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Abstract— The persistent growth in phishing and the rising 

volume of phishing websites has led to individuals and organiza-

tions worldwide becoming increasingly exposed to various cyber-

attacks. Consequently, more effective phishing detection is re-

quired for improved cyber defence. Hence, in this paper we pre-

sent a deep learning-based approach to enable high accuracy 

detection of phishing sites. The proposed approach utilizes convo-

lutional neural networks (CNN) for high accuracy classification 

to distinguish genuine sites from phishing sites. We evaluate the 

models using a dataset obtained from 6,157 genuine and 4,898 

phishing websites. Based on the results of extensive experiments, 

our CNN based models proved to be highly effective in detecting 

unknown phishing sites. Furthermore, the CNN based approach 

performed better than traditional machine learning classifiers 

evaluated on the same dataset, reaching 98.2% phishing detection 

rate with an F1-score of 0.976. The method presented in this pa-

per compares favourably to the state-of-the art in deep learning 

based phishing website detection.   

Keywords—Phishing; Convolutional Neural Networks; 

Machine learning; Deep learning; Phishing website detection; 

Social Engineering  

I.  INTRODUCTION 

Phishing is a social engineering based attack which enables 

cybercriminals to steal credentials, distribute ransomware, and 

carry out financial fraud and theft. It also enables nation-state 

actors to gain strategic access to target environments. Through 

well-designed counterfeit websites, phishing is used to obtain 

private sensitive information, e.g. account number and pass-

word from unsuspecting users. The 2019 Phishlabs trends and 

intelligence report [1] states that phishing grew by 40.9% in 

2018 with 83.9% of the observed attacks targeting credentials 

for financial, email, cloud, payment and SaaS services. Ac-

cording to the report, the volume of phishing websites (i.e. 

phishing content located on a unique fully qualified domain 

name or host) rose steadily during the first quarter of 2018 and 

remained high throughout the second and third quarters. Fur-

thermore, the total number of phishing sites observed monthly 

significantly surpassed previous years.  

 

The need for effective countermeasures has made phishing 

detection a popular area of research in recent years. Conse-

quently, three main categories of approaches for phishing de-

tection have emerged: (a) Approaches based on blacklists and 

whitelists [2], [3] (b) Approaches based on web page visual 

similarity [4] (c) Approaches based on URL and website con-

tent features [5]. The blacklist approach is ineffective in de-

tecting new phishing websites that the system has not yet been 

updated with. The visual similarity-based method extracts 

visual features from phishing websites, and then uses these 

features to identify phishing webpages. Hence, any distortion 

of web page content affects the visual content retrieval leading 

to misclassification. Most current phishing detection ap-

proaches exploit the URL and web content features to distin-

guish between phishing and genuine websites e.g. [5], [6]. 

Machine learning techniques have also been integrated with 

URL and web content features to improve detection perfor-

mance and enable zero-day phishing defence e.g. [7-9].  

 

Given the persistent growth in phishing attacks and the steady 

rise in phishing sites, the need for more effective means of 

detecting suspect sites and thwarting zero-day phishing attacks 

has never been greater. Hence, in this paper we present a deep 

learning based approach that utilizes Convolutional Neural 

Networks (CNN) for high accuracy phishing website detec-

tion. Our approach exploits URL and web contents features to 

build machine learning based phishing detection models that 

are capable of detecting new, previously unseen phishing web-

sites.  

 

We present the design of our CNN-based model for phishing 

website detection and evaluate the model on a dataset obtained 

from 4,898 phishing websites and 6,157 genuine websites 

[10], [14]. Furthermore, we compare the performance of our 

CNN model to other popular machine learning classifiers in-

cluding Naïve Bayes, Bayes Net, Decision Tree, SVM, Ran-

dom Forest, Random Tree and Simple Logistic on the same 

dataset.  The comparative analysis shows that the CNN-based 

model ultimately achieves the best phishing detection perfor-

mance of 98.2% with an F1-score 0f 0.976.  

 

The rest of the paper is organized as follows: Related work is 

in Section II; Background on CNN is featured in Section III; 

Section IV presents methodology and the experiments per-

formed; Results of experiments are given in Section V and 

finally Section VI presents the conclusions of the study and 

future work.   
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II. RELATED WORK  

Phishing detection based on machine learning is a growing 

field of study with increasing interest in application of deep 

learning techniques. Yuan et al [9], proposed a method based 

on features from URLs and web page links to detect phishing 

website and their targets. They utilized a Deep Forest model 

that results in a true positive rate of 98.3% and a false alarm 

rate of 2.6%. In particular, they designed an effective strategy 

based on search operator via search engines to find the phish-

ing targets, which achieves an accuracy of 93.98%. 

 

Wang, et al. [8] presented PDRCNN, a phishing website de-

tection approach that utilizes only the URL of the website to 

build detection models. Their system combines RNNs and 

CNN to extract features from the URL strings. In their exper-

iments, detection accuracy of 97% and AUC of 99% were 

achieved. Bahnsen et al. [15] presented an LSTM model to 

detect phishing URLs. Their approach first encodes the URL 

strings using one-hot encoding and then inputs each encoded 

character vector into the LSTM neurons for training and test-

ing. Their method achieved an accuracy of 0.935 on the 

Common Crawl and PhishTank datasets. Hung et al. [16], pre-

sented the URLNet method for malicious website URL detec-

tion. They extracted both character level and word-level fea-

tures based on URL strings and utilized Convolutional Neural 

Network for training and testing. The authors of [17] propose 

and evaluate a system that extracts features from URL using 

Natural Language Processing (NLP) techniques. Their system 

was implemented by examining URLs used in phishing at-

tacks and extracting the features from them. The authors tested 

their system on several machine learning algorithms and found 

Random Forest to have the best performance with a success 

rate of 89.9%. The drawback of the URL only approach is that 

correct classification may not be obtained if the URL itself 

lacks the relevant semantics, or if there is a problem with the 

validity of the URL [8]. The CNN based approach presented 

in this paper utilizes not only URL features but features from 

other properties of the websites, which increases robustness. 

 

In [18], the authors propose a hybrid intelligent phishing web-

site prediction system using deep neural networks (DNN) with 

evolutionary algorithm-based feature selection and weighting 

methods for enhanced prediction. Genetic Algorithm (GA) is 

used to heuristically identify the most influential features and 

optimal weights of the website features. Unlike the study in 

[18], our approach requires no feature selection stage as this is 

implicitly performed within the CNN-based model due to its 

design. Other deep learning-based phishing detection works 

include [19],[23], with some studies extracting features from 

emails [20-22] rather than URLs and webpage characteristics. 

III. BACKGROUND 

A. Convolutional Neural Networks (CNN) 

CNN belongs to the family of Artificial Neural Networks 

which are computational models inspired by the characteristics 

of biological neural networks. A CNN is a deep learning tech-

nique that works well for identifying simple patterns in the 

data which will then be used to form more complex patterns in 

subsequent layers. Two types of layers are typically used for 

building CNNs; convolutional layers and pooling layers.  The 

role of the convolutional layer is to detect local conjunctions 

of features from the previous layer, while the role of the pool-

ing layer is to merge semantically similar features into one 

[11]. 

 

Generally, the convolutional layer extracts the optimal fea-

tures, the pooling layer reduces the dimensions of the convolu-

tional layer features, and fully connected layer(s) are then used 

for classification. The performance of the CNN is generally 

influenced by the number of layers and the number of filters 

(kernels). More and more abstract features are extracted in the 

deeper layers of the CNN, hence, the number of layers re-

quired depends on the complexity and non-linearity of the data 

being analysed. Furthermore, the number of filters in each 

stage determines the number of features extracted. Computa-

tional complexity increases with more layers and higher num-

bers of filters. Also, with more complex architectures there is 

the possibility of training an overfitted model which results in 

poor prediction accuracy on the testing set(s). To reduce over-

fitting, techniques such as ‘dropout’ [12] and ‘batch regulari-

zation’ are implemented during training of our models. 

B. One Dimensional Convolutional Neural Networks  

Although CNN is more commonly applied in a multi-

dimensional fashion and has thus found success in image and 

video analysis-based problems, they can also be applied to 

one-dimensional data. Datasets that possess a one-dimensional 

structure can be processed using a one-dimensional convolu-

tional neural network (1D CNN). The key difference between 

a 1D and a 2D or 3D CNN is the dimensionality of the input 

data and how the filter (feature detector) slides across the data. 

For 1D CNN, the filters only slide across the input data in one 

direction. A 1D CNN is quite effective when you expect to 

derive interesting features from shorter (fixed-length) seg-

ments of the overall dataset, and where the location of the fea-

ture within the segment is not of high relevance.  

 

The use of 1D CNN can be commonly found in NLP applica-

tions. Similarly, 1D CNN is applicable to datasets containing 

vectorised data being used to characterize the items to be pre-

dicted (e.g. a website). The 1D CNN could be used to extract 

potentially more discriminative feature representations that 

describe any existing patterns or relationships within segments 

of the vectors characterizing each entity in the dataset. These 

new features are then fed into a classifier (e.g. a fully connect-

ed neural network layer) which will in turn use the derived 

features in making a final classification decision. Hence, in 

this scenario, the convolutional layers can be considered as a 

feature extractor that eliminates the need for feature ranking 

and selection. The CNN model developed in this paper is ap-

plied to vectorised data characterizing the websites in order to 

derive a trained model that can detect new phishing websites 

with very high accuracy.  
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C. Key elements of our proposed CNN architecture 

Our proposed CNN architecture is a 1D CNN consisting of 

two convolutional layers and two max pooling layers. These 

are followed by a Fully Connected layer of N units, which is in 

turn connected to a final classification layer containing one 

neuron with a sigmoid activation function.  

The sigmoid activation function is given by:  𝑆 =
1

1+ 𝑒−𝑥  

The final classification later generates an outcome correspond-

ing to the two classes i.e. ‘Phishing’ or ‘Legitimate’. The con-

volutional layers utilize the ReLU (Rectified Linear Units) 

activation function given by:  𝑓(𝑥) =  max(0, 𝑥). ReLU helps 

to mitigate vanishing and exploding gradient issues [13]. It has 

been found to be more efficient in terms of time and cost for 

training huge data in comparison to classical non-linear activa-

tion functions such as Sigmoid or Tangent functions [13]. A 

simplified view of our architecture is shown in Figure 1. 

 

 

Figure 1: Simplified view of the implemented 1D CNN model 

for phishing website detection. 

 

IV. METHODOLOGY AND EXPERIMENTS 

In this section we present the experiments undertaken to eval-

uate the CNN models developed in this paper. Our models 

were implemented using Python and utilized the Keras library 

with TensorFlow backend. Other libraries used include Scikit 

Learn, Seaborn, Pandas, and Numpy. The model was built and 

evaluated on an Ubuntu Linux 16.04 64-bit Machine with 

4GB RAM.  

A. Problem definition 

Let W ={w1, w2, … wn} be a set of website samples where 

each wi is represented by a vector containing the values of  f 

attributes (as shown in Table 1). Let wi ={a1,a2,a3 …af, cl} 

where 𝑐𝑙 ∈ {𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔, 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒} is the class label as-

signed to the website.  Thus, W can be used to train the model 

to learn the behaviours of Phishing and Legitimate websites 

respectively. The goal of a trained model is then to classify a 

given unlabelled website wunknown = {a1,a2,a3 …af, ?} by as-

signing a label cl, where 𝑐𝑙 ∈ {𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔, 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒}. 

B.  Dataset 

In our experiments we used the benchmarked dataset from 

[10]. Detailed descriptions of the features/attributes in the da-

taset can be found in [5], [10] and [14]. Table 1 presents a 

summary of the attributes. The dataset consists of 11,055 in-

stances obtained from 4,898 phishing websites and 6,157 le-

gitimate websites.  

Table 1: Features of the phishing and legitimate websites in dataset. 

Attribute 
number 

Attributes Possible 
values  

1 having  IP  Address -1,1 

2 URL  Length 1,0,-1 

3 Shortening  Service 1,-1 

4 having  At  Symbol 1,-1 

5 double  slash  redirecting -1,1 

6 Prefix Suffix -1,1 

7 having  Sub  Domain -1,0,1 

8 SSLfinal State -1,1,0 

9 Domain  registration  length -1,1 

10 Favicon 1,-1 

11 Port 1,-1 

12 HTTPS  token -1,1 

13 Request  URL -1,1 

14 URL  of  Anchor -1,0,1 

15 Links  in  tags 1,-1,0 

16 SFH (server form handler) -1,1,0 

17 Submitting  to  email -1,1 

18 Abnormal  URL -1,1 

19 Redirect page 0,1 

20 onMouseOver ( using to hide 
link) 

1,-1 

21 RightClick 1,-1 

22 Using pop-up widnow 1,-1 

23 Iframe 1,-1 

24 age  of  domain -1,1 

25 DNSRecord -1,1 

26 web traffic -1,0,1 

27 Page  Rank -1,1 

28 Google  Index -1,1 

29 Links  pointing  to  page 1,0,-1 

30 Statistical  report -1,1 

Class Result -1,1 

C. Experiments to evaluate the proposed CNN based model 

In order to investigate the performance of our proposed model 

we performed different sets of experiments. The first set of 

experiments was aimed at evaluating the impact of different 

number of layers on the model’s performance. Table 2 shows 

the configurations of the CNN models. CNN1 consists of 1 

convolutional layer, followed by a max pooling layer. The 

output of the max pooling layer is flattened and passed on to a 

fully connected layer with 8 units. This is in turn connected to 

a sigmoid activated output layer containing one unit. CNN2 

has the same configuration but with two sets of convolutional 

and max pooling layer as shown in Table 2.  In this set of ex-

periments the number of filters (kernels) was also varied to 

examine the impact on the performance of the models. 

 

The second set of experiments involved varying the length of 

filters (i.e. kernel size) while keeping the number of filters 
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fixed. The results of the experiments are discussed in the next 

section. In order to measure model performance, we used the 

following metrics: Accuracy, precision, recall and F1-score. 

The metrics are defined as follows.  

 
Table 2: Summary of model configurations used in the experiments. 

Model design summary 

CNN1 
 

1D Convolutional layer: 8,16, 32, 64 filters, size = 10 
MaxPooling layer: Size =2, Stride = 2 
Fully Connected layer:8 units, activation=ReLU 
Output layer: Fully Connected  layer: 1 unit, activa-
tion=sigmoid 

CNN2 
 

1D Convolutional layer: 8, 16, 32, 64 filters, size = 10 
MaxPooling layer: Size =2, Stride = 2 
1D Convolutional layer: 8, 16, 32,  64 filters, size = 5 
MaxPooling layer: Size =2, Stride = 2 
Fully Connected layer: 8 units, activation=ReLU 
Output layer: Fully Connected  layer; 1 unit, activa-
tion=sigmoid 

 

 Accuracy: Defined as the ratio between correctly pre-

dicted outcomes and the sum of all predictions. It is 

given by:  
TP+TN

TP+TN+FP+FN
 

 Precision: All true positives divided by all positive 

predictions. i.e. Was the model right when it predict-

ed positive? Given by:  
TP

TP+FP
 

 Recall: True positives divided by all actual positives. 

I.e. how many positives did the model identify out of 

all possible positives? Given by: 
TP

TP+FN
 

 F1-score: This is the weighted average of precision 

and recall, given by: 
2 x Recall x Precision

Recall+Precision
  

 

Where TP is true positives; FP is false positives; FN is false 

negatives, while TN is true negatives (w.r.t. the Phishing 

class). All the results of the experiments are from 10-fold 

cross validation where the dataset is divided into 10 equal 

parts with 10% of the dataset held out for testing, while the 

models are trained from the remaining 90%.  This is repeated 

until all of the 10 parts have been used for testing. The average 

of all 10 results is then taken to produce the final result. Also, 

during the training of the CNN models (for each fold), 10% of 

the training set was used for validation.   

V.  RESULTS AND DISSCUSSIONS 

A. Impact of number of layers and numbers of filters. 

In this section we examine the results from CNN1 and CNN2 

respectively. Table 3 shows the results from running the 

CNN1 with different numbers of filters. Table 4 contains the 

results of CNN2 with different numbers of filters. From Table 

3, it is evident that the number of filters had an effect on the 

performance of the CNN1 model. With a larger number of 

filters (32, 64) a higher accuracy of 96.6% is observed. While 

an F1-score of 0.97 is observed with the higher number of  

(32, 64) filters. As mentioned earlier, the number of filters 

indicates the number of features being extracted, with more 

filters increasing the complexity of the model and hence, more 

parameters to train. Note that with the CNN1 model, similar 

performance is obtainable with 32 filters and 64 filters while 

requiring to train 2969 vs. 5,913 parameters respectively, as 

seen from Table 3. The overall accuracy for 8 filters and 16 

filters are 95.8% and 96.2% respectively. The length of filters 

used in each case was fixed at 10.  
 

Table 3: 1-layer CNN results (length of filters used =10) 

Number of 

Filters 
8 16 32 64 

Accuracy 0.958 0.962 0.966 0.966 

Precision 0.958 0.967 0.967 0.965 

Recall 0.967 0.964 0.972 0.975 

F1-score 0.963 0.966 0.970 0.970 

Train Time (s) 209.76 267.22 363.86 643.15 

Test Time (s) 0.36 0.426 0.377 0.680 

Loss 0.107 0.098 0.092 0.094 

Total/ Trainable 

parameters 

793/ 

761 

1545/ 

1497 

3049/ 

2969 

6,057/ 

5,913 

 

 
Table 4: 2- layer CNN results (length of filters used= 10 for first 

layer and =5 for second layer) 

Number of 

filters 
8 16 32 64 

Accuracy 0.958 0.964 0.969 0.971 

Precision 0.959 0.961 0.967 0.966 

Recall 0.967 0.975 0.978 0.983 

F1-score 0.963 0.968 0.972 0.974 

Train Time (s) 373.62 334.54 453.6 804.89 

Test Time (s) 0.56 0.553 0.497 0.615 

loss 0.11 0.099 0.1 0.098 

Total/ Trainable 

parameters 

697/ 

649 

1993/ 

1913 

6,361/ 

6,505 

23,209/ 

22,937 

 

From Table 4, it is evident that two sets of convolutional and 

max pooling layers (CNN2) results in improvement over 

CNN1. However, the margin of improvement suggests that 

adding another CNN layer (to make it a 3-layer CNN model) 

is unlikely to significantly improve performance, whereas the 

number of parameters to be trained will increase dramatically. 

As with CNN1, the number of filters used improves perfor-

mance in the CNN2 model. The use of 64 filters resulted in the 

highest accuracy of 97.1% with F1-score of 0.974 compared to 

95.8% accuracy and 0.963 F1-score obtained with only 8 fil-

ters. 
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1) Training epochs, loss and accuracy graphs. 

Figures 2 and 3 shows the typical outputs obtained with the 

validation and training sets during the training epochs up to 

220 epochs. From Fig. 2, the training and validation accura-

cies matched up to each other quite closely, indicating that the 

training was not overfitting the model to the training set. Fig-

ure 3 shows the typical loss behaviour observed during the 

experiments. The training and validation losses also followed 

one another quite closely. In order to increase the possibility 

of obtaining the ‘best’ trained model and reduce training time 

we implemented a ‘stopping criterion’ which will stop the 

training once no improvement in performance is observed 

within 50 epochs. 

 
Figure 2: Training and validation accuracies at different 

epochs up to 220, for the CNN model. 

 

 
Figure 3: Training and validation losses at different epochs up 

to 220, for the CNN model 

 

B. Impact of the length of filters on performance. 

In this section we examine the effect of the length of filters by 

using the CNN2 model with the number of filters fixed at 64.  

The length is varied from 4, 6, 8, 10 to 12 respectively. The 

results indicate that the highest accuracy of  97.2% is attained 

with an F1-score of 0.975 when the filter length for the first 

convolutional layer is set at 12. Recall that in the design of our 

model, the length of filters for the second convolutional layer 

is set to half that of the first layer.   

 

From Table 5, it can be seen that a filter length of 12 (with 6 

in the second convolutional layer) achieved an overall accura-

cy of 97.2%  and F1-score of 0.975; compared to a filter 

length of 4 which achieved overall accuracy of 96.7% and F1-

score of 0.970. 

Table 5: Length of filters (CNN2); number of filters =64. 

Length of 

filters 
4 6 8 10 

 

12 

Accuracy 0.967 0.969 0.970 0.971 0.972 

Precision 0.964 0.967 0.971 0.966 0.969 

Recall 0.976 0.978 0.975 0.983 0.981 

F1-score 0.970 0.972 0.973 0.974 0.975 

Train Time (s) 827.40 936.92 822.05 804.89 640.01 

Test Time (s) 0.618 0.562 0.522 0.615 0.472 

loss 0.086 0.091 0.095 0.098 0.096 

Total/ Trainable 
parameters 

12,073/ 
11,801 

15,785/ 
15,513 

19,497/
19,225 

23,209/ 
22,937 

27,985/   
27,697 

 

1) Obtaining optimal performance 

Achieving the optimal performance point for a CNN model is 

non-trivial due to several parameters that require tuning. We 

further experimented with different number of units in the 

fully connected layer, leaving the number of filters at 64 and 

the length at 12 for first layer and 6 at the second layer. The 

best result obtained (with the CNN2 model) was the follow-

ing: Accuracy: 0.973; Precision: 0.970; Recall: 0.982; F1-

score: 0.976. This was obtained by increasing the number of 

units in the fully connected layer from 8 units to 32 units. In 

this configuration the number of trainable parameters only 

increased to 29,793. 

C. CNN performance vs. other machine learning classifiers: 

10 fold cross validation results. 

In Table 6, the performance of CNN architecture developed in 

this paper is compared to other machine learning classifiers: 

Naïve Bayes, SVM, Bayes Net, J48, Random Tree, and Ran-

dom Forest. Figure 4 shows the F1-scores of the classifiers, 

where CNN has the highest F1-score, followed by Random 

Forest and Random Tree. Figure 5 depicts the overall accuracy 

where CNN outperforms six of the classifiers, with Random 

Forest achieving the same accuracy. Table 6 shows that the 

recall of CNN is 0.982 which indicates that it has the best 

phishing website detection rate compared to the other 7 classi-

fiers.    

 
Table 6: Comparison with other ML classifiers. 

 ACC Prec. Rec. F1 

Naïve Bayes 0.907 0.904 0.884 0.894 

SVM 0.927 0.931 0.903 0.916 

RF 0.973 0.977 0.961 0.969 

SL 0.928 0.932 0.904 0.918 

J48 0.960 0.966 0.942 0.954 

Random Tree 0.963 0.964 0.952 0.958 

Bayes Net 0.928 0.934 0.901 0.917 

CNN 0.973 0.970 0.982 0.976 
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Figure 4: F1-score 

 

Figure 5: Overall accuracy. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we proposed a deep learning model based on 1D 
CNN for the detection of phishing websites. We evalauted the 
model through extensive experiments on a benchmarked 
dataset containing 4,898 instances and 6,157 instances from 
phishing websites and legitimate websites respectively. The 
model outperforms several popular machine learning classifiers 
evaluated on the same dataset. The results indicate that our 
proposed CNN based model can be used to detect new, 
previously unseen phishing websites more accurately than the 
other models. For future work, we will aim to improve the 
model training process by automating the search and selection 
of the key influencing parametrs (i.e. number of filters, filter 
lenghts, and number of fully connected units) that jointly 
results in the optimal performing CNN model.    
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