
Impacts of artificial barriers on the connectivity and dispersal of vascular 1 

macrophytes in rivers: a critical review  2 

Peter E. Jones, Sofia Consuegra, Luca Börger, Joshua Jones and Carlos Garcia de 3 

Leaniz 4 

Centre for Sustainable Aquatic Research, Department of Biosciences, Swansea 5 

University, Swansea, SA2 8PP, UK 6 

Correspondence: p.e.jones@swansea.ac.uk 7 

Keywords: aquatic plant, hydrochory, zoochory, dams, river regulation 8 

Running head: Barrier impacts on macrophytes 9 

Abstract 10 

1. Macrophytes play important functional roles in river ecosystems, providing 11 

habitat and food, as well as influencing flow, water chemistry and sediment 12 

dynamics. They also represent an important component of river biodiversity.  13 

2. Artificial river barriers have the potential to disrupt macrophyte dispersal, and 14 

compromise their distribution and persistence, but little information is available 15 

compared to barrier impacts on fish and macroinvertebrates. Here we review 16 

the mechanisms supporting dispersal of river macrophytes in rivers and 17 

evaluate the nature of barrier impacts on macrophytes. 18 

3. Hydrochory (dispersal of propagules by water) is the principal mechanism of 19 

downstream dispersal, while zoochory (dispersal of propagules by animals) is 20 

likely to be the most important vector of upstream dispersal and inter-21 

catchment transport. 22 

4. Most studies have focused on the impact of large structures such as dams, 23 

and the findings indicate the impact is highly context-dependent. Slow-flowing 24 

habitats upstream of dams can act as traps to drifting propagules and thereby 25 

interrupt hydrochory. However, the consequences of interrupted hydrochory 26 

for downstream populations are unclear. River regulation can result in lower 27 

macrophyte diversity, although the lentic habitats associated with reservoirs 28 

can also favour an increase in the abundance and richness of macrophyte 29 

communities.  30 
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5. Instream barriers are unlikely to affect zoochory by birds directly, but barriers 31 

are well known to restrict fish movements, so there is considerable potential 32 

for barriers to disrupt zoochory by fish, although no empirical study has 33 

specifically examined this possibility. 34 

6. There is a paucity of studies examining the impacts of low-head barriers on 35 

macrophyte dispersal. Given the influence of macrophytes on river processes, 36 

we call for further research into barrier impacts on macrophyte population 37 

dynamics in order to gain a better understanding of the consequences of river 38 

fragmentation for fluvial communities and ecosystem functioning. 39 

 40 

1 | INTRODUCTION 41 

Aquatic vascular macrophytes (Tracheophyta) are an important component of river 42 

biodiversity, including over 2,600 species from 88 different families globally 43 

(Chambers et al., 2008). Apart from their contribution to aquatic biodiversity, 44 

macrophytes play important functional roles in river ecosystems: they provide food 45 

resources and habitat (Biggs, 1996; Grenouillet et al., 2002), and act as ecosystem 46 

engineers by trapping sediments and altering flow dynamics (Carpenter & Lodge, 47 

1986; Horvath, 2004; Gurnell et al., 2006). Macrophytes can also regulate water 48 

chemistry (Clarke & Wharton, 2001), and are one of the key metrics used to 49 

measure the ecological status of river systems under the Water Framework Directive 50 

(European Commission, 2000). Hence, maintaining healthy macrophyte communities 51 

is essential for river ecosystem function. 52 

Artificial barriers, such as dams and weirs, can have a pervasive influence on river 53 

systems (Ellis & Jones, 2013). However, while barrier impacts on fish populations 54 

have received considerable attention (e.g. Morita & Yamamoto, 2002; Fullerton et 55 

al., 2010; Perkin & Gido, 2012), impacts on aquatic macrophytes remain relatively 56 

unexplored. Connectivity is essential for the resilience of freshwater biota and the 57 

maintenance of river processes (Pringle, 2001, 2003; Fagan, 2002). Artificial barriers 58 

alter river hydrology and create discontinuities in substrate composition, temperature 59 

regime, and water chemistry (Mueller et al., 2011) that could potentially disrupt 60 

macrophyte dispersal and population structure. Furthermore, river obstacles affect 61 

the distribution and movements of fish (e.g. Dehais et al., 2010; Diebel et al., 2015; 62 

Branco et al., 2017), as well as birds indirectly by affecting habitat availability 63 



(Nilsson & Dynesius, 1994; Stevens et al., 1997), and these groups can act as 64 

important dispersal vectors for riverine macrophytes (e.g. Horn, 1997; 65 

Charalambidou & Santamaría, 2002; Pollux et al., 2006). There are estimated to be 66 

over 16 million barriers in river systems worldwide (Lehner et al., 2011), and recent 67 

studies suggest even this number is likely to be a severe underestimate because the 68 

abundance of low-head barriers is not well known (Garcia de Leaniz et al., 2018; 69 

Jones et al., 2019). Hence, there is considerable potential for barriers to have wide-70 

reaching effects on macrophyte abundance and distribution. 71 

Invasive species are one of the leading causes of decline in freshwater biodiversity 72 

worldwide (Dudgeon et al., 2006; Reid et al., 2019), and the effects of non-native 73 

macrophytes can be particularly damaging because they can exclude native species, 74 

alter habitat complexity, disrupt food webs, modify sediment dynamics, cause 75 

hypoxia, release allelopathic chemicals, and facilitate the establishment of other 76 

exotic species (Bunn et al., 1998; Michelan et al., 2010; Schultz & Dibble, 2012; 77 

Fleming & Dibble, 2015). Invasive macrophytes generally have higher growth rates, 78 

higher plasticity, and disperse more readily than native species (Shultz & Dibble, 79 

2012; Umetsu et al., 2012), traits which may make them more suited to 80 

establishment in regulated rivers. Hence, it is important to consider the effect of river 81 

barriers on invasive macrophytes.  82 

Several studies have examined macrophyte dispersal and settlement dynamics in 83 

rivers (e.g. Johansson & Nilsson, 1993; Riis, 2008; Brochet et al., 2010; Anderson et 84 

al., 2011; Pollux, 2011), and the impact of large barriers has been investigated in a 85 

number of case studies (e.g. Merritt & Wohl, 2006; Ceschin et al., 2015; Vukov et al., 86 

2018). However, barrier impacts on macrophyte dispersal have not been reviewed. 87 

Here, we review the current literature on macrophyte dispersal and settlement, and 88 

examine the impacts of anthropogenic barriers on population dynamics. 89 

 90 

2 | METHODS 91 

We searched for relevant literature using Google Scholar and Web of Science 92 

search engines, utilising different combinations of search terms depending on the 93 

subsection of the review (see Table S1 for glossary of terms and Table S2 for search 94 

terms and number of hits). No restrictions on year of publication or type of document 95 



were imposed. As not all search results were pertinent to the scope of the review, 96 

they were systematically reviewed by the lead author. For example, for Section 3.1 97 

Hydrochory, publications were deemed relevant only if they focussed on aquatic 98 

plants, related to fluvial systems, and dispersal by water was the focus of the paper. 99 

The use of search term strings sometimes returned very large numbers of hits (see 100 

Table S2) so results were ordered in terms of relevance (i.e. records containing 101 

highest number of keywords first), and the first 200 records were reviewed for 102 

relevance by the lead author. As predefined strings of search terms may not always 103 

be effective in returning the most relevant material, key publications highlighted 104 

during reading were also added to the reference list. By following the steps detailed 105 

above we are confident that we effectively covered the most important literature on 106 

the topic.  107 

 108 

3 | MACROPHYTE DISPERSAL AND SETTLEMENT 109 

Fluvial ecosystems are inherently dynamic environments (Ward & Stanford, 1995), 110 

exposed to regular flow disturbances that cause local extirpations of macrophyte 111 

communities (Riis & Biggs, 2003; Franklin et al., 2008). Aquatic plants have various 112 

adaptations that facilitate dispersal, and allow them to recolonise vacant habitat 113 

patches (Catford & Jansson, 2014). Longitudinal dispersal in river networks is also 114 

important for maintaining genetic diversity of populations (Pollux et al., 2005; Honnay 115 

et al., 2010; Horreo et al., 2011). Dispersal of propagules (including whole plants, 116 

vegetative parts, and seeds; Thomaz et al., 2015) can take place via one of four 117 

mechanisms (Figure 1): river flow (hydrochory), movement by animals (zoochory), by 118 

wind (anemochory), or human-mediated dispersal (anthropochory). 119 

3.1 | Hydrochory 120 

Hydrochory is considered to be a principal dispersal vector for macrophytes in free-121 

flowing rivers (Dawson, 1988; Merritt & Wohl, 2002). In contrast to terrestrial plants, 122 

many macrophytes disperse largely through vegetative parts such as rhizomes, 123 

stolons, tubers, turions, stem fragments, and even entire plants (Sand-Jensen et al., 124 

1999; Boedeltje et al., 2004; Umetsu et al., 2012). Aquatic macrophytes often have 125 

functional adaptations to facilitate dispersal in flows (Catford & Jansson, 2014), 126 



including air-filled structures and hairs which trap air bubbles to increase buoyancy, 127 

and therefore expedite drift (Riis & Sand-Jensen, 2006).  128 

Production of vegetative fragments occurs either through breakage caused by water 129 

currents or animal disturbance (allofragmentation; see Madsen et al., 1988), or via 130 

autofragmentation – the release of tissue as a plant reaches peak biomass (Riis et 131 

al., 2009).  Species with more streamlined morphological adaptations (e.g. 132 

Ranunculus spp.) are less susceptible to stem breakage and uprooting by flows 133 

compared to those with higher hydraulic resistance and weaker rooting strength (e.g. 134 

Rorippa nasturtium aquaticum; Sand-Jensen, 2003). The structural properties of the 135 

vegetative bodies also affect how far they drift. For instance, Riis and Sand-Jensen 136 

(2006) found that the majority of denser Elodea canadensis fragments settled within 137 

0.3 km of the source plant, whereas Ranunculus peltatus stems, which were more 138 

buoyant, tended to disperse longer distances (up to 5 km). These observations 139 

reflect the importance of species-specific traits in determining dispersal distance in 140 

river flows (Catford & Jansson, 2014). 141 

In emergent taxa and species associated with river margins, seed dispersal can be 142 

more important, and experimental evidence suggests that hydrochorous seed 143 

dispersal is a major mechanism structuring plant communities along rivers (Nilsson 144 

et al., 1991; Pollux et al., 2009). Many species have buoyant seeds to expedite 145 

dispersal (Nilsson et al., 2010), with dispersal rates of up to 15 km h-1 recorded in the 146 

floating seeds of Polygonum sp. (Staniforth & Cavers, 1976). The seeds of some 147 

other aquatic plants (e.g. Juncus spp.) are negatively buoyant and sink immediately 148 

after being liberated, but the young seedlings float and can travel large distances 149 

before taking root (Barrat-Segretain, 1996). Even dense seeds can be transported 150 

large distances in the bedload of rivers (Markwith & Leigh, 2008, 2012) or on floating 151 

debris rafts (Skoglund, 1989).  152 

Dispersal and settlement dynamics are highly dependent on hydrology. Many 153 

species time the release of propagules to coincide with high flows to facilitate long-154 

distance dispersal (Catford & Jansson, 2014).  High water velocities increase drag 155 

on drifting plant fragments and, therefore, reduce the likelihood of settlement (Sand-156 

Jensen, 2003). Fast flows also compress plant growth against the stream bed, 157 

reducing roughness, and thereby reduce retention rates of drifting propagules (Sand-158 



Jensen, 2003). Hence, high water velocities favour long-distance dispersal, while 159 

slow flows, often associated with meanders, are required for propagule settlement. 160 

Dispersal distance tends to be positively associated with the width of the stream 161 

channel, drift often being higher in large rivers than in smaller streams (Riis & Sand-162 

Jensen, 2006). Stem fragments tend to be more frequently deposited in shallower 163 

areas of river channels (Riis & Sand-Jensen, 2006), and in areas with high bed 164 

roughness, or where there is thick vegetative growth (Riis, 2008). 165 

It is widely accepted that hydrochory is the dominant mode of downstream dispersal 166 

in river macrophytes, and results in effective dispersal across scales ranging from 167 

hundreds of meters to kilometres (Nilsson et al., 1991; Boedeltje et al., 2003; Riis & 168 

Sand-Jensen, 2006). Hence, hydrochorous dispersal is critical to the maintenance of 169 

genetic diversity in macrophyte populations. A number of studies have found the 170 

unidirectional flow of water results in asymmetrical gene flow (Gornall, 1998; Pollux 171 

et al., 2009). For instance, Pollux et al. (2009) found a significant increase in the 172 

genetic diversity of Sparganium emersum populations with distance downstream, 173 

gene flow being approximately 3.5 times higher in a downstream direction than 174 

upstream. In the absence of a mechanism for upstream dispersal, the continual 175 

downstream drift of propagules via hydrochory would theoretically result in loss of 176 

genetic diversity, and eventually population collapse of macrophytes in headwaters 177 

(Pollux et al., 2009; Honnay et al., 2010). However, many studies have found no 178 

evidence of genetic impoverishment in upstream populations (Tero et al., 2003; 179 

Markwith & Scanlon, 2007; Chen et al., 2009; Honnay et al., 2010). It is largely 180 

unknown why some populations show evidence of upstream genetic impoverishment 181 

while others do not (see Tero et al., 2003; Markwith & Scanlon, 2007; Honnay et al., 182 

2010) but the fact that macrophyte populations can persist in headwaters is good 183 

evidence that vectors for upstream dispersal must exist. 184 

3.2 | Zoochory 185 

Zoochory (movement by animals) plays an important role in longitudinal movements 186 

of plant propagules along rivers, and has been demonstrated in fish (Pollux et al., 187 

2006), birds (Figuerola & Green, 2002), mammals (Medwecka-Kornaś & Hawro, 188 

1993), and reptiles (Padgett et al, 2010). Transport of propagules can either take 189 



place inside the gut of animals (endozoochory), or attached to their bodies 190 

(ectozoochory). 191 

A wide range of fish species are known to consume plant seeds (e.g. García-192 

Berthou, 2001; Nurminen et al., 2003; Correa et al., 2007), which often retain their 193 

ability to germinate after passing through fishes’ guts (Pollux, 2011). Given that fish 194 

are often highly mobile within river catchments (Lucas & Batley, 1996; Makrakis et 195 

al., 2007), this offers a potentially important vector for macrophyte dispersal. Some 196 

seeds can survive up to 36 hours in the fish gut (Horn, 1997), during which time they 197 

could be dispersed over long distances. Evidence of endozoochorus dispersal of 198 

seeds by fish has been found in Europe (Pollux et al., 2005; Pollux, 2007), North 199 

America (Chick et al., 2003; VonBank et al., 2018a), and South America (Anderson 200 

et al., 2009; 2011), suggesting it is a widespread mechanism of upstream dispersal 201 

for river macrophytes (see Horn et al., 2011). For example, seeds of Sparganium 202 

emersum have been found to disperse up to 27 km in the gut of the common carp 203 

(Pollux et al., 2007), and single dispersal events by fruit-eating fish in the Amazon 204 

have been observed to transport seeds over distances greater than 5 km (Anderson 205 

et al., 2011) . Fishes differ in their diets (Gerking, 1994) and propensity to move 206 

(Lucas & Baras, 2001) so fish-mediated dispersal is likely to be species-specific. 207 

Endozoochory also occurs through water birds (Smits et al., 1989; Charalambidou & 208 

Santamaría, 2002; Brochet et al., 2010).  Waterfowl can consume large amounts of 209 

seeds which can survive in their guts for periods of hours to days (Figuerola & 210 

Green, 2002). A recent study in Brazil showed that whole plants of the Wolffia family 211 

could survive gut passage intact (Silva et al., 2018). Given that ducks and waders 212 

can travel upwards of 50 km h-1 (Welham, 1994), there is considerable potential for 213 

long-distance dispersal (Clausen et al., 2002; Van Leeuwen et al., 2012). There is 214 

also evidence that piscivorous birds such as cormorants can act as secondary 215 

dispersers of plant seeds (Van Leeuwen et al., 2017). Importantly, dispersal by birds 216 

is not restricted to river corridors, so inter-catchment transport is possible, and 217 

endozoochorus dispersal of seeds in waterfowl is possible over distances up to 218 

3,600km (Pollux, 2007). Bird-mediated dispersal is also thought to be responsible for 219 

gene flow between lake populations of macrophytes hundreds of kilometres apart 220 

within the Yangtze River catchment in China (Chen et al., 2009). 221 



A number of studies have suggested ectozoochory is uncommon in waterfowl 222 

because macrophytes propagules generally lack adherent properties, and are 223 

therefore likely to be carried only short distances (Figuerola & Green, 2002; Brochet 224 

et al., 2010; Reynolds & Cumming, 2016). However, recent studies indicate that 225 

frequent short-distance dispersal of macrophytes attached to the bodies of birds may 226 

be important. ‘Stepping-stone’ dispersal is possible, whereby plant fragments adhere 227 

externally to birds, and are dispersed over short distances as the birds move 228 

(Coughlan et al., 2017a,b). Although the plant fragments often tend to be moved only 229 

short distances, high frequencies of such events provide the mechanism for long 230 

distance dispersal. Ectozoochory is likely to be particularly relevant for small 231 

macrophytes such as members of Lemnoideae (Duckweeds; Landolt, 1986; 232 

Coughlan et al., 2015). Although not yet experimentally evaluated, it is likely that 233 

multiple short dispersal events could also result in eventual long distance 234 

endozoochorus dispersal by fish. Irrespective of the precise mechanisms involved, it 235 

is widely accepted that zoochory is a principal mechanism for upstream dispersal of 236 

macrophytes in rivers (Figuerola & Green, 2002; Pollux et al., 2006; Coughlan et al., 237 

2017a). 238 

3.3 | Anemochory 239 

Dispersal by wind (anemochory) offers an additional mechanism for propagule 240 

dispersal. Some authors have suggested this mode of dispersal is rare for aquatic 241 

macrophytes as their seeds tend to be relatively heavy, and they generally lack 242 

adaptations to promote wind dispersal (e.g. Barrat-Segretain, 1996). For instance, 243 

90% of sedge grass (Carex sp.) seeds were deposited within 2 m of the source 244 

plant, perhaps suggesting anemochory is of limited importance in long distance 245 

dispersal (Soomers et al., 2013). However, Soons (2006) showed that 46% of 246 

wetland plant species have adaptations to promote anemochory and argued it was of 247 

great importance in the dispersal of aquatic plants. Many emergent taxa such as 248 

Phragmites spp. and Typha spp. produce large numbers of small light seeds that are 249 

easily dispersed by wind (Shipley et al., 1989; Soons, 2006). Although most wind-250 

blown seeds tend to settle close to the source plant (e.g. >90% of Phragmites sp. 251 

within 30m, Soomers et al., 2013), it is the small proportion of seeds on the tail of the 252 

dispersal curve that are important in long distance dispersal (Nathan et al., 2008), 253 

and these seeds can be transported over distances of hundreds of kilometres 254 



(Soomers et al., 2013). Wind dispersal is likely to increase substantially during 255 

extreme weather events when wind speeds are highest and sampling is problematic 256 

(Nathan et al., 2008). Even rare long distance dispersal events are important in 257 

facilitating gene flow between populations (Trakhtenbrot et al., 2005).  Also, as with 258 

zoochory, multiple and frequent short distance dispersal events should theoretically 259 

result in long distance dispersal via a ‘stepping-stone’ effect (Saura et al., 2014), and 260 

generate sufficient gene flow to prevent genetic differentiation within 261 

metapopulations. At a minimum, anemochory is likely to be an important primary 262 

mechanism of dispersal in many plants, whereby dispersal into flowing water creates 263 

secondary dispersal opportunities via hydrochory. 264 

3.4 | Anthropochory 265 

Human movements are increasingly spreading plants outside the confines of natural 266 

dispersal mechanisms (Hodkinson & Thompson, 1997; Winchmann et al., 2008). 267 

This not only allows for long distance longitudinal movement of propagules and 268 

genes along rivers (Tero et al., 2003), but also dispersal across catchment 269 

boundaries, resulting in dispersal on a global scale (Ciotir & Freeland, 2016). 270 

Anthropochory is of particular relevance for the spread of invasive species. For 271 

instance, over 400 non-native macrophyte species are traded in Europe, most of 272 

which have the potential to become invasive (Hussner, 2008), and the ornamental 273 

plant trade is a major pathway for the spread of invasive macrophytes, both via 274 

deliberate and accidental introductions (Hussner, 2012). River users can spread 275 

plant propagules through recreational activities. For instance, macrophytes can 276 

frequently become entangled on recreational boating equipment which can then be 277 

transported to other waterbodies (Johnson et al., 2001; Rothlisberger et al., 2010; 278 

Kelly et al., 2013). In the UK, 64% of anglers and 78% of canoeists use their 279 

equipment in more than one catchment within a fortnight, most without any 280 

biosecurity measures (Anderson et al., 2014). Human-mediated dispersal can also 281 

result in gene flow between populations of native macrophytes that would otherwise 282 

be genetically isolated (Ciotir & Freeland, 2016). 283 

 284 

4 | BARRIER IMPACTS ON MACROPHYTES 285 



Artificial barriers alter the hydrology (Merritt & Wohl, 2002), temperature (Olden & 286 

Naiman, 2010), water chemistry (Byren & Davies, 1989), and sediment dynamics 287 

(Williams & Wolman, 1984) of running waters, often creating habitat discontinuities 288 

(Ward & Stanford, 1983) that can have profound influences on community 289 

assemblages (Parasiewicz et al., 1998). These abiotic and biotic factors can 290 

potentially affect aquatic macrophytes in a variety of ways (Table 1; Figure 2). 291 

Physical barriers have considerable potential to impact hydrochory and zoochory, 292 

and are therefore discussed in separate subsections below. Wind dispersal is 293 

unlikely to be significantly affected by the presence of barriers, except perhaps by 294 

the largest of dams. We found no papers which covered the effect of barriers on 295 

anemochory so this issue was not covered here. There is considerable evidence that 296 

barriers influence the distribution of invasive species, so we covered this topic 297 

separately (section 4.3) along with human-mediated dispersal.  298 

4.1 | Barrier effects on hydrochory 299 

Water velocity is a key parameter determining how far propagules disperse, and 300 

hence can have important consequences for plant community composition along 301 

rivers (Merritt & Wohl, 2006). Slow flows in impounded reaches can act as barriers 302 

for macrophyte dispersal, trapping drifting propagules and resulting in high mortality 303 

(Nilsson & Jansson, 1995; Jansson et al., 2000a; Jansson et al., 2000b; Nilsson et 304 

al., 2010). Reservoirs can reduce the density of drifting propagules in downstream 305 

reaches by as much as 95%, and this effect can extend for several kilometres 306 

downstream of large dams (Merritt & Wohl, 2006). Compared to free-flowing rivers, 307 

rivers fragmented by large dams tend to show lower richness of drifting propagules, 308 

and dispersal rates are also often reduced (Andersson et al., 2000; Jansson et al., 309 

2000a; Merritt & Wohl, 2006), although this is not always the case. For example, 310 

Jansson et al. (2005) did not find any evidence to suggest that dams decreased the 311 

abundance or diversity of drifting propagules in a comparison of fragmented and 312 

free-flowing rivers. However, in this instance, the drifting propagule bank in the 313 

fragmented river was derived from local (within-impoundment) sources only 314 

(Jansson et al., 2005), suggesting long-distance dispersal via hydrochory was 315 

compromised. 316 



Floods are important events for hydrochory in free-flowing rivers (Cellot et al., 1998; 317 

Franklin et al., 2008; Gurnell et al., 2008), but their intensity and frequency is 318 

reduced in many dammed rivers (Magilligan & Nislow, 2005), and this can limit 319 

hydrochorous dispersal of propagules (Jansson et al., 2000a). There is evidence that 320 

species with different dispersal strategies are affected to different degrees by flow 321 

regulation (Jansson et al., 2000a, Jansson et al., 2000b). For example, the reduced 322 

frequency of floods in regulated reaches can prevent transport of non-buoyant 323 

propagules, whereas those with floating propagules can show higher probability of 324 

dispersal (Jansson et al., 2000a; Jansson et al., 2000b). 325 

Barrier design can influence the extent to which hydrochory is disrupted. Large dams 326 

with big reservoirs are likely to have a greater impact on hydrochory than smaller 327 

barriers with negligible impoundments. Through-flow barriers (e.g. culverts) and 328 

overflow (e.g. weirs) barriers are likely to intercept less propagules than bottom-329 

release dams. Impoundments with thick vegetative growth should intercept more 330 

drifting propagules than sparely vegetated impoundments (Riss, 2008). Structures 331 

with sediment release mechanisms should cause less disruption to transport of 332 

seeds in the bedload (Markwith & Leigh, 2008). Hence, the impact of barriers on 333 

hydrochory is highly context-dependent (Figure 3).  334 

The impact of low-head barriers on macrophytes has been largely unexplored 335 

compared to the effects of large dams. Although their impact is likely to be less 336 

severe than large dams, smaller barriers such as weirs modify river flows, often 337 

creating slow velocity areas (weir pools) immediately upstream. These weir pools 338 

tend to stabilise the substrate and increase settlement of fine sediments (Merritt & 339 

Wohl, 2006). In trapping river substrates, small barriers likely prevent or at least 340 

significantly reduce movement of non-buoyant seeds in the bedload (Markwith & 341 

Leigh, 2008, 2012). Stable substrates create opportunities for the establishment of 342 

macrophytes that would otherwise have been unable to root (Riis & Biggs, 2003) and 343 

can further exacerbate changes by creating a positive feedback loop, whereby the 344 

presence of standing macrophytes increases sedimentation rates (Sand-Jensen et 345 

al., 1989; Gurnell et al., 2006; Jones et al., 2012) and thereby increases propagule 346 

settlement (Gurnell et al., 2008; Riis, 2008). For example, in Norway, weirs are 347 

commonly built as part of small-scale hydropower schemes, but weir pools are often 348 

associated with increased siltation and subsequent growth of macrophytes, which 349 



are regarded as a nuisance (Rorslett & Johansen, 1996). However, other studies 350 

have found little evidence that weirs affected macrophyte diversity or abundance 351 

(Mueller et al., 2011). The variation in the response of macrophytes is likely to 352 

depend on the nature of hydrological alteration: i.e. where weirs stabilise flows and 353 

substrate macrophyte cover tends to increase, whereas barriers with negligible 354 

effects on hydrology and substrate movement tend to have little effect on 355 

macrophytes. 356 

The potential link between disrupted hydrochory and community structure 357 

downstream is unclear. Although dams can significantly reduce hydrochorous 358 

dispersal, the abundance and diversity of plant populations downstream of dams 359 

may in some cases remain the same as upstream (Merritt & Wohl, 2006). 360 

Discontinuities in community composition have been associated with dams, with 361 

assemblages exhibiting a shift from a composition similar to the drifting 362 

hydrochorous propagule bank upstream, to communities derived from local seed-363 

bearing plants downstream (Andersson et al., 2000; Jansson et al., 2000a). 364 

Decreases in macrophyte diversity and abundance have been reported downstream 365 

of dams (Casado et al., 1989; García de Jalon et al., 1994), while in other cases an 366 

increase in macrophyte abundance has been reported (Goes, 2002; Abati et al., 367 

2016; Tena et al., 2017), although in these studies, changes in macrophyte 368 

population structure were not directly linked to disruptions of hydrochory, and 369 

probably related to differences in hydrological regime. However, other studies have 370 

found evidence that the richness of riverine plant communities was linked to 371 

hydrochorous seed input, with free-flowing rivers showing higher richness (Nilsson et 372 

al.,1991; Merritt et al., 2010).  373 

Many of the observed changes in macrophyte community have been associated with 374 

the hydrological effects of dams, rather than their role in disrupting hydrochory. 375 

Stable flow conditions often found downstream of dams can increase aquatic plant 376 

cover in affected reaches (Goes, 2002; Ibáñez et al., 2012; Abati et al., 2016). 377 

Moderate disturbance caused by hydropeaking (frequent, short duration, artificial 378 

flow events) can also lead to increased macrophyte richness and abundance, 379 

compared to unregulated rivers (Bernez et al., 2002; Bernez et al., 2004). Where 380 

hydrological disturbance is more severe, macrophyte communities tend to show low 381 



diversity and be less abundant (Casado et al., 1989; García de Jalon et al., 1994; 382 

Merritt et al., 2010). 383 

Impoundments upstream of dams are characterised by slow flows, reduced 384 

turbulence and more uniform habitats, increasing sedimentation rates and creating 385 

conditions that resemble lentic systems (Anderson et al., 2015; Vukov et al., 2018). 386 

Dissolved concentrations of critical nutrients such as phosphorous and nitrate are 387 

often higher in these impounded reaches, leading to increased plant growth 388 

(Benítez-Mora & Camargo, 2014). As a result of these changes, slow flowing 389 

habitats immediately upstream of dams often support high macrophyte biomass, 390 

albeit generally with communities more representative of lacustrine habitats 391 

(Tombolini et al., 2014; Ceschin et al., 2015; Vukov et al., 2018). Some authors have 392 

described these changes as ‘favourable’ due to locally increased macrophyte 393 

diversity (Ceschin et al., 2015). However, the establishment of largely lacustrine 394 

macrophyte species likely occurs to the detriment of riverine flora and fauna within 395 

impounded areas. 396 

4.2 | Barrier effects on zoochory 397 

Given the importance of icthyochory (movement of seeds by fish) for upstream 398 

dispersal (Pollux et al., 2006; Anderson et al., 2011; Horn et al., 2011), impediment 399 

of fish movements by barriers (e.g. Lucas & Batley, 1996; Winter & Van Densen, 400 

2001; Garcia de Leaniz, 2008) could potentially impact macrophyte dispersal and 401 

population connectivity. To date, no study has specifically assessed how the 402 

presence of barriers may affect endozoochorous dispersal of seeds by fish, although 403 

it has been raised as an issue of concern (e.g. Correa et al., 2007; Horn et al., 2011). 404 

The group of fish in which seed dispersal has been identified tend to be weaker-405 

swimming members of river fish communities such as cyprinids, characids, and 406 

ictalurids (e.g. Chick et al., 2003; Anderson et al., 2009; VonBank et al., 2018a). 407 

These species are more likely affected by barriers because they lack the swimming 408 

speed and leaping ability to overcome many obstacles (Beecham, 2004; Tudorache 409 

et al., 2008; Langerhans & Reznick; 2010). 410 

The presence of river barriers is unlikely to affect the movements of birds directly, 411 

but changes in the distribution of riverine habitats brought about by flow regulation 412 

can alter the composition and distribution of waterfowl communities (Nilsson & 413 



Dynesius, 1994). For example, the accumulation of fish at barriers can also lead to 414 

local increases in piscivorous birds (Stevens et al., 1997, Baumgartner et al., 2008) 415 

and still waters within impoundments provide habitat for many waterfowl (Nilsson & 416 

Dynesius, 1994). Because birds can act as important agents of propagule dispersal 417 

(Figuerola & Green, 2002; Charalambidou & Santamaría, 2002; Coughlan et al., 418 

2015), changes in their distribution have the potential to influence aquatic plant 419 

dispersal, although this has not yet been examined. Further research is required to 420 

elucidate the impacts of barriers for zoochorous dispersal of seeds by animals. 421 

4.3 | Barrier effects on invasive macrophytes 422 

Hydrochory has been highlighted as an important mechanism for the spread of 423 

aquatic invasive plants (Thébaud & Debussche, 1991; Okada et al., 2009; Aronson 424 

et al., 2017). The trapping of drifting propagules by large barriers such as dams can 425 

inhibit or prevent the spread of invasive species that rely on hydrochory for dispersal 426 

(Rood et al., 2010). However, any such effect is also likely to impact population 427 

connectivity of native macrophytes (Merritt & Wohl, 2006; Nilsson et al., 2010).  428 

Invasive species tend to be most successful where naturally occurring communities 429 

are stressed by anthropogenic disturbance (Byers et al., 2002; Johnson et al., 2008; 430 

Strayer, 2010), including damming (Johnson et al, 2008; Greet et al., 2013). 431 

Hydrological modifications associated with river barriers can result in changes in 432 

community composition, as native macrophytes may be unable to cope with modified 433 

conditions (Catford & Jansson, 2014), creating opportunities for invasive 434 

macrophytes to establish. For example, damming of the river Guadiana in Spain has 435 

led to increased spread of the invasive water hyacinth (Eichhornia crassipes; Téllez 436 

et al., 2008). A recent study has also shown that thick mats of water hyacinth can 437 

themselves trap and disrupt downstream transport of hydrochorous seeds (Vonbank 438 

et al., 2018b). Artificial reservoirs in North America tend to support more invasive 439 

species than natural lakes, likely because native species have less of a stronghold in 440 

artificial systems (Johnson et al., 2008). Flow regulation in the River Rhine has 441 

favoured the spread of invasive Elodea nuttallii, which has become dominant in 442 

many altered reaches (Van Geest et al., 2005) and modified flow regimes 443 

downstream of dams have also favoured the invasion of non-native macrophytes in 444 

riverine wetlands within the Murray River, Australia (Catford et al., 2011). However, a 445 



reduction in flood disturbance due to river regulation in a Californian river system 446 

resulted in reduced propagule dispersal in the invasive aquatic macrophyte Ludwigia 447 

hexapetala (Thomason et al., 2018). These contrasting findings indicate that the 448 

outcomes of hydrological modification depend on the flow regimes imposed and the 449 

dispersal traits of the invasive plants present. 450 

Reservoirs often receive higher numbers of boat users and anglers than free-flowing 451 

sections of rivers (Havel et al., 2005; Cooper, 2006), and impounded areas can be 452 

sites of high introduction risk within catchments (Johnson et al., 2008; Jacobs & 453 

Macisaac, 2009; Tamayo & Olden, 2014). For instance, artificial reservoirs in South 454 

Africa were highlighted as high risk areas for invasion of Hydrilla venticillata due to 455 

high boat traffic (Coetzee et al., 2009). Recreational disturbance (e.g. kayaking, 456 

boaters, fishermen etc.) in impounded reaches can also result in the fragmentation of 457 

invasive plants, resulting in higher hydrochorous dispersal (Thomason et al., 2018). 458 

Outreach efforts to increase public awareness, biosecurity campaigns, and 459 

promotion of rigorous cleaning protocols can be highly effective in reducing 460 

anthropogenic dispersal of invasive macrophytes (Rothlisberger et al., 2010).  461 

 462 

5 | CONCLUSIONS 463 

Macrophytes are an essential component of healthy rivers and barriers have the 464 

potential for impacting them in subtle, insidious ways (Pringle, 2001; 2003), and yet, 465 

the effects of anthropogenic barriers on river macrophytes have received little 466 

attention compared to fish and other riverine biota. For instance, while we found 333 467 

articles in Web of Science dealing with barrier impacts on fish, and 30 on 468 

macroinvertebrates, only 19 investigated effects on macrophytes (see Table S3 for 469 

search strings). This is perhaps due to the assumption that macrophyte populations 470 

are sedentary, and therefore relatively unaffected by barriers. However, there is 471 

strong evidence that macrophytes can disperse over relatively long distances, both 472 

drifting with the river flow and transported via animal movement, and this dispersal is 473 

crucial for maintaining population connectivity and persistence. 474 

The empirical evidence indicates large barriers such as dams have substantial 475 

impacts on macrophyte dispersal (e.g. Jansson et al., 2000b; Nilsson et al., 2010), 476 

acting as traps to drifting propagules, and thereby starving downstream reaches of  477 



hydrochorous input (Andersson et al., 2000; Merritt & Wohl, 2006). However, the 478 

abundance and diversity of the drifting propagule bank is not always affected 479 

downstream of dams (Jansson et al., 2005), and the consequences of disrupted 480 

hydrochory for community dynamics are unclear. The existing literature has 481 

overwhelmingly focussed on large dams only, despite the fact that small weirs and 482 

low-head structures are much more abundant (Januchowski-Hartley et al., 2013; 483 

Garcia de Leaniz et al., 2018; Jones et al., 2019), and may also impact on 484 

macrophytes (Rorslett & Johansen, 1996). The potential for small barriers to 485 

intercept hydrochoric drift has not been adequately explored (Table 2).  486 

Most studies assessing barrier effects on macrophyte dispersal have focussed on 487 

their influence on hydrochory. However, upstream dispersal is equally critical to 488 

maintaining macrophyte abundance and distribution, and the role of barriers in 489 

disrupting potentially important mechanisms such as icthyochory needs to be 490 

examined (Table 2). This will likely require knowledge of the spatial scale of 491 

zoochory, the precise dispersal mechanisms involved (e.g. stepping stone effects), 492 

and the extent to which barriers effect the movements and distributions of the 493 

specific taxa which act as dispersal vectors (Table 2). 494 

There is contradictory evidence regarding damming effects on the macrophyte 495 

standing crop in affected reaches, with some studies reporting a negative impact on 496 

macrophyte populations (e.g. Casado et al., 1989; Nilsson et al., 1991), while others 497 

indicate increases in abundance and diversity in regulated reaches (e.g. Ceschin et 498 

al., 2016; Vukov et al., 2018). Hence, the effect of dams on macrophytes is complex 499 

and appears to be very much context-dependent. The local factors influencing the 500 

impact of barriers on macrophytes require further investigation (Table 2). Some 501 

studies indicate small barriers such as weirs can cause shifts in macrophyte 502 

distribution and abundance (Rorslett & Johansen, 1996) while others report non-503 

significant effects (Mueller et al., 2011), and these contrasting outcomes may depend 504 

on the nature of hydrological alterations. However, the impact of small barriers on 505 

macrophyte population dynamics requires further attention (Table 2). Also, flow 506 

regulation appears to favour the establishment of invasive macrophytes, but the 507 

mechanisms involved are not well understood, and need evaluation (Table 2).  508 



Even common plant species can be susceptible to genetic impoverishment due to 509 

habitat fragmentation (Honnay & Jacquemyn, 2007). River fragmentation is an 510 

ongoing process (Grill et al., 2015; Couto & Olden, 2018), so increasing isolation of 511 

populations could potentially leave many macrophyte species vulnerable to genetic 512 

erosion. In terrestrial plants, low levels of gene flow (1 seed per generation) are 513 

sufficient to prevent genetic differentiation between populations (Wright, 1931; 514 

Honnay et al., 2005). However, there is a need to identify the frequency of dispersal 515 

events over dams that would be required in order to avoid genetic divergence and 516 

population decline in river macrophytes (Table 2). This would likely require 517 

metabarcoding to examine rates of gene flow under different frequencies of 518 

hydrochoric immigration, including multi-generational studies to assess rates of 519 

genetic divergence under different dispersal scenarios. Such studies would need to 520 

be undertaken both at catchment and sub-catchment scales. There is also little 521 

knowledge of what modifications might be made to dam and reservoirs in order to 522 

improve dispersal of macrophyte propagules (Table 2). Due to the different dispersal 523 

characteristics of distinct taxa (e.g. buoyant and sinking propagules), a variety of 524 

alterations would likely be required to provide for uninterrupted dispersal of diverse 525 

macrophyte communities.  526 
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TABLE 1 Summary of barrier impacts on macrophyte dispersal and population structure 1031 

Attribute Effect Mechanism Reference 

Dispersal Reservoirs trap hydrochorous 
propagules 

Slow flow in impounded reach Nilsson & Jansson (1995) 
Andersson et al. (2000) 
Jansson et al. (2000b) 
Merritt & Wohl (2006) 
Nilsson et al. (2010) 

Reduced abundance and 
richness of hydrochorous seeds 
downstream 

Slow flow in impounded reach 
 
 
Reduced frequency and intensity of floods 

Andersson et al. (2000) 
Jansson et al. (2000a) 
Merritt & Wohl (2006) 
Jansson et al. (2000a) 
Jansson et al. (2000b) 

No effect of dams on abundance 
or diversity of drifting propagules 
downstream 

Local (within-impoundment) sources 
contributed similar abundance and diversity of 
hydrochorous propagules to upstream 

Jansson et al. (2005) 

Population 
structure 

Lower species richness 
downstream 

Reduced hydrochory Nilsson et al., (1991) 
Merritt et al. (2010) 

Higher species richness 
downstream 

Increased nutrients 
Intermediate disturbance caused by moderate 
hydropeaking 

Benitez-Mora & Camargo (2014) 
Bernez et al. (2002) 
Bernez et al. (2004) 

No effect of barriers on species 
richness 

Local seed sources downstream from dams 
contributed similar diversity to upstream  
Species richness was highly variable between 
sites limiting ability to identify weir effects 

Merrit & Wohl (2006) 
 
Mueller et al. (2011) 

Discontinuities in community 
composition 

Reduced hydrochory Merritt & Wohl (2006) 
Andersson et al. (2000) 
Jansson et al. (2000a) 

Increased biomass in impounded 
area 

Creation of lentic habitat 
 
Reduced flow velocity 
Increased sedimentation  

Ceschin et al. (2015) 
Tombolini et al. (2014) 
Vukov et al. (2018) 
Rorslett & Johansen (1996) 



Vukov et al. (2018) 

Increased biomass downstream Stable flows 
 
 
Increased nutrients 

Goes (2002) 
Ibáñez et al. (2012) 
Abati et al. (2016) 
Tena et al. (2017) 
Benitez-Mora & Camargo (2014) 

Decreased biomass downstream Higher turbidity 
Stable flows 

García de Jalon et al. (1994) 
Casado et al. (1989) 

Invasiveness Increased spread of invasive 
species 

Modified flow regimes 
 
Increased anthropochory 

Tellez et al. (2014) 
Van Geest et al. (2005) 
Coetzee et al. (2009) 

Reduced spread of invasive 
species 

Interrupted hydrochory Thomason et al. (2018) 
Rood et al. (2010) 

Dams are defined as a large barriers (generally >5m) that create large impoundments (reservoirs) upstream. Weirs are defined as 1032 

smaller (<5m) barriers with overtopping flow. 1033 

  1034 



TABLE 2 Knowledge gaps identified during this review 1035 

Suggested future research directions Relevant studies 

The dominant role of hydrochory in downstream dispersal is well established, but 
further research is required to identify mechanisms supporting upstream dispersal, and 
their relative importance 

Pollux et al. (2009); Markwith & 
Scanlon (2007); Pollux et al. (2005); 
Charalambidou & Santamaría (2002) 

There is contradictory evidence regarding the consequences of interrupted hydrochory 
for the composition of macrophyte communities within rivers. Little is known about the 
site-specific factors influencing barrier effects on macrophyte population dynamics 

Merritt & Wohl (2002, 2006); Jansson 
et al. (2005); Andersson et al. (2000); 
Nilsson et al. (2010) 

Many animal species can disperse macrophytes, particularly birds and fish, but the 
prevalence of animal dispersal is uncertain 

Pollux et al. (2005, 2006); Figuerola, & 
Green (2002); Charalambidou & 
Santamaría (2002) 

Given the well documented effects that river barriers have on fish movements, their 
impact on icthyochory requires evaluation 

Pollux et al. (2005, 2006); Correa et al. 
(2007); Horn et al.  (2011) 

‘Stepping-stone’ dispersal is likely to be of great importance in supporting long distance 
dispersal by both zoochory and anemochory, and these processes require further 
investigation 

Coughlan et al. (2015; 2017a,b); Saura 
et al. (2014) 

There is good evidence that the presence of barriers can result in the establishment of 
invasive macrophytes, but the mechanisms facilitating colonisation are not well 
understood and need evaluation 

Johnson et al. (2008); Rood et al. 
(2010); Catford et al. (2011) 

Most studies examining barrier effects on macrophytes have focussed on large dams 
and reservoirs, but low-head barriers are much more numerous, and their cumulative 
impact could be considerable and requires assessment 

Rorslett & Johansen (1996); Markwith & 
Leigh (2008); Mueller et al. (2011) 

Mitigation solutions for reducing the impact of river barriers on macrophyte populations 
are unavailable and require investigation. 

N/A 
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FIGURE 1 The main mechanisms driving dispersal and settlement of macrophytes in rivers 1038 
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FIGURE 2 Potential impacts of barriers on macrophyte dispersal and population structure 1041 
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FIGURE 3 The influence of various context-dependent factors on the impact of barriers on hydrochory 1043 



Table S1 Glossary of technical terms used in manuscript 1044 
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Term Definition 

Allofragmentation Release of vegetative fragments due to physical disturbance  
Anemochory Dispersal of propagules by wind 
Anthropochory Dispersal of propagules by humans 
Autofragmentation Release of vegetative fragments when a plant reaches peak biomass 
Ectozoochory Transport of plant propagules attached to the external surface of animals 
Endozoochory Transport of plant propagules (generally seeds) within the gut of animals 
Hydrochory Dispersal of propagules by water 
Icthyochory Transport of seeds in the gut of fish 
Macrophyte Aquatic vascular plants of the division tracheophyta that are large enough to be seen with the 

naked eye, i.e. excludes bryophytes, macroalgae, and microalgae. 
Propagule Any plant material that functions in propogation, i.e. includes seeds, vegetative parts (e.g. 

rhizomes, turions, stolons, tubers, or plant fragments) and whole plants 
Zoochory Dispersal of propagules by animals 



Table S2 Search strings utilised in selecting literature for the review and the number of results produced in Google Scholar and 1049 

Web of Science (WOS) 1050 

Subsection Topic Search string 

Number of 
results 

Google 
Scholar WOS 

Section 3.1 Hydrochory (macrophytes OR aquatic plant OR propagule OR plant fragment OR seed) AND 
(dispersal OR drift OR hydrochory OR asymmetric OR bidirectional OR flow OR 
unidirectional OR gene flow) AND (river OR fluvial OR freshwater OR lotic OR stream) 

174,000 1,497 

Section 3.2 Zoochory (macrophytes OR aquatic plant OR propagule OR plant fragment OR seed) AND 
(dispersal OR zoochory OR endozoochory OR ectozoochory OR epizoochory OR gene 
flow) AND (river OR fluvial OR freshwater OR lotic OR stream) 

68,500 1,188 

Section 3.3 Anemochory (macrophytes OR aquatic plant OR propagule OR plant fragment OR seed) AND (wind 
dispersal OR anemochory OR gene flow) AND (river OR fluvial OR freshwater OR lotic 
OR stream) 

42,000 127 

Section 3.4 Anthropochory (macrophytes OR aquatic plant OR propagule OR plant fragment OR seed) AND 
(human-mediated dispersal OR anthropochory OR gene flow) AND (river OR fluvial OR 
freshwater OR lotic OR stream) 

3,260 16 

Section 4.1 Barrier effects 
on hydrochory 

(macrophytes OR aquatic plant) AND (barrier OR dam OR weir OR obstacle OR river 
regulation OR impoundment) AND (hydrochory) AND (river OR fluvial OR freshwater 
OR lotic OR stream) AND (impact OR fragmentation OR connectivity OR effect) 

820 5 

Section 4.2 Barrier effects 
on zoochory 

(macrophytes OR aquatic plant) AND (barrier OR dam OR weir OR obstacle OR river 
regulation OR impoundment) AND (zoochory) AND (river OR fluvial OR freshwater OR 
lotic OR stream) AND (impact OR fragmentation OR connectivity OR effect) 

345 0 

Section 4.3 Barrier effects 
on invasive 
macrophytes 

(macrophytes OR aquatic plant) AND (barrier OR dam OR weir OR obstacle OR river 
regulation OR impoundment) AND (invasive species OR alien OR non-native) AND 
(river OR fluvial OR freshwater OR lotic OR stream) AND (hydrochory OR impact OR 
fragmentation OR connectivity OR effect) 

60,600 28 
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Table S3 Search strings used to assess the number of articles examining the impact of river barriers on fish, invertebrates and 1052 

macrophytes in Web of Science. 1053 

Topic Search string Results 

Impact on fish 
(fish) AND (river OR fluvial OR freshwater OR lotic OR stream) AND (barrier OR dam OR 
regulation OR weir OR obstacle) AND (fragmentation OR connectivity) AND (impact) 

333 

Impact on invertebrates 

(invertebrate) AND (river OR fluvial OR freshwater OR lotic OR stream) AND (barrier OR 
dam OR regulation OR weir OR obstacle) AND (fragmentation OR connectivity) AND 
(impact) 

30 

Impact on macrophytes 

(macrophyte OR aquatic plant) AND (river OR fluvial OR freshwater OR lotic OR stream) 
AND (barrier OR dam OR regulation OR weir OR obstacle) AND (fragmentation OR 
connectivity) AND (impact) 

19 
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