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Abstract. Studies have previously been done on efficacies of chitosan and zeolite in 9 

ammonium ion (NH4
+) removal. However, no study compares the adsorption performance of 10 

natural zeolite and activated natural zeolite with high and low molecular weight chitosan. 11 

Hence, this study investigates the potentials of natural zeolite (NZ), activated natural zeolite 12 

(ANZ), low molecular weight chitosan (LMWC) and high molecular weight chitosan (HMWC) 13 

in NH4
+ removal. The characteristics of NZ, ANZ, LMWC, and HMWC such as functional 14 

groups, surface morphology, elemental composition, zeta potential and particle size were also 15 

investigated. The deposition of NH4
+ on the surface of NZ and ANZ was confirmed with the 16 

absence of nitrogen by the adsorption spectrum of EDX and supported by the presence of an 17 

FTIR stretching band at 3500-3300 cm-1, as well as broader and less intense bands 1600 cm-18 

1 after the adsorption for all the adsorbents. The particle size of LMWC, HMWC, NZ and ANZ 19 

were 98, 813, 22354 and 9826 nm, respectively. Meanwhile, after the activation process, the 20 

composition of O, Si, Al, Fe, Ca and Na were reduced. NH4
+ batch adsorption was also studied. 21 

HMWC, NZ, and ANZ reached adsorption equilibrium at 15 h, meanwhile for LMWC, the 22 

equilibrium reached at t = 20 h. The adsorption capacity of LMWC, HMWC, NZ, and ANZ at 23 

an initial concentration of 50 mg/L were 0.769 mg/g, 0.331 mg/g, 2.162 mg/g and 2.937 mg/g 24 

respectively. ANZ had the highest adsorption capacity, which might be related to the reduction 25 

of cationic elements such as Fe, Ca and Na after the activation has increased the unbalanced 26 

negative charge within the crystal lattice of ANZ that can be neutralized by NH4
+ hence led to 27 

higher adsorption. HMWC has the lowest adsorption capacity that may be due it is positively 28 
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charged at pH 7 which would favor the adsorption of negatively charged species instead of 1 

positively charged species, NH4
+. 2 

Keywords: Ammonia; nitrogen; adsorption; natural; zeolite; chitosan 3 

1. Introduction 4 
NH4

+ has been the cause of nitrogen pollution in recent years, originating from municipal and 5 

industrial effluent caused by human activities such as surface runoff from farmland and residential 6 

areas. In turn this causes nutrient enrichment which lead to serious eutrophication in urban drainage, 7 

wastewater, and groundwater sources. Water pollution is linked to 14, 000 deaths daily, which NH4
+  8 

toxic contaminants are a contributor to [1]. The hazard posed by consuming NH4
+ has led to stringent 9 

water quality standards; as nitrate in drinking water from surface water shall not exceed 10 mg/L, 10 

nitrite levels in drinking water usually below 0.1 mg/L and the allowable concentration for treated 11 

effluent is 5 mg/L [2–4]. This has led to the necessity to have a competent wastewater treatment in 12 

which can remove NH4
+ to below the allowable limit.  13 

There are many wastewater treatment methods available. Biological processes, such as 14 

conventional activated sludge treatment, anaerobic-anoxic-oxic, sequencing batch reactor, and 15 

oxidation ditch are reported to be less efficient in nitrogen removal due to inability to meet the 16 

stringent nutrients discharge standards, instability treatment effect and time consuming process [5]. 17 

Ammonia stripping, electrodialysis, bioelectrical treatment suffer from drawbacks such as regular 18 

maintenance, higher capital and operating expenses and lack of technology access and experts [6]. On 19 

top of that, adsorption has gained extensive attention in NH4
+ removal due to its low-cost, high affinity 20 

towards NH4
+, efficiency and simplicity of application as well as environmental friendliness [7–9]. 21 

Processes based on the use of natural, locally available adsorbents are considered to be more 22 

accessible for developing countries, have lower investment cost and lower environmental impact [10].  23 

 Recently, natural zeolites have been upgraded to a commodity of great capabilities such as 24 

being used for the removal of NH4
+  from municipal, industrial or agricultural waste and drinking 25 
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water [11]. Natural zeolites consist of three-dimensional frameworks of aluminosilicates where 1 

oxygen, aluminium, and silicon are covalently bonded in a tetrahedral structure. Each aluminium 2 

(Al3+) atom substitution for silicon (Si4+) atom in the zeolite framework which will generate one 3 

negative charge within the pores that will be balanced by positively charged ions (cations) such as 4 

Na+, K+, Ca2+, and Mg2+ on the external surface of natural zeolite with weak electrostatic bonds that 5 

caused the ability to be exchanged with other cations in solutions such as NH4
+ [12–14].  Although 6 

natural zeolites are available in abundance, their relatively small adsorption capacities for NH4
+   (10 7 

mg/g or less) [9] and lower efficacy as compared to synthetic zeolite which is reported to have greater 8 

adsorption capacity due to higher proportion of higher specific area, bigger total pore volume and 9 

lower average pore size has led to modification of natural zeolite [15,16].  10 

 Natural zeolite, such as fly ash, Australian natural zeolite and Chinese natural zeolite, have been 11 

previously investigated but low adsorption capacity was recorded [14,16–18]. Several pre-treatments 12 

have been done on natural zeolite, activated natural zeolite and commercial zeolite including acid, 13 

base, salt, and organic surfactant treatments, before being used in NH4
+ removal [16,18–20]. Heat 14 

treatment is known to be the best pre-treatment due to the morphological structure changes which do 15 

not require any chemicals. The pore size decreases, but the content of cations will also greatly reduce, 16 

opening up more sites for the attachment of NH4
+ [18,21]. The temperature used during heat treatment 17 

plays an important role. Heat treatment at 400 oC and lower have a positive impact as the adsorption 18 

capacity will improve compared to non-treated natural zeolite. However, according to Zhang et al. 19 

[22], who studied activation temperature of 500 oC to 700 oC, reported that high heat treatment 20 

reduced the adsorption of NH3-N due to the degradation of an important element, O, changing the 21 

isoelectric point.  22 

 Other than natural zeolite, chitosan, a non-toxic natural carbohydrate polymer derived from the 23 

chitin component of crustacean exoskeletons such as shrimp, crab, crawfish, etc., was reported to be 24 

an excellent adsorbent material because it contains hydroxyl (-OH) and amino (-NH2) groups that 25 

serve as binding sites [23].  The mechanism of adsorption of ion on the surface of chitosan was 26 
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explained by Zhang and Bai [24]. Chitosan has been used in heavy metals removal [25] and dye 1 

adsorption [26].  2 

  Many studies have been done on chitosan and zeolite separately as suitable adsorbents for NH4
+ 3 

but no study compares adsorption performance of natural zeolite, activated natural zeolite with high 4 

and low molecular weight chitosan. For instance, Kołodyńska et al. [17] reported the comparison of 5 

modified natural zeolite with different molecular weights of chitosan, but those were used to treat 6 

methylene blue and copper, Cu (II) ion instead of NH4
+. Yang et al. [18] compared only one molecular 7 

weight of chitosan with natural zeolite. Teimouri et al. [27] compared chitosan with commercial 8 

zeolite instead of natural zeolite for nitrate ion (NO3
-) removal. Haseena et al.[28] studied hybrid 9 

commercial zeolites such as zeolite Y and bentonite clay with no modification but no comparison was 10 

made with chitosan. Hence, this paper fills in these gaps by reporting studies of the capability of 11 

natural adsorbents: natural zeolite, modified natural zeolite, low molecular weight chitosan and high 12 

molecular weight chitosan whose characterizations and ammonium ion adsorption capacities were 13 

investigated.   14 

2. Methodology 15 

2.1. Materials 16 
The natural zeolite originated from Indonesia. The chemical composition of natural zeolite from 17 

supplier was (SiO2: 65.5 %, Al2O3: 12.5 %, Fe2O3: 1.35 %, CaO: 2.6 %, MgO: 1.22 %, Na2O: 0.63 %, 18 

K2O: 1.6 %, TiO2: 0.01 % and cationic exchange capacity (CEC): 1.40 meq/g). LMWC (50,000 – 19 

190,000 Da, 75-85% deacetylated) (Sigma Aldrich) and HMWC (310000 – 375000 Da, > 75 % 20 

deacetylated) (Sigma Aldrich, USA). It was used directly without further purification. Nessler reagent 21 

was used to analyze NH4
+ which consisted of a Nessler reagent, mineral stabilizer and polyvinyl 22 

alcohol dispersion, range of detection limit: 0.02 – 2.5 mg/L (Hach, USA). 23 

2.2. Preparation of adsorbents 24 
The natural zeolite was washed and dried at 104 oC overnight. The activated natural zeolite was 25 

prepared by using the method by Taaca et al. [29]. Firstly, the natural zeolite was broken down into 26 



 
 
 
 
 
 

5 
 

fine powders using mortar and pestle before the treatment procedure. The particles were washed with 1 

distilled water and filtered twice. The slurry was dried at 105° C for 2 h and active treatment followed 2 

at 120 °C for 6 h. All solids were stored in a dry place to avoid moisture. Low molecular weight 3 

chitosan, high molecular weight, natural zeolite, and activated natural zeolite were denoted as LMWC, 4 

HMWC, NZ, and ANZ.  5 

2.3. Functional groups identification 6 
The functional groups present in LMWC, HMWC, natural zeolite and activated natural zeolite before 7 

and after the adsorption were recorded by using Fourier transform infrared (FTIR) spectrometer 8 

(Perkin Elmer Spectrum-100). The spectra were recorded in the wavenumber range from 4000 to 400 9 

cm-1. 10 

2.4. SEM-EDX 11 
The detailed surface morphology of LMWC, HMWC, NZ, and ANZ before use were obtained by 12 

using a scanning electron microscope (SEM, S-3400 N, Hitachi) coupled with energy dispersive X-ray 13 

(EDX) spectrometer with 10.0 kV acceleration voltage with a magnification range of 180 until 13 k. 14 

The samples were coated with gold by a sputter coater Q150RS before analysis to increase the 15 

conductivity of the samples. The approximation of pore size and the sizes of flakes were done for all 16 

the adsorbents.  17 

2.5. Zeta potentials and particle size 18 
0.1 g NZ, ANZ, LMWC, and HMWC was suspended in 100 g of distilled water, followed by stirring 19 

at 200 rpm for 24 h. Before the analysis, each sample was distributed into the vials. The pH values 20 

were adjusted to 7 by addition of 0.1 M HCl or 0.1 M NaOH solution. Dynamic light scattering (DLS) 21 

was used to measure the hydrodynamic diameter (diameter in nanometer range in (d.nm) and laser 22 

Doppler anemometry (LDA) was used to measure the zeta potential in (mV) [30]. DLS and LDA were 23 

performed using a Zetasizer Nano ZS instrument (Malvern Panalytical Ltd. UK).   24 

 25 
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2.6. Batch adsorption 1 
Equilibrium tests were conducted to determine the equilibrium adsorption capacity for LMWC, 2 

HMWC, NZ, and ANZ. For the reaction, 500 g of NH4Cl solution with an initial concentration of 50 3 

mg/L was poured inside a 1000 mL beaker. 5 g of NZ and ANZ were used. Meanwhile, 1 g of LMWC 4 

and HMWC were used for the adsorption. pH was adjusted to 7 by the addition of 0.1 M NaOH or 5 

0.1 M HCl stock solutions. The temperature was set to 30 oC (room temperature), with a stirring speed 6 

of 700 rpm. 2.5 mL of solution was pipetted out for 30 min, 1 h, 2 h, 6 h, 12 h, and 24 h. Three 7 

replicates were done per adsorbent type. The samples were then analysed using a Jasco UV-vis 650 8 

Bio-spectroscopy with a maximum wavelength of 425 nm. Before analysis, Nessler reagent was used 9 

for ammonia nitrogen compound detection by following the standard USEPA Nessler Method 10 

No.8038. The concentration of ammonium ion adsorbed at equilibrium was calculated as in equation 11 

(1). 12 

 13 

 
(1) 

  

3. Results and discussions 14 

3.1. Characterizations of adsorbents 15 

3.1.1. Functional groups identification 16 
The FT-IR spectra for NZ, ANZ, LMWC and HMWC for before and after the adsorption reaction are 17 

depicted in figure 1. All adsorbents showed stretching vibrations at 3500-3300 cm-1. Both O-H and 18 

N-H stretch at wavenumbers above 3100 cm-1, but O-H will show a more intense band than N-H 19 

[27,31]. NZ, ANZ, LMWC, and HMWC had shown an intense peak at range 3500-3300 cm-1 but the 20 

band showed medium and broad shape after the adsorption which indicated the presence of N-H bond. 21 

This has confirmed the attachment of NH4
+ after the adsorption process.  22 

 Before the adsorption, HMWC and LMWC had shown stretching vibration with medium peak 23 

intensity at 3300 – 2700 cm-1 which is for the C-H compound [31,32]. This has been confirmed with 24 
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the formation of band at 1380 cm-1 which is the indication of methyl group. The compound has fewer 1 

than four adjacent methylene groups because there is no absorption band at 720 cm-1.  2 

 There are bands at the range of 2260 – 2100 cm-1 shown by ANZ, HMWC, LMWC, NZ 3 

before and after the adsorption which indicated for the presence of triple bond of C and triple bond of 4 

C and N. N-H bending vibrations also occur at 1600 cm-1 and absorption at that wavelength does not 5 

always indicate a C=C bond. However, absorption bands resulting from the N-H bend tend to be 6 

broader (due to hydrogen bonding) and more intense due to being more polar) than those caused by 7 

C=C stretches [31].  8 

 9 

 10 

Figure 1. FTIR analysis. 11 

   12 

 Band around 1000.14 cm -1 is a bending vibration of Si-O [33] and 1018 stretching 13 

vibrations of the Y zeolite structure framework [27] which have been shown by both NZ and ANZ. 14 
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The major peak at 1023 cm−1 and 1015 cm−1 justifies Si-O-Si asymmetric stretching and bending 1 

respectively [34]. NZ and ANZ showed bands at 775.35 cm-1 - 776.12 cm-1 and 775.59 cm-1 - 771.33 2 

cm-1 were due to the quarts or amorphous SiO2 stretching vibration and Si-O-Si bending mode [32]. 3 

3.1.2. Morphological structure 4 
The surface morphological structures of LMWC, HMWC, NZ, and ANZ are depicted in figure 2 (a)-5 

(d). In SEM analysis, the surface morphology was taken at an acceleration voltage of 10kV and with 6 

magnifications 180 until 13 k. From the results, rough surface was noticed for HMWC, LMWC, NZ, 7 

and ANZ. As shown in figure 2 (a) and (b), an irregular shape of flakes like structure with no 8 

distinctive pore was observed for both LMWC and HMWC. This was also being observed by Cui et 9 

al.[35] in the commercial chitosan. Meanwhile, irregular pores for NZ and ANZ were noticed as 10 

illustrated in figure 2 (c) and (d). Powder like structure was observed for NZ but not for ANZ, as the 11 

structure changed to flakes like structure with more pores were observed. Furthermore, irregular 12 

cracks have also being noticed on the ANZ surface in figure 2 (d). The estimated pore size of NZ and 13 

ANZ was 1153.8 µm and 825. 32 µm respectively. It was noted that the activation had caused the pore 14 

size to decrease.  15 

 16 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2. SEM analysis (a) LMWC, (b) HMWC, (c) NZ, (d) ANZ. 1 

3.1.3. Elemental Analysis 2 
As presented in Table 1, the elemental composition of LMWC, HMWC, NZ, and ANZ before the 3 

adsorption test were studied using the EDX. The elements of C, O, and N were detected for LMWC 4 

and HMWC. These elements are the common elements present in most chitosan due to the presence of 5 

free amine, carboxyl and hydroxyl groups that functions as active sites during the adsorption process 6 

[25].  7 

 The presence of the elements Si, Al, O, Na, Ca and Fe were detected due to the natural zeolites 8 

which are composed of three dimensional frameworks of aluminosilicate where the aluminium and 9 

silicon structure atoms are bound by covalent bond over shared oxygen atoms to form interconnected 10 

cages and channels. These will form pores and is where most of the cations are present and ion 11 

exchange processes occur [14,36]. It was noticed that after the activation, the composition of O, Si, 12 

and Al had decreased. The decrease of element O is suspected to be due to the loss of H2O. The 13 

decrease of exchangeable cations such as Na, Ca, Fe by 12 %, 47 %, and 10 % respectively. 14 

 15 

 16 

 17 

 18 
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Table 1. EDX analysis. 1 

Adsorbent 

Element composition (wt. %) 

C O N Si Al Na Ca Fe 

HMWC 53.250 21.223 9.215 - - - - - 

LMWC 50.975 21.905 8.9075 - - - - - 

NZ 1.548 41.130 0 34.278 9.130 0.603 3.513 3.933 

ANZ 7.510 38.418 0 30.280 8.450 0.503 1.855 3.550 

3.1.4. Zeta Potentials 2 

The measured zeta potentials of NZ, ANZ, HMWC, and LMWC at pH 7 are shown in table 2. As can 3 

be seen, LMCW, HMCW, NZ, and ANZ have zeta potentials of -46.8 mV, 6.4 mV, -36.7 mV and 34.9 4 

mV respectively. The particle size of LMCW, HMWC, NZ and ANZ were 98, 813, 22354 and 9826 5 

nm, respectively. The size of LMWC is smaller than HMWC. From Table 2, NZ has larger particle 6 

size compared to ANZ. This has shown that the heat pretreatment has reduced the particle size of NZ. 7 

The reduction of particle size has proven that the activation process has occurred. 8 

Table 2. Zeta potentials and particle sizes  9 

Adsorbent 
Zeta Potentials 

(mV) 

Particle size (nm) 

(This study) 

Particle size (nm) 

(Other study) 

LMCW -46.8 98.41 

DD :  77 %, MW: 131 kDa 

308.4[37] 

DD : 90.4 %, MW : 66.3 kDa  

HMWC 6.4 813.57 

DD : > 75 %, MW : 343 kDa 

543.8[37] 

DD : 90.2 %, MW : 316 kDa 

NZ -36.7 22354 17660 [38] 

ANZ -34.9 9826 4580 [38] 

3.2. Ammonia nitrogen batch adsorption 10 
Figure 3 illustrates the concentration of NH4

+ adsorbed on the surface of LMWC, HMWC, NZ, and 11 

ANZ as a function of the contact time. HMWC, NZ, and ANZ reached adsorption equilibrium at 15 h, 12 

whereas for LMWC, the equilibrium was reached at t = 20 h. LMWC required more time to reach 13 

equilibrium which is due to its lower deacetylation degree (DD) which lowers its stability during the 14 

reaction [39].   15 

 16 

 17 
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 1 

Figure 3. Adsorption of ammonium ion at different time intervals using LMWC, HMWC, NZ, and 2 

ANZ. 3 

 The adsorption capacity of LMWC, HMWC, NZ, and ANZ at an initial concentration of 50 4 

mg/L were 0.769 mg/g, 0.331 mg/g, 2.162 mg/g and 2.937 mg/g respectively. ANZ had the highest 5 

adsorption capacity compared to LMWC, HMWC, and NZ. This was due to the decrement of cationic 6 

species Na, Ca and Fe which was detected by EDX analysis for ANZ, which contributed to the higher 7 

unbalanced negative charge within the crystal lattice of ANZ that can be neutralized by NH4
+ hence 8 

led to higher adsorption [18,20,21].  This is also supported by the findings of Yang et al. [18] who 9 

reported that the activation using heat treatment caused the adsorption capacity of natural zeolite to 10 

improve due to the decrease of exchangeable cations. Furthermore, the reduction of particle size  from 11 

22354 nm to 9826 nm after the activation process has also contributed to higher sorbent performance 12 

because a fresh surface is exposed, and the total outer surface area is increased [38,40]. 13 

 The effect of the molecular weight of chitosan and DD has been studied on the adsorption of 14 

NH4
+. In this study, HMWC with higher DD (>75 %) contains higher amino groups which were 15 

confirmed by EDX analysis which showed that it has higher nitrogen content compared to LMWC 16 
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(DD: 75-85 %). It was found that HMWC has a lower adsorption capacity compared to LMWC. Li et 1 

al. [41] also observed that the adsorption capacity of chitosan with lower DD was higher compared to 2 

chitosan that has high DD. The same founding has also being observed by Chung et al. [42] where low 3 

molecular weight has higher removal for ammonia (NH3) compound compared to high molecular 4 

weight chitosan. 5 

 Based on the zeta potentials tabulated in Table 2, LMWC, NZ, and ANZ are negatively charged 6 

at pH 7 that may enhance the adsorption of NH4
+, hence, higher adsorption capacity recorded except 7 

for HMWC which is positively charged at pH 7. From the electrostatic interaction point of view, the 8 

positive zeta potentials would favour the adsorption of negatively charged species instead of positively 9 

charged species, NH4
+  which may lower the adsorption capacity [43]. Chitosan acts as a weak base at 10 

lower value of DD and the cationicity aa well as pKa of the chitosan will importantly increase at DD 11 

over 80 % due to the presence of amino groups of glucosamine which responsible for cationic nature 12 

and net positive charge of chitosan under acidic or neutral condition [44–46]. DD determines the 13 

number of acetamide groups (C2H5NO) that randomly distributed along the C2 atoms along the 14 

chitosan chain which will affect the conformational charge of chitosan when in a solution and 15 

solubility. Furthermore, there is a possibility of hydrogen bonds (intra or intermolecular bonds) that 16 

reduced the number of accessible free amines for the cations uptake [47].  17 

 The second factor that may attribute to the low adsorption capacity of HMWC is due to it has a 18 

bigger particle size compared to LMWC as tabulated in Table 2. The particle sizes of HMWC and 19 

LMWC are 813.57 nm and 98.41 nm respectively. In research reported by Guibal et al.[48], the 20 

adsorption capacity was found to be lower, which was attributed to the larger particle size of the 21 

flakes. The large particle size of HMWC will occupy large volume in the reactor that leads to less 22 

mobility of adsorbents during the reaction,  meanwhile, LMWC which is smaller in size has  lesser 23 

resistance towards flow and hence higher exposed surface area [49]. Even though LMWC is more 24 

negative and has smallest particle size among NZ and ANZ, however, the reactions may be hindered 25 

brought about by the number of acetyl groups and formation of hydrogen bond between the other 26 
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LMWC and water compounds as well as the effect of swelling may contribute to the low adsorption 1 

capacity [50,51]. 2 

 However, based on Figure 3, there is an increasing trend of adsorption at 24th h for all 3 

adsorbents used in this study. The same trend was observed by Zahrim & Hilal [52] for dye removal, 4 

Bernardi et al. [53] in removal of total ammonia using chitosan and Masheanne et al.[54] in nitrate 5 

removal using chitosan. There is probability of desorption since this can perhaps be explained by the 6 

fact that the process involves several mechanisms such as physico-chemical adsorption, ion-exchange, 7 

precipitation or complexation as controlling step that can act simultaneously during batch adsorption 8 

using chitosan [54–56].  9 

4. Conclusion 10 
This work shows the characterization and adsorption capacity of natural zeolite (NZ), activated natural 11 

zeolite (ANZ), low molecular weight chitosan (LMW) and high molecular weight chitosan (HMWC). 12 

Based on the FTIR and EDX analysis, it was confirmed there was attachment of NH4
+ to the surface of 13 

NZ, ANZ, LMW, and HMWC. The activation on natural zeolite had caused the pore size, particle size 14 

as well as the composition of O, Si, Al, Fe, Ca and Na to be decreased. HMWC, NZ, and ANZ 15 

reached adsorption equilibrium at 15 h, meanwhile for LMWC, the equilibrium reached at t = 20h. 16 

The adsorption capacity of LMWC, HMWC, NZ and ANZ at initial concentration 50 mg/L were 0.769 17 

mg/g, 0.331 mg/g, 2.162 mg/g and 2.937 mg/g respectively. ANZ employed the highest adsorption 18 

capacity due to the vacant sites for ion exchange to occur after the activation process. Meanwhile, 19 

HMWC recorded the lowest adsorption capacity because it is positively charged and as such favours 20 

negatively charge ions instead of positively charged species, such as NH4
+. 21 
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