
Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

High Accuracy Phishing Detection Based on

Convolutional Neural Networks

 Suleiman Y. Yerima
1
 and Mohammed K. Alzaylaee

2

1
Cyber Technology Institute

Faculty of Computing, Engineering and Media,

De Montfort University, Leicester, United Kingdom

syerima@dmu.ac.uk

2
Al-Qunfudah College of Computing,

Umm Al-Qura University, Saudi Arabia

mkzaylaee@uqu.edu.sa

Abstract— The persistent growth in phishing and the rising

volume of phishing websites has led to individuals and organiza-

tions worldwide becoming increasingly exposed to various cyber-

attacks. Consequently, more effective phishing detection is re-

quired for improved cyber defence. Hence, in this paper we pre-

sent a deep learning-based approach to enable high accuracy

detection of phishing sites. The proposed approach utilizes convo-

lutional neural networks (CNN) for high accuracy classification

to distinguish genuine sites from phishing sites. We evaluate the

models using a dataset obtained from 6,157 genuine and 4,898

phishing websites. Based on the results of extensive experiments,

our CNN based models proved to be highly effective in detecting

unknown phishing sites. Furthermore, the CNN based approach

performed better than traditional machine learning classifiers

evaluated on the same dataset, reaching 98.2% phishing detection

rate with an F1-score of 0.976. The method presented in this pa-

per compares favourably to the state-of-the art in deep learning

based phishing website detection.

Keywords—Phishing; Convolutional Neural Networks;

Machine learning; Deep learning; Phishing website detection;

Social Engineering

I. INTRODUCTION

Phishing is a social engineering based attack which enables

cybercriminals to steal credentials, distribute ransomware, and

carry out financial fraud and theft. It also enables nation-state

actors to gain strategic access to target environments. Through

well-designed counterfeit websites, phishing is used to obtain

private sensitive information, e.g. account number and pass-

word from unsuspecting users. The 2019 Phishlabs trends and

intelligence report [1] states that phishing grew by 40.9% in

2018 with 83.9% of the observed attacks targeting credentials

for financial, email, cloud, payment and SaaS services. Ac-

cording to the report, the volume of phishing websites (i.e.

phishing content located on a unique fully qualified domain

name or host) rose steadily during the first quarter of 2018 and

remained high throughout the second and third quarters. Fur-

thermore, the total number of phishing sites observed monthly

significantly surpassed previous years.

The need for effective countermeasures has made phishing

detection a popular area of research in recent years. Conse-

quently, three main categories of approaches for phishing de-

tection have emerged: (a) Approaches based on blacklists and

whitelists [2], [3] (b) Approaches based on web page visual

similarity [4] (c) Approaches based on URL and website con-

tent features [5]. The blacklist approach is ineffective in de-

tecting new phishing websites that the system has not yet been

updated with. The visual similarity-based method extracts

visual features from phishing websites, and then uses these

features to identify phishing webpages. Hence, any distortion

of web page content affects the visual content retrieval leading

to misclassification. Most current phishing detection ap-

proaches exploit the URL and web content features to distin-

guish between phishing and genuine websites e.g. [5], [6].

Machine learning techniques have also been integrated with

URL and web content features to improve detection perfor-

mance and enable zero-day phishing defence e.g. [7-9].

Given the persistent growth in phishing attacks and the steady

rise in phishing sites, the need for more effective means of

detecting suspect sites and thwarting zero-day phishing attacks

has never been greater. Hence, in this paper we present a deep

learning based approach that utilizes Convolutional Neural

Networks (CNN) for high accuracy phishing website detec-

tion. Our approach exploits URL and web contents features to

build machine learning based phishing detection models that

are capable of detecting new, previously unseen phishing web-

sites.

We present the design of our CNN-based model for phishing

website detection and evaluate the model on a dataset obtained

from 4,898 phishing websites and 6,157 genuine websites

[10], [14]. Furthermore, we compare the performance of our

CNN model to other popular machine learning classifiers in-

cluding Naïve Bayes, Bayes Net, Decision Tree, SVM, Ran-

dom Forest, Random Tree and Simple Logistic on the same

dataset. The comparative analysis shows that the CNN-based

model ultimately achieves the best phishing detection perfor-

mance of 98.2% with an F1-score 0f 0.976.

The rest of the paper is organized as follows: Related work is

in Section II; Background on CNN is featured in Section III;

Section IV presents methodology and the experiments per-

formed; Results of experiments are given in Section V and

finally Section VI presents the conclusions of the study and

future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/288345742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

II. RELATED WORK

Phishing detection based on machine learning is a growing

field of study with increasing interest in application of deep

learning techniques. Yuan et al [9], proposed a method based

on features from URLs and web page links to detect phishing

website and their targets. They utilized a Deep Forest model

that results in a true positive rate of 98.3% and a false alarm

rate of 2.6%. In particular, they designed an effective strategy

based on search operator via search engines to find the phish-

ing targets, which achieves an accuracy of 93.98%.

Wang, et al. [8] presented PDRCNN, a phishing website de-

tection approach that utilizes only the URL of the website to

build detection models. Their system combines RNNs and

CNN to extract features from the URL strings. In their exper-

iments, detection accuracy of 97% and AUC of 99% were

achieved. Bahnsen et al. [15] presented an LSTM model to

detect phishing URLs. Their approach first encodes the URL

strings using one-hot encoding and then inputs each encoded

character vector into the LSTM neurons for training and test-

ing. Their method achieved an accuracy of 0.935 on the

Common Crawl and PhishTank datasets. Hung et al. [16], pre-

sented the URLNet method for malicious website URL detec-

tion. They extracted both character level and word-level fea-

tures based on URL strings and utilized Convolutional Neural

Network for training and testing. The authors of [17] propose

and evaluate a system that extracts features from URL using

Natural Language Processing (NLP) techniques. Their system

was implemented by examining URLs used in phishing at-

tacks and extracting the features from them. The authors tested

their system on several machine learning algorithms and found

Random Forest to have the best performance with a success

rate of 89.9%. The drawback of the URL only approach is that

correct classification may not be obtained if the URL itself

lacks the relevant semantics, or if there is a problem with the

validity of the URL [8]. The CNN based approach presented

in this paper utilizes not only URL features but features from

other properties of the websites, which increases robustness.

In [18], the authors propose a hybrid intelligent phishing web-

site prediction system using deep neural networks (DNN) with

evolutionary algorithm-based feature selection and weighting

methods for enhanced prediction. Genetic Algorithm (GA) is

used to heuristically identify the most influential features and

optimal weights of the website features. Unlike the study in

[18], our approach requires no feature selection stage as this is

implicitly performed within the CNN-based model due to its

design. Other deep learning-based phishing detection works

include [19],[23], with some studies extracting features from

emails [20-22] rather than URLs and webpage characteristics.

III. BACKGROUND

A. Convolutional Neural Networks (CNN)

CNN belongs to the family of Artificial Neural Networks

which are computational models inspired by the characteristics

of biological neural networks. A CNN is a deep learning tech-

nique that works well for identifying simple patterns in the

data which will then be used to form more complex patterns in

subsequent layers. Two types of layers are typically used for

building CNNs; convolutional layers and pooling layers. The

role of the convolutional layer is to detect local conjunctions

of features from the previous layer, while the role of the pool-

ing layer is to merge semantically similar features into one

[11].

Generally, the convolutional layer extracts the optimal fea-

tures, the pooling layer reduces the dimensions of the convolu-

tional layer features, and fully connected layer(s) are then used

for classification. The performance of the CNN is generally

influenced by the number of layers and the number of filters

(kernels). More and more abstract features are extracted in the

deeper layers of the CNN, hence, the number of layers re-

quired depends on the complexity and non-linearity of the data

being analysed. Furthermore, the number of filters in each

stage determines the number of features extracted. Computa-

tional complexity increases with more layers and higher num-

bers of filters. Also, with more complex architectures there is

the possibility of training an overfitted model which results in

poor prediction accuracy on the testing set(s). To reduce over-

fitting, techniques such as ‘dropout’ [12] and ‘batch regulari-

zation’ are implemented during training of our models.

B. One Dimensional Convolutional Neural Networks

Although CNN is more commonly applied in a multi-

dimensional fashion and has thus found success in image and

video analysis-based problems, they can also be applied to

one-dimensional data. Datasets that possess a one-dimensional

structure can be processed using a one-dimensional convolu-

tional neural network (1D CNN). The key difference between

a 1D and a 2D or 3D CNN is the dimensionality of the input

data and how the filter (feature detector) slides across the data.

For 1D CNN, the filters only slide across the input data in one

direction. A 1D CNN is quite effective when you expect to

derive interesting features from shorter (fixed-length) seg-

ments of the overall dataset, and where the location of the fea-

ture within the segment is not of high relevance.

The use of 1D CNN can be commonly found in NLP applica-

tions. Similarly, 1D CNN is applicable to datasets containing

vectorised data being used to characterize the items to be pre-

dicted (e.g. a website). The 1D CNN could be used to extract

potentially more discriminative feature representations that

describe any existing patterns or relationships within segments

of the vectors characterizing each entity in the dataset. These

new features are then fed into a classifier (e.g. a fully connect-

ed neural network layer) which will in turn use the derived

features in making a final classification decision. Hence, in

this scenario, the convolutional layers can be considered as a

feature extractor that eliminates the need for feature ranking

and selection. The CNN model developed in this paper is ap-

plied to vectorised data characterizing the websites in order to

derive a trained model that can detect new phishing websites

with very high accuracy.

Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

C. Key elements of our proposed CNN architecture

Our proposed CNN architecture is a 1D CNN consisting of

two convolutional layers and two max pooling layers. These

are followed by a Fully Connected layer of N units, which is in

turn connected to a final classification layer containing one

neuron with a sigmoid activation function.

The sigmoid activation function is given by: 𝑆 =
1

1+ 𝑒−𝑥

The final classification later generates an outcome correspond-

ing to the two classes i.e. ‘Phishing’ or ‘Legitimate’. The con-

volutional layers utilize the ReLU (Rectified Linear Units)

activation function given by: 𝑓(𝑥) = max(0, 𝑥). ReLU helps

to mitigate vanishing and exploding gradient issues [13]. It has

been found to be more efficient in terms of time and cost for

training huge data in comparison to classical non-linear activa-

tion functions such as Sigmoid or Tangent functions [13]. A

simplified view of our architecture is shown in Figure 1.

Figure 1: Simplified view of the implemented 1D CNN model

for phishing website detection.

IV. METHODOLOGY AND EXPERIMENTS

In this section we present the experiments undertaken to eval-

uate the CNN models developed in this paper. Our models

were implemented using Python and utilized the Keras library

with TensorFlow backend. Other libraries used include Scikit

Learn, Seaborn, Pandas, and Numpy. The model was built and

evaluated on an Ubuntu Linux 16.04 64-bit Machine with

4GB RAM.

A. Problem definition

Let W ={w1, w2, … wn} be a set of website samples where

each wi is represented by a vector containing the values of f

attributes (as shown in Table 1). Let wi ={a1,a2,a3 …af, cl}

where 𝑐𝑙 ∈ {𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔, 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒} is the class label as-

signed to the website. Thus, W can be used to train the model

to learn the behaviours of Phishing and Legitimate websites

respectively. The goal of a trained model is then to classify a

given unlabelled website wunknown = {a1,a2,a3 …af, ?} by as-

signing a label cl, where 𝑐𝑙 ∈ {𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔, 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒}.

B. Dataset

In our experiments we used the benchmarked dataset from

[10]. Detailed descriptions of the features/attributes in the da-

taset can be found in [5], [10] and [14]. Table 1 presents a

summary of the attributes. The dataset consists of 11,055 in-

stances obtained from 4,898 phishing websites and 6,157 le-

gitimate websites.

Table 1: Features of the phishing and legitimate websites in dataset.

Attribute
number

Attributes Possible
values

1 having IP Address -1,1

2 URL Length 1,0,-1

3 Shortening Service 1,-1

4 having At Symbol 1,-1

5 double slash redirecting -1,1

6 Prefix Suffix -1,1

7 having Sub Domain -1,0,1

8 SSLfinal State -1,1,0

9 Domain registration length -1,1

10 Favicon 1,-1

11 Port 1,-1

12 HTTPS token -1,1

13 Request URL -1,1

14 URL of Anchor -1,0,1

15 Links in tags 1,-1,0

16 SFH (server form handler) -1,1,0

17 Submitting to email -1,1

18 Abnormal URL -1,1

19 Redirect page 0,1

20 onMouseOver (using to hide
link)

1,-1

21 RightClick 1,-1

22 Using pop-up widnow 1,-1

23 Iframe 1,-1

24 age of domain -1,1

25 DNSRecord -1,1

26 web traffic -1,0,1

27 Page Rank -1,1

28 Google Index -1,1

29 Links pointing to page 1,0,-1

30 Statistical report -1,1

Class Result -1,1

C. Experiments to evaluate the proposed CNN based model

In order to investigate the performance of our proposed model

we performed different sets of experiments. The first set of

experiments was aimed at evaluating the impact of different

number of layers on the model’s performance. Table 2 shows

the configurations of the CNN models. CNN1 consists of 1

convolutional layer, followed by a max pooling layer. The

output of the max pooling layer is flattened and passed on to a

fully connected layer with 8 units. This is in turn connected to

a sigmoid activated output layer containing one unit. CNN2

has the same configuration but with two sets of convolutional

and max pooling layer as shown in Table 2. In this set of ex-

periments the number of filters (kernels) was also varied to

examine the impact on the performance of the models.

The second set of experiments involved varying the length of

filters (i.e. kernel size) while keeping the number of filters

Input layer Convolutional
layer 1

Fully connected
layer

o
u

tp
u

t laye
r

Convolutional
layer 2

Sl
id

in
g

fi
lt

e
r

Sl
id

in
g

fi
lt

e
r

filter

Sl
id

in
g

fi
lt

e
r

filter

Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

fixed. The results of the experiments are discussed in the next

section. In order to measure model performance, we used the

following metrics: Accuracy, precision, recall and F1-score.

The metrics are defined as follows.

Table 2: Summary of model configurations used in the experiments.

Model design summary

CNN1

1D Convolutional layer: 8,16, 32, 64 filters, size = 10
MaxPooling layer: Size =2, Stride = 2
Fully Connected layer:8 units, activation=ReLU
Output layer: Fully Connected layer: 1 unit, activa-
tion=sigmoid

CNN2

1D Convolutional layer: 8, 16, 32, 64 filters, size = 10
MaxPooling layer: Size =2, Stride = 2
1D Convolutional layer: 8, 16, 32, 64 filters, size = 5
MaxPooling layer: Size =2, Stride = 2
Fully Connected layer: 8 units, activation=ReLU
Output layer: Fully Connected layer; 1 unit, activa-
tion=sigmoid

 Accuracy: Defined as the ratio between correctly pre-

dicted outcomes and the sum of all predictions. It is

given by:
TP+TN

TP+TN+FP+FN

 Precision: All true positives divided by all positive

predictions. i.e. Was the model right when it predict-

ed positive? Given by:
TP

TP+FP

 Recall: True positives divided by all actual positives.

I.e. how many positives did the model identify out of

all possible positives? Given by:
TP

TP+FN

 F1-score: This is the weighted average of precision

and recall, given by:
2 x Recall x Precision

Recall+Precision

Where TP is true positives; FP is false positives; FN is false

negatives, while TN is true negatives (w.r.t. the Phishing

class). All the results of the experiments are from 10-fold

cross validation where the dataset is divided into 10 equal

parts with 10% of the dataset held out for testing, while the

models are trained from the remaining 90%. This is repeated

until all of the 10 parts have been used for testing. The average

of all 10 results is then taken to produce the final result. Also,

during the training of the CNN models (for each fold), 10% of

the training set was used for validation.

V. RESULTS AND DISSCUSSIONS

A. Impact of number of layers and numbers of filters.

In this section we examine the results from CNN1 and CNN2

respectively. Table 3 shows the results from running the

CNN1 with different numbers of filters. Table 4 contains the

results of CNN2 with different numbers of filters. From Table

3, it is evident that the number of filters had an effect on the

performance of the CNN1 model. With a larger number of

filters (32, 64) a higher accuracy of 96.6% is observed. While

an F1-score of 0.97 is observed with the higher number of

(32, 64) filters. As mentioned earlier, the number of filters

indicates the number of features being extracted, with more

filters increasing the complexity of the model and hence, more

parameters to train. Note that with the CNN1 model, similar

performance is obtainable with 32 filters and 64 filters while

requiring to train 2969 vs. 5,913 parameters respectively, as

seen from Table 3. The overall accuracy for 8 filters and 16

filters are 95.8% and 96.2% respectively. The length of filters

used in each case was fixed at 10.

Table 3: 1-layer CNN results (length of filters used =10)

Number of

Filters
8 16 32 64

Accuracy 0.958 0.962 0.966 0.966

Precision 0.958 0.967 0.967 0.965

Recall 0.967 0.964 0.972 0.975

F1-score 0.963 0.966 0.970 0.970

Train Time (s) 209.76 267.22 363.86 643.15

Test Time (s) 0.36 0.426 0.377 0.680

Loss 0.107 0.098 0.092 0.094

Total/ Trainable

parameters

793/

761

1545/

1497

3049/

2969

6,057/

5,913

Table 4: 2- layer CNN results (length of filters used= 10 for first

layer and =5 for second layer)

Number of

filters
8 16 32 64

Accuracy 0.958 0.964 0.969 0.971

Precision 0.959 0.961 0.967 0.966

Recall 0.967 0.975 0.978 0.983

F1-score 0.963 0.968 0.972 0.974

Train Time (s) 373.62 334.54 453.6 804.89

Test Time (s) 0.56 0.553 0.497 0.615

loss 0.11 0.099 0.1 0.098

Total/ Trainable

parameters

697/

649

1993/

1913

6,361/

6,505

23,209/

22,937

From Table 4, it is evident that two sets of convolutional and

max pooling layers (CNN2) results in improvement over

CNN1. However, the margin of improvement suggests that

adding another CNN layer (to make it a 3-layer CNN model)

is unlikely to significantly improve performance, whereas the

number of parameters to be trained will increase dramatically.

As with CNN1, the number of filters used improves perfor-

mance in the CNN2 model. The use of 64 filters resulted in the

highest accuracy of 97.1% with F1-score of 0.974 compared to

95.8% accuracy and 0.963 F1-score obtained with only 8 fil-

ters.

Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

1) Training epochs, loss and accuracy graphs.

Figures 2 and 3 shows the typical outputs obtained with the

validation and training sets during the training epochs up to

220 epochs. From Fig. 2, the training and validation accura-

cies matched up to each other quite closely, indicating that the

training was not overfitting the model to the training set. Fig-

ure 3 shows the typical loss behaviour observed during the

experiments. The training and validation losses also followed

one another quite closely. In order to increase the possibility

of obtaining the ‘best’ trained model and reduce training time

we implemented a ‘stopping criterion’ which will stop the

training once no improvement in performance is observed

within 50 epochs.

Figure 2: Training and validation accuracies at different

epochs up to 220, for the CNN model.

Figure 3: Training and validation losses at different epochs up

to 220, for the CNN model

B. Impact of the length of filters on performance.

In this section we examine the effect of the length of filters by

using the CNN2 model with the number of filters fixed at 64.

The length is varied from 4, 6, 8, 10 to 12 respectively. The

results indicate that the highest accuracy of 97.2% is attained

with an F1-score of 0.975 when the filter length for the first

convolutional layer is set at 12. Recall that in the design of our

model, the length of filters for the second convolutional layer

is set to half that of the first layer.

From Table 5, it can be seen that a filter length of 12 (with 6

in the second convolutional layer) achieved an overall accura-

cy of 97.2% and F1-score of 0.975; compared to a filter

length of 4 which achieved overall accuracy of 96.7% and F1-

score of 0.970.

Table 5: Length of filters (CNN2); number of filters =64.

Length of

filters
4 6 8 10

12

Accuracy 0.967 0.969 0.970 0.971 0.972

Precision 0.964 0.967 0.971 0.966 0.969

Recall 0.976 0.978 0.975 0.983 0.981

F1-score 0.970 0.972 0.973 0.974 0.975

Train Time (s) 827.40 936.92 822.05 804.89 640.01

Test Time (s) 0.618 0.562 0.522 0.615 0.472

loss 0.086 0.091 0.095 0.098 0.096

Total/ Trainable
parameters

12,073/
11,801

15,785/
15,513

19,497/
19,225

23,209/
22,937

27,985/
27,697

1) Obtaining optimal performance

Achieving the optimal performance point for a CNN model is

non-trivial due to several parameters that require tuning. We

further experimented with different number of units in the

fully connected layer, leaving the number of filters at 64 and

the length at 12 for first layer and 6 at the second layer. The

best result obtained (with the CNN2 model) was the follow-

ing: Accuracy: 0.973; Precision: 0.970; Recall: 0.982; F1-

score: 0.976. This was obtained by increasing the number of

units in the fully connected layer from 8 units to 32 units. In

this configuration the number of trainable parameters only

increased to 29,793.

C. CNN performance vs. other machine learning classifiers:

10 fold cross validation results.

In Table 6, the performance of CNN architecture developed in

this paper is compared to other machine learning classifiers:

Naïve Bayes, SVM, Bayes Net, J48, Random Tree, and Ran-

dom Forest. Figure 4 shows the F1-scores of the classifiers,

where CNN has the highest F1-score, followed by Random

Forest and Random Tree. Figure 5 depicts the overall accuracy

where CNN outperforms six of the classifiers, with Random

Forest achieving the same accuracy. Table 6 shows that the

recall of CNN is 0.982 which indicates that it has the best

phishing website detection rate compared to the other 7 classi-

fiers.

Table 6: Comparison with other ML classifiers.

 ACC Prec. Rec. F1

Naïve Bayes 0.907 0.904 0.884 0.894

SVM 0.927 0.931 0.903 0.916

RF 0.973 0.977 0.961 0.969

SL 0.928 0.932 0.904 0.918

J48 0.960 0.966 0.942 0.954

Random Tree 0.963 0.964 0.952 0.958

Bayes Net 0.928 0.934 0.901 0.917

CNN 0.973 0.970 0.982 0.976

Third International Conference on Computer Applications & Information Security (ICCAIS 2020), 19-21 March, 2020, Riyadh, Saudi Arabia (Accepted Version)

Figure 4: F1-score

Figure 5: Overall accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a deep learning model based on 1D
CNN for the detection of phishing websites. We evalauted the
model through extensive experiments on a benchmarked
dataset containing 4,898 instances and 6,157 instances from
phishing websites and legitimate websites respectively. The
model outperforms several popular machine learning classifiers
evaluated on the same dataset. The results indicate that our
proposed CNN based model can be used to detect new,
previously unseen phishing websites more accurately than the
other models. For future work, we will aim to improve the
model training process by automating the search and selection
of the key influencing parametrs (i.e. number of filters, filter
lenghts, and number of fully connected units) that jointly
results in the optimal performing CNN model.

REFERENCES

[1] Phishlabs, “2019 Phishing Trends and Intelligence Report: The Growing
Social Engineering Threat” 2019, [online] Avialable at:

https://www.phishlabs.com/

[2] A. K. Jain and B. B. Gupta, “A novel approach to protect against

phishing attacks at client side using auto-updated white-list,” EURASIP

Journal on Information Security, vol. 2016, no. 1, p. 9, 2016.

[3] P. Prakash, M. Kumar, R. Rao Kompella, and M. Gupta, “Phishnet:

predictive blacklisting to setect phishing attacks,” in Proceedings of 29th

IEEE Conference on Computer Communications (Infocom), pp. 1–5,
Citeseer, San Diego, CA, USA, March 2010.

[4] A. K. Jain and B. B. Gupta, ‘Phishing Detection: Analysis of Visual
Similarity Based Approaches’, Security and Communication Networks,

vol. 2017, pp. 1–20, 2017, doi: 10.1155/2017/5421046.

[5] R. M. Mohammad, L. McCluskey, and F. Thabtah, “Intelligent rule-
based phishing websites classification,” IET Information Security, vol.

8, no. 3, pp. 153–160, 2014.

[6] S. C. Jeeva and E. B. Rajsingh, “Intelligent hishing URL detection using

association rule minning” Human-centric Computing and Information
Sciences (2016)6:10 DOI 10.1186/s13673-016-0064-3

[7] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Predicting phishing
websites based on self-structuring neural network,” Neural Computing

and Applications, vol. 25, no. 2, pp. 443–458, Aug 2014. [Online].

Available: https://doi.org/10.1007/s00521-013-1490-z

[8] W. Wang, F. Zhang, X. Luo, S. Zhang: PDRCNN: Precise Phishing

Detection with Recurrent Convolutional Neural Networks, Security and
Coomunication Networks, Volume 2019,

https://doi.org/10.1155/2019/2595794

[9] H. Yuan, X. Chen, Y. Li, Z. Yang, and W. Liu, ‘Detecting Phishing
Websites and Targets Based on URLs and Webpage Links’, in 2018

24th International Conference on Pattern Recognition (ICPR), 2018, pp.

3669–3674, doi: 10.1109/ICPR.2018.8546262.

[10] UCI Machine Learning Repository, “Phishing Websites Dataset”

[online]: https://archive.ics.uci.edu/ml/datasets/phishing+websites

[11] Y. LeCun, Y.Bengio, and G. Hinton, Deep learning, Nature 521 (2015),

no. 7553, 436-444

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Stuskever, and R.

Salakhutdinov. “Dropout: A simple way to prevent neural networks

from overfitting” . The Journal of Machine Learning Research,
15(1):1929-1958, 2014.

[13] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural

networks,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–
323.

[14] R. M. Mohammad, F. Thabtah, L. McCluskey “Phishing Websites
Features” (2015) [Online] available at:

http://eprints.hud.ac.uk/id/eprint/24330/6/MohammadPhishing14July201

5.pdf

[15] A. Correa Bahnsen, E. Contreras Bohorquez, S. Villegas, J. Vargas, and

F. A. Gonz´alez, “Classifying phishing URLs using recurrent neural
networks,” in Proceedings of APWG Symposium on Electronic Crime

Research (eCrime), pp. 1–8, IEEE, Scottsdale, AZ, USA, April 2017.

[16] L. Hung, Q. Pham, D. Sahoo, and S. C. H. Hoi, “Urlnet: learning a URL
representation with deep learning for malicious URL detection,” 2018,

https://arxiv.org/abs/ 1802.03162.

[17] E. Buber, B. Dırı, and O. K. Sahingoz, “Detecting phishing attacks from

url by using nlp techniques,” in 2017 International Conference on

Computer Science and Engineering (UBMK), Oct 2017, pp. 337–342.

[18] W. Ali and A. A. Ahmed, ‘Hybrid intelligent phishing website

prediction using deep neural networks with genetic algorithm-based

feature selection and weighting’, IET Information Security, vol. 13, no.
6, pp. 659–669, 2019, doi: 10.1049/iet-ifs.2019.0006.

[19] X. Zhang, D. Shi, H. Zhang, W. Liu, and R. Li, ‘Efficient Detection of
Phishing Attacks with Hybrid Neural Networks’, in 2018 IEEE 18th

International Conference on Communication Technology (ICCT), 2018,

pp. 844–848, doi: 10.1109/ICCT.2018.8600018.

[20] S. Bagui, D. Nandi, S. Bagui, and R. J. White, ‘Classifying Phishing

Email Using Machine Learning and Deep Learning’, in 2019

International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), 2019, pp. 1–2, doi:

10.1109/CyberSecPODS.2019.8885143.

[21] T. Peng, I. Harris, and Y. Sawa, “Detecting phishing attacks using

natural language processing and machine learning,” in 2018 IEEE 12th

International Conference on Semantic Computing (ICSC), Jan 2018, pp.

300–301.

[22] R. Vinayakumar, H.B. Barathi, M. K. Anand, KP Soman, “Deep Anti-
PhishNet: Applying Deep Neural Networks for Phishing Email

Detection” 4th ACM International Workshop on Security and Provacy

Analytics (IWSPA 2018), Tempe, Arizona, USA, 21-03-2018

[23] W. Chen, W. Zhang, and Y. Su, “Phishing detection research based on

LSTM recurrent neural network,” in Proceedings of International

Conference of Pioneering Computer Scientists, Engineers and
Educators, pp. 638–645, Springer, Zhengzhou, China, September 2018.

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Naïve Bayes

SVM

Bayes Net

SL

J48

Random Tree

RF

CNN

F1 Score

0.86 0.88 0.9 0.92 0.94 0.96 0.98

Naïve Bayes

SVM

Bayes Net

SL

J48

Random Tree

RF

CNN

Accuracy

