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Abstract

Background: Gene fusions are the most powerful type of in silico-derived functional associations. However, many
fusion compilations were made when <100 genomes were available, and algorithms for identifying fusions need

updating to handle the current avalanche of sequenced genomes. The availability of a large fusion dataset would
help probe functional associations and enable systematic analysis of where and why fusion events occur.

Results: Here we present a systematic analysis of fusions in prokaryotes. We manually generated two training sets:
(i) 121 fusions in the model organism Escherichia coli; (i) 131 fusions found in B vitamin metabolism. These sets
were used to develop a fusion prediction algorithm that captured the training set fusions with only 7 % false
negatives and 50 % false positives, a substantial improvement over existing approaches. This algorithm was then
applied to identify 3.8 million potential fusions across 11,473 genomes. The results of the analysis are available in a
searchable database at http://modelseed.org/projects/fusions/. A functional analysis identified 3,000 reactions
associated with frequent fusion events and revealed areas of metabolism where fusions are particularly prevalent.

Conclusions: Customary definitions of fusions were shown to be ambiguous, and a stricter one was proposed.
Exploring the genes participating in fusion events showed that they most commonly encode transporters,
regulators, and metabolic enzymes. The major rationales for fusions between metabolic genes appear to be
overcoming pathway bottlenecks, avoiding toxicity, controlling competing pathways, and facilitating expression and
assembly of protein complexes. Finally, our fusion dataset provides powerful clues to decipher the biological

activities of domains of unknown function.
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Background

As soon as a handful of whole genomes had been se-
quenced in the late nineties, the power of using gene fu-
sions to deduce functional associations between gene
families was demonstrated [1, 2]. In what is defined here
as a true gene-fusion event, gene products which are
separate entities in a given genome are joined together
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in a single multifunctional polypeptide in another gen-
ome. Such fusions, which have been called ‘Rosetta
stone’ proteins [1], are often found between genes that
are functionally related [3], e.g. genes specifying proteins
that catalyze consecutive steps in a metabolic pathway,
or genes encoding components of molecular complexes.
These fusion events are conceptually different from
multi-domain proteins, where the individual domains
are never encoded separately while retaining the same
functional roles [4—6]. For brevity and convenience we
refer throughout this article to protein and domain fu-
sions and use protein names although technically it is
not the proteins but the genes that are fused.
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Fusion identification methods were first developed to
predict protein-protein interactions [1, 2] but because
fusion events are relatively infrequent, other in silico
tools have been more widely used for this purpose (see
Table 1 in [7] as well as [8] for recent reviews). The use
of fusions has, however, been successful in gene function
discovery as part of functional association networks. A
recent survey catalogued 30 cases where gene fusion
analysis led to a correct functional prediction [9], and
several more examples can be given just from our own
work [10-14]. The analysis of gene fusion and fission
events has also turned out to be an effective way to iden-
tify deep-branching evolutionary relationships [15-17].
Finally, correct identification of fusion events is critical
for assigning accurate functional annotations because
many automated function-calling pipelines call only one
of the two functional roles encoded by the fused poly-
peptide [3, 18, 19]. Hence, because of the multiple uses
of fusions, many efforts have been made to accurately
identify fusion events across an ever-increasing number
of sequenced genomes (Table 1).

The automated detection of fusions in thousands of
genomes is not trivial, and the difficulty derives from the
very mechanisms driving protein evolution. Proteins
evolve by gene elongation (fusion of duplicated gene
copies) [6] or fusion and/or rearrangement of separate
domains [20]. A high proportion of proteins in a given
genome accordingly contain more than one domain (e.g.
39 % of the proteins in Escherichia coli have multiple
domains). These multi-domain proteins can be separated
into different categories. The first contains cases where
the multi-domain protein has only one functional role
such as peptidoglycan glycosyltransferase (EC 2.4.1.129);
such proteins should not be considered as bona-fide
Rosetta stone proteins, as these proteins fail the func-
tional definition of a fusion. Depending on how these
are treated in the fusion search algorithm, this category
can artificially inflate the fusion count. The second cat-
egory is the set of modular proteins where functional
domains can be found in different combinations. These
include the phosphotransferase transport system (PTS)
proteins, the ubiquitous ABC transporter families [21],
or the two component regulator system families [22]
that are very widespread in bacterial genomes. These are
technically fusion proteins with the caveat that their dif-
ferent domains belong to large paralogous families
whose members differ mainly in the substrate or ligand
they recognize. Such ‘promiscuous domains’ lead to
many genes that contain multiple non-overlapping do-
mains. These — although technically fusions — are not
the most interesting types of fusions and are not part of
the third group corresponding to the Rosetta stone pro-
teins defined above, which are the most informative in
terms of functional associations.
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Previously, fusions have been identified computation-
ally using two primary strategies. In the earliest strat-
egies (Table 1), BLAST or Smith Waterman based
sequence alignment algorithms were applied to align all
proteins across all known sequenced genomes, systemat-
ically identifying every case where two non-homologous
proteins in one genome aligned to non-overlapping re-
gions of a third protein in another genome. This third
protein would then be labeled a fusion. This approach
was applied extensively prior to 2005, when the number
of genomes, and by extension known protein sequences,
was still relatively small (<100 genomes) (Table 1).
Today, there are >60,000 sequenced genomes (7,000
complete), containing >50 million proteins, making this
all-versus-all sequence alignment approach infeasible.

Currently, the most common approach involves using
Hidden Markov Models (HMM) of protein domains [23]
to robustly align a database of unique protein domains
against all known proteins and identifying fusions as
proteins that align to multiple non-overlapping domains
[24]. The use of HMMSs in combination with a database
of unique domains serves to massively reduce redun-
dancy in the query sequences for this analysis, making
this approach computationally tenable even for tens of
thousands of genomes and millions of proteins. The
challenge in this approach is that it can lead to many
false positives, because of the ‘promiscuous domains’
problem discussed above. To eliminate these false
positives, two filters are often applied: (i) elimination
of ‘promiscuous domains’ that co-occur in many dif-
ferent proteins with many different domains; (ii) elim-
ination of domains that are not a full-length match to
a protein in another genome. While these filtering ap-
proaches do reduce false positives, they do not elim-
inate them entirely [25].

Today, significant progress has been made in defining
a set of conserved protein domains that covers much of
the current genomic diversity [26] and in compiling a
large set of consistently annotated genome sequences
[27]. In principle, this set could be used to generate a re-
vised dependable fusion dataset. The accessible identifi-
cation of fusions in modern genome databases presents
a great opportunity for statistical and evolutionary ana-
lysis of fusion events on a scale and with a depth that
has never been previously possible. Fusion events can be
classified, categorized, and analyzed for how commonly
they occur. Fusion prediction methods can make better
use of machine learning approaches, as datasets are large
enough now to enable these approaches. Most import-
antly, the occurrence of fusions can give insights into
the functions of the fused domains.

Several hypotheses have been put forward regarding
the selective pressures that drive the formation of fu-
sions. The initial postulates were: (i) that in the case of



Table 1 Previous analyses of gene fusions

No. of Organisms analyzed  No. of detected No. of predicted functional Ref Website Fusion detection method*** Homology or orthology-based? ***

genomes fused proteins linkages**

2 EC, SC - 6,809 in EC 45,502 in SC [62] - Gene fusion (BLAST) & domain  All homologs (5 % most promiscuous

fusion (ProDom) domains removed)
3 EC, PH, SC - 854 in EC 107 in PH; 918 [63] - Gene fusion (BLAST) All homologs
in SC

4 EC, HI, MJ, SC 64 - [2] List of fusions ® Gene fusion (BLAST & S-W) All homologs

17 Bact, Arch 229 - [64] - Gene fusion (S-W) Orthologs only (BBH)

24 Bact, Arch (+SC) 2,365 (621 families) - [65] - Gene fusion (BLAST, component  All homologs

overlap <10 %)
30 Bact, Arch (+SC) 4515 - [3] DB (not maintained) 2 Gene fusion (BLAST) Orthologs only (one link between
Fusion stats © each COG)

89 Bact, Arch ~20,000 - [66] FusionDB (not maintained) Gene fusion (BLAST) Orthologs only (BBH)

184 Bact, Arch, Eukar 130,229 2,192,019 [25] Results for download © Domain fusion (Pfam) All homologs (promiscuous domains
removed)

20 Bact, Arch, Eukar 49 - [67,68] SAFE software; FED DB Gene fusion (BLAST) All homologs (promiscuous domains

(not maintained) | removed)
30 Bact, Arch 2490 by MF 5339 by - [69] MosaicFinder; FusedTriplets ~ Gene fusion (BLAST) Graph topology of seq. similarity
FT software ¢ network is used for scoring
1,895% Bact, Arch user set-dependent, - [70] MicroScope " n/a Synteny based fusion detection
2,193 in EC

2,031% Bact, Arch, Eukar user set-dependent - [24,71] String DB n/a n/a

2,291* Bact, Arch (+SC) - 2,209,622 [72] Prolinks J Gene fusion (BLAST) All homologs (promiscuous domains
removed)

31,442%  Bact, Arch, Eukar user set-dependent, - 134, 73] JGIIMG * Gene fusion (USEARCH) All homologs (as in [2])

397 in EC
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Table 1 Previous analyses of gene fusions (Continued)

user set Eukar - user set-dependent [24] CODA software ' Domain fusion (Pfam) All homologs (scoring immune to
promiscuous domains)

2 Eukar (HS, SC) 2351in HS; 189 in SC - [74] Domain Fusion DB ™ Domain fusion (Pfam) All homologs (promiscuous domains
removed)

1 Eukar (TT) 80inTT - N7 DeFuser " Domain fusion (KOG) Compares N and C termini of query

sequence to KOG DB

The Table is modified and extended from Table 1 in Reid et al. [24]

Abbreviations: DB database, MF MosaicFinder software, FT FusedTriplets software, n/a information not available, S-W Smith-Waterman, organisms, Bact Bacteria, Arch Archea, Eukar Eukaryota, EC E. coli, HI H. influenza,
HS H. sapiens, MJ M. jannaschii, PH P. horikshii, SC S. cerevisiae, TT T. thermophila

* Statistics as of November 2015

** Predicted potential protein-protein interactions (‘functional links’) based on gene fusion events; the actual fused proteins were NOT reported in some studies

*** Two main bioinformatics approaches to identify fusion events were used: whole protein sequence comparisons (‘gene fusion’) or domain family comparisons (‘domain fusion’)
2 http://www.nature.com/nature/journal/v402/n6757/extref/402086a0-s2.html

b http://fusion.bu.edu

< http://www.pnas.org/content/98/14/7940/T1.expansion.html

9 http://www.igs.cnrs-mrs.fr/FusionDB/

€ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248599/#S8

f Contact Sofia KOSSIDA (sofia.kossida@igh.cnrs.fr)

9 http://sourceforge.net/projects/mosaicfinder/

h https://www.genoscope.cns.fr/agc/microscope/compgenomics/fusfis.php?

"http:/string-db.org/

I http://prl.mbi.ucla.edu/pribeta/

¥ https://img.jgi.doe.gov

! ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v12.0.0/coda/

™ http://calcium.uhnres.utoronto.ca/pi/no_flash.htm
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consecutive steps in metabolic pathways, fusions im-
prove kinetic efficiency by favoring channeling of inter-
mediates between fusion partners, and (ii) that in the
case of complexes, fusions ensure identical expression
levels of the subunits [1, 2, 28]. The channeling hypoth-
esis was recently challenged as simply fusing genes did
not promote channeling whereas protein conglomerates
did [29]. The fact that the great majority of fusions
(~90 %) occur in only one order (i.e. AB, never BA) also
suggests that fusions could optimize complex assembly
[30]. Finally, it seems likely that fusions reveal cases of
instability/toxicity of pathway intermediates that would
fit with the recent proposal by Danchin and colleagues
that chemical reactivity shapes many aspects of metabol-
ism and cellular structure [31].

In this study we combined the use of the Conserved
Domain Database (CDD) [26] and the SEED [32] to-
gether with current computational strategies to create an
accurate fusion detection algorithm and then a revised
dependable fusion dataset. Compared to existing methods
summarized in Table 1, our pipeline combined multiple
filter criteria and used manually created training sets to
fine-tune the parameters to better circumvent the prob-
lem of false positives. We focused on prokaryotic genomes
because metabolic annotations and models are better for
prokaryotes and paralog expansions complicate fusion
data for eukaryotes [25]. We also analyzed our updated fu-
sion dataset in order to improve our understanding of
where and why gene fusion events have occurred, and of
what gene fusions can tell us about the functions of their
constituent domains.

Results

Compilation of a high quality Escherichia coli K12 MG1655
fusion dataset

E. coli MG1655 provides an ideal training set for the de-
velopment of algorithms to identify multi-domain fusions
based on protein sequence (Table 1). There are four com-
prehensive fusion analyses in this organism: (i) Enright
et al. [2] identified 24 fusions based on comparison of
four genome sequences; (ii) Serres et al. identified 107 fu-
sions based on manual curation of protein domain data
[33]; (iii) IMG predicted 461fusions, with 74 listed as cu-
rated [34], and (iv) SEED annotated 96 fused proteins
[27]. We made a reconciled list of fused genes by compar-
ing and curating these data sources using our own fusion
criteria: the multi-domain standard and the independently
occurring domain standards.

First, we removed fusions that failed to meet the basic
criterion of containing multiple non-overlapping protein
domains by computing conserved domains for all the
predicted fusions using the Conserved Domain Database
(CDD) detection scripts obtained from NCBI [26]. Two
genes in the Enright et al. dataset were found to be
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erroneously classified as fusions due to miscalled genes in
Haemophilus influenzae. Twenty seven genes in the SEED
dataset were actually multifunctional single-domain pro-
teins that were inaccurately annotated as fusions. After re-
moving these mispredictions, 151 distinct genes remained
from all fusion prediction datasets in E. coli that satisfied
the criteria as multi-domain proteins (Additional file 1:
Table S1).

As a second test, we determined whether the non-
overlapping domain alignments in all the predicted fu-
sions: (i) were full-length alignments to each domain; (ii)
had greater than 50 % identity to each domain; and (iii)
involved non-overlapping domains that also aligned indi-
vidually to separate single-domain proteins. These cri-
teria are meant to assess whether these proteins are true
Rosetta stone proteins. Manual curation of the 38 genes
that failed this test revealed that eight were still likely to
be fusions based on literature evidence or domain align-
ments that only narrowly missed the cutoffs listed above.
The other 30 genes were labeled as uncertain fusions.

The 121 fusions that remained after applying these cri-
teria were used as the training set for our fusion predic-
tion algorithm (Additional file 1: Table S1). Thirty genes
from this final set were present only in the Serres et al.
dataset; 16 genes were present only in the SEED dataset;
and none were present only in the IMG dataset. The three
dominant functions associated with the fused genes in our
E. coli dataset were: (i) solute transport, 48 genes; (ii) en-
zymes in intermediary metabolism, 32 genes; and (iii)
regulation, 21 genes (Fig. 1). Ten of the fusions involved
non-metabolic functions, and only five were of unknown
function. This is a surprising result, as these proportions
of transport- and regulation-related fusions do not reflect
the functional distribution of E. coli genes. Less than 10 %
of E. coli genes are associated with transmembrane trans-
port [35], yet they represent 40 % of the fusions. Less than

Metabolic pathway

Nonmetabolic

:

&S Regulator

&

o]

N Transporter
Unknown

Metabolic complex

Fig. 1 Distribution of functions associated with gene fusion events
in E. coli. Each of the 121 fused genes identified in E. coli was
manually assigned to one of six categories based on their annotated
function. The distribution of fusions among these categories is
shown in the pie chart. Red numbers represent the total fusion
counts and black numbers their respective percentages
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5 % of E. coli proteins are regulators [36], but they repre-
sent 17 % of the fusions. The number of fusions with en-
zymes (25 %) is, however, consistent with their genomic
representation, which is estimated at 30 % [37, 38]. The
small number of fusions involving domains of unknown
function in E. coli is a tribute to its status as a model or-
ganism for over 60 years.

Manual compilation of fused genes in B vitamin pathways
Having constructed a comprehensive catalogue of all fu-
sions that occur within a single genome (i.e. E. coli), we
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also wanted to construct a catalogue of all fusions that
occur within a single biological system across many dif-
ferent genomes. We selected B vitamin biosynthesis for
this detailed cross-genome study because previous work
found a high incidence of fusions in these pathways [39].
Since B vitamin enzymes have been well characterized in
several prokaryotes, we manually curated three different
genome databases (see Methods) and constructed a B vita-
min prokaryotic fusions dataset comprising 131 fusions
(Figs. 2 and 3). We then used this dataset in combination
with our high quality E. coli dataset to implement our
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fusion architectures are illustrated in this diagram following the same representation rules as in Fig. 2. The variety of fusions of each thiamin
biosynthesis gene is shown on the top left insert. This variety is represented by a color range where the number of binary fusion events in which
each gene participates (see Additional file 1: Table S3B), is proportional to the orange color intensity on the diagram (see left panel under compounds
abbreviations section). The frequency of fusions of each thiamin biosynthesis gene is displayed on the top right insert. This frequency is expressed as a
percentage and calculated as described in Methods. It is represented by a color range where the ratio for each thiamin gene mentioned above is
proportional to the blue color intensity (see right panel under compounds abbreviations section)

fusions search algorithm. Vitamin fusion data are compiled
in Additional file 1: Tables S2-S8 and Additional file 2).

Developing an algorithm to systematically detect fusions
in all pathways

Most of the recent fusion detection algorithms based on
conserved domains (Table 1) have not been applied sys-
tematically to a full modern database, and — as shown
by our curated analysis in E. coli — all of them give high
rates of false positives and false negatives. We developed
a new fusion detection algorithm, using data from
11,473 genomes and ~42.2 million genes selected from
the PubSEED database [27, 32].

We began by using CDD detection scripts obtained
from NCBI [26] to identify all instances of CDDs in our
genomes. In total, 39,381 unique CDDs aligned to 34.4
million genes (7.8 million genes aligned to no CDDs at
all), with an average of 18.9 hits for every gene in our
database (Additional file 1: Table S9). In this analysis,
any alignment with a BLAST E-value below le-5 was
considered a hit.

Next, we identified all genes in our database with at
least two non-overlapping CDD alignments. This re-
sulted in an average of 1,041 predicted fusions per gen-
ome, including 1,654 predicted fusions in E. coli
(Additional file 1: Table S9). Recall that our manual cur-
ation of gene fusion events in E. coli identified only 121
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fusions in the genome. All of these were among the
1,654 genes with non-overlapping CDD alignments, es-
tablishing this condition as necessary but not sufficient
for a gene to be considered a fusion. Analysis of selected
non-fusions containing non-overlapping CDD align-
ments revealed that many of these false positives
involved CDDs associated exclusively with small sub-
domains rather than entire genes.

To eliminate the over-predictions mentioned above,
we limited the domains used in our fusion identification
approach to CDDs with a bidirectional alignment greater
than 90 % to at least one gene in the PubSEED database.
This reduced the number of CDDs used for our fusion
identification from 39,381 to 26,882 (68 %) (Additional
file 1: Table S10). We call these remaining CDDs full-
gene-CDDs.

We then narrowed the conditions on our fusion identifi-
cation algorithm to select only genes with non-
overlapping alignments to at least two full-gene-CDDs.
We also required the length of the non-overlapping align-
ments to exceed at least 50 % of the length of the aligned
full-gene-CDDs. This 50 % threshold was selected to
maximize the fit of our predicted fusions to our curated E.
coli and B vitamin fusion training set (Additional file 1:
Tables S1 to S8). Using these criteria reduced the average
fusion count per genome to 686, and the count in E. coli
to 610 (Additional file 1: Table S9). At the same time, all
but ten of our 121 known fusions in E. coli were still cap-
tured by the more stringent selection criteria. Thus we
had eliminated 1,044 false positives in E. coli while intro-
ducing only ten false negatives.

Another common criterion utilized in fusion prediction
algorithms is to exclude “promiscuous” CDDs, i.e. those that
are fused to many other domains, when evaluating whether
a protein has two non-overlapping domains. Unfortunately,
given the size and diversity of our protein database, the ma-
jority of CDDs co-occur in many genes with many other

Table 2 Criteria used to filter true fusions from false positives
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CDDs, making all CDDs appear to be promiscuous. We
attempted to consolidate CDDs with similar alignments in
many different genes into 5,923 distinct sets (Additional file
1: Table S11), where each set contained an average of 6.6
CDDs. However, even with this consolidation, most CDD
sets co-occurred in many genes with many other sets, so
our efforts to use CDD promiscuity as an additional filter
for our fusion identification algorithm failed.

Instead of the CDD promiscuity filter, we identified
a set of eight alternative criteria that could be used
to filter non-fusions from true fusions (Table 2).
These criteria were determined by comparing the 121
true fusions to the 499 false positives in E. coli that
satisfied our non-overlapping full-gene-CDD filter.
We identified the biologically meaningful attributes of
these genes and their CDD alignments that worked
best to separate fusions from non-fusions (Table 2).
With these refined criteria, we reduced the predicted
number of fusions in E. coli to 322, including 98
(81 %) of our 121 confirmed fusions in E. coli. Our
algorithm also correctly predicted 126 (96 %) of the
131 B vitamin fusions. The workflow of our fusion
prediction algorithm is presented Fig. 4.

Overall, our fusion prediction algorithm has a false
negative rate of 11 % and a false positive rate of 50 %
(Additional file 1: Table S12, which contains all multi-
domain proteins along with how each protein matched
or failed to match our fusion criteria). These results rep-
resent extensive optimization of numerical thresholds
for our fusion prediction criteria, prioritizing the
minimization of false negatives over the minimization of
false positives. This represents a significant improvement
over existing fusions identification approaches used in
SEED or IMG. SEED has a lower false positive rate
(28 %) but a much higher false negative rate (43 %); and
IMG has a higher false negative rate (38 %) and a higher
false positive rate (84 %). Here we emphasize that our

ID Criteria

Biological meaning

1 Protein length must exceed 600 amino acid residues

2 All non-overlapping CDDs together must align to at least 40 % of
the gene length

3 A minimum alignment length of 50 for all non-overlapping CDDs

4 Gap between fused domains must be at least 60 residues and 10 %
of gene length from end of gene

5 At least two distinct CDD sets represented in the gene

6 Less than half of the CDD alignments for the gene should cross the
gap between fused domains

7 All non-overlapping CDDs must co-occur with fewer than 1500 dif-
ferent CDD sets

8 Fewer than 1000 matches among the non-overlapping CDDs

Fusion proteins should be longer than single-domain proteins

Fused-domains should cover the full length of the fused gene

Fused-domains should represent entire genes and should not be overly
short

Point of fusion should be fairly centrally located in fused gene

Fused domains should not belong to the same CDD

A fused gene should be characterized more as a fusion of multiple
domains than as a match to a single domain

Fused domains should not be overly promiscuous

Fused domains should be different from one another




Henry et al. BMIC Genomics (2016) 17:473

Counts in
E. coli

Protein sequence

B et s

Compute §éne domains

‘Non-overlapping CDDS
' 1654

610

566

555

527

518

502

322

322

non-overiapping CDDs

322
Predicted fusions

Fig. 4 Workflow of our fusion prediction algorithm. Previous
protein-domain-based algorithms (see Table 4) overlap with the first
three steps of our own algorithm, and other algorithms often include
length-based (step 6) or domain promiscuity-based (step 11) criteria.
Our algorithm is unique in its application of all these criteria with these
specific parameters

"

training set was instrumental in the development of our
fusion prediction algorithm, and the use of such a train-
ing set is a major factor that distinguishes our approach
from previous methods. We tailored our algorithm re-
peatedly to improve performance against our curated
training set. At times, this led to the rejection of criteria
used in previous methods that failed to perform well in
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our analysis (e.g. filtering promiscuous domains). This
approach also led to the development of our eight cri-
teria to filter multi-domain proteins that are fusions
from multi-domain proteins that are not, which are
unique to our algorithm. The false positive fusions that
are still predicted by our algorithm are all multi-domain
proteins, but based on our curation, they fail the func-
tional definition of a fusion because the non-overlapping
domains they contain are not associated independent
separable functions.

Application of the fusion identification algorithm to all
genomes

We applied our refined and optimized fusion identifica-
tion algorithm to our full database of 11,473 genomes
and ~42.2 million genes, predicting an average of 338 fu-
sions per genome, and a total of 3,874,379 (11.3 %) fu-
sions overall (Additional file 3 and Additional file 1:
Table S9). Comparing the number of genes in each gen-
ome versus the number of predicted fusions (Fig. 5a)
validates previous observations [25] that the number of
fusions is roughly proportional to the number of genes
in the genome (~9.1 %).

Functional analysis of identified fusions using the SEED
comparative genomics platform

The SEED platform was created to analyze genomes effi-
ciently and to assign correct annotations to orthologous
genes. The strength of the SEED technology is based on
the design of its subsystem concept. A subsystem is an
ordered collection of functional roles that are related to
each other, e.g. as members of a protein complex or as
enzymes in a metabolic pathway. A subsystem is linked
to a spreadsheet with genomes represented in rows and
functional roles in columns. A functional role is defined
as the operational task that a gene itself, or its encoded
protein, performs in the organism [27, 32].

We conducted a functional analysis of the SEED data-
base, gathering a list of ~253,000 functional annotations
assigned to its genes. We focused on the 35,000 func-
tions that were consistently propagated to at least ten
genomes within our database and lacked generic de-
scriptors (e.g. predicted, hypothetical, putative, possible,
or probable). We found that a mean of 11 % of the genes
associated with each functional role were in a predicted
fusion. The standard deviation on this mean was quite
high at 25 %; this reflected the presence of a small num-
ber of functions that were fused far more often than the
rest. We specifically identified 2,937 (8.3 %) functional
roles where the proportion of fused genes was signifi-
cantly higher than the mean (t>2 and p <0.05) at over
61 %. We consider these functions to be frequently fused
(Additional file 1: Table S13).
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Fig. 5 Fusion occurrences across genomes and subsystems. a Our
fusion algorithm predicted 3.9 million fusions across 11,473
genomes, with the number of fusion events per genome being
broadly proportional to the number of genes in the genome. b The
annotations of these predicted fusions come from a wide range of
SEED subsystem classes. Here we show the distribution of predicted
fusion events among the 32 prominent subsystem classes. Two
distinct measures of fusion prevalence are displayed: (i) the fraction
of distinct functional roles in the subsystem that are classified as
frequently fused (red bars); and (ii) the fraction of genes associated
with any role in the subsystem that are fused (blue bars)

Next, we examined the distribution of fusions at a
higher level of the SEED annotation ontology, the SEED
subsystems. We found that, on average, 14 % of the
genes associated with each subsystem were in a pre-
dicted fusion (Additional file 1: Table S14 and S15), but
some subsystems had a significantly greater percentage
of fusions (t>2 and p <0.05). In 68 subsystems, at least
46 % of the associated genes were classified as fusions.
Thirteen of these subsystems were involved in protein
metabolism, eight in regulation, six in carbohydrate me-
tabolism, five in cofactor metabolism, and four in aro-
matic compound metabolism.

We also explored the frequency of fusions at the
broadest level of the hierarchical classification supported
by the SEED annotation ontology, subsystem class
(Fig. 5b). Here, the classification is so broad that the
level of variability is lower. However, we still found
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fusions occurring more often in some areas, specifically:
(i) central metabolism, (ii) potassium metabolism, (iii)
aromatic compounds, (iv) regulation and signaling, and
(v) DNA metabolism.

Distribution of predicted fusions among metabolic
reactions

Next, we focused on patterns of fusions that occurred
among genes annotated with metabolic functions. In this
analysis, we will refer to a pair of fused genes coding for
two enzymes, each one possessing a distinct functional
role, as fused roles. We will also use the term fused en-
zymes to refer to the protein products of two fused
genes which catalyze two distinct reactions. Our analysis
of frequent fusions occurring in metabolism began with
the 2,937 frequently fused functional roles identified in
our large-scale fusion prediction algorithm. In this case,
we used the mappings of reactions to functional roles in
the ModelSEED resource [40]. We also used eight pub-
lished microbial genome-scale metabolic models to asso-
ciate specific biochemical reactions to metabolic
functions that were in our frequently fused set. From
this analysis, we were able to map 9,785 unique reac-
tions to functional roles in the SEED annotations, of
which 842 (7.1 %) were associated with functional roles
that were frequently fused (Additional file 1: Table S16).

To understand why these specific reactions are more
commonly associated with gene fusions, we used flux bal-
ance analysis on our eight published models to simulate
growth in up to 520 growth conditions. We then classified
reactions as essential (i.e. required for growth), active
(i.e. present but not required for growth), or inactive
(i.e. not present). We found that 1,703 (14 %) reac-
tions were essential in at least one model for growth
in at least one condition. Of these reactions, 172 were
associated with frequently fused functional roles,
which is 17 % of the total of reactions associated with
frequently fused genes. Thus essential reactions are
slightly over-represented among the reactions associ-
ated with frequently fused genes.

Similarly, our model analysis classified another 4,201
(34 %) reactions as active in at least one model during
growth in at least one condition. Of these reactions, 335
are associated with frequently fused functional roles,
which is 39.8 % of the total of reactions associated with
frequently fused genes. Again, fusions are slightly over-
represented in the set of active reactions.

We then sorted the reactions associated with fused en-
zymes by their associated standard Gibbs free energy
change, as computed using the group contribution
method [41]. This analysis revealed a number of reac-
tions catalyzed by enzymes encoded by frequently fused
genes that have highly positive free energy change values
in the direction of flux (Additional file 1: Table S16).
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Next we examined the average flux through all of our
essential reactions across all our models and growth
conditions. We found a number of reactions catalyzed
by frequently fused roles that were associated with high
flux values. Here we define high flux as flux in excess of
1 mmol/g CDW hr, or the same magnitude as the pri-
mary carbon source uptake in our FBA simulations,
which is among the highest fluxes in metabolism.
Complete results of the analysis of metabolic reactions
associated with fusion events are summarized in Fig. 6
and shown in full in (Additional file 1: Table S16).

Finally, a total of 179 reactions associated with fre-
quently fused roles were not active in any model in any
growth condition. Hence, we had no data on flux or
competing pathways for these fusions and were unable
to formulate hypotheses concerning their formation.

Fusions of neighboring genes and unstable metabolites

When analyzing our B vitamin enzyme fusions dataset,
RibDd/RibDr and RibFa/RibFk emerged as a two pairs of
neighbors in the riboflavin synthesis pathway with a high
propensity to be fused (Fig. 2 and Additional file 1: Table
S2). The intermediate 5-amino-6-(ribosylamino)-2,4-
(1H,3H)-pyrimidinedione 5'-phosphate is a RibDd prod-
uct and a RibDr substrate and is highly reactive [14].
Similarly, FMN is the RibFk product and the substrate
for RibFa and, although less reactive than its precursors,
if reduced to FMNH, becomes oxygen-sensitive [42].
On one hand it has been suggested that some fusions
provide the infrastructure for tunneling or electro-
static channeling to prevent damage to reaction inter-
mediates [43]. On the other hand, the channeling
hypothesis has been recently challenged, since fusion
per se did not promote channeling whereas formation
of protein conglomerates did [29]. In view of these
observations, we decided to search for fusions of

M Transport reaction
Multienzyme complex

I Thermodynamic bottleneck
Branching nonessential pathways
Metabolite damage
Essential side pathway

| Kinetic bottleneck

Nonessential side pathway

Unknown

Fig. 6 Functional analysis of frequently fused reactions. We identified
841 reactions as being frequently associated with gene fusion events.
We manually assigned one of nine possible mechanistic explanations
for the frequent fusion events associated with each of these reactions.
The distribution of these mechanistic explanations is plotted as a pie
chart (data extracted from Additional file 1: Table S16). Red numbers
represent the number of reactions associated with a fusion event in a
given category and the black numbers their respective percentages
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genes that encode neighboring enzymes in metabolic
pathways. A computational search for such fusions
identified several genes that code for enzymes that
produce or use unstable metabolites (Table 3). The
results in this table are consistent with the fusion en-
richments found in chorismate and heme synthesis
pathways (Additional file 1: Table S14).

Integration of fusion data into an online web resource

All of the data from this large-scale fusion analysis have
been loaded into an online web resource for browsing
and searching: http://modelseed.org/projects/fusions/.
This site includes seven tables: (i) a table of all genomes
included in our analysis along with fusion counts in each
genome; (ii) a table of all CDDs used in our analysis,
along with CDD descriptions and predicted gene fusions
associated with each CDD; (iii) a table of all CDD sets
derived from our analysis, along with a list of all CDDs
mapped into each set; (iv) a table of our complete E. coli
and B vitamin fusion training sets, along with a source
for each fusion and a list of the CDDs in each fusion; (v)
a table of all functional roles with statistics on fusion fre-
quency; (vi) a table of all SEED subsystems with statistics
on fusion frequency; and (vii) a table of all predicted fu-
sions along with a list of CDDs in each fusion. While
these tables partially recapitulate Tables S9-S16, they add
value in that they contain additional data that was im-
practical to include as supplementary material. The on-
line version of the predicted fusion table (Additional
file 3) is particularly useful given the large size of even a
basic version of this table. All online tables can be sorted
and queried by any field. These tables are particularly use-
ful for mining our predicted fusions for insights relating
to domains of unknown function as discussed in the sup-
plementary material.

Discussion and conclusions

In this work, we made multiple strides to enhance our
understanding of protein fusions. First, we developed a
highly curated training set of known fusions in E. coli,
and more broadly in the B. vitamin pathways for a wide
range of genomes. This work revealed the many difficul-
ties involved in classifying genes in fusions, even in a
well-studied organism like E. coli. No single previous ap-
proach or database provided a comprehensive list of fu-
sions, and all previous datasets included numerous false
positives. However, based on this analysis, we were able
to use our curated training set to develop an improved
fusion prediction algorithm that combines many of the
strengths of previous approaches (see additional discus-
sion in supplementary material). We then applied our
new fusion prediction algorithm to predicting fusions
for over 12 K genomes, permitting a global analysis of
fusion events across all these genomes. This analysis
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Table 3 Fusions of neighboring enzymes in metabolic pathways and their unstable substrates/products

Metabolism area Enzyme roles

EC numbers

SEED gene identifier ~ Metabolite involved References

Aromatic amino

Cyclohexadienyl dehydratase/Periplasmic  4.2.1.51/5.4.99.5

fig|325240.9.peg4134  Prephenate [75, 76]

acids chorismate mutase | precursor
Indole-3-glycerol phosphate synthase/  4.1.148/53.1.24  fig|991999.3.peg.2431  1-(2-Carboxyphenylamino)-  [77]
Phosphoribosylanthranilate isomerase 1-deoxyribulose 5-phosphate
Histidine Phosphoribosyl-AMP cyclohydrolase/ 354.19/36.131  fig|751585.3.pe9.1763  Phosphoribosyl-AMP [78]
Phosphoribosyl-ATP pyrophosphatase
Glyoxalate Isocitrate lyase / Malate synthase 4.13.1/2339 fig]404589.10.0e9.3099 Glyoxalate [79-81]
Sulfur Adenylylsulfate kinase/Sulfate 2.7.125/2.774 fig|349163.14.pe9.1814 Adenosine 5-phosphosulfate [82]
adenylyltransferase subunit 1
Folate Aminodeoxychorismate lyase/ 4.13.38/26.1.85  fig|2573094.peg.1776  4-Amino-4-deoxychorismate  [83]
Para-aminobenzoate synthase,
aminase component
Phosphonate 2-Aminoethylphosphonate:pyruvate 26.1.37/3.11.0.1  fig|691161.5.pe9.2163  Phosphonoacetaldehyde [84]
aminotransferase/
Phosphonoacetaldehyde hydrolase
Siderophore 2,3-Dihydroxybenzoate-AMP ligase/ 27758/3321/  fig|306537.3.0e9.2089  Isochorismate [85, 86]
Isochorismatase/Isochorismate 5442
synthase
Heme and siroheme  Precorrin-2 oxidase/Sirohydrochlorin 13.1.76/499.14/  fig|6443354.pe9.2909  Precorrin 2 [87, 88]
biosynthesis ferrochelatase / Uroporphyrinogen-lil 2.1.1.107
methyltransferase
Uroporphyrinogen-Ill methyltransferase/  2.1.1.107/4.2.1.75  fig|479834.4.0eg.2988  Uroporphyrinogenlll [89-91]
Uroporphyrinogen-lll synthase
Porphobilinogen deaminase/ 25.161/42175  fig|1049939.3.peg.1307 Hydroxymethylbilane [92]

Uroporphyrinogen-lll synthase

Fusions of genes encoding for neighboring enzymes were extracted from the SEED database computationally as described in Methods. The metabolites involved
are products of one functional role cited in the row and substrates of the corresponding fused functional role. The References column gives citations

documenting the chemical instability of the intermediates

showed that a large fraction of fusions involving meta-
bolic enzymes. Many fusions involved two reactions with
a shared substrate, pointing at either channeling [44] or
coordination of complex formation [30] around a prob-
lematic intermediate metabolite. In other cases, we
found fused enzymes at branch points in pathways,
where fusion events could facilitate improved control of
flux through such branch points. We also found many
fusions comprised of subunits of multi-protein com-
plexes. Our analysis also revealed enrichment for trans-
port and regulatory proteins among gene fusion events,
which could explain why potassium metabolism was
specifically enriched in fusions, as it mainly contains
transporter proteins. Finally, we found common fusion
events in metabolism that revealed unexpected links be-
tween disparate metabolic pathways. Such fusions should
be investigated as they might reflect cryptic relationships
between metabolic functions. A deeper analysis of all of
these findings, along with examples, are provided in the
supplemental material.

Lastly, we found many cases where gene fusions
events can provide insights into the function of previ-
ously un-annotated proteins. Many fusions have domains
labeled only with COG (Clusters of Orthologous Groups)

or DUF (Domain of Unknown Function) identifiers,
yet something — perhaps much — about their function
can be inferred from their strong association to a
known functional role. As shown in Table 4, there are
multiple cases where fusions between genes of un-
known function and genes in a vitamin pathway led
to the discovery of a novel function. We describe sev-
eral examples in the supplementary material and in
Fig. 7.

Table 4 Cases where a fusion of a domain of unknown
function to a B vitamin gene led to a functional discovery

Domain Vitamin pathway — Molecular function  ref
COG3236 Riboflavin N-glycosidase [14]
DUF89 CoA Phosphatase [93]
DUF1537 PLP Kinase [94]
Tnr3/Nudix Thiamin Pyrophosphatase [13]
COG1058 Niacin Pyrophosphatase [95]
Human CoaD  CoA Adeny! transferase [10]
TenA-HAD Thiamin Hydrolase unpublished
HAD-IA Thiamin Hydrolase [96]
HAD-IB Thiamin Hydrolase [96]




Henry et al. BMIC Genomics (2016) 17:473

Page 13 of 17

Protein structure analysis

Gene of
unknown function

E?/

| Orf | ER

OrfE OrfF

s
=\= 2
= 4
T e

Complex formation

Protein family ID

Bound metabolite(s)

Chemical structure analysis

@

OHOH
Metabolomics analysis

Channeling
Repair

(® OHy

Thermodynamics and
flux balance analysis

T<—>

Metabolite association Branching
Regulation Alternative pathway
Pathway identification Missing step

Gene fusion analysis

DUF934 and sulfur metabolism
| DUFS34.
lDuFm I CysH
0. alexandrii —<( ZTHITA > >-I8 Joic- >E >
| CysH I DUF934
P halotolerans —[H >>{TJImen J[_opr] I K>

M. methanica

reductase (EC 1.8.4.10); E= Cystathionine beta-synthase (EC 4.2.1.22).

Methylomonas methanica MC09: B= Sulfite reductase beta-component (EC 1.8.1.2); D= DUF934; F= Na/H antiporter; G= Carboxyl-terminal prolease (EC 3.4.21.102).
Oceanicaulis alexandrii HTCC2633: A= Precorrin-2 oxidase (EC 1.3.1.76), sirohydrochlorin ferrochelatase of CysG (EC 4.99.1.4), uroporphy
(EC 2.1.1.107); B= Sulfite reductase beta-component (EC 1.8.1.2); D-C= Fusion of DUF 934 with phosphoadenylyl-sulfate reductase (EC 1. 84 B)/adenylyl l-sulfate

Pelagibacterium halotolerans B2: B= Sulfite reductase beta-component (EC 1.8.1.2); C-D= Phosphoadenylyl-sulfate reductase EC 1.8.4.8)/adenylyl-sulfate reductase
(EC 1.8.4.10) fused to DUF934; H= Siroheme synthase/precorrin-2 oxidase (EC 1.3.1.76)/sirohydrochlorin ferrochelatase (EC 4.99.1.4)/uroporphyrinogen-Ill methyl-

NUDIX_15 and acetyl-Coenzyme A
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.
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transferase (EC 2.1.1.107); I= Hypothetical protein DUF2849; J= Thioredoxin reductase (EC 1.8.1.9); K= Ferredoxin.
e hydrolase (EC 3.1.2.6); X= Nudix hydrolase;

Thermomonospora curvata DSM 43183: C=DUF2236; D= RecB s E=F
F= YdiL membrane protease; G= CitE domain, probably L-malyl-CoA/beta-methylmalyl-CoA lyase (EC 4.1.3.-).

Gordonia bronchialis DSM43247: U= Succinyl-CoA ligase beta chain (EC 6.2.1.5); V= Succinyl-CoA ligase alpha chain (EC 6.2.1.5); T= Serine/threonine protein kinase;

‘W= Hypothetical protein; Y= YckC unknown hypothetical protein; A-B= Acetyl-CoA carboxy! transferase alpha chain (EC 6.4.1.2)/acetyl-CoA carboxyl transferase beta

chain (EC 6.4.1.2); X= Nudix hydrolase; H= Hypothetical protein; Z= Nitroreductase family protein.

hydrolase; Z= Nitroreductase family protein.

1.84.1
NUDIX stands for Nudix_15. These genes are also identified by the

stand-alone genes and their clustering patterns are also given

Gordonia otitidis NBRC 100426: U= Succinyl-CoA ligase beta chain (EC 6.2.1.5); V= Succinyl-CoA ligase alpha chain (EC 6.2.1.5); W= Hypothetical protein; Y= YckC
unknown hypothetical protein; A-B-X= Acetyl-CoA carboxyl transferase alpha chain (EC 6.4.1.2)/acetyl-CoA carboxyl transferase beta chain (EC 6.4.1.2) fused to Nudix

Fig. 7 The use of fusions to infer functions of unknown domains. a Once a fusion of an unknown with a characterized gene is discovered, the
function of the latter and the clustering pattern of the fusion gene help to propose functions for the unknown gene, especially when combined
with structure analysis of the unknown and the fused product. If specific compounds are bound to the unknown protein and can be associated
with the metabolic area of the known enzyme, mechanisms such as channeling or repair might be inferred. The position of the known enzyme
in the pathway combined with flux balance and thermodynamics analysis can give clues about the function of the unknown gene. b Examples
of the application of the ModelSEED fusions exploration tool. Beveled rectangles represent the genes that participate in the fusions used as starting
points for our analysis. On the beveled rectangles, Cys H stands for phosphoadenylyl-sulfate reductase (EC 1.84.8)/adenylyl-sulfate reductase (EC

0); A-B stands for acetyl-coenzyme A carboxyl transferase alpha chain (EC 64.1.2)/acetyl-coenzyme A carboxy! transferase beta chain (EC 64.1.2);

sections illustrated immediately below them. The rows of arrows depict the gene clustering areas given by the SEED platform for the
genes analyzed in our examples. The genes in each organism’s genome section are represented by color coded arrows and identified by
letters. The functional roles represented by these letters for each organism are given in the printed section below the illustration. Examples of the

same color code as the arrows that represent them in the genome

Methods

Manual collection and analysis of fusions

The Escherichia coli training set was developed by com-
piling fusions from four sources: Enright et al. [2], Serres
et al. [33], IMG [34], and SEED [32] as described above.
The Rosetta stone and conserved domain standards were
applied using Conserved Domain Database (CDD) de-
tection scripts given by NCBI [26]. We used three
sources for the compilation of a representative set of B

vitamin metabolism gene fusions: the NCBI protein con-
served domain architecture retrieval tools [26], the
HHMI Janelia Farm protein families architecture analysis
tool [45], and SEED phylogenetic trees [27, 32]. Both the
NCBI and HHMI architecture tools cover genomes in all
kingdoms of life, but they rely only on sequence similar-
ity. In this kind of analysis, all the paralogs of a gene that
codes for a known enzyme are pooled together in a sin-
gle type of fusion architecture, making it difficult to
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identify genes with fused domains of a specific function.
On the other hand, in the SEED trees, fusions are
flagged by a coloring system, making their detection
possible within a phylogenetic as well as functional role
context [32]. In our fusion search, for each functional
role present in a particular B vitamin synthesis pathway,
a representative gene was chosen in the model organism
E. coli K12 MG1655. In the cases of genes which were
absent in E. coli, the final choice of a suitable example
was made after a search covering several organisms.
After filtering fusion selections using the functional role
and phylogeny criteria of SEED, they were analyzed with
the protein family database Pfam [45] and the NCBI
Conserved Domain Database [26] tools to confirm the
presence of two domains with distinct functional roles.
In order to approach fusion analysis in a systematic
fashion and to automate it, the custom software tool
fusions.py was created. This tool catalogs all known fu-
sion events occurring in a protein family of interest (or a
set of families, e.g. in all enzymes of a vitamin biosyn-
thesis pathway) by performing automatic batch search of
the ‘Domain architecture’ collection of the Pfam data-
base (http://pfam.xfam.org/search; [45]). Fusions.py uses
as input a *.txt file with a list of query protein sequences
in FASTA format (a single representative sequence per
family is sufficient). For each input sequence the pro-
gram identifies the corresponding Pfam protein family
and queries its “Domain Architecture” data. The output
file includes a list and a description of all fusion events
(“architectures”) in which the corresponding family is in-
volved. A single representative protein ID for each type
of fusion events is listed. The code has been deposited at
https://github.com/alekseyig/fusion.

Counting B vitamin synthesis gene fusions, their variety
and frequency

We separated the identified genes into two groups, the
main role players and fusion partners. Main role players
are genes belonging to each specific B vitamin synthesis
canonical pathway that occur in the widest variety of fu-
sions. We used these as focus points for analysis. We
classified fusion partners in three categories: genes from
each specific B vitamin pathway (including those for re-
pair and recycling enzymes, regulators and repressors),
genes from other areas of metabolism, and unknown
genes (Additional file 1: Tables S2A-S8A). We counted
the number of fusion events of each specific B vitamin
pathway gene with other genes in each of the three cat-
egories above). This is the number of instances that each
specific gene appears in all the three domain columns of
the respective B vitamin gene table see Additional file 1:
Tables S2A-S8A). We took this number of architectures
as a measure of the variety of fusion events in which
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each B vitamin gene participates and entered this num-
ber in the “Number of binary fusion events” column of
the corresponding B vitamin genes table (see Additional
file 1: Tables S2B-S8B).

A representative set of ~1,000 diverse prokaryotic ge-
nomes in the SEED database (created as described below
or in [46, 47]) was scanned to account for all cases when
each of the B vitamin synthesis genes was present in this
group sample and also the instances when this specific
gene participated in a fusion event of any type
(Additional file 1: Tables S2B-S3B). The frequency was
then expressed as a percentage and calculated as the ra-
tio of the number of fusions in which each vitamin syn-
thesis gene participated within the pool of ~1,000
genomes divided by the number of representatives of
this specific gene present in this pool (see column of
“total proteins annotated with this role” in Additional
file 1: Tables S2B and S3B). We considered the resultant
ratios as representatives of the frequency with which
each specific B vitamin synthesis gene is found fused in
prokaryotes. Note, however, that this is a relative ratio
because a given gene might be present in more than a
single copy in an individual genome and might be en-
tirely absent in some bacterial taxa.

Representative set of ~1000 diverse prokaryotic genomes
in the SEED database

With approximately 30,000 prokaryotic genomes cur-
rently available in public databases and many more in
the pipeline (www. genomesonline.org), it was not prac-
tical to perform meaningful comparative analysis on all
of them simultaneously. Thus, the algorithm for com-
puting molecular operational taxonomic units (OTUs)
based on DNA barcode data [48, 49] was used to group
the 12,600 prokaryotic genomes available in the SEED
database into about 1,000 taxon groups. A representative
genome for each OTU was selected based on the largest
amount of published experimental data and the highest
level of research interest within the scientific community
for different microorganisms within each OTU. The re-
sultant collection of 983 diverse eubacterial and archaeal
genomes creates a manageable set that accurately repre-
sents the immense diversity of the prokaryotes with se-
quenced genomes in the SEED database. Importantly, it
is not skewed by an overabundance of genomes for a
handful of medically or industrially important microbial
genera such as enterobacteriaceae, staphylococci, and
mycobacteria.

Use of metabolic models to evaluate reaction activity and
essentiality

Flux balance analysis [50, 51] was used in combination
with eight published genome-scale metabolic models [38,
52-58] to produce a database of metabolic reactions,
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along with associated predicted essentiality and activ-
ity. Models were selected to represent eight diverse
organisms, including one yeast [59] and seven bac-
teria [38, 52-58]. Growth was simulated on over 520
growth conditions (including various minimal media
[60] and rich media such as LB and BHI), with flux
variability analysis [61] applied in each condition to
identify active and essential reactions in all models.
Reactions were classified as active in a particular growth
condition if they could carry flux but did not have to carry
flux in order for biomass production to occur. Reactions
were classified as essential in a particular growth condi-
tion if they had to carry flux in order for biomass produc-
tion to occur.

Thermodynamics

The thermodynamics analysis of the reactions was made
calculating the associated standard Gibbs free energy
change, as computed using the group contribution
method [41].

Additional files

Additional file 1: Is an excel file containing Supplemental Tables S1-S16.
(XLSX 11230 kb)

Additional file 2: Is a discussion of how fusions are distributed among
the B. vitamin pathways, based on our manual curation and a discussion
on the most prevalent fusions. (DOCX 57 kb)

Additional file 3: Is a zip archive containing a tab-delimited table of all
3.8 million predicted fusions. (TXT 494892 kb)
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