detect
churn impact on the results. Also, the protocol introduces a decentralised selection method
for data aggregation tasks that require single-point initialisation. Furthermore, the detection
accuracy of the protocol can be tuned according to the application preference for a good quick
approximation or an accurate one that takes longer to compute. Moreover, the implemented
restart mechanism has optimised communications overhead that can be piggybacked with
regular message exchanging. Simulation results have validated the performance of the protocol

127

6.3. DISCUSSIONS

under stable and dynamic conditions. The following discusses some relevant points:

• The time complexity of the continuous epidemic protocol is O(2 log(N)) in stable
conditions, as it has two phases. While it is O(log(N)) in dynamic conditions as the
protocol restarts upon the divergence detection, which is considered an optimisation
feature of the protocol rather than proceeding with an epidemic task that leads to wrong
results. The protocol exhibit the complexity of the communications of Push-Pull
protocols with overall overhead O(2N).

• Considering the consensus and agreement protocols introduced in Chapter 4, e.g., ECP,
the adaptive restart mechanism can be used in the agreement phases and achieve
a decentralised decision-making mechanism with local results at each node. The
mechanism enables the seamless detection of disagreements and withdraws, as nodes
which decide not to proceed with the agreement can withhold itself from participating in
the process, in addition to detecting the presence of failed nodes. The global tolerance
threshold can be used to adjust the required majority for the agreement to make the
transition to the next phase or, otherwise, to restart the agreement process. Another
example on the advantage of the adaptive restart mechanism is that it has eliminated
the need for the leader-election in the Aggregation phase in ECP. The seed selection
method allows every node to participate in the agreement process, and the selection
method decides which seed to remain in the process.

• The seed selection method exhibit a distinct feature over the leader election technique.
Both techniques require propagation time before achieving the desired outcome. In
seed selection method and at the start, distributed seeds propagate into the system,
and each node selects a seed according to a predefined criterion that ensures a single
seed to remain in the system. In decentralised leader election, candidates propagate
into the system, and each node elects a candidate following a predefined criterion that
elects a single leader in the system. However, a leader may fail and cause damage to
the system. In consequence, the system needs additional steps and overhead to inform
current leader failure and to elect another leader. In the seed selection method, the
seed never fails, but the node which has generated the seed may fail. There are two
cases of failure of seed originator node: (1) the originator fails before sharing the seed
with any other node. In this case, the seed can be ignored and considered as never
being in the system. The system will select the next in order seed. (2) The originator
fails after sharing the seed with the system. The seed information, in this case, will
propagate and will be selected regardless of the failure of its originator. The system
does not require any further steps to detect originator failure or to propose a new seed.
In some scenarios, a system may require a leader election step to perform a global
action or decision using some aggregated information. In this case, the system can
distribute the information with appropriate seed identifiers and allow each node to
perform the designated action or decision using the information associated with the

128

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

globally selected seed. It is information selection with decentralised action rather than
decentralised selection with single-point action, which is subject to failure.

• One concealed issue in the seed selection method is that it requires distributed unique
universal identifiers, not only that but also, the identifier has to preserve the natural
order of numbers. Although such identifiers have been achieved in the practice of this
research work, it might be infeasible to make universal identifiers with such requirements
in some applications. In this case, random universal identifiers can be utilised. However,
it is vital to note that using the random universal identifiers in the seed selection method
may violate the single seed requirement in the mechanism, because there is a small
probability that two random identifiers generated at different nodes or in various times
can be the same. To clarify, the natural order of the seed identifiers ensures that the
seed selection method will eventually converge to the globally lower seed proposed by
any node in the system. Random identifiers do not preserve this principle. Potentially,
a globally lower random seed can be generated in the system at the time when another
seed was selected, and some nodes have detected the convergence on the oldest seed. In
this case, two valid seeds exist in the system at the same time. This issue can be solved
using another aggregation process of the count function to estimate the number of
nodes that are using a particular seed, and proceed with the seed that has the majority.
In case a new valid seed appears later in the system, nodes still select the oldest seed,
which has propagated in the system and acquired the highest number of nodes.

In the future, the research work may investigate how utilising multiple aggregation
processes in parallel under churn can help to detect results quality. Also, how to use the
aggregation results of different processes after convergence to compute an approximation of
the true target value.

129

6.3. DISCUSSIONS

(a)

0

2000

4000

6000

8000

10000

12000

cycles= 15 30 45 60 75 90 105 120

seconds= 15 30 45 60

to
ta

l s
ys

te
m

 m
as

s

Σv in Aggregation phase
Σv in Consensus phase

Epoch barrier (b)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

cycles= 15 30 45 60 75 90 105 120

seconds= 15 30 45 60

to
ta

l s
ys

te
m

 m
as

s

Σw Aggregation phase
Σw Consensus phase

Epoch barrier

(c)

0

10000

20000

30000

40000

50000

cycles= 15 30 45 60 75 90 105 120

seconds= 15 30 45 60

av
er

ge
 o

f e
st

im
at

es

Process A / Aggregation phase
Pocess C / Consensus phase

Processes in P (d)

10
−13

10
−10

10
−6

10
−3

10
0

10
4

cycles= 15 30 45 60 75 90 105 120

seconds= 15 30 45 60

av
er

ge
 e

st
im

at
io

n
er

ro
r

Process A / Aggregation phase
Process C / Consensus phase

Processes in P

(e)

0

0.2

0.4

0.6

0.8

1

cycles= 15 30 45 60 75 90 105 120

seconds= 15 30 45 60

%
 o

f n
od

es

Aggregation phase
Consensus phase

Nodes in convergence

Figure 6.1: The continuous protocol and adaptive restart mechanism in stable conditions,
V = 104, ε1 = 0.5, ε2 = 1, Υ = 3, lP = 5, lQ = 10, T̈ = 500ms.

130

CHAPTER 6. CONSISTENT EPIDEMIC SYSTEMS

(a)

0

0.2

0.4

0.6

0.8

1

cycles= 5 10 15 20 25 30 35 40 45 50 55

seconds= 5 10 15 20 25

%
 o

f n
od

es

Process A, average
Process C, average

minimum
maximum

(b)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

cycles= 5 10 15 20 25 30 35 40 45 50 55

seconds= 5 10 15 20 25

es
tim

at
io

n
er

ro
r

Process A
Process C

Processes in P

(c)

40

45

50

55

60

65

70

75

80

85

90

system size= 10
4

10
5

10
6

20

25

30

35

40

45

cy
cl

es

se
co

nd
s

inter−restart times(Epochs)

Figure 6.2: Probabilistic performance of the continuous protocol in stable conditions, V = 104,
ε1 = 0.5, ε2 = 1, Υ = 3, lP = 5, lQ = 10, T̈ = 500ms.

131

6.3. DISCUSSIONS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
seconds= 15 30 45 60 75 90 105 120

sy
st

em
 e

st
im

es

10
−10

10
−7

10
−3

10
0

10
3

10
7

cycles= 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

es
tim

at
io

n
er

ro
r

Process A / Aggregation phase
Process C / Consensus phase

 Processes in P
N

(a) Moderate churn

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
seconds= 15 30 45 60 75 90 105 120

sy
st

em
 e

st
im

es

10
−10

10
−7

10
−3

10
0

10
3

cycles= 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

es
tim

at
io

n
er

ro
r

Process A / Aggregation phase
Process C / Consensus phase

 Processes in P
N

(b) severe churn

Figure 6.3: The continuous protocol and adaptive restart mechanism in dynamic conditions,
V = 104, ε1 = 0.5, ε2 = 1, Υ = 3, lP = 5, lQ = 10,T̈ = 500ms

132

Chapter 7

Conclusions and Further Work

This chapter presents a summary of the work introduced in this thesis and the aims and
objectives which have been achieved. In the beginning, a short recap of the problem which
has been addressed in the research project is provided. Section 7.2 demonstrates the main
findings and achievements and concludes the research work. In Section 7.3, research ideas for
further study are given.

7.1 Recap of the Research Problem

In the recap, decentralised algorithms have emerged as an alternative model of distributed
systems in response to challenges in centralised approaches [12, 13]. Particularly, epidemic
algorithms which adopt randomised communications and decentralised computations are
found attractive to distributed systems due to their intrinsic characteristics such as the
natural diffusion, fault-tolerance, scalability, and resilience.

Distributed services have used epidemic models to accomplish two essential tasks:
information dissemination and data aggregation. Mainly, epidemic data aggregation has
received wide attention and extensive research work, which made data aggregation a
substantial component in the formation of distributed services. However, the consideration
of real-world scenarios imposes important issues on the reliability and robustness of
distributed systems, which are scalable, asynchronous and highly dynamic. Asynchrony and
dynamism have a detrimental effect on the efficiency and the correctness of epidemic models
[33, 34]. In real-world systems, the intrinsic properties of epidemic models cannot be
ascertained and may get damaged from the unpredictable behaviour of nodes.

Theoretical analysis of epidemic models provided stochastic guarantees to the convergence
of all nodes in stable systems. In addition, practical studies proved the ability of each
node to detect convergence using only its local state [28, 32]. However, in dynamic systems
where churn is usually present, the accuracy of the data aggregation cannot be guaranteed,
and the results may significantly differ from the correct target of the aggregation [27, 115].
This detrimental impact of churn is a direct result of the violation of the mass-conservation
invariant [26, 30], which lead to an estimation error of the target.

133

7.1. RECAP OF THE RESEARCH PROBLEM

In another respect, modern large-scale distributed services demand continuous and
decentralised solutions for achieving system consistency. Generally, coordination among
the participants of a distributed system is required to make a globally consistent state in
the system. Systems consistency allows the accomplishment of system-wide tasks such as
termination, event ordering and decision-making. In epidemic systems, consistency supports
the reliability and predictability of the system by making analogous state at all asynchronously
acting nodes. However, achieving a globally consistent state is not a trivial problem that
requires not only decentralised and resilient solutions but also, robust and continuous protocols
that can adapt to changes in dynamic systems.

Systems consistency is attainable through distributed algorithms that ultimately converge
to a global state. In particular, algorithms for distributed consensus are effective techniques to
achieve system consistency [40]. Decentralised algorithms can achieve consensus in large-scale
distributed systems, for which a collective decision-making process is accomplished targeting
the agreement on some output. Likewise, the agreement in epidemic systems requires all
nodes to achieve a particular state at the end of a data dissemination or aggregation task [22,
46, 48]. The agreement process in epidemic systems aims to compute a synopsis for initial
system values and eventually, all system nodes converge to the target value. The similarity of
agreement processes in distributed consensus and data aggregation process is an unsurprising
finding due to the well-known guarantees on the convergence. The ultimate convergence of
decentralised algorithms has motivated many researchers to use the attaining of convergence
as a synonym to the reaching of agreement, primarily, when the target value is the interest of
the consensus.

In stable systems, decentralised models for agreement assume that a system will eventually
converge in a finite time, in which the agreement is entirely probabilistic, and a node has no
explicit certainty on the convergence of system nodes. The heuristic detection of convergence
is inadequate to decide the consensus. Typically, nodes achieve convergence at different
times, and each node has no awareness about other nodes’ state of convergence [51, 52].
Furthermore, computations in epidemic models are decentralised by nature, and the detection
of convergence can only be obtained through the absolute reliance on local state at each node.
Also, the certainty of global convergence cannot be directly presumed by local detection due
to nodes asynchrony. In the lack of a central authority like in commitment protocols, it is a
challenge to use only locally available information at each node in acquiring the awareness of
other nodes’ convergence.

The research work in this project has extended the distributed consensus problem to
distributed data aggregation problem where the agreement process is an epidemic data
aggregation process. In order to achieve agreement on a particular matter, nodes in a system
have to receive a particular data item or compute a local estimate of a target, detect local
convergence on the target, and acquire explicit awareness on the convergence of the system.
Epidemic data aggregation is the core of the agreement process and therefore, the accuracy
of the aggregation process is essential, and the process ability to achieve the convergence

134

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

needs to be protected, especially in dynamic systems. In addition to the explicit detection of
both the convergence and the agreement, the consideration of real-world scenarios requires
continuous protocols to achieve system adaptability and consistency.

7.2 Conclusions

This section presents the list of conclusions deduced from the research work in this project.
Each of the following points is a conclusion statement of an objective or a finding:

1) In distributed systems, the FLP result has motivated the identification of the minimal
properties of distributed systems that are necessary to solve the consensus problem. In
particular, the adoption of randomised communication reduces the potential causes of
the impossible case. Also, the global agreement can be achieved in a partially
synchronous model with prior defined bounds on the communication delays and
processing times. Asynchronous protocols that can be adapted to terminate efficiently
in practice can achieve consensus too. Epidemic systems naturally exhibit
fault-tolerant and randomisation properties. Also, they lack the disastrous single point
failure and implement significantly efficient diffusion process. Moreover, epidemic
protocols eventually converge with high probability, which fulfils the termination
condition in consensus problem.

2) The adopted model of the epidemic system in the project is a partial-synchrony model,
in which the upper bound of communication delays is defined, and the processing cycle
length is fixed. However, the model can be relaxed to complete asynchronous
implementation. Epidemic protocols proposed in the project adopt asynchronous
message exchange, i.e. the Symmetric-Push Sum model, in which non-atomic
Push-Pull scheme is used. Thus, nodes do not lock waiting for a response, and
interleaving messages are typically present. Also, communications among nodes are
indeterministic due to the adopted overlay network manager that produces dynamic
topologies. Although communication delays are generated randomly using statistical
distribution with predefined parameters correspond to the RTT on the network
diameter, there is no assumption restrains message delays to the defined upper bound.
Moreover, the processing cycle length is fixed, and cycles are not synchronised, which
implies that any two nodes may have different cycle counters at a particular time, and
cycles of different nodes may overlap. In consequence, messages may cross boundaries
between cycles of different nodes. Long delays make messages delivery to different
cycles too. Thus, the defined upper bound of delays can be released as it has no
impact on the performance of the protocols in the system, apart from small delay in
the convergence. However, the epidemic system model in this project assumes no
message loss.

3) Processing cycle length defines the convergence speed in the realistic implementation.

135

7.2. CONCLUSIONS

Applications need to adjust the cycle length to the adequate value to optimise the
efficiency. Cycle length needs to be considered with the latency of the underlying
network. Choosing a short length may cause a faster convergence due to the increase
in communication rate per unit time. Also, a length that is too short will flood the
underlying network with messages, and the convergence speed will be susceptible
to communication delays, e.g. message queuing and congestion. The increase in
transmitted messages will make them more vulnerable to network faults and may cause
severe damage to epidemic tasks due to losing some system mass in the network. On
the other hand, a large length makes the convergence slower and may expose epidemic
tasks unnecessarily longer to system dynamics. The sufficient length of the cycle
should allow a system to converge reasonably fast and with very high probability. For
epidemic protocols that adopt pairwise message exchange such as Push-Pull and the
Symmetric-Push Sum schemes, a cycle length that is long enough for most exchange
transactions to complete within a cycle is recommended. In particular, setting the
cycle length to the RTT on the diameter of the network is the most practical choice for
epidemic services.

4) The local detection of convergence in epidemic systems is critical. It defines the point of
which the local state is considered mature and can be admitted for a task or a service.
It provides local synopsis for the global state, and it can be used to apply system-wide
action, decision or event. Convergence detection methods in data aggregation are
usually heuristic and require some application-specific parameters, i.e., error tolerance
and consecutive cycles threshold. The settings of these parameters typically require
global information on the system initialisation, e.g., system size or data distribution.
In real-world systems, such information is unavailable or hard to obtain epically in the
presence of dynamic conditions. The work in this project has evolved a novel heuristic
convergence detection method with statistical formulas, mainly, the Standard Error
(SE) is used; because SE formula does not require any prior information about the
target value and provide more accurate convergence detection. Also, the method limits
the setting of the application-specific parameters to the minimum amount that either
well-know or easy to guess.

5) The work in Chapter 4 has introduced the Phase Transition Algorithm PTA, which
is proposed to achieve globally consistent states in large and extreme-scale epidemic
systems. Also, two innovative epidemic protocols, namely PTP and ECP, are proposed.
Simulations have validated the protocols, and they have achieved the explicit agreement
on the data dissemination and aggregation. The PTA is flexible, and the agreement
phases in the algorithm can be cascaded to achieve further awareness on the target. The
algorithm inherits the intrinsic properties of epidemic models and achieves the global
agreement without deterministic communication or network structures. It is a typical
decentralised, scalable and fault-tolerant solution to modern services in extreme-scale
distributed systems such as consensus and consistency.

136

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

The protocols PTP and ECP have a general time complexity of O(M log(N)), where
M is the number of phases in the protocol and N is system size. They can commit
in taction = M × tc where tc = log(N) + log(1

ε
) + Υ. Also, the PTA has higher overall

communication overhead. Generally, the communication load is distributed over all
system nodes. Protocols of PTA have an overall overhead complexity O(2Ntaction).

Action implementation after achieving global agreement in the PTA is a matter that
requires global consideration. Nodes do not converge at the same time due to the
asynchrony, and nodes have no explicit knowledge of the convergence of other nodes.
Therefore, it is critical to all nodes in a particular phase to converge for a correctly global
agreement. A node that promptly implements an action such as stop or leave after it
detects global convergence locally can cause a detrimental effect on the aggregation
process of the current phase and prevent other nodes in the same phase from achieving
convergence. To avoid such effect, nodes must continue participating in the aggregation
process for a sufficient time tc to allow other nodes in the phase to converge. At this
stage, N is known to all nodes, and a reasonable value of tc can be computed and
used by a node to continue active before implementing any local actions. For making a
system-wide action or decision, e.g., restart or terminate. The first node that detects
global agreement starts a propagation process for the action. However, other nodes
may receive information on the action before they achieve convergence, and in this case,
they are enforced to apply the action.

6) In Chapter 5, the problem of distributed data aggregation under nodes churn and
network failures has been studied. Typically, the data aggregation process is susceptible
to damage from the churn of nodes and may produce incorrect results or may not
produce results at all. Our analysis of the data aggregation process presented in section
5.2 has led to the identification of three implicit phases in the process. Investigations
have shown that nodes churn has a different impact on each phase. Also, the phase
which is critical for the aggregation process is identified and has received further study,
leading to introducing new robust data aggregation protocols that recognise the implicit
phases, and achieve higher accuracy in the presence of nodes churn. Two protocols
are introduced, REAP that implements the Push-Release model and REAP+ which
implements the Pull-release model. The protocols are robust epidemic data aggregation
protocols that converge to a good approximation of the target value when churn is
present. The protocols are lightweight, resilient and can be used in combination with
any peer-sampling service or membership protocol. They can be used to build scalable
decentralised services independent of the underlying topologies. Moreover, the protocols
implement an innovative, distributed pairwise replication mechanism in addition to
the distributed failure detection and instantaneous mass restoration mechanisms. In
general, the robust data aggregation protocols proposed in this work achieve competitive
accuracy in comparison to other aggregation protocols.

The protocols REAP and REAP+ have preserved the intrinsic time complexity of

137

7.2. CONCLUSIONS

Push-Pull protocols, which is O(log(N)). However, the communication complexity
in the protocols increases by one message at the Propagation phase, i.e., 3 messages
per node per cycle. After convergence, messages number retains equivalent to the
Push-Pull protocols, i.e., 2 messages per node. At t < tc the overall overhead is
O(3Np) and O(2Np) otherwise.

An important outcome of the work presented in Chapter 5 is the ability to detect
the convergence in the aggregation process under all levels of churn. The robust
protocols adopt asynchronous message exchanging and processing cycles, and because
they can detect convergence, they can eventually and effectively terminate. This
achievement satisfies the requirements for asynchronous distributed systems to make
the agreement and acquire the consensus. Although, epidemic protocols eventually
converge in high probability in stable networks, our work has practically proved that the
robust epidemic protocols converge and detect convergence under dynamic conditions,
and even under the worst churn scenarios. Thanks to the adopted heuristic method
for the local detection of convergence which has enabled such essential feature. The
method recognises the state of convergence in aggregation results when the target value
is not available. In stable systems, data aggregation protocols that used the heuristic
method have detected the convergence to the target value with a desired error that
is tolerated. In dynamic conditions, the method detects the convergence on a good
estimation of the target value, and the estimation accuracy depends on the level of the
node churn.

Also, Chapter 5 presented a survey on the node churn, particularly in P2P networks
and systems. The survey aimed to adopt the typical churn model for studying the
epidemic data aggregation process. During the survey, it was difficult to extract accurate
churn rates for short time intervals due to the acquisition methods which are used
in the research studies. However, and with general assumptions on node departure,
estimation for expected departure rates were obtainable from the statistical distributions
of the session duration provided in the studies. The survey has shown that in normal
system conditions, 30% of nodes churn in the average should be expected. This result
implies that churn rates are usually moderate, and data aggregation protocols are
required to provide acceptable accuracy in this level of churn. Higher churn levels
are also considered; however, the higher levels have a low probability of occurring.
Additionally, it has limited global impact on decentralised systems which are deployed
over a large-scale network.

7) In large and extreme-scale distributed systems, continuous epidemic tasks are useful
models for monitoring and maintaining system consistency. Through periodic restarting,
epidemic processes can detect and adapt to new conditions. The work in Chapter 6
introduced a novel continuous epidemic protocol with an adaptive restart mechanism.
The process restarts either upon acquiring consensus on the global convergence of the
epidemic task or upon the detection of divergence. Moreover, the mechanism preserve

138

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

optimised communications overhead that can be piggybacked with regular message
exchanging. Also, the protocol introduces a decentralised selection method for data
aggregation tasks that require single-point initialisation. Simulations validated the
performance of the protocol under static and dynamic conditions. Furthermore, the
detection accuracy of the protocol can be tuned according to the application preference
for a good quick approximation or an accurate one that takes longer to compute.

The seed selection method addresses the determination of a single node problem in the
data aggregation initialisation. For instance, the global summation function requires a
single node (seed node) to set the initial aggregate of weights. The determination of
the seed node is a known challenge that requires a leader election process beforehand.
However, the seed node is subject to single-point failure problem. The seed selection
method is proposed to overcome the single-point initialisation in the data aggregation,
and in distributed and epidemic systems in general. Apart from the universally unique
identifiers, the method does not require any specific initialisation. All nodes are initially
seed nodes, the diffusion process in the data aggregation selects only one seed in
the system. During the diffusion process, seeds propagate in the system following a
random-walk fashion. In line with seeds propagation, the selection process is carried
out, targeting the oldest seed or the minimum seed identifier. In this way, nodes failure
does not affect the aggregation process. In case a node with the minimum seed identifier
has failed before it propagates, the system will select the seed with the prior in order
identifier.

The seed selection method requires distributed unique universal identifiers, not only
that but also, the identifier has to preserve the natural order of numbers. Although
such identifiers have been achieved in the practical work in this project, it might be
infeasible to make universal identifiers with such requirements in some applications. In
this case, random universal identifiers can be utilised. However, it is vital to note that
using the random universal identifiers in the seed selection method may violate the
single seed requirement in the data aggregation process. To clarify, the natural order of
the seed identifiers ensures that the seed selection method will eventually converge to
the globally lower seed proposed by any node in the system. Random identifiers do
not preserve this principle. Potentially, globally lower random seed can be generated
in the system at the time when another seed was selected, and nodes have detected
the convergence on the oldest seed. In this case, two seeds exist in the system at the
same time, which invalidates the single seed requirement. By accompanying the seed
selection method with another aggregate of the count function to count the number of
nodes that using a particular seed, and proceed with the seed that has the majority is
a practical solution for using random identifiers in the seed selection method.

Finally, protocols proposed in this project provide variety of selections to build epidemic
large scale services and applications for stable and dynamic systems. A particular epidemic
service can combine the robust data aggregation protocols with the PTA and achieve the

139

7.3. FURTHER WORK

ultimate epidemic protocol that achieves agreement in dynamic systems. The ECP for
instance, may use the robust data aggregation protocol in the agreement process and achieve
consensus in the presence of node churn. However, the decision-making process in the
agreement phases need to tolerate higher error and achieved consensus on the majority rather
than on a complete agreement. Also, ECP may implement the adaptive restart mechanism
in the agreement phases. The mechanism enables seamless detection of nodes that wishes
to disagree or withdraw, in addition to detecting the presence of failed nodes. The global
tolerance threshold can be used to adjust the required majority for the agreement to make
the transition to the next phase or, otherwise, to restart the agreement process or even the
whole task.

This section has described the achieved findings and concluded the accomplished work.
Although the work in this project was challenging and complicated mission, the presented
work has achieved all the stated aims and objectives. Overall, the research work in this
thesis makes noticeable contributions to the discipline of epidemic systems. The introduced
protocols provide fundamental solutions for many applications and services in the modern
distributed systems.

7.3 Further work

The following points are recommended suggestions for the future work as an extension to
this research project:

1) Nowadays, information systems in private and public sectors utilise Blockchain
technology to obtain a more secure and transparent transactional recording. It is a
new decentralised way to deal with assets, markets, and financial ecosystems. However,
the distributed ledger in the Blockchain requires several minutes to approve and
achieve consensus on a particular transaction, especially when a full-decentralisation is
a requirement, for example, the Proof-of-Work (PoW) in Bitcoin systems. Settling a
transaction in minutes limits the capabilities of large-scale systems, which usually
make hundreds of transactions per minute, e.g., systems used in healthcare, retailers,
and governmental services. Moreover, distributed systems in WSN and IoT demand
flexible algorithms suitable for their limited capabilities [5].

This research work has introduced the PTA framework and, in particular, its
implementation of the protocol PTP, which can achieve consensus among millions of
nodes within seconds in addition to being scalable, lightweight, and fully-decentralised.
This fast global-agreement can significantly improve the Blockchain technology for
Internet-scale applications. Mainly, the protocol PTP and as described in Section 4.4.2
achieves the explicit agreement on each information item (i.e., data block or
transaction) through its intrinsic properties. The protocol continuously disseminates
new information items into the system using randomised communications. It also
makes the transition into phases for each item following the PTA to build the global

140

CHAPTER 7. CONCLUSIONS AND FURTHER WORK

awareness on the reception of that particular item, i.e., achieving global agreement on
the item. Each phase targeting the awareness among system nodes in the protocol
PTP is an aggregation process that counts the number of nodes detecting an event
locally (e.g. convergence, reception of an item, or verifying a block). Ultimately, after
sufficient time the aggregation process in the current phase will converge to the count
of nodes in the phase. After the convergence, each node can merely detect achieving
the global agreement via verifying its local estimate of count to the system size or to a
majority threshold. The system size can be obtained using an epidemic protocol such
as SSEP described in Section 4.3.

The PTP can also be adapted to acquire the consistency of information, especially
when the total ordering of transactions is required, e.g., attaining certainty on data
immutability in the distributed ledger in the Blockchain systems [38]. Each transaction
information in the Blockchain platform needs to be applied at most once at each node
of the distributed ledger, and any two updates have to be applied in the same order
at all ledger nodes. The PTP and via continuous communication among ledger nodes
exchange the new transactions, and the agreement process (i.e., the subsequent phases)
can acquire the certainty on each transaction. For instance, each node and during the
aggregation (i.e., decision-making) process of a phase can either verify the transaction
or abort the process due to incorrectness of the transaction or due to violation of
transaction order. Upon the detection of convergence, each node can verify its local
estimate to a given threshold and decide to validate or invalidate a transaction.

In general, introducing an epidemic consensus service for Blockchain systems requires
further research. Precisely, investigations are needed to address the adversary behaviour
of some nodes and potential ways to achieve Byzantine agreement in epidemic protocols,
e.g., the PTP protocol. Also, the new research work needs to propose a novel epidemic
protocol that can verify transactions in a distributed ledger and achieve agreement
faster than the cutting-edge consensus protocols, for instance, the Avalanche protocols
[126].

2) The protocol ECP is approved to achieve the consensus in stable epidemic systems.
The features of protocol can be extended to dynamic systems by integrating the
adaptive restart mechanism. In essence, agreement phases in ECP can use the restart
mechanism and achieve decentralised decision-making with local results at each node.
The mechanism enables the seamless detection of disagreements and withdraws, as nodes
which decide not to proceed with the agreement can withhold itself from participating in
the process, in addition to detecting the presence of failed nodes. The global tolerance
threshold can be used to adjust the required majority for the agreement to make the
transition to the next phase or, otherwise, to restart the agreement process.

3) Additionally, work may investigate how running multiple aggregation processes in
parallel can help to detect results quality and use the results to compute an estimation

141

7.3. FURTHER WORK

for the lost mass during the aggregation process. The estimation can then be used in
the restoration procedure, maybe after the detection of convergence to correct the local
estimates to the true target.

4) In general, epidemic protocols have been extensively studied, and many solutions have
been proposed. However, and despite the intrinsic features they provide for large and
extreme-scale distributed systems, the impact of the protocols in real-world applications
and systems is limited. It is recommended that future research should involve potential
engagement of the research into realistic applications or projects.

142

References

[1] G. Coulouris et al. Distributed Systems: Concepts and Design. 5th ed. USA: Addison-
Wesley Publishing, 2011. isbn: 0-13-214301-1 (cit. on pp. 1, 5, 31).

[2] F. Schneider et al. ‘Understanding Online Social Network Usage from a Network
Perspective’. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement. IMC ’09. Chicago, Illinois, USA: ACM, 2009, pp. 35–48. isbn: 978-1-
60558-771-4. doi: 10.1145/1644893.1644899 (cit. on p. 1).

[3] A. Malatras. ‘State-of-the-art survey on P2P overlay networks in pervasive computing
environments’. In: Journal of Network and Computer Applications 55 (2015), pp. 1–23.
issn: 1084-8045. doi: 10.1016/j.jnca.2015.04.014 (cit. on p. 1).

[4] P. Costa and J. Leitão. ‘Practical Continuous Aggregation in Wireless Edge
Environments’. In: 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS). Oct. 2018, pp. 41–50. doi: 10.1109/SRDS.2018.00015 (cit. on pp. 2, 5,
120).

[5] J. Bonneau et al. ‘SoK: Research Perspectives and Challenges for Bitcoin and
Cryptocurrencies’. In: 2015 IEEE Symposium on Security and Privacy. May 2015,
pp. 104–121. doi: 10.1109/SP.2015.14 (cit. on pp. 2, 5, 140).

[6] C. Weinstock and J. Goodenough. On System Scalability. Tech. rep. CMU/SEI-2006-
TN-012. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2006. url: http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
7887 (cit. on p. 2).

[7] J. Albrecht et al. ‘Loose Synchronization for Large-scale Networked Systems’. In:
Proceedings of the Annual Conference on USENIX ’06 Annual Technical Conference.
ATEC ’06. Boston, MA: USENIX Association, 2006, pp. 28–28 (cit. on p. 2).

[8] D. Peng et al. ‘A loosely synchronized gossip-based algorithm for aggregate information
computation’. In: 2008 33rd IEEE Conference on Local Computer Networks (LCN).
Oct. 2008, pp. 451–455. doi: 10.1109/LCN.2008.4664203 (cit. on pp. 2, 45).

[9] M. J. Fischer. ‘The Consensus Problem in Unreliable Distributed Systems (A Brief
Survey)’. In: Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory. London, UK, UK: Springer, 1983, pp. 127–140. isbn: 3-540-
12689-9. doi: 10.1007/3-540-12689-9_99 (cit. on pp. 2, 5, 56).

143

https://doi.org/10.1145/1644893.1644899
https://doi.org/10.1016/j.jnca.2015.04.014
https://doi.org/10.1109/SRDS.2018.00015
https://doi.org/10.1109/SP.2015.14
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7887
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7887
https://doi.org/10.1109/LCN.2008.4664203
https://doi.org/10.1007/3-540-12689-9_99

REFERENCES

[10] I. Gupta, T. D. Chandra and G. S. Goldszmidt. ‘On Scalable and Efficient Distributed
Failure Detectors’. In: Proceedings of the Twentieth Annual ACM Symposium on
Principles of Distributed Computing. PODC ’01. Newport, Rhode Island, USA: ACM,
2001, pp. 170–179. isbn: 1-58113-383-9. doi: 10.1145/383962.384010 (cit. on p. 2).

[11] M. Jelasity et al. ‘Gossip-based Peer Sampling’. In: ACM Transactions on Computer
Systems 25.3 (2007). issn: 0734-2071. doi: 10.1145/1275517.1275520 (cit. on pp. 2,
20, 26).

[12] P. T. Eugster et al. ‘Epidemic Information Dissemination in Distributed Systems’.
In: IEEE Computer Society Press 37.5 (May 2004), pp. 60–67. issn: 0018-9162. doi:
10.1109/MC.2004.1297243 (cit. on pp. 2, 3, 18, 133).

[13] A. Montresor, M. Jelasity and O. Babaoglu. ‘Robust aggregation protocols for large-
scale overlay networks’. In: International Conference on Dependable Systems and
Networks, 2004. June 2004, pp. 19–28. doi: 10.1109/DSN.2004.1311873 (cit. on
pp. 2, 19, 26, 28, 32, 48, 93, 115, 133).

[14] S. Guha and N. Daswani. An experimental study of the skype peer-to-peer voip system.
Tech. rep. Cornell University, 2005 (cit. on pp. 2, 86).

[15] D. Stutzbach and R. Rejaie. ‘Understanding Churn in Peer-to-peer Networks’. In:
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. IMC
’06. Rio de Janeriro, Brazil: ACM, 2006, pp. 189–202. isbn: 1-59593-561-4. doi:
10.1145/1177080.1177105 (cit. on pp. 2, 84–86).

[16] S. Voulgaris, D. Gavidia and M. van Steen. ‘CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays’. English. In: Journal of Network and
Systems Management 13.2 (2005), pp. 197–217. issn: 1064-7570. doi: 10.1007/s10922-
005-4441-x (cit. on pp. 2, 26, 101).

[17] M. Jelasity et al. ‘The Peer Sampling Service: Experimental Evaluation of Unstructured
Gossip-Based Implementations’. In: Middleware 2004. Ed. by H.-A. Jacobsen. Berlin,
Heidelberg: Springer, 2004, pp. 79–98. isbn: 978-3-540-30229-2. doi: 10.1007/978-3-
540-30229-2_5 (cit. on p. 2).

[18] S. Rhea et al. ‘Handling Churn in a DHT’. In: Proceedings of the Annual Conference on
USENIX Annual Technical Conference. ATEC ’04. Boston, MA: USENIX Association,
2004, pp. 10–10. url: http://dl.acm.org/citation.cfm?id=1247415.1247425
(cit. on p. 2).

[19] L. Nyers and M. Jelasity. ‘Spanning Tree or Gossip for Aggregation: A Comparative
Study’. In: Euro-Par 2014 Parallel Processing: 20th International Conference, Porto,
Portugal, August 25-29, 2014. Proceedings. Ed. by F. Silva, I. Dutra and V. Santos
Costa. Cham: Springer, 2014, pp. 379–390. isbn: 978-3-319-09873-9. doi: 10.1007/978-
3-319-09873-9_32 (cit. on pp. 2, 56).

144

https://doi.org/10.1145/383962.384010
https://doi.org/10.1145/1275517.1275520
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1109/DSN.2004.1311873
https://doi.org/10.1145/1177080.1177105
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/978-3-540-30229-2_5
https://doi.org/10.1007/978-3-540-30229-2_5
http://dl.acm.org/citation.cfm?id=1247415.1247425
https://doi.org/10.1007/978-3-319-09873-9_32
https://doi.org/10.1007/978-3-319-09873-9_32

REFERENCES

[20] R. Makhloufi et al. ‘Decentralized Aggregation Protocols in Peer-to-Peer Networks:
A Survey’. In: Proceedings of the 4th IEEE International Workshop on Modelling
Autonomic Communications Environments. MACE ’09. Venice, Italy: Springer, 2009,
pp. 111–116. isbn: 978-3-642-05005-3. doi: 10.1007/978-3-642-05006-0_10 (cit. on
pp. 2, 56, 83).

[21] K. P. Birman et al. ‘Bimodal Multicast’. In: ACM Transactions on Computer Systems
17.2 (May 1999), pp. 41–88. issn: 0734-2071. doi: 10.1145/312203.312207 (cit. on
p. 3).

[22] D. Shah. ‘Gossip Algorithms’. In: Foundations and Trends in Networking 3.1 (2009),
pp. 1–125. issn: 1554-057X. doi: 10.1561/1300000014 (cit. on pp. 3, 6, 8, 18, 31,
134).

[23] A. Demers et al. ‘Epidemic Algorithms for Replicated Database Maintenance’. In:
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing. PODC ’87. Vancouver, British Columbia, Canada: ACM, 1987, pp. 1–12.
isbn: 0-89791-239-X. doi: 10.1145/41840.41841 (cit. on pp. 3, 18, 29, 36, 62, 93).

[24] D. Kempe, J. Kleinberg and A. Demers. ‘Spatial Gossip and Resource Location
Protocols’. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of
Computing. STOC ’01. Hersonissos, Greece: ACM, 2001, pp. 163–172. isbn: 1-58113-
349-9. doi: 10.1145/380752.380796 (cit. on pp. 3, 18).

[25] S. Boyd et al. ‘Randomized Gossip Algorithms’. In: ACM Transactions on Networking
14.SI (2006), pp. 2508–2530. issn: 1063-6692. doi: 10.1109/TIT.2006.874516 (cit. on
pp. 3, 19, 36, 43, 45).

[26] D. Kempe, A. Dobra and J. Gehrke. ‘Gossip-based computation of aggregate
information’. In: 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. Oct. 2003, pp. 482–491. doi: 10 . 1109 / SFCS . 2003 . 1238221
(cit. on pp. 3, 4, 8, 21, 31, 37–39, 56, 59–61, 68, 72, 78, 83, 87, 88, 101, 109, 113, 115,
117, 120, 133).

[27] M. Jelasity, A. Montresor and O. Babaoglu. ‘Gossip-based Aggregation in Large
Dynamic Networks’. In: ACM Transactions on Computer Systems 23.3 (2005),
pp. 219–252. issn: 0734-2071. doi: 10.1145/1082469.1082470 (cit. on pp. 3, 4, 6, 8,
19, 22, 31, 33, 35–37, 48, 58, 61, 68, 83, 87, 89, 113, 116, 117, 119, 120, 127, 133).

[28] P. Jesus, C. Baquero and P. S. Almeida. ‘Dependability in Aggregation by Averaging’.
In: The Computing Research Repository (CoRR) abs/1011.6596 (2010). url: http:
//arxiv.org/abs/1011.6596 (cit. on pp. 3, 4, 20, 22, 32, 37, 133).

[29] I. Rao, A. Harwood and S. Karunasekera. ‘Gossip-based asynchronous and robust
aggregation protocol - A pessimistic approach’. In: Consumer Communications and
Networking Conference (CCNC), 2011 IEEE. 2011, pp. 543–548. doi: 10.1109/CCNC.
2011.5766539 (cit. on pp. 3, 22, 32, 48, 49).

145

https://doi.org/10.1007/978-3-642-05006-0_10
https://doi.org/10.1145/312203.312207
https://doi.org/10.1561/1300000014
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/380752.380796
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1145/1082469.1082470
http://arxiv.org/abs/1011.6596
http://arxiv.org/abs/1011.6596
https://doi.org/10.1109/CCNC.2011.5766539
https://doi.org/10.1109/CCNC.2011.5766539

REFERENCES

[30] F. Blasa et al. ‘Symmetric Push-Sum Protocol for decentralised aggregation’. In:
Proceedings of AP2PS 2011, the Third International Conference on Advances in P2P
Systems. IARIA Journals, 2011, pp. 27–32. isbn: 9781612081731 (cit. on pp. 3, 23, 26,
27, 37, 38, 48, 49, 52, 59–61, 65, 72, 83, 87, 101, 109, 117, 120, 133).

[31] W. R. Heinzelman, J. Kulik and H. Balakrishnan. ‘Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks’. In: Proceedings of the 5th
Annual ACM/IEEE International Conference on Mobile Computing and Networking.
MobiCom ’99. Seattle, Washington, USA: ACM, 1999, pp. 174–185. isbn:
1-58113-142-9. doi: 10.1145/313451.313529 (cit. on pp. 3, 35, 36).

[32] J. M. Bahi, S. Contassot-Vivier and R. Couturier. ‘An Efficient and Robust
Decentralized Algorithm for Detecting the Global Convergence in Asynchronous
Iterative Algorithms’. In: High Performance Computing for Computational Science -
VECPAR 2008. Ed. by J. M. L. M. Palma et al. Berlin, Heidelberg: Springer, 2008,
pp. 240–254. isbn: 978-3-540-92859-1 (cit. on pp. 4, 32, 35, 45, 47, 72, 102, 133).

[33] P. Poonpakdee and G. D. Fatta. ‘Robust and efficient membership management in
large-scale dynamic networks’. In: Future Generation Computer Systems (2017). issn:
0167-739X. doi: 10.1016/j.future.2017.02.033 (cit. on pp. 4, 20, 23, 26, 28, 32,
33, 86, 93, 101, 127, 133).

[34] M. M. Ayiad and G. Di Fatta. ‘Robust Epidemic Aggregation Under Churn’. In:
Internet and Distributed Computing Systems. Ed. by G. Fortino et al. Cham: Springer,
2018, pp. 173–185. isbn: 978-3-319-97795-9. doi: 10.1007/978-3-319-97795-9_16
(cit. on pp. 4, 31, 38, 41, 42, 80, 84, 133).

[35] Y. Cao et al. ‘An Overview of Recent Progress in the Study of Distributed Multi-
Agent Coordination’. In: IEEE Transactions on Industrial Informatics 9.1 (Feb. 2013),
pp. 427–438. issn: 1551-3203. doi: 10.1109/TII.2012.2219061 (cit. on pp. 4, 68).

[36] V. Rapp and K. Graffi. ‘Continuous Gossip-Based Aggregation through Dynamic
Information Aging’. In: 2013 22nd International Conference on Computer
Communication and Networks (ICCCN). July 2013, pp. 1–7. doi:
10.1109/ICCCN.2013.6614118 (cit. on pp. 4, 115, 120).

[37] S. Abshoff and F. Meyer auf der Heide. ‘Continuous Aggregation in Dynamic Ad-Hoc
Networks’. In: Structural Information and Communication Complexity. Ed. by M. M.
Halldórsson. Cham: Springer, 2014, pp. 194–209. isbn: 978-3-319-09620-9 (cit. on
pp. 4, 120).

[38] A. Litke, D. Anagnostopoulos and T. Varvarigou. ‘Blockchains for Supply Chain
Management: Architectural Elements and Challenges Towards a Global Scale
Deployment’. In: Logistics 3.1 (2019). issn: 2305-6290. doi:
10.3390/logistics3010005 (cit. on pp. 5, 81, 141).

146

https://doi.org/10.1145/313451.313529
https://doi.org/10.1016/j.future.2017.02.033
https://doi.org/10.1007/978-3-319-97795-9_16
https://doi.org/10.1109/TII.2012.2219061
https://doi.org/10.1109/ICCCN.2013.6614118
https://doi.org/10.3390/logistics3010005

REFERENCES

[39] R. Baldoni et al. ‘Unconscious Eventual Consistency with Gossips’. In: Stabilization,
Safety, and Security of Distributed Systems. Ed. by A. K. Datta and M. Gradinariu.
Berlin, Heidelberg: Springer, 2006, pp. 65–81. isbn: 978-3-540-49823-0. doi: 10.1007/
978-3-540-49823-0_5 (cit. on pp. 5, 29, 36, 45, 68, 93).

[40] P. Bailis and A. Ghodsi. ‘Eventual Consistency Today: Limitations, Extensions, and
Beyond’. In: ACM Communications 56.5 (May 2013), pp. 55–63. issn: 0001-0782. doi:
10.1145/2447976.2447992 (cit. on pp. 5, 8, 30, 35, 134).

[41] N. A. Lynch. Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann
Publishers, 1996. isbn: 1558603484 (cit. on p. 5).

[42] G. Weikum and G. Vossen. Transactional information systems: theory, algorithms,
and the practice of concurrency control and recovery. Elsevier, 2001 (cit. on pp. 5, 45,
47, 56, 57).

[43] R. Guerraoui and A. Schiper. ‘The generic consensus service’. In: IEEE Transactions
on Software Engineering 27.1 (Jan. 2001), pp. 29–41. issn: 0098-5589. doi: 10.1109/
32.895986 (cit. on pp. 5, 56, 57).

[44] C. Dwork, N. Lynch and L. Stockmeyer. ‘Consensus in the Presence of Partial
Synchrony’. In: Journal of the ACM 35.2 (Apr. 1988), pp. 288–323. issn: 0004-5411.
doi: 10.1145/42282.42283 (cit. on pp. 5, 31, 32, 56, 116).

[45] R. Guerraoui et al. ‘Consensus in Asynchronous Distributed Systems: A Concise Guided
Tour’. In: Advances in Distributed Systems: Advanced Distributed Computing: From
Algorithms to Systems. Ed. by S. Krakowiak and S. Shrivastava. Berlin, Heidelberg:
Springer, 2000, pp. 33–47. isbn: 978-3-540-46475-4. doi: 10.1007/3-540-46475-1_2
(cit. on pp. 5, 6, 45, 47).

[46] B. S. Chlebus and D. R. Kowalski. ‘Gossiping to Reach Consensus’. In: Proceedings
of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures.
SPAA ’02. Winnipeg, Manitoba, Canada: ACM, 2002, pp. 220–229. isbn: 1-58113-529-7.
doi: 10.1145/564870.564908 (cit. on pp. 5, 6, 29, 56, 134).

[47] T. C. Aysal et al. ‘Broadcast Gossip Algorithms for Consensus’. In: IEEE Transactions
on Signal Processing 57.7 (July 2009), pp. 2748–2761. issn: 1053-587X. doi: 10.1109/
TSP.2009.2016247 (cit. on pp. 5, 20).

[48] A. Olshevsky and J. N. Tsitsiklis. ‘Convergence Speed in Distributed Consensus and
Averaging’. In: SIAM Journal on Control and Optimization (SICON) 48.1 (Feb. 2009),
pp. 33–55. issn: 0363-0129. doi: 10.1137/060678324 (cit. on pp. 5, 6, 8, 29, 37, 56,
68, 83, 134).

147

https://doi.org/10.1007/978-3-540-49823-0_5
https://doi.org/10.1007/978-3-540-49823-0_5
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1109/32.895986
https://doi.org/10.1109/32.895986
https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/3-540-46475-1_2
https://doi.org/10.1145/564870.564908
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1137/060678324

REFERENCES

[49] B. Charron-Bost, M. Függer and T. Nowak. ‘Approximate Consensus in Highly
Dynamic Networks: The Role of Averaging Algorithms’. In: Automata, Languages,
and Programming. Ed. by M. M. Halldórsson et al. Berlin, Heidelberg: Springer, 2015,
pp. 528–539. isbn: 978-3-662-47666-6. doi: 10.1007/978-3-662-47666-6_42 (cit. on
pp. 5, 6, 30, 36, 56).

[50] C. Georgiou et al. ‘Asynchronous Gossip’. In: Journal of the ACM 60.2 (2013), pp. 1–42.
issn: 0004-5411. doi: 10.1145/2450142.2450147 (cit. on pp. 7, 8, 32, 37).

[51] J. M. Bahi et al. ‘A decentralized convergence detection algorithm for asynchronous
parallel iterative algorithms’. In: IEEE Transactions on Parallel and Distributed
Systems 16.1 (Jan. 2005), pp. 4–13. issn: 1045-9219. doi: 10.1109/TPDS.2005.2
(cit. on pp. 7, 35, 37–40, 43, 45–47, 134).

[52] M. Ayiad, A. Katti and G. Di Fatta. ‘Agreement in Epidemic Information
Dissemination’. In: Internet and Distributed Computing Systems: 9th International
Conference, IDCS 2016, Wuhan, China, September 28-30, 2016, Proceedings. Ed. by
W. Li et al. Vol. 9864. Cham: Springer, 2016. Chap. 9, pp. 95–106. isbn:
978-3-319-45940-0. doi: 10.1007/978-3-319-45940-0_9 (cit. on pp. 7, 35, 36, 43,
45, 49, 55, 65, 83, 98, 121, 134).

[53] A. Montresor and M. Jelasity. ‘PeerSim: A scalable P2P simulator’. In: 2009 IEEE
Ninth International Conference on Peer-to-Peer Computing. Sept. 2009, pp. 99–100.
doi: 10.1109/P2P.2009.5284506 (cit. on pp. 11, 19).

[54] M. Ebrahim, S. Khan and H. Mohani. ‘Peer-to-Peer Network Simulators: an Analytical
Review’. In: arXiv e-prints (May 2014). arXiv: 1405.0400 [cs.NI] (cit. on p. 11).

[55] S. Naicken et al. ‘The State of Peer-to-peer Simulators and Simulations’. In: ACM
SIGCOMM Computer Communication Review 37.2 (Mar. 2007), pp. 95–98. issn:
0146-4833. doi: 10.1145/1232919.1232932 (cit. on p. 11).

[56] R. Karp et al. ‘Randomized rumor spreading’. In: Proceedings 41st Annual Symposium
on Foundations of Computer Science. 2000, pp. 565–574. doi: 10.1109/SFCS.2000.
892324 (cit. on pp. 18, 29, 32, 36, 62).

[57] P. T. Eugster et al. ‘Lightweight Probabilistic Broadcast’. In: ACM Transactions and
Computer Systems 21.4 (Nov. 2003), pp. 341–374. issn: 0734-2071. doi: 10.1145/
945506.945507 (cit. on pp. 18, 62).

[58] M. Jelasity and A. Montresor. ‘Epidemic-style proactive aggregation in large overlay
networks’. In: Distributed Computing Systems, 2004. Proceedings. 2004, pp. 102–109.
doi: 10.1109/ICDCS.2004.1281573 (cit. on pp. 19, 22, 37, 56, 68).

[59] M. Jelasity. ‘Gossip’. In: Self-organising Software: From Natural to Artificial
Adaptation. Ed. by G. Di Marzo Serugendo, M.-P. Gleizes and A. Karageorgos. Berlin,
Heidelberg: Springer, 2011, pp. 139–162. isbn: 978-3-642-17348-6. doi:
10.1007/978-3-642-17348-6_7 (cit. on pp. 19, 48).

148

https://doi.org/10.1007/978-3-662-47666-6_42
https://doi.org/10.1145/2450142.2450147
https://doi.org/10.1109/TPDS.2005.2
https://doi.org/10.1007/978-3-319-45940-0_9
https://doi.org/10.1109/P2P.2009.5284506
https://arxiv.org/abs/1405.0400
https://doi.org/10.1145/1232919.1232932
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1145/945506.945507
https://doi.org/10.1145/945506.945507
https://doi.org/10.1109/ICDCS.2004.1281573
https://doi.org/10.1007/978-3-642-17348-6_7

REFERENCES

[60] M. Jelasity, A. Montresor and O. Babaoglu. ‘Detection and removal of malicious
peers in gossip-based protocols’. In: In Proceedings of FuDiCo II: Workshop on Future
Directions in Distributed Computing (2004) (cit. on pp. 19, 33).

[61] A. Montresor and A. Ghodsi. ‘Towards robust peer counting’. In: Peer-to-Peer
Computing, 2009. 2009, pp. 143–146. doi: 10.1109/P2P.2009.5284525 (cit. on
p. 19).

[62] S. Madden et al. ‘TAG: A Tiny AGgregation Service for Ad-hoc Sensor Networks’. In:
SIGOPS - Operating Systems Review 36.SI (Dec. 2002), pp. 131–146. issn: 0163-5980.
doi: 10.1145/844128.844142 (cit. on p. 19).

[63] M. Dam and R. Stadler. ‘A generic protocol for network state aggregation’. In: 3
(2005), p. 411 (cit. on p. 19).

[64] K. Iwanicki, M. van Steen and S. Voulgaris. ‘Gossip-Based Clock Synchronization
for Large Decentralized Systems’. In: Self-Managed Networks, Systems, and Services.
Ed. by A. Keller and J.-P. Martin-Flatin. Berlin, Heidelberg: Springer, 2006, pp. 28–42.
isbn: 978-3-540-34740-8 (cit. on p. 19).

[65] B. Ghit, F. Pop and V. Cristea. ‘Epidemic-Style Global Load Monitoring in Large-Scale
Overlay Networks’. In: 2010 International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing. Nov. 2010, pp. 393–398. doi: 10.1109/3PGCIC.2010.62
(cit. on p. 19).

[66] G. D. Fatta et al. ‘Fault tolerant decentralised K-Means clustering for asynchronous
large-scale networks’. In: Journal of Parallel and Distributed Computing 73.3 (2013).
Models and Algorithms for High-Performance Distributed Data Mining, pp. 317–329.
issn: 0743-7315. doi: 10.1016/j.jpdc.2012.09.009 (cit. on pp. 20, 68, 83).

[67] R. Gupta and Y. Singh. ‘Reputation Aggregation in Peer-to-Peer Network Using
Differential Gossip Algorithm’. In: Knowledge and Data Engineering, IEEE
Transactions on 27.10 (2015), pp. 2812–2823. issn: 1041-4347. doi:
10.1109/TKDE.2015.2427793 (cit. on p. 20).

[68] A. Katti et al. ‘Epidemic failure detection and consensus for extreme parallelism’. In:
The International Journal of High Performance Computing Applications 0.0 (2017),
p. 1094342017690910. doi: 10.1177/1094342017690910. eprint: http://dx.doi.
org/10.1177/1094342017690910 (cit. on pp. 20, 23, 55, 59, 68, 83, 93).

[69] M. Jelasity, A. Montresor and O. Babaoglu. ‘T-Man: Gossip-based Fast Overlay
Topology Construction’. In: Computer Networks 53.13 (Aug. 2009), pp. 2321–2339.
issn: 1389-1286. doi: 10.1016/j.comnet.2009.03.013 (cit. on p. 20).

[70] R. Azimi and H. Sajedi. ‘Peer sampling gossip-based distributed clustering algorithm
for unstructured P2P networks’. In: Neural Computing and Applications (July 2017).
issn: 1433-3058. doi: 10.1007/s00521-017-3119-0 (cit. on p. 20).

149

https://doi.org/10.1109/P2P.2009.5284525
https://doi.org/10.1145/844128.844142
https://doi.org/10.1109/3PGCIC.2010.62
https://doi.org/10.1016/j.jpdc.2012.09.009
https://doi.org/10.1109/TKDE.2015.2427793
https://doi.org/10.1177/1094342017690910
http://dx.doi.org/10.1177/1094342017690910
http://dx.doi.org/10.1177/1094342017690910
https://doi.org/10.1016/j.comnet.2009.03.013
https://doi.org/10.1007/s00521-017-3119-0

REFERENCES

[71] M. Bawa et al. Estimating Aggregates on a Peer-to-Peer Network. Technical Report
2003-24. Stanford InfoLab, 2003 (cit. on p. 20).

[72] H.-G. Roh and C. L. Ignat. Rapid and Round-free Multi-pair Asynchronous Push-Pull
Aggregation. Research Report RR-8044. INRIA, 2012. url: https://hal.inria.fr/
hal-00724232 (cit. on pp. 22, 48, 49, 115, 120).

[73] P. Jesus, C. Baquero and P. S. Almeida. ‘Fault-Tolerant Aggregation by Flow Updating’.
In: Proceedings of the 9th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems. DAIS ’09. Lisbon, Portugal: Springer, 2009,
pp. 73–86. isbn: 978-3-642-02163-3. doi: 10.1007/978-3-642-02164-0_6 (cit. on
p. 24).

[74] P. Jesus, C. Baquero and P. Almeida. ‘Fault-Tolerant Aggregation for Dynamic
Networks’. In: Reliable Distributed Systems, 2010 29th IEEE Symposium on. 2010,
pp. 37–43. doi: 10.1109/SRDS.2010.13 (cit. on p. 24).

[75] P. Jesus, C. Baquero and P. S. Almeida. ‘Flow updating: Fault-tolerant aggregation
for dynamic networks’. In: Journal of Parallel and Distributed Computing 78 (2015),
pp. 53–64. issn: 0743-7315. doi: 10.1016/j.jpdc.2015.02.003 (cit. on pp. 26, 93,
115, 120).

[76] E. Ogston and S. A. Jarvis. ‘Peer sampling with improved accuracy’. In: Peer-to-
Peer Networking and Applications 2.1 (6th Nov. 2008), p. 24. issn: 1936-6450. doi:
10.1007/s12083-008-0017-3 (cit. on pp. 26, 93).

[77] C. Cyrus Moallemi and B. Van Roy. ‘Consensus Propagation’. In: IEEE Transactions
on Information Theory 52 (Nov. 2006), pp. 4753–4766. doi: 10.1109/TIT.2006.
883539 (cit. on p. 29).

[78] W. Ren, R. W. Beard and E. M. Atkins. ‘Information consensus in multivehicle
cooperative control’. In: IEEE Control Systems 27.2 (Apr. 2007), pp. 71–82. issn:
1066-033X. doi: 10.1109/MCS.2007.338264 (cit. on pp. 29, 68).

[79] F. Fagnani and S. Zampieri. ‘Randomized consensus algorithms over large scale
networks’. In: IEEE Journal on Selected Areas in Communications 26.4 (May 2008),
pp. 634–649. issn: 0733-8716. doi: 10.1109/JSAC.2008.080506 (cit. on p. 29).

[80] D. Dolev et al. ‘Reaching Approximate Agreement in the Presence of Faults’. In: J.
ACM 33.3 (May 1986), pp. 499–516. issn: 0004-5411. doi: 10.1145/5925.5931. url:
http://doi.acm.org/10.1145/5925.5931 (cit. on p. 30).

[81] A. Katti and D. J. Lilja. ‘Efficient and Fast Approximate Consensus with Epidemic
Failure Detection at Extreme Scale’. In: 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP). Mar. 2018, pp. 267–272.
doi: 10.1109/PDP2018.2018.00045 (cit. on p. 30).

150

https://hal.inria.fr/hal-00724232
https://hal.inria.fr/hal-00724232
https://doi.org/10.1007/978-3-642-02164-0_6
https://doi.org/10.1109/SRDS.2010.13
https://doi.org/10.1016/j.jpdc.2015.02.003
https://doi.org/10.1007/s12083-008-0017-3
https://doi.org/10.1109/TIT.2006.883539
https://doi.org/10.1109/TIT.2006.883539
https://doi.org/10.1109/MCS.2007.338264
https://doi.org/10.1109/JSAC.2008.080506
https://doi.org/10.1145/5925.5931
http://doi.acm.org/10.1145/5925.5931
https://doi.org/10.1109/PDP2018.2018.00045

REFERENCES

[82] M. J. Fischer, N. A. Lynch and M. S. Paterson. ‘Impossibility of Distributed Consensus
with One Faulty Process’. In: Journal of the ACM 32.2 (Apr. 1985), pp. 374–382. issn:
0004-5411. doi: 10.1145/3149.214121 (cit. on pp. 31, 36).

[83] R. Guerraoui and A. Schiper. ‘Consensus: the big misunderstanding [distributed fault
tolerant systems]’. In: Distributed Computing Systems, 1997., Proceedings of the Sixth
IEEE Computer Society Workshop on Future Trends of. Oct. 1997, pp. 183–188. doi:
10.1109/FTDCS.1997.644722 (cit. on p. 31).

[84] D. Dolev, C. Dwork and L. Stockmeyer. ‘On the Minimal Synchronism Needed for
Distributed Consensus’. In: Journal of the ACM 34.1 (Jan. 1987), pp. 77–97. issn:
0004-5411. doi: 10.1145/7531.7533 (cit. on p. 31).

[85] M. Ben-Or. ‘Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols’. In: Proceedings of the Second Annual ACM Symposium on Principles of
Distributed Computing. PODC ’83. Montreal, Quebec, Canada: ACM, 1983, pp. 27–30.
isbn: 0-89791-110-5. doi: 10.1145/800221.806707 (cit. on p. 31).

[86] L. Lamport. Generalized Consensus and Paxos. Tech. rep. MSR-TR-2005-33. Microsoft
Research, Mar. 2005, p. 60. url: https://www.microsoft.com/en-us/research/
publication/generalized-consensus-and-paxos/ (cit. on pp. 31, 57, 58, 116).

[87] T. D. Chandra and S. Toueg. ‘Unreliable Failure Detectors for Reliable Distributed
Systems’. In: Journal of the ACM 43.2 (1996), pp. 225–267. issn: 0004-5411. doi:
10.1145/226643.226647 (cit. on p. 31).

[88] R. Van Renesse, Y. Minsky and M. Hayden. ‘A Gossip-Style Failure Detection Service’.
In: Proceeding Middleware ’98 Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing. Ithaca, NY, USA:
Cornell University, 1998, pp. 55–70 (cit. on p. 31).

[89] M. Pease, R. Shostak and L. Lamport. ‘Reaching Agreement in the Presence of
Faults’. In: Journal of the ACM 27.2 (Apr. 1980), pp. 228–234. issn: 0004-5411. doi:
10.1145/322186.322188 (cit. on pp. 31, 116).

[90] C. Georgiou et al. ‘On the Complexity of Asynchronous Gossip’. In: Proceedings of the
27th ACM Symposium on Principles of Distributed Computing. PODC ’08. Toronto,
Canada: ACM, 2008, pp. 135–144. isbn: 978-1-59593-989-0. doi: 10.1145/1400751.
1400771 (cit. on pp. 31, 116).

[91] P. Poonpakdee and G. Di Fatta. ‘Expander Graph Quality Optimisation in Randomised
Communication’. In: Data Mining Workshop (ICDMW). Dec. 2014, pp. 597–604. doi:
10.1109/ICDMW.2014.150 (cit. on p. 32).

[92] M. M. Ayiad and G. D. Fatta. ‘Agreement in Epidemic Data Aggregation’. In: 2017
IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS).
Dec. 2017, pp. 738–746. doi: 10.1109/ICPADS.2017.00099 (cit. on pp. 32, 35, 37,
39, 40, 43, 45, 49, 55, 83, 88, 98, 102, 116).

151

https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/FTDCS.1997.644722
https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/800221.806707
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/1400751.1400771
https://doi.org/10.1145/1400751.1400771
https://doi.org/10.1109/ICDMW.2014.150
https://doi.org/10.1109/ICPADS.2017.00099

REFERENCES

[93] D. P. Bertsekas and J. N. Tsitsiklis. ‘Convergence Rate and Termination of
Asynchronous Iterative Algorithms’. In: Proceedings of the 3rd International
Conference on Supercomputing. ICS ’89. Crete, Greece: ACM, 1989, pp. 461–470.
isbn: 0-89791-309-4. doi: 10.1145/318789.318894 (cit. on pp. 35, 45).

[94] P. Poonpakdee, N. Orhon and G. Di Fatta. ‘Convergence Detection in Epidemic
Aggregation’. English. In: Euro-Par 2013: Parallel Processing Workshops. Ed. by
D. an Mey et al. Vol. 8374. Lecture Notes in Computer Science. Springer, 2014,
pp. 292–300. isbn: 978-3-642-54419-4. doi: 10.1007/978-3-642-54420-0_29 (cit. on
pp. 35, 39, 40, 43, 46, 70, 95, 102, 116).

[95] M. Femminella et al. ‘Gossip-based signaling dissemination extension for next steps
in signaling’. In: 2012 IEEE Network Operations and Management Symposium. Apr.
2012, pp. 1022–1028. doi: 10.1109/NOMS.2012.6212024 (cit. on p. 36).

[96] N. T. H. Linh et al. ‘Convergence time evaluation of a gossip algorithm over signed
graphs’. In: Control Conference (ASCC), 2015 10th Asian. 2015, pp. 1–5. doi: 10.
1109/ASCC.2015.7244534 (cit. on pp. 43, 45).

[97] G. Shi et al. ‘Finite-Time Convergent Gossiping’. In: ACM Transactions on Networking
24.5 (Oct. 2016), pp. 2782–2794. issn: 1063-6692. doi: 10.1109/TNET.2015.2484345
(cit. on p. 45).

[98] F. M. D. Fave et al. ‘Decentralised Coordination of Unmanned Aerial Vehicles for
Target Search using the Max-Sum Algorithm’. Event Dates: 10 - 14 May. May 2010.
url: https://eprints.soton.ac.uk/270812/ (cit. on p. 45).

[99] D. J. Buehrer and C.-Y. Wang. ‘Deco: A Decentralized, Cooperative Atomic Commit
Protocol’. In: Journal of Computer Networks and Communications 2012 (2012) (cit. on
pp. 45, 57).

[100] L. Tang et al. ‘Empirical Study on the Evolution of PlanetLab’. In: Sixth International
Conference on Networking, 2007. ICN ’07. 2007, pp. 64–64. doi: 10.1109/ICN.2007.
40 (cit. on p. 50).

[101] J. Peltotalo et al. ‘Peer-to-Peer Streaming Technology Survey’. In: Seventh
International Conference on Networking (icn 2008). Apr. 2008, pp. 342–350. doi:
10.1109/ICN.2008.86 (cit. on p. 50).

[102] D. Lee et al. ‘Has Internet Delay Gotten Better or Worse?’ In: Proceedings of the
5th International Conference on Future Internet Technologies. CFI ’10. Seoul, Korea:
ACM, 2010, pp. 51–54. isbn: 978-1-4503-0230-2. doi: 10.1145/1853079.1853094
(cit. on p. 50).

[103] S. Zander and G. Armitage. ‘Minimally-intrusive frequent round trip time
measurements using Synthetic Packet-Pairs’. In: 38th Annual IEEE Conference on
Local Computer Networks. Oct. 2013, pp. 264–267. doi: 10.1109/LCN.2013.6761245
(cit. on p. 50).

152

https://doi.org/10.1145/318789.318894
https://doi.org/10.1007/978-3-642-54420-0_29
https://doi.org/10.1109/NOMS.2012.6212024
https://doi.org/10.1109/ASCC.2015.7244534
https://doi.org/10.1109/ASCC.2015.7244534
https://doi.org/10.1109/TNET.2015.2484345
https://eprints.soton.ac.uk/270812/
https://doi.org/10.1109/ICN.2007.40
https://doi.org/10.1109/ICN.2007.40
https://doi.org/10.1109/ICN.2008.86
https://doi.org/10.1145/1853079.1853094
https://doi.org/10.1109/LCN.2013.6761245

REFERENCES

[104] G. Alexander and J. R. Crandall. ‘Off-path round trip time measurement via TCP/IP
side channels’. In: 2015 IEEE Conference on Computer Communications (INFOCOM).
Apr. 2015, pp. 1589–1597. doi: 10.1109/INFOCOM.2015.7218538 (cit. on p. 50).

[105] P. Romirer-Maierhofer et al. ‘Network-Wide Measurements of TCP RTT in 3G’.
In: Traffic Monitoring and Analysis. Ed. by M. Papadopouli, P. Owezarski and A.
Pras. Berlin, Heidelberg: Springer, 2009, pp. 17–25. isbn: 978-3-642-01645-5. doi:
10.1007/978-3-642-01645-5_3 (cit. on p. 50).

[106] B. K. Soorty et al. ‘Performance Comparison of Category 5e vs. Category 6 Cabling
Systems for both IPv4 and IPv6 in Gigabit Ethernet’. In: 2010 10th IEEE International
Conference on Computer and Information Technology. June 2010, pp. 1525–1529. doi:
10.1109/CIT.2010.271 (cit. on p. 50).

[107] C. P. Kruger and G. P. Hancke. ‘Implementing the Internet of Things vision in industrial
wireless sensor networks’. In: 2014 12th IEEE International Conference on Industrial
Informatics (INDIN). July 2014, pp. 627–632. doi: 10.1109/INDIN.2014.6945586
(cit. on p. 50).

[108] C. Pei et al. ‘WiFi can be the weakest link of round trip network latency in the wild’. In:
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. Apr. 2016, pp. 1–9. doi: 10.1109/INFOCOM.2016.7524396 (cit. on
p. 50).

[109] J. Y. Yu and M. Rabbat. ‘Performance comparison of randomized gossip, broadcast
gossip and collection tree protocol for distributed averaging’. In: 2013 5th IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP). Dec. 2013, pp. 93–96. doi: 10.1109/CAMSAP.2013.6714015
(cit. on pp. 56, 58, 73).

[110] W. Ren, R. W. Beard and E. M. Atkins. ‘A survey of consensus problems in multi-agent
coordination’. In: Proceedings of the 2005, American Control Conference, 2005. June
2005, pp. 1859–18643. doi: 10.1109/ACC.2005.1470239 (cit. on p. 56).

[111] R. Van Renesse and D. Altinbuken. ‘Paxos Made Moderately Complex’. In: ACM
Computing Surveys 47.3 (Feb. 2015), 42:1–42:36. issn: 0360-0300. doi: 10.1145/
2673577 (cit. on pp. 57, 58).

[112] L. Lamport. ‘The Part-time Parliament’. In: ACM Transactions on Computer Systems
16.2 (May 1998), pp. 133–169. issn: 0734-2071. doi: 10.1145/279227.279229 (cit. on
p. 58).

[113] L. Chitnis, A. Dobra and S. Ranka. ‘Aggregation Methods for Large-scale Sensor
Networks’. In: ACM Transactions on Networking 4.2 (Apr. 2008), 9:1–9:36. issn:
1550-4859. doi: 10.1145/1340771.1340775 (cit. on p. 68).

153

https://doi.org/10.1109/INFOCOM.2015.7218538
https://doi.org/10.1007/978-3-642-01645-5_3
https://doi.org/10.1109/CIT.2010.271
https://doi.org/10.1109/INDIN.2014.6945586
https://doi.org/10.1109/INFOCOM.2016.7524396
https://doi.org/10.1109/CAMSAP.2013.6714015
https://doi.org/10.1109/ACC.2005.1470239
https://doi.org/10.1145/2673577
https://doi.org/10.1145/2673577
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/1340771.1340775

REFERENCES

[114] J. Hursey et al. ‘A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault
Tolerant MPI’. In: Recent Advances in the Message Passing Interface: 18th European
MPI Users’ Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011.
Proceedings. Ed. by Y. Cotronis et al. Berlin, Heidelberg: Springer, 2011, pp. 255–263.
isbn: 978-3-642-24449-0. doi: 10.1007/978-3-642-24449-0_29 (cit. on p. 73).

[115] D. Kostoulas et al. ‘Decentralized Schemes for Size Estimation in Large and Dynamic
Groups’. In: Fourth IEEE International Symposium on Network Computing and
Applications. July 2005, pp. 41–48. doi: 10.1109/NCA.2005.15 (cit. on pp. 83, 119,
127, 133).

[116] R. Bhagwan, S. Savage and G. M. Voelker. ‘Understanding Availability’. In: Peer-to-
Peer Systems II. Ed. by M. F. Kaashoek and I. Stoica. Berlin, Heidelberg: Springer,
2003, pp. 256–267. isbn: 978-3-540-45172-3 (cit. on pp. 84, 85).

[117] Z. Yao. ‘Understanding Churn in Decentralized Peer-to-Peer Networks’. PhD thesis.
Texas A&M University, Aug. 2009. url: http://hdl.handle.net/1969.1/ETD-
TAMU-2009-08-906 (cit. on p. 84).

[118] F. Benevenuto et al. ‘Characterizing User Behavior in Online Social Networks’. In:
Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement. IMC
’09. Chicago, Illinois, USA: ACM, 2009, pp. 49–62. isbn: 978-1-60558-771-4. doi:
10.1145/1644893.1644900 (cit. on pp. 85, 86).

[119] S. Saroiu, K. P. Gummadi and S. D. Gribble. ‘Measuring and analyzing the
characteristics of Napster and Gnutella hosts’. In: Multimedia Systems 9.2 (1st Aug.
2003), pp. 170–184. issn: 1432-1882. doi: 10.1007/s00530-003-0088-1 (cit. on
p. 85).

[120] B. Javadi et al. ‘Discovering Statistical Models of Availability in Large Distributed
Systems: An Empirical Study of SETI@home’. In: IEEE Transactions on Parallel
and Distributed Systems 22.11 (Nov. 2011), pp. 1896–1903. issn: 1045-9219. doi:
10.1109/TPDS.2011.50 (cit. on p. 85).

[121] H. Pham. ‘System Reliability Concepts’. In: System Software Reliability. London:
Springer, 2006, pp. 9–75. isbn: 978-1-84628-295-9. doi: 10.1007/1-84628-295-0_2
(cit. on p. 85).

[122] N. Basher et al. ‘A Comparative Analysis of Web and Peer-to-peer Traffic’. In:
Proceedings of the 17th International Conference on World Wide Web. WWW ’08.
Beijing, China: ACM, 2008, pp. 287–296. isbn: 978-1-60558-085-2. doi: 10.1145/
1367497.1367537 (cit. on p. 86).

[123] M. Conti et al. ‘Trusted Dynamic Storage for Dunbar-Based P2P Online Social
Networks’. In: On the Move to Meaningful Internet Systems: OTM 2014 Conferences.
Ed. by R. Meersman et al. Berlin, Heidelberg: Springer, 2014, pp. 400–417. isbn:
978-3-662-45563-0. doi: 10.1007/978-3-662-45563-0_23 (cit. on p. 86).

154

https://doi.org/10.1007/978-3-642-24449-0_29
https://doi.org/10.1109/NCA.2005.15
http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-906
http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-906
https://doi.org/10.1145/1644893.1644900
https://doi.org/10.1007/s00530-003-0088-1
https://doi.org/10.1109/TPDS.2011.50
https://doi.org/10.1007/1-84628-295-0_2
https://doi.org/10.1145/1367497.1367537
https://doi.org/10.1145/1367497.1367537
https://doi.org/10.1007/978-3-662-45563-0_23

REFERENCES

[124] R. Kumar and A. Tomkins. ‘A Characterization of Online Browsing Behavior’. In:
Proceedings of the 19th International Conference on World Wide Web. WWW ’10.
Raleigh, North Carolina, USA: ACM, 2010, pp. 561–570. isbn: 978-1-60558-799-8.
doi: 10.1145/1772690.1772748 (cit. on p. 86).

[125] I. Rao, A. Harwood and S. Karunasekera. ‘Impacts of Asynchrony on Epidemic-
Style Aggregation Protocols’. In: Parallel and Distributed Systems (ICPADS). 2010,
pp. 601–608. doi: 10.1109/ICPADS.2010.130 (cit. on p. 101).

[126] M. Yin et al. ‘Scalable and Probabilistic Leaderless BFT Consensus through
Metastability’. In: Computing Research Repository abs/1906.08936 (2019). Team
Rocket. arXiv: 1906.08936. url: http://arxiv.org/abs/1906.08936 (cit. on
p. 141).

155

https://doi.org/10.1145/1772690.1772748
https://doi.org/10.1109/ICPADS.2010.130
https://arxiv.org/abs/1906.08936
http://arxiv.org/abs/1906.08936

	Declaration
	Acknowledgments
	Dedications
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Publications
	Glossary of Abbreviations
	Glossary of Variables
	Introduction
	Extreme-scale Distributed Systems
	Epidemic-based Protocols
	Towards Consistency of Epidemic Systems
	Consistency Problem in Epidemic Systems
	Research Objectives
	Methodology
	Contribution
	Scope of The Research Work
	Thesis Outline

	Literature Review
	Data Dissemination and Aggregation Protocols
	Push-Sum Protocol
	Push-Pull Protocol
	Symmetric Push-Sum Protocol
	Flow Updating Protocol

	Topology Management and Pear-Sampling Protocols
	Node Cache Protocol-Plus (NCP+)

	Eventual Consistency and Distributed Consensus
	Impossibilities in Real-world Systems
	Model of Epidemic Systems
	Summary

	Convergence Detection in Epidemic Systems
	Convergence of Dissemination Process
	Convergence of Aggregation Process
	Local Convergence Detection
	Global Convergence Detection
	Convergence Speed and Detection Time

	Agreement in Epidemic Systems
	Agreement in Centralised Distributed Systems
	Phase Transition Algorithm (PTA)
	System Size Estimation Protocol (SSEP)
	Agreement in Epidemic Information Dissemination
	Information Dissemination Application (IDA)
	Phase Transition Protocol (PTP)
	Experimental Results for ptp

	Agreement in Epidemic Data Aggregation
	Epidemic Consensus Protocol (ECP)
	Experimental Results for ecp

	Discussions

	Robust Epidemic Aggregation under Churn
	Node Churn in P2P networks
	Phases of Epidemic Data Aggregation Process
	Push-Release Model
	Robust Epidemic Aggregation Protocol (REAP)
	Experimental Results for reap

	Pull-Release Model
	Robust Epidemic Aggregation Protocol-Plus (REAP+)
	Experimental Results for reap+

	Discussions

	Consistent Epidemic Systems
	Data Aggregation and Seed Selection Method
	The Continuous Epidemic Protocol with Adaptive Restart Mechanism
	Experimental Results for The Continuous Epidemic Protocol

	Discussions

	Conclusions and Further Work
	Recap of the Research Problem
	Conclusions
	Further work

	References

