
Multiobjective Imperialist Competitive Algorithm for Solving

Nonlinear Constrained Optimization Problems

Chun-an LIU

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013,

China

E-mail: liu2006@126.com

Huamin JIA

School of Engineering, Cranfield University, England, MK43 0AL, UK

E-mail: hum.jia@cranfield.ac.uk

Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range

of sciences such as portfolio, economic management, airspace engineering and intelligence system etc.

In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed.

First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained

optimization problem is transformed into a biobjective optimization problem. Second, in order to

improve the diversity of evolution country swarm, and help the evolution country swarm to approach

or land into the feasible region of the search space, three kinds of different methods of colony moving

toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the

imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich

the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method

is also presented in order to accelerate the convergence speed. At last, the new approach is tested

on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment

evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear

constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed

algorithm has remarkable advantages in terms of the best, mean, and worst objective function value

and the standard deviations.

Keywords multiobjective optimization; imperialist competitive algorithm; constrained optimization;

local search

1 Introduction

In science and engineering fields, many complex optimization problems involve in constraint

conditions[1−3]. That’s to say, the optimal solution of those practical problems are restricted to

the problem’s constraint conditions. For example [4], valves in chemical process control need

a maximum and a minimum displacement. Also, for safety or other operational reason, it is

Received March 19, 2019, accepted April 26, 2019

Supported by the Planning Fund for the Humanities and Social Sciences of the Ministry of Education

(18YJA790053) and the National Scholarship Fund in China, the Project Sponsored by the Scientific Research

Foundation for the Returned Overseas Chinese Scholars

e805814
Text Box
Journal of Systems Science and Information, Volume 7, Issue 6, 2019, pp. 532-549
DOI: 10.21078/JSSI-2019-532-18

e805814
Text Box
Published by De Gruyter. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).
The final published version (version of record) is available online at DOI: 10.21078/JSSI-2019-532-18. Please refer to any applicable publisher terms of use.

Multiobjective Imperialist Competitive Algorithm for ... 533

usual to impose some limits on allowable temperatures, levels and pressures. When solving

these optimization problems, it is difficult to deal with the constraints and find the optimal

solution of the nonlinear constrained problem.

Mostly often, constraint handling methods used in classical optimization algorithm can be

classified into two types: One is generic methods that do not exploit the mathematical structure

of the constraint, such as the penalty function method[5], Lagrange multiple method[6], and

some intelligence optimization search heuristic methods[7−11], and the other is special methods

that used to solve these problems with specific types of constraints, such as the cutting place

method[12], the gradient projection method[13], the quasi-Newton method[14] and the steepest

descent method[15], etc.

As far as generic methods are concerned, since these algorithms are generic, some per-

formances of them in some case can’t be fully satisfied. However, these special methods are

applicable either to these optimization problems having convex search region only or to these op-

timization problem whose objective and constraint functions are differentiable. In fact, among

the generic methods, the most popular approach in real optimization fields to deal with the

constraint of an optimization problem is the penalty function method, which involves a num-

ber of penalty parameters and we must to set right in any algorithms in order to obtain the

optimal solution, and this performance on penalty parameter has led many researches to de-

vise the sophisticated penalty function method. These methods mainly can be divided three

categories: a) multi-level penalty functions[16]; b) dynamic penalty functions based on adaptive

and co-evolutionary penalty approaches[17]; and c) hybrid penalty functions combined with the

advantages of evolutionary computation, such as [18, 19].

Evolutionary algorithm is generally inspired by the modelling of the natural processes, es-

pecially human evolution. Genetic algorithm lies in the category of evolutionary algorithms.

However, imperialist competitive algorithm (ICA) uses socio-political evolution of human as

a source of inspiration for developing a strong optimization strategy proposed by Atashpaz-

Gargari and Lucas[20] in 2007. ICA has been succeeded widely to solve many real world op-

timization problems in recent years, e.g., in [21], Mahdi, Ayaz, and Davoud introduced an

imperialist competitive algorithm for solving systems of nonlinear equations; in [22], Moham-

madi, Tavakkoli-Moghaddam, and Rostami designed a multi-objective imperialist competitive

algorithm to solve a capacitated hub covering location problem; Shokrollahpour, Zandieh and

Dorri proposed a novel imperialist competitive algorithm for solving bi-criteria scheduling of

the assembly flow-shop problem[23], etc.

Moreover, how to find a balance between exploration and exploitation for an excellent

generic algorithm is very important. In [11], the authors proposed an enhanced grey wolf

optimization (EGWO) algorithm with a better hunting mechanism, which focuses on the proper

balance between exploration and exploitation that leads to an optimal performance of the

algorithm and hence promising candidate solutions are generated. And in [24], the authors

introduced a nonlinear control parameter strategy and a new position-updated equation in

order to balance the exploration and exploitation of the algorithm, etc.

In this paper, we proposed a new multiobjective optimization method based on ICA to solve

nonlinear constrained optimization problem. Firstly, the nonlinear constrained optimization

534 LIU C A, JIA H M.

problem concerned is transformed into a bi-objective unconstrained optimization problem, so

that no penalty function or other mechanism to deal with the constrained are introduced.

Then, in order to improve the diversity of evolution country swarm, and help the evolution

country swarm to approach or land into the feasible region, three kinds of different methods

of colonies moving toward their relevant imperialist are presented. Also, the new operator

for exchanging position of the imperialist and colony is given as a recombination operator in

genetic algorithm to achieve a better balance of the explorative and exploitative behaviors of the

proposed algorithm. Moreover, a new local search method is also integrated in order to increase

the convergence speed of the proposed algorithm. At last, the new method is tested on 13

well-known NP-hard nonlinear constrained optimization functions, and the experiment results

suggest that it is robust, efficient, and generic when solving nonlinear constrained optimization

problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has

remarkably advantage in terms of the best, mean, and worst objective function value and the

standard deviation, i.e., it is indicated that the proposed algorithm can effectively solve the

nonlinear constrained optimization problem.

The paper is organized as follows. In Section 2, the related concepts of nonlinear constrained

optimization problem are given. The main steps of the proposed imperialist competitive al-

gorithm for solving the nonlinear constrained optimization problem are designed in Section 3.

The flowchart of the proposed algorithm is described in Section 4. After simulation results are

shown in Section 5, the conclusion and acknowledgment are made in Section 6 and Section 7,

respectively.

2 Related Concepts of NCOP

Without loss of generality, the general nonlinear constrained optimization problem (NCOP)

that we are interested in can be formulated as



















min
x∈D∈[L,U]

f(x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , p

hj(x) = 0, j = p + 1, p + 2, · · · , l,

(1)

where x = (x1, x2, · · · , xn)T ∈ R
n is n dimension decision vector and gi(x) ≤ 0 is the inequation

constraint for i = 1, 2, · · · , p, hj(x) = 0 is equation constraint for j = p+1, p+2, · · · , l (in both

cases, constraints could be linear or non-linear), and

D = {x|gi(x) ≤ 0, i = 1, 2, · · · , p; hj(x) = 0, j = p + 1, p + 2, · · · , l} (2)

is feasible region,

[L, U] = {[λ1, µ1] × [λ2, µ2] × · · · × [λn, µn]|λi ≤ xi ≤ µi, i = 1, 2, · · · , n} (3)

is the search space, and

Definition 1 For every point x ∈ D, if exists a point x∗ ∈ D such that f(x∗) ≤ f(x) holds,

then the point x∗ is called the optimal solution, and f(x∗) is the optimal value for problem (1).

Multiobjective Imperialist Competitive Algorithm for ... 535

Let f1(x) = f(x), f2(x) =
∑p

i=1 max{0, gi(x)}2 +
∑l

j=p+1(hj(x))2, where f(x) is the ob-

jective function of problem (1) and f2(x) is the optimization function defined by the constraint

condition of problem (1), then, we can transform the nonlinear constrained optimization prob-

lem (1) into the biobjective optimization problem as follows:

min
x∈[L,U]

F(x) = (f1(x), f2(x)). (4)

For the biobjective optimization problem (4), to minimize the first objective function f1(x)

means to find a feasible point so as to become the optimal solution of problem (1), to minimize

the second objective function f2(x) means to search the point in order to meet all the con-

straints of problem (1). Therefore, when to minimize the two objectives function of problem

(4) simultaneously means searching for the point so as to satisfy all the constraints and make

the objective function of problem (1) to reach the optimum.

Definition 2 A two dimension vector u = (u1, u2) is said to weakly dominate another

two dimension vector v = (v1, v2), iff ui ≤ vi for i = 1, 2.

Definition 3 A point x ∈ [L, U] is said to be a weakly Pareto optimal solution for problem

(4) if there is not existing another point y ∈ [L, U] such that F(y) weakly dominates F(x).

The set of all the weakly Pareto optimal solutions is called the weakly Pareto optimal set and

the set of all the weakly Pareto optimal solution’s objective vectors is called the weakly Pareto

front.

Suppose that Ew(F , x) is the weakly Pareto optimal solution set of problem (4). Then, the

optimal solution of problem (1) and the weakly Pareto optimal solution (4) have the following

relation.

Theorem 1 A solution x∗ is the optimal solution of problem (1), iff x∗ ∈ D ∩ Ew(F , x)

and x∗ = argminx∈D f1(x).

Proof Sufficiency is obvious. The necessity proof is given as follows:

Since x∗ is the optimal solution of problem (1), then f(x∗) = f1(x
∗) = minx∈D f1(x), i.e.,

x∗ = argminx∈D f1(x). Furthermore, we have x∗ ∈ D and f2(x
∗) = 0. If x∗ 6∈ Ew(F , x), then

there at least exists another solution x̃ ∈ D, and makes fi(x̃) < fi(x
∗) for i = 1, 2 hold, i.e.,

f2(x̃) < f2(x
∗) = 0, this is contradiction to the definition of function f2(x) ≥ 0 for ∀x ∈ D, so

x∗ ∈ Ew(F , x), i.e., x∗ ∈ D ∩ Ew(F , x).

The conclusion of the Theorem 1 demonstrates that the optimal solution of problem (1) can

be obtained from the intersection of the feasible region of problem (1) and the weakly Pareto

optimal solution set of problem (4), and the optimal solution makes the first objective function

minimum.

3 The Design of the Main Operator’s for the Proposed Algorithm

In order to solve the nonlinear constrained optimization problem (NCOP) proposed in

Section 2, a new imperialist competitive algorithm is designed in Sections 3 and 4. Firstly,

we briefly introduce the idea of the imperialist competitive algorithm (ICA), proposed by the

authors Atashpaz-Gargari and Lucas[20]. ICA, similar to the evolutionary algorithm, particle

swarm algorithm and so on, is a kind of swarm intelligence algorithm. ICA is inspired by

536 LIU C A, JIA H M.

imperialistic competition. All the countries are divided into two types: Imperialist states and

colonies. Imperialistic competition is the main evolution operator and hopefully causes the

colonies to approach the global optimal solution. Based on the idea, we design the main

operators for the proposed algorithm as follows.

3.1 The Creation of Initial Empires

During the operation process of ICA, the initial evolution country swarm, should be gener-

ated firstly. Among the initial country swarm, some of the best countries are selected to form

the initial imperialist, and the rest of the countries are divided among the initial imperialists as

colonies. In this section, randomly generate pop initial countries in search space [L, U], denote

them as country i = (xi
1, x

i
2, · · · , xi

n)T for i = 1, 2, · · · , pop, and define the cost of each country

i as follows:

cost(country i) =







f1(country i), country i ∈ D,

f2(country i), country i ∈ [L, U]\D,
(5)

where f1(x) is the first objective function and f2(x) is the second objective function of problem

(4), respectively. Select N of the most powerful countries to form empires, where the most

powerful countries refer to the countries whose cost are relatively small. The rest countries of

the initial countries will become colonies of each of empires according to their power. Thus,

each empire receives a number of colonies. This process is presented in Figure 1, where the more

powerful empires have a greater number of colonies and weaker empires have fewer colonies.

At last, these initial countries is divided into two groups: Imperialist and colony (denote in

imperialist i and colony j for i = 1, 2, · · · , N , j = 1, 2, · · · , pop − N , respectively). In order to

form the initial empires, we divide colonies into N imperialists based on their power. Here, we

divide these colonies among imperialists according to the method of proportion selection or the

roulette wheel selection used in genetic evolution as follows:

Step 1 Suppose the normalized power of each imperialist is defined by

pj =
∣

∣

∣

Cj
∑N

i=1 Ci

∣

∣

∣
, (6)

where pj is the normalized power of the j-th imperialist, and Cj = cj − max1≤i≤N{ci} is the

normalized cost of the j-th imperialist for j = 1, 2, · · · , N , ci is the cost of the i-th imperialist

for i = 1, 2, · · · , N .

Step 2 Generate the initial number of the colonies belonging to each empire based on the

following formula

N.C.j = round{pj · (pop − N)}, (7)

where N.C.j is the number of initial colonies of the j-th empire, and pop−N is the total number

of all initial colonies.

Step 3 Select N.C.j of the colonies according to the roulette wheel selection and join them

to the j-th imperialist. These colonies along with the imperialist together will form the j-th

empire (denote empire j, j = 1, 2, · · · , N).

Multiobjective Imperialist Competitive Algorithm for ... 537

x

x

N

N

Figure 1 Generation of the initial empire and their initial colony in search space [L, U] ∈ R
2

3.2 Method of Colonies Moving Toward Their Relevant Imperialist

In [20], the authors make each colony to move toward the imperialist by x-units in the

direction which is the vector from colony to imperialist. x will be a random variable with

uniform distribution, i.e.,

x ∼ U(0, β × d), (8)

where β > 1 and d is the distance between the colony and imperialist, and parameter β causes

the colony to get closer to the imperialist from both sides. However, for constraint optimization

problem, it needs the designed algorithm not only to make the infeasible solution approaching

the feasible region and satisfying the constraint condition, but also make the objective function

minimum. Based on these, we proposed a new method of colonies moving to their relevant

imperialist as follows. Suppose that we make the colony j (j = 1, 2, · · · , pop − N) to move the

imperialist i (i = 1, 2, · · · , N), then,

Case 1 If both imperialist i and colony j are feasible, i.e., imperialist i and colony j ∈ D,

we generate a circle which the diameter is the straight-line segment d joining the imperialist i

and colony j, the new position (denote as colony k) of the j-th colony moved to their relevant

imperialist is shown in a gray colour in Figure 2, where A and r are two random numbers with

uniform distribution, i.e.,

A ∼ U(−π, π), (9)

and

r ∼ U(0, d · cosA). (10)

Parameter r and A can cause the colony j to get closer to the imperialist from its neighbourhood

rather than far away from the imperialist i.

538 LIU C A, JIA H M.

k

i

j

Figure 2 The method of colony moving to imperialist based on both the j-th colony and i-th impe-

rialist are feasible in search space [L, U] ∈ R
2

Case 2 If both imperialist i and colony j are infeasible, i.e., imperialist i, colony j ∈
[L, U]\D, we random select a colony s from feasible region D, compute the barycenter of three

countries colony j, imperialist i and colony s, and then, the barycenter (denote by colony k in

Figure 3) can be regarded as the new position which colony j move to imperialist i. Using this

method, we can make the colony not only to move to the imperialist but approach the feasible

region.

k

j

s

i

Figure 3 The method of colony moving to imperialist based on the fact that both colony j and

imperialist i are infeasible in search space [L, U] ∈ R
2

Case 3 If there exists one feasible country between colony j and imperialist i, and suppose

colony j is feasible country and imperialist i is infeasible country and vice versa, i.e., colony j ∈
D, imperialist i ∈ [L, U]\D, then, we generate a circle which the circle’s center is colony j and

the radius is the straight-line segment L joining the colony j and imperialist i, the new position

colony k of colony j moved to imperialist i is shown in a gray colour in Figure 4, where B is a

random number with uniform distribution, i.e.,

B ∼ U(−ϕ, ϕ), (11)

where ϕ is a parameter that adjusts the deviation of direction which is the vector from colony

j to imperialist i, l ∼ U(0, τ · L) is a random number with uniform distribution, and τ and

Multiobjective Imperialist Competitive Algorithm for ... 539

ϕ are arbitrary. In most of our implementation, the value of τ < 1
2 and ϕ = π

4 have a good

convergence to the global minimum and can make the feasible colony j not far away from the

feasible region.

k

j

i

Figure 4 The method of colony moving to imperialist based on the fact that colony j is feasible and

imperialist i is infeasible in search space [L, U] ∈ R
2

3.3 Exchanging Position of the Imperialist and Colony

Based on the method of colonies moving toward their relevant imperialist in Subsection

3.2, the operator of exchanging position of the imperialist and the colony can be described as

follows:

1) If both colony j and imperialist i are feasible, and suppose that the cost of colony j has

lower cost than that the imperialist i does, i.e., f1(colony j) < f1(imperialist i), then we use

the colony j to replace the imperialist i and form the new imperialist, vise versa.

2) If both colony j and imperialist i are unfeasible, then we always choose the one with

the smaller cost as the new imperialist i, i.e., if f2(colony j) > f2(imperialist i), then keep

imperialist i invariable; otherwise, if f2(colony j) < f2(imperialist i), then use the colony j to

replace the imperialist i and form new imperialist.

3) If there exists one feasible country between the colony j and imperialist i, we always

use the feasible country as the new imperialist in order to make the evolution country swarm

approaching the feasible region and fast converging to the minimum.

3.4 Local Search Operator

In order to accelerate the convergence speed, we add a local search operator as follows to the

proposed algorithm. Suppose imperialist 1, imperialist 2, · · · , imperialist k are k imperialists

obtained by the proposed algorithm in current evolution countries swarm, where k is the number

of imperialist and it will become more less with the imperialist competition.

Compute the approximate value of gradient for each imperialist i ∈ [L, U], i.e., ∇y =

(∇F1,∇F2, · · · ,∇Fn)T, where

∇Fj =











f1(imperialist i + δej) − f1(imperialist i)

δ
, imperialist i ∈ D,

f2(imperialist i + δej) − f2(imperialist i)

δ
, imperialist i ∈ [L, U]\D,

(12)

for i = 1, 2, · · · , k, j = 1, 2, · · · , n, δ > 0, and e = (e1, e2, · · · , en)T is a n-dimension unit vector

540 LIU C A, JIA H M.

which the j-th component ej = 1 and the rest of components eι = 0, ι 6= j, then,

Case 1 If ‖∇y‖ 6= 0, carry out one-dimensional search along the descent direction d = −∇y,

i.e., obtain α∗ and make the following formula

min
imperialisti∈D

f1(imperialisti + αd) = f1(imperialisti + α∗d) (13)

or

min
imperialisti∈[L,U]\D

f2(imperialisti + αd) = f2(imperialisti + α∗d) (14)

holds, where (imperialisti+α∗d) ∈ [L, U], then we use imperialisti+α∗d to replace imperialisti

and form the new imperialist.

Case 2 If ‖∇y‖ = 0, keep imperialisti no change.

3.5 Imperialistic Competition

As mentioned in [20], during the evolution of countries, all the empires try to possess the

colonies of the other empires and control them. As a result, the power of the weaker empires

gradually begins to decrease and the power of the more powerful increases. This process can

be described in the follows:

1. Compute the total power T.C.j of the j-th empire depending on its own imperialist and

colonies as follows:

T.C.j = cost(imperialist∗) + σ · 1

N.C.j

N.C.j
∑

i=1

cost(colony i), (15)

where σ < 1 is a positive coefficient, and imperialist∗ is the imperialist of the j-th empire,

N.C.j is the number of colonies of the j-th empire, cost(·) is the normalized cost function

defined in formula (5).

2. Use the following formula (16) to compute the possession probability E.P.j of each empirej

for j = 1, 2, · · · , N , i.e.,

E.P.j =
∣

∣

∣

N.T.C.j
∑N

i=1N.T.C.i

∣

∣

∣
, (16)

where N.T.C.j = T.C.j − max1≤i≤N{T.C.i} is the normalized total power and the T.C.j

is the total power of the j-th empire, respectively.

3. Randomly select some colonies from current evolution countries swarm, e.g., when select

only one and denote in colony, let P = (E.P.1, E.P.2, · · · , E.P.N), and also generate an

N -dimension vector V with uniformly distributed elements, i.e.,

V = (V1, V2, · · · , VN)T, (17)

where Vi ∼rand(0, 1) for i = 1, 2, · · · , N . Furthermore, let

Θ = (Θ1,Θ2, · · · ,ΘN)T = (E.P.1 − V1, E.P.2 − V2, · · · , E.P.N − VN)T, (18)

then, we divide the colony into the j-th empires, where index j(j = 1, 2, · · · , N) is sub-

script of the maximum component in vector Θ .

Multiobjective Imperialist Competitive Algorithm for ... 541

With the imperialistic competition, powerless empires will collapse in the imperialist com-

petitive, and the number of their colonies become less and less. when an empire loses all of its

colonies, we consider that the empire has been collapse and the imperialist become one of the

rest colonies.

4 The Flowchart of the Proposed Algorithm

The main difference between the proposed multi-objective imperialist competitive evolu-

tionary algorithm (denote as MICA) and the original imperialist competitive algorithms is the

method of colony moving toward their relevant imperialist according to Figures 2∼4. Addi-

tionally, in order to make the evolution country swarm to approach or come in the feasible

region, three kinds of different methods of colonies moving toward their relevant imperialist are

given. In addition, a new operator for exchanging position of the imperialist is also designed

to achieve a better balance between the exploration and exploitation behaviors for MICA, and

a new local search method is also embedded in order to increase the convergence speed of the

proposed algorithm. The flowchart of the proposed algorithm is shown as follows:

Step 1 Choose the proper parameter, initial country size pop, randomly generate initial

country swarm in search space [L, U], and denote them as the set pop(0), find the weakly Pareto

optimal countries (i.e., weakly Pareto optimal solutions) in pop(0) according to Definition 3 and

denote them as an external set C(0), let t = 0.

Step 2 Generate initial empires, i.e., select the most powerful countries N from pop(t) and

divide the rest countries to each of them.

Step 3 Make each of colonies to move toward relative imperialist based on the method of

colonies moving toward their relevant imperialist in Subsection 3.2, and exchange the position

of the imperialist and the colony according to Subsection 3.3.

Step 4 Carry out the local search operator and imperialistic competition, and form the

next evolution country swarm pop(t + 1).

Step 5 Find the weakly Pareto optimal countries in the set C(t)∪ pop(t+1) and use them

to replace those countries including into set C(t) to form the new external set C(t + 1).

Step 6 If the maximum number of the cycles has been reached, the algorithm stop; output

the optimal solution x∗ = argminx∈D∩C(t+1) f1(x) of problem (1). Otherwise, let t = t + 1, go

to Step 2.

5 Experimental Results and Discussions

To evaluate the efficiency of the proposed algorithm, thirteen nonlinear constrained op-

timization test problems g01∼g13 were tested by six optimization evolutionary algorithms:

OICA[20], SAEA[25], SMEA[26], RCEA[27], ISEA[28], and the proposed algorithm MICA. These

benchmark functions are described in [27]. And they are summarized here for completeness,

and the original sources of the functions are also cited. Test functions g02, g03, and g12 are

maximization problems, they were transformed into minimization problems using the objective

function min(−f(x)).

In order to estimate how difficult it is to generate feasible countries through a purely random

process, we use the ρ-metric[29] which can measure the ratio between the size of the feasible

542 LIU C A, JIA H M.

search space and that of the entire search space, i.e.,

ρ = |Ω |/|S|, (19)

where |S| is the number of countries randomly generated from search space [L, U], and |Ω | is

the number of feasible countries found by each algorithm (out of these |S| countries). In our

algorithm, |S| is the initial country size Npop.

Each algorithm was implemented by using MATLAB 7.0 on an Intel Pentium IV 2.8-GHz

personal computer, and was executed 30 independent runs for each test problem. In the simula-

tion, the initial country size Npop = 500, the ratio of the most powerful countries is Npop × 5%,

and the maximum number of cycles is 1500.

Table 1 summarizes the average percentage of the feasible countries in the final evolution

country swarm in 30 independent runs for each test problem. Moreover, In order to illustrate

the rate of the convergence for the proposed algorithm, we record the average distance from the

best individual of the imperialist swarm to the boundaries of the feasible region at every 1500

generations in 30 runs. The results are presented in Table 2. Also, we list the known optimal

solution and the best, mean, and the std. for the objective function value in Table 3, and

the standard deviation (std.) after 30 independent runs by MICA and the original imperialist

competitive algorithm (denote as OICA) is also given. These results provided by four compared

algorithms SAEA, SMEA, RCEA and ISEA were taken from the original references. In Table

2, “I.N.” represents the iteration number, and in Table 3, “NA” presents no results in the

reference.

g01[30]

min f(x) = 5

4
∑

i=1

xi − 5

4
∑

i=1

x2
i −

13
∑

i=5

xi

s.t. g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,

g4(x) = −8x1 + x10 ≤ 0,

g5(x) = −8x2 + x11 ≤ 0,

g6(x) = −8x3 + x12 ≤ 0,

g7(x) = −2x4 − x5 + x10 ≤ 0,

g8(x) = −2x6 − x7 + x10 ≤ 0,

g9(x) = −2x8 − x9 + x12 ≤ 0,

where 0 ≤ xi ≤ 1 for i = 1 ∼ 9, 0 ≤ xi ≤ 100 (i = 10 ∼ 12), and 0 ≤ x13 ≤ 1. The global

minimum is x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) and the optimum value f(x∗) = −15. Moreover,

the constraints g1, g2, g3, g7 and g8 are active.

g02[31]

max f(x) =
∣

∣

∣

∑n

i=1 cos4 xi − 2
∏n

i=1 cos2 xi
√

∑n

i=1 ix2
i

∣

∣

∣

Multiobjective Imperialist Competitive Algorithm for ... 543

s.t. g1(x) = 0.75 −
n

∏

i=1

xi ≤ 0,

g2(x) =

n
∑

i=1

xi − 7.5n ≤ 0,

where n = 20, 0 ≤ xi ≤ 10 for i = 1 ∼ n, the global maximum is unknown, the best we found

is f(x∗) = 0.803619, which is better than any reported value up to the best of our knowledge,

and the constraint g1 is active.

g03[32]

max f(x) = (
√

n)n

n
∏

i=1

xi

s.t. h1(x) =

n
∑

i=1

x2
i = 0,

where n = 10, 0 ≤ xi ≤ 1 for i = 1 ∼ n, the global maximum is x∗
i = 1√

n
, and f(x∗) = 1.

g04[33]

min f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s.t. g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0,

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0,

g3(x) = 80.51249 + 0.0071731x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0,

g4(x) = −80.51249− 0.0071731x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0,

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 for i = 3, 4, 5. The optimum is x∗ =

(78, 33, 29.995256025682, 45, 36.775812905788), and f(x∗) = −30665.539.

g05[34]

min f(x) = 3x1 + 0.000001x3
1 + 2x2 +

0.000002

3
x3

2

s.t. g1(x) = −x2x3 − 0.55 ≤ 0,

g2(x) = −x3 + x4 − 0.55 ≤ 0,

h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0,

h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.5 − x2 = 0,

h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0,

where 0 ≤ x1, x2 ≤ 1200, −0.55 ≤ x3, x4 ≤ 0.55. The best known solution x∗ = (679.9452, 1026.067,

0.1188764,−0.3962336), and f(x∗) = 5126.4981.

g06[30]

min f(x) = (x1 − 10)3 + (x2 − 20)3

544 LIU C A, JIA H M.

s.t. g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,

g2(x) = (x1 − 6)2 − (x2 − 5)2 − 82.81 ≤ 0,

where 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100. The best known solution x∗ = (14.095, 0.84296), and

f(x∗) = 6961.81388.

g07[34]

min f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

s.t. g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0,

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0,

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

where −10 ≤ xi ≤ 10 for i = 1, 2, · · · , 10. The global optimum is x∗ = (2.171996, 2.363683,

8.773926,5.095984,0.9906548,1.430574,1.321644, 9.828726,8.280092,8.375927)and f(x∗)=24.3062091.

g08[31]

min f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

s.t. g1(x) = x2
1 − x2 + 1 ≤ 0,

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0,

where 0 ≤ x1, x2 ≤ 10, 0 ≤ x2 ≤ 100. The best solution is x∗ = (1.2279713, 4.2453733) and

f(x∗) = 0.095825.

g09[34]

min f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

s.t. g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 − 15x5 ≤ 0,

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0,

where −10 ≤ xi ≤ 10 for i = 1 ∼ 7. The optimum is x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,

−0.6244870, 1.038131, 1.594227), and f(x∗) = 680.6300573.

g10[34]

min f(x) =

3
∑

i=1

xi

Multiobjective Imperialist Competitive Algorithm for ... 545

s.t. g1(x) = −1 + 0.0025(x4 + x6) ≤ 0,

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0,

g3(x) = −1 + 0.01(x8 − x5) ≤ 0,

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0,

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 100000 (i = 2, 3), and 10 ≤ xi ≤ 1000 (i = 4 ∼ 8), The

optimum is x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979),

and f(x∗) = 7049.3307.

g11[31]

min f(x) = x2
1 + (x2 − 1)2

s.t. h(x) = x2 − x − 12 = 0,

where −1 ≤ x1, x2 ≤ 1. The optimum is x∗ = (± 1√
2
, 1

2), and f(x∗) = 0.75.

g12[31]

max f(x) =
100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100

s.t. g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0,

where 0 ≤ xi ≤ 10 for i = 1, 2, 3 and p, q, r = 1, 2, · · · , 9. The feasible region of the search

space consists of 93 disjointed spheres. A point (x1, x2, x3) is feasible iff there exist such that

the above inequality holds. The optimum is located at x∗ = (5, 5, 5) within the feasible region

and f(x∗) = 1.

g13[34]

min f(x) = ex1x2···x5

s.t. h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 ≤ 0,

h2(x) = x2x3 − 5x4x5 = 0,

h3(x) = x3
1 + x3

2 + 1 = 0,

where −2.3 ≤ xi ≤ 2.3 for i = 1, 2 and −3.2 ≤ xi ≤ 3.2 for i = 3, 4, 5. The optimum is located

at x∗ = (−1.717143, 1.595709, 1.827247, 0.7636413, 0.763645) and f(x∗) = 0.0539498.

As can be seen from Table 2, for the test problems without equality constraints (g01, g02,

g04, g06, g07, g08, g09, g10, and g12), the proposed algorithm MICA can enter the feasible

region within 1500 generations; for test functions g03 and g11, and the proposed algorithm can

enter the feasible region within 6000 generations. Although for functions g03 and g13, MICA

can enter the feasible region within 6000 and 9000 generations, respectively; however, after

3000 generations, the best individual of the imperialist swarm has had very little distance to

the boundaries of the feasible region.

546 LIU C A, JIA H M.

Table 1 Average percentage of feasible countries in the

final country swarm with 30 independent runs

Test problem g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11 g12 g13

Average percentage 100 95 59 89 100 62 78 92 85 78 86 98 57

Table 2 Average distance from the best individual of the imperialist swarm to the

boundaries of the feasible region at every 1500 generations for the 30 runs

I. N.

Fuc. 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

g01 0 0 0 0 0 0 0 0 0 0

g02 0 0 0 0 0 0 0 0 0 0

g03 6.21×10−3 4.42×10−1 5.92×10−13 0 0 0 0 0 0 0

g04 0 0 0 0 0 0 0 0 0 0

g05 3.28×10−6 1.12×10−4 0 0 0 0 0 0 0 0

g06 0 0 0 0 0 0 0 0 0 0

g07 0 0 0 0 0 0 0 0 0 0

g08 0 0 0 0 0 0 0 0 0 0

g09 0 0 0 0 0 0 0 0 0 0

g10 0 0 0 0 0 0 0 0 0 0

g11 2.86×10−14 1.85×10−5 2.72×10−17 0 0 0 0 0 0 0

g12 0 0 0 0 0 0 0 0 0 0

g13 3.24×10−12 5.32×10−11 1.54×10−7 2.34×10−14 3.35×10−6 0 0 0 0 0

It can be seen from Table 3, our algorithm MICA can find a better “best” result, compared

with the other five algorithms OICA, SAEA, SMEA, RCEA and ISEA, in four functions g02,

g07, g10 and g13. In addition, algorithm MICA found a similar best solution in five problems

g01, g03, g06, g08, g11, and g12 (ISEA didn’t give the results for g12). Slightly better best

results were found by MICA in the remaining functions g04, g05, g06, and g09 (in fact, our

algorithm obtained a similar best solution in g04 and g06 along with the compared three

algorithms SMEA, RCEA and ISEA). Our approach found better mean and worst results in

seven test functions g02, g05, g06, g07, g09, g10, and g10 except the compared algorithm ISEA

for test g02 does. It also provided similar mean and “worst” results in six functions g01, g03,

g04, g08, g11, and g12. Also, the proposed algorithm obtained the slightly “worse” mean in

test functions g01, g08, g12 and g13 for RCEA, and in g02 for the compared algorithm SMEA

and ISEA.

Multiobjective Imperialist Competitive Algorithm for ... 547

Table 3 Comparison of the proposed algorithm MICA with respect to OICA[19], SAEA[9],

SMES[16], RCEA[17], ISEA[26] on 13 benchmark functions. “NA” presents not results

Methods

Function Optimal Status OICA[19] SAEA[9] SMEA[16] RCEA[17] ISEA[26] MICA

best −15.000 −15.000 −15.000 −15.000 −15.000 −15.000

mean −15.000 −15.000 −15.000 −15.000 −14.494 −15.000

g01 −15.000 worst −15.000 −15.000 −15.000 −15.000 −12.446 −15.000

std. −15.000 0.0000 0.0000 0.0 9.3×10−1 1.3×10−11

best −0.80342 −0.80297 −0.803601 −0.803515 −0.803376 −0.803619

mean −0.79212 −0.79010 −0.785238 −0.781975 −0.798231 −0.793421

g02 −0.803619 worst −0.76213 −0.76043 −0.751322 −0.726288 −0.768291 −0.783461

std. 1.5×10−3 1.2×10−2 1.7×10−2 2.0×10−2 9.0×10−3 2.5×10−2

best −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

mean −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

g03 −1.0000 worst −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

std. 6.4×10−3 7.5×10−5 2.1×10−4 1.9×10−4 9.7×10−5 2.3×10−12

best −30665.405 −30665.500 −30665.539 −30665.539 −30665.539 −30665.539

mean −30665.531 −30665.200 −30665.539 −30665.539 −30665.539 −30665.539

g04 −30665.539 worst −30665.523 −30665.300 −30665.539 −30665.539 −30665.539 −30665.539

std. 0.0000 4.9×10−1 0.0000 2.0×10−5 0.0000 7.2×10−10

best 5126.964 5126.989 5126.599 5126.497 NA 5126.4981

mean 5432.080 5432.080 5174.492 5128.881 NA 5126.4981

g05 5126.4981 worst 5883.950 6089.430 5304.167 5142.472 NA 5126.4981

std. 3.3×105 3.9×103 5.0×10 3.5 NA 1.512×10−10

best −6961.800 −6961.800 −6961.814 −6961.814 −6961.814 −6961.814

mean −6961.800 −6961.800 −6961.284 −6875.940 −6961.813 −6961.814

g06 −6961.81388 worst −6961.800 −6961.800 −6952.482 −6350.262 −6961.812 −6961.814

std. 0.0000 0.0000 1.9 1.6×102 8.5×10−5 1.21×10−10

best 24.47 24.48 24.327 24.307 24.338 24.3062

mean 25.38 26.58 24.475 24.374 24.527 24.3457

g07 24.3062091 worst 28.32 28.40 24.843 24.642 24.995 24.3812

std. 1.2×10 1.1 1.3×10−1 6.6×10−2 1.7×10−1 2.53×10−9

best 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

mean 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

g08 0.095825 worst 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

std. 0.0000 0.0000 0.0000 2.6×10−17 0.0000 3.21×10−14

best 680.64 680.64 680.632 680.630 680.630 680.630

mean 680.70 680.72 680.643 680.656 680.631 680.630

g09 680.6300573 worst 680.83 680.87 680.719 680.763 680.634 680.630

std. 5.3 5.9×10−2 1.6×10−2 3.4×10−2 8.1×10−4 4.2×10−9

best 7051.31 7061.34 7051.903 7054.316 7062.019 7049.330

mean 7625.87 7627.89 7253.047 7559.192 7342.944 7049.330

g10 7049.3307 worst 8187.54 8288.79 7638.366 8835.655 7588.054 7049.330

std. 3.4×10 3.7×102 1.4×102 5.3×102 1.4×102 1.1×10−9

best 0.750 0.750 0.750 0.750 0.750 0.750

mean 0.750 0.750 0.750 0.750 0.750 0.750

g11 0.7500 worst 0.750 0.750 0.750 0.750 0.751 0.750

std. 0.0000 0.0000 1.5×10−4 8.0×10−5 2.6×10−4 5.31×10−8

best −1.0000 −1.0000 −1.0000 −1.0000 NA −1.0000

mean −1.0000 −1.0000 −1.0000 −1.0000 NA −1.0000

g12 −1.0000 worst −1.0000 −1.0000 −1.0000 −1.0000 NA −1.0000

std. 0.0000 0.0000 0.0000 0.0000 NA 6.8×10−12

best 0.053997 NA 0.053986 0.053957 0.05517 0.053949

mean 0.066531 NA 0.166385 0.067543 0.28184 0.025432

g13 0.0539498 worst 0.097569 NA 0.468294 0.216915 0.471 0.043957

std. 1.6×10−2 NA 1.8×10−1 3.1×10−2 1.8×10−1 1.5×10−1

548 LIU C A, JIA H M.

The compared results in Table 2 verifies that MICA has the capability in convergence rate,

and the compared results in Table 3 reflects the fact that our algorithm is capable of performing

a robust and stable search. Furthermore, feasible solutions are consistently found for all test

problems in Table 1. The above observations validate that the proposed algorithm MICA has

substantial potential in coping with various nonlinear constrained optimization problems.

6 Conclusions

This paper introduces a new imperialist competitive algorithm (MICA) for solving nonlinear

constrained optimization problem. The proposed algorithm has three important characterizes:

1) Combining multiobjective optimization with local search models; 2) To achieve a better

balance of the exploration and exploitation through the method of exchanging positions of

the imperialist and colony; 3) Speeding up the convergence by taking advantage of a new

local search method. Based on the comparision between the proposed algorithm and the five

compared algorithms, it is concluded our algorithm NICA has shown its potential to handle

various nonlinear constrained optimization problems, and its performance is much better than

all other state-of-the-art evolutionary algorithms referred in this paper in terms of the selected

performance metrics.

An important subject of ongoing work is of applying our approach to the solution of real-

world optimization problems. Additionally, try to design different global and local search models

since suitable search model can improve the capability of the algorithm remarkably. Last, we

aim to explore the possibility of decreasing its computational cost after reaching the feasible

region.

References

[1] Homaifar A, Lai S H Y, Qi X. Constrained optimization via genetic algorithms. Simulation, 1994, 62(4):

242–254.

[2] Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algo-

rithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng., 2002, 191(11–12): 1245–

1287.

[3] Hamida S B, Schoenauer M. ASCHEA: New results using adaptive segregational constraint handling. Proc

Congr Evol Comput, IEEE Press, 2002.

[4] Graham C G, Mará M S, José A, et al. Constrained control and estimation — An optimisation approach.

Springer-Verlag, London, 2005.

[5] Özgür Y. Penalty function methods for constrained optimization with genetic algorithms. Mathematical

and Computational Applications, 2005, 10(1): 45–56.

[6] Dimitri B. Constrained optimization and lagrange multiple methods. Academic Press, USA, 1982.

[7] Joshi H, Arora S. Enhanced grey wolf optimization algorithm for global optimization. Fundamenta Infor-

maticae, 2017, 153(3): 235–264.

[8] Miranda-Varela M E, Mezura-Montes E. Constraint-handling techniques in surrogate-assisted evolutionary

optimization: An empirical study. Applied Soft Computing Journal, 2018, 73: 215–229.

[9] Arora S, Singh S, Yetilmezsoy K. A modified butterfly optimization algorithm for mechanical design

optimization problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018,

40(21): 173–185.

[10] Kohli M, Arora S. Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal

of Computational Design and Engineering, 2018, 5(4): 458–472.

[11] Joshi H, Arora S. Enhanced grey wolf optimisation algorithm for constrained optimisation problems.

International Journal of Swarm Intelligence, 2017, 3(2/3): 126–151.

Multiobjective Imperialist Competitive Algorithm for ... 549

[12] Ion N. A cutting plane method for solving convex optimization problems over the cone of nonnegative

polynomials. WSEAS Transactions on Mathematics, 2009, 8(7): 269–279.

[13] Paul H C, Jorge J M. Projected gradient methods for linearly constrained problems. Mathematical Pro-

gramming, 1987, 39: 93–16.

[14] Philipp H, Martin K. Quasi-Newton methods: A new direction. Journal of Machine Learning Research,

2013, 14: 843–865.

[15] Yuan Y X. A new stepsize for the steepest descent method. Journal of Computational Mathematics, 2006,

24(2): 149–156.

[16] Hovd M. Multi-level programming for designing penalty functions for MPC controllers. Proc of the 18th

IFAC World Congress. Milano, Italy: IEEE Press, 2011.

[17] Huang F Z, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization.

Applied Mathematics and Computation, 2007, 186(1): 240–256.

[18] He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based rule for constrained opti-

mization. Applied Mathematics and Computation, 2007, 186(2): 1407–1422.

[19] Lin Y C, Wang F S, Hwang K S. A hybrid method of evolutionary algorithms for mixed-integer nonlinear

optimization problems. Proceedings of the 1999 Congress on Evolutionary Computation, Washington,

IEEE Press, 1999.

[20] Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: An algorithm for optimization inspired

by imperialistic competition. IEEE Congress on Evolutionary Computation, 2007: 4661–4667.

[21] Mahdi A, Ayaz I, Davoud A. Imperialist competitive algorithm for solving systems of nonlinear equations.

Computers and Mathematics with Applications, 2013, 65: 1894–1908.

[22] Mohammadi M, Tavakkoli-Moghaddam R, Rostamib H. A multi-objective imperialist competitive algo-

rithm for a capacitated hub covering location problem. International Journal of Industrial Engineering

Computations, 2011, 2: 671–688.

[23] Shokrollahpour E, Zandieh M, Dorri B. A novel imperialist competitive algorithm for bi-criteria scheduling

of the assembly flowshop problem. International Journal of Production Research, 2011, 49(11): 3087–3103.

[24] Long W, Jiao J J, Liang X M, et al. An exploration-enhanced grey wolf optimizer to solve high-dimensinal

numerical optimization. Engineering Applications of Artificial Intelligence, 2018, 68: 63–80.

[25] Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol

Comput, 2003, 7(5): 445–455.

[26] Mezura-Montes E, Coello C A C. A simple multimembered evolution strategy to solve constrained opti-

mization problems. IEEE Trans Evol Comput, 2005, 9(1): 1–17.

[27] Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol

Comput, 2000, 4(3): 284–294.

[28] Aguirre A H, Rionda S B, Coello C A C, et al. Handling constraints using multiobjective optimization

concepts. Int J Numerical Methods in Eng, 2004, 59(15): 1989–2017.

[29] Datta R, Regis R. A surrogate-assisted evolution strategy for constrained multi-objectiveoptimization.

Expert Syst Appl, 2016, 57: 270–284.

[30] Floundas C, P. Pardalos. A collection of test problems for constrained global optimization. Lecture Notes

in Comput Sci. Berlin, Germany: Springer-Verlag, 1987.

[31] Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings, and constrained parameter

optimization. Evol Comput, 1999, 7(1): 19–44.

[32] Michalewicz Z, Nazhiyath G, Michalewicz M. A note on usefulness of geometrical crossover for numerical

optimization problems. Proc 5th Annu Conf Evolutionary Programming. Fogel L J, Angeline P J, Bäck

T. Cambridge, MA: MIT Press, 1996.

[33] Himmelblau D. Applied nonlinear programming. New York: McGraw-Hill, IEEE Press, 1972.

[34] Hock W, Schittkowski K. Test examples for nonlinear programming codes. Berlin, Germany: Springer-

Verlag, 1981.

