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Abstract—This paper proposes a computational trajectory op-
timization framework for solving the problem of multi-objective
automatic parking motion planning. Constrained automatic park-
ing maneuver problem is usually difficult to solve because of
some practical limitations and requirements. This problem be-
comes more challenging when multiple objectives are required to
be optimized simultaneously. The designed approach employs a
swarm intelligent algorithm to produce the trade-off front along
the objective space. In order to enhance the local search ability
of the algorithm, a gradient operation is utilized to update the
solution. In addition, since the evolutionary process tends to be
sensitive with respect to the flight control parameters, a novel
adaptive parameter controller is designed and incorporated in the
algorithm framework such that the proposed method can dynam-
ically balance the exploitation and exploration. The performance
of using the designed multi-objective strategy is validated and
analyzed by performing a number of simulation and experimental
studies. The results indicate that the present approach can provide
reliable solutions and it can outperform other existing approaches
investigated in this paper.

Index Terms—Trajectory optimization, automatic parking,
trade-off front, adaptive parameter controller.

I. INTRODUCTION

T
RAJECTORY or motion planning of autonomous vehicles has

received significant attentions over the last two decades due to

its importance in the autonomous control module [1], [2]. A motion

planner can automatically produce a feasible path for the vehicle from

a given starting point to a desired terminal position. Early works on

this topic mainly focus on the development of geometric path planners

or smooth decomposition-based path planners such as the spline-

based planner and the cubic polynomial-inspired planner [3], [4]. In

the recent five years, there has been a growing interest in generating

the vehicle path by using optimization-based approaches [5], [6]. One

main advantage of using these optimization-based planning methods

is that different types of vehicular or environmental limitations which

are usually problematic for geometric and smooth decomposition-

based planners, can be modelled into constraints and entailed in the

optimization formulation. Due to this reason, we give more attentions

to the application of this kind of technique.

The mission scenario studied in this paper focuses on the optimal

parallel parking of an autonomous wheeled vehicle. In most of

existing works, the parking path design usually targets one single
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performance index. For example, in [7] the authors minimized the

parking position error by using a feedforward direct method. In [8],

the primary goal is to shape a smooth parallel parking trajectory such

that the curvature variation indicator can be minimized. Furthermore,

the authors in [3] selected the path length as the main objective

and calculated the shortest path of an automatic parking problem.

However, in practical situations, all the aforementioned individual

objectives should be optimized simultaneously. This inspires the

development of multi-objective optimal parking maneuver methods

which will be mainly focused in the present study.

It is important to note that in [9], the authors proposed and

applied a genetic algorithm (GA)-based multi-objective parking al-

gorithm to produce trajectories for a car-like autonomous vehicle.

In their work, the final position and oriental angle errors were

selected as two mission objectives and they were integrated through

aggregation. In addition, a multi-objective motion planner using 𝜂3-

spline techniques was developed in [10] to minimize the parking

path length as well as the curvature variation. Similar with [9], these

two objectives were integrated through aggregation and optimized

via a GA-based method. In these two studies, the mission scenario

was extended from single-objective case to multi-objective case, and

effective parking trajectories were obtained. However, there are still

some remaining issues of these works. For example, in [9] there is

no constraint for the instantaneous curvature as well as the parking

slot boundary, which must frequently be considered during the real

parking environment. Besides, since the geometric motion planner

developed in [10] can be treated as a point-to-point framework, it may

have difficulty in dealing with parking cases when multiple backward

and forward motions are needed. As a result, a new design of multi-

objective parking algorithm is highly demanded to tackle these issues

and offer an effective alternative.

To address the multi-objective parking optimization problems,

the evolutionary multi-objective optimization (EMO) algorithm is a

powerful and promising tool because of its ability in searching Pareto-

optimal solutions in a single trial. It is important to note that usually

for a multi-objective engineering problem, there is no single solution

that can optimize all the mission objectives simultaneously, as the

objectives might conflict with each other. Hence, mission planners

usually aim to find a set of compromised solutions and then make

a decision based on their preferences. Among EMOs, the multi-

objective particle swarm optimization (MOPSO) algorithm is usually

recognised as an effective and intelligent swarm-based optimization

technique. The earliest MOPSO was proposed in [11] and further

investigated in [12]. A review of achievements on developing this

algorithm can be found in [13]. As for the practical implementations

of MOPSO, contributions can also be reviewed in the literature.

For instance, a humanoid robot online navigation problem was

successfully solved in [14], wherein a preference-guided MOPSO

algorithm was designed and applied to produce the compromised

solution. Similarly, a PSO-based multi-objective optimization strategy

was proposed in [15] in order to maximize the output force and

efficiency of a planar motor while minimizing the cost at the same

time. Although all the aforementioned MOPSO-based methods have
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the potential to be applied in the multi-objective parking maneuver

planning problem, there are still some issues for implementations.

One important issue is that the use of MOPSO will introduce

some additional parameters to control the evolution direction. Poor

selection of these parameters can significantly degrade the diversity

and optimality of the final solution set. Besides, the convergence

speed of the algorithm is also largely affected by these parameters.

Hence a proper treatment with respect to these algorithm control

parameters is required.

The main contributions of this study are summarised below:

1) A new multi-objective parking maneuver optimization model

is established with the consideration of instantaneous curvature

constraint and parking slot boundary constraints.

2) A hybrid metric-based adaptive gradient MOPSO approach

(denoted as HM-AGMOPSO) is proposed. The main novel part

of the proposed HM-AGMOPSO lies in its control parameter

update component, where an adaptive flight controller is devel-

oped to dynamically balance the exploitation and exploration of

the algorithm.

3) A local gradient operation is embedded in the overall algorithm

framework so as to make further progress during the iteration.

4) A number of simulation studies are presented to illustrate the

effectiveness and superiority of the proposed method, while

experimental tests are provided to validate the reliability of the

pre-planned parking trajectory.

The remainder of this paper is organized as follows. Sec II

illustrates the multi-objective optimization model of the autonomous

vehicle parking problem. Then the method used to solve the problem

is detailed in Sec III. Experimental results and comparative studies

are demonstrated in Sec IV and Sec V, while the conclusion is drawn

in Sec VI.

II. MULTI-OBJECTIVE MODEL OF THE AUTONOMOUS VEHICLE

PARKING PROBLEM
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Fig. 1: Illustration of the parking mission

TABLE I: Notations for variables

𝑝x, 𝑝y : Central point of the rear wheel

𝑣, 𝛼: Velocity and acceleration of the vehicle

𝜃: Oriental angle

𝜑: Steering angle of the steering wheel

𝜂: The jerk (derivative of the acceleration)

𝜔: Angular velocity of the front wheel

𝑡: Time point

𝑙: Length between the front and rear wheels

𝑚: The rear overhang

𝑛: The front overhang

𝑙SL: Length of the parking slot

𝑙SW : Width of the parking slot

𝐶𝐿: Width of the road

2𝑏: Width of the vehicle

In this section, the mathematical formulation of the investigated

multi-objective problem (MOP) is discussed. At the beginning, the

wheeled vehicle equations of motion will be introduced in Sec

II.A. Following that, different types of constraints including the

state/control path constraints and collision-free constraints are for-

mulated in Sec II.B. Subsequently, in order to take more of the real-

world requirements into account, multiple performance indices are

established and detailed in Sec II.C.

A. Vehicle Equations of Motion

To describe the movement of the wheeled vehicle and the

automatic parking scenario, a detailed mission illustration, together

with the vehicle equations of motion, is summarised in Fig.1 and

Eq.(1).


























𝑝x(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡))
𝑝y(𝑡) = 𝑣(𝑡) sin(𝜃(𝑡))
�̇�(𝑡) = 𝛼(𝑡)
�̇�(𝑡) = 𝜂(𝑡)

𝜃(𝑡) = 𝑣(𝑡) tan(𝜑(𝑡))/𝑙

�̇�(𝑡) = 𝜔(𝑡)

(1)

The notations of all the mission/vehicle-dependent variables appeared

in Fig.1 and Eq.(1) are tabulated in Table I. The vehicle is con-

sidered as a front-steering rigid body and the sideslip is ignored.

For the sake of brevity, the state variables are abbreviated as 𝑥 =
[𝑝x, 𝑝y, 𝑣, 𝛼, 𝜃, 𝜑]

T , whereas the controls are written as 𝑢 = [𝜂, 𝜔]T ,

respectively. The reason for making 𝜂 as the control input in the

trajectory design phase is to smooth the planned acceleration and

speed profiles [5], [16]. The actual control inputs applied to the

vehicle in the experiments are 𝑣 and 𝜔 [17], [18]. This will be further

shown in the experiment section of this paper.

B. Different Types of Constraints

During the parking movement process, different types of con-

straints are required to be considered. For example:

1). State/control path constraints: The magnitude of the state and

control variables should be limited and this can be expressed by

𝑝min
x ≤ 𝑝x(𝑡) ≤ 𝑝max

x 𝑝min
y ≤ 𝑝y(𝑡) ≤ 𝑝max

y

𝑣min ≤ 𝑣(𝑡) ≤ 𝑣max 𝛼min ≤ 𝛼(𝑡) ≤ 𝛼max

𝜃min ≤ 𝜃(𝑡) ≤ 𝜃max 𝜑min ≤ 𝜑(𝑡) ≤ 𝜑max

𝑑min
α ≤ 𝜂(𝑡) ≤ 𝑑max

α 𝑑min
k ≤ �̇�(𝑡) ≤ 𝑑max

k

(2)

where 𝑘 = tan(𝜃)/𝑙 represents the instantaneous curvature. Its

derivative value can be computed by �̇� = 𝜔/(𝑙 cos2(𝜃)). It is worth

noting that imposing a path constraint on the jerk variable 𝜂 can

effectively smooth the acceleration evolution. On the other hand, the

path constraint of �̇� can avoid non-smooth segments on the vehicle

trajectory, thus decreasing discomfort to passengers.

2). Parking slot and terminal constraints: As specified in Fig.1,

certain constraints should be assigned at the terminal time instant 𝑡f
to place the vehicle in the desired parking slot. To formulate them,

the four corner points of the vehicle (ABCD) should be used:







































𝐴x = 𝑝x + cos(𝜃)(𝑙 + 𝑛)− 𝑏 sin(𝜃)
𝐴y = 𝑝y + sin(𝜃)(𝑙 + 𝑛) + 𝑏 cos(𝜃)
𝐵x = 𝑝x + cos(𝜃)(𝑙 + 𝑛) + 𝑏 sin(𝜃)
𝐵y = 𝑝y + sin(𝜃)(𝑙 + 𝑛)− 𝑏 cos(𝜃)
𝐶x = 𝑝x −𝑚 cos(𝜃) + 𝑏 sin(𝜃)
𝐶y = 𝑝y −𝑚 sin(𝜃)− 𝑏 cos(𝜃)
𝐷x = 𝑝x −𝑚 cos(𝜃)− 𝑏 sin(𝜃)
𝐷y = 𝑝y −𝑚 sin(𝜃) + 𝑏 cos(𝜃)

(3)

Then the terminal constraints are given by:

𝐴y(𝑡f ) ≤ 0, 𝐵y(𝑡f ) ≤ 0, 𝐶y(𝑡f ) ≤ 0
𝐷y(𝑡f ) ≤ 0, 𝑣(𝑡f ) = 0, 𝛼(𝑡f ) = 0

(4)



Note that the last two equality constraints can be treated as a full

stop condition. Apart from Eq.(4), to successfully park the vehicle,

the following parking area constraints are formulated:

𝑓low(𝐴x) ≤ 𝐴y ≤ 𝑓up(𝐴x)
𝑓low(𝐵x) ≤ 𝐵y ≤ 𝑓up(𝐵x)
𝑓low(𝐶x) ≤ 𝐶y ≤ 𝑓up(𝐶x)
𝑓low(𝐷x) ≤ 𝐷y ≤ 𝑓up(𝐷x)

(5)

in which 𝑓low(·) stands for the lower boundary of the parking slot

and is designed as 𝑓low(𝑥) = −(𝐻(𝑥)+𝐻(𝑥−𝑙SL))𝑙SW . The upper

boundary of the road is modeled as 𝑓up(𝑥) = 𝐶L. Here 𝐻(·) stands

for the Heaviside step function.

3). Collision-free limitations: From Fig.1, it is clear that the

vehicle has the probability to collide with the edge points of the park-

ing slot (e.g., points 𝑂 and 𝐸). Hence, collision-free constraints are

required to be considered. Different from the discontinuous collision-

free constraint formulation used in [5], we apply a continuous version

in this paper. More precisely, this is achieved by restricting the corner

points 𝑂 and 𝐸 are always located outside the vehicle rectangular

area 𝐴𝐵𝐶𝐷, which can be described as:

𝑆AOB + 𝑆BOC + 𝑆COD + 𝑆AOD ≥ 𝑆ABCD

𝑆AEB + 𝑆BEC + 𝑆CED + 𝑆AED ≥ 𝑆ABCD
(6)

where 𝑆 denotes the area operation.

Remark 1. In [5], the authors modeled the collision-free constraints

by transforming the corner points 𝑂 and 𝐸 from the coordinate 𝑋𝑂𝑌
to the vehicle’s body frame 𝑋 ′𝐺𝑌 ′ (as indicated in Fig.1). Then the

collision avoidance is achieved by restricting:

|𝑂
′

x| ≥ (𝑛+ 𝑙 +𝑚)/2, if |𝑂
′

y| ≤ 𝑏

|𝐸
′

x| ≥ (𝑛+ 𝑙 +𝑚)/2, if |𝐸
′

y| ≤ 𝑏
(7)

where (𝑂
′

x, 𝑂
′

y) and (𝐸
′

x, 𝐸
′

y) are coordinates of 𝑂 and 𝐸 in the

𝑋 ′𝐺𝑌 ′ frame. It is obvious that Eq.(7) is discontinuous, and the

optimization algorithm might struggle due to the intuitive application

of this equation.

C. Mission Objectives

Early investigations on automatic parking trajectory planning

problems normally target one single objective. However, in practice,

multiple objectives might need to be frequently considered during

the maneuver phrase. In this study, we consider three objectives so

as to capture more realities of the problem. The first objective to

be optimized is the path length so that the vehicle can park along

a shortest trajectory. Besides, since the path smoothness is directly

related to the comfort of the passengers and riders, a path smoothness

indicator is defined and minimized. Furthermore, to measure the

quality of the parking, a parking achievement indicator is used. The

aim for optimizing this indicator is that it is desired to place the

geometric center of the vehicle overlapping the geometric center of

the parking slot with a zero oriental angle. Consequently, the three

objectives applied for experiments are:

min 𝐽1 =
∫︀ tf
0 𝑣𝑑𝑡

min 𝐽2 =
∫︀ tf
0 �̇�𝑑𝑡

min 𝐽3 = 𝐸f

(8)

where 𝑡f ∈ [𝑡min
f , 𝑡max

f ] is a variable. 𝐸f is given by:

𝐸f = (𝐺x(𝑡f )−𝐺*
x)

2 + (𝐺y(𝑡f )−𝐺*
y)

2 + (𝜃(𝑡f )− 𝜃*)2 (9)

In Eq.(9), (𝐺x, 𝐺y) are the geometric center of the vehicle and

it can be computed by 𝐺x = (𝑝x + (((𝑛 + 𝑙 + 𝑚) cos 𝜃)/2));
𝐺y = (𝑝y + (((𝑛 + 𝑙 + 𝑚) sin 𝜃)/2)). From Eq.(9), the three

components have different scales. It is noteworthy that poor scaling

can have significant impacts on the convergence performance of the

optimization process. Hence, we normalize the coordinates and angle

in (9) via �̄�x = 𝐺x/𝑙SL, �̄�y = 𝐺y/𝑙SW and 𝜃 = 𝜃/𝜋, respectively.

Based on all the definitions stated above, the overall multi-objective

parking movement planning model can be written as:

minimize 𝐽 = [𝐽1, 𝐽2, 𝐽3]
subject to 𝑝x(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡))

𝑝y(𝑡) = 𝑣(𝑡) sin(𝜃(𝑡))
�̇�(𝑡) = 𝑎(𝑡)
�̇�(𝑡) = 𝜂(𝑡)

𝜃(𝑡) = 𝑣(𝑡) tan(𝜑(𝑡))/𝑙

�̇�(𝑡) = 𝜔(𝑡)
𝐴y(𝑡f ) ≤ 0, 𝐵y(𝑡f ) ≤ 0, 𝐶y(𝑡f ) ≤ 0
𝐷y(𝑡f ) ≤ 0, 𝑣(𝑡f ) = 0, 𝑎(𝑡f ) = 0
𝑓low(𝐴x) ≤ 𝐴y ≤ 𝐶𝐿, 𝑓low(𝐵x) ≤ 𝐵y ≤ 𝐶𝐿
𝑓low(𝐶x) ≤ 𝐶y ≤ 𝐶𝐿, 𝑓low(𝐷x) ≤ 𝐷y ≤ 𝐶𝐿
𝑆AOB + 𝑆BOC + 𝑆COD + 𝑆AOD ≥ 𝑆ABCD

𝑆AEB + 𝑆BEC + 𝑆CED + 𝑆AED ≥ 𝑆ABCD

𝑝min
x ≤ 𝑝x(𝑡) ≤ 𝑝max

x , 𝑝min
y ≤ 𝑝y(𝑡) ≤ 𝑝max

y

𝑣min ≤ 𝑣(𝑡) ≤ 𝑣max, 𝛼min ≤ 𝛼(𝑡) ≤ 𝛼max

𝜃min ≤ 𝜃(𝑡) ≤ 𝜃max, 𝜑min ≤ 𝜑(𝑡) ≤ 𝜑max

𝑑min
α ≤ 𝜂(𝑡) ≤ 𝑑max

α , 𝑑min
k ≤ �̇�(𝑡) ≤ 𝑑max

k

(10)

where 𝐽 = [𝐽1, 𝐽2, 𝐽3] ∈ ℜ3 is the vector of objectives, whereas

𝑢 = [𝜂(𝑡), 𝜔(𝑡)]T is the decision variable of problem (10). To

optimize problem (10), we apply the concept of Pareto-optimal, which

is outlined by the following definitions.

Definition 1. A vector of decision variable 𝑢1 = [𝜂1, 𝜔1] is

dominated by another one 𝑢2 if and only if ∀𝑀 ∈ {1, 2, 3},

𝐽M (𝑢2) ≤ 𝐽M (𝑢1), and ∃𝑀 ∈ {1, 2, 3}, 𝐽M (𝑢2) < 𝐽M (𝑢1). The

domination relationship is denoted by 𝑢1 ≺ 𝑢2.

Definition 2. A vector of decision variable 𝑢* is Pareto-optimal if it

is not dominated by other candidates among the feasible region F .

Definition 3. The Pareto-optimal set P as well as the Pareto-optimal

front 𝑃 can be written as:
{︂

P = {𝑢 ∈ F |𝑢 is Pareto-optimal}
𝑃 = {𝐽(𝑢) ∈ ℜ3|𝑢 ∈ P}

From Definitions 1 and 2, there may exist a set of Pareto-optimal

solutions for an MOP. Hence, the goal for solving an MOP becomes

determining P from F . In other words, when addressing the MOP,

we aim to find not a single but rather a set of Pareto-optimal solutions.

Remark 2. It is noteworthy that some objective functions given by

Eq.(8) are considered as constraints in other works. For example, the

third objective function was considered as hard equality constraints

in [5] and [16]. However, in this paper we are interested in designing

a swarm-intelligence-based method to optimize the parking motion.

The consideration of hard equality constraints will put more pressures

on the evolution process for finding feasible solutions. Alternatively,

considering 𝐽3 as an objective can reduce the number of equality

constraints, thereby easing the burden of finding feasible solutions.

III. METHODOLOGY

In order to address the multi-objective automatic parking mission

given by Eq.(10), this paper applies an HM-AGMOPSO algorithm.

This method can be treated as a global optimization technique as it

uses the principle of survival of fitness in order to locate the optimal

solution. Compared with gradient-based algorithms, the proposed

method tends to have stronger ability to explore the entire searching

space rather than be attracted to a local optimal point. Besides, the

unique features of the HM-AGMOPSO method in comparison with

traditional MOPSO and NSGA-II are that a local gradient operation

as well as a hybrid metrics-based adaptive controller of flight parame-

ters are designed and embedded in the algorithm. The aim for carrying

on a local gradient search is to enhance the exploitation around the



current solution. Besides, using the hybrid metrics-based adaptive

controller can adjust the flight control variables so as to balance

the local exploitation and global exploration. Priori to introducing

in detail these two mechanisms, it is worth recalling some basis of

the MOPSO for completeness reasons.

A. Basic MOPSO

In MOPSO, each particle among the swarm can be regarded as a

candidate solution defined on the solution space and it has a position

vector 𝜇 as well as a velocity vector 𝜈. These two vectors can be

written as:

𝜇j(𝑠) = [𝜇j,1(𝑠), 𝜇j,2(𝑠)..., 𝜇j,D(𝑠)]
𝜈j(𝑠) = [𝜈j,1(𝑠), 𝜈j,2(𝑠)..., 𝜈j,D(𝑠)]

(11)

where 𝑠 = 1, 2, ..., 𝑆max denotes the index of the generation, while

𝑗 = 1, 2, ..., 𝑁j is the index of the particle boxed by the size of the

swarm 𝑁j . Since the parking system inputs are time-dependent, we

firstly discretize the time domain [0, 𝑡f ] using a set of temporal nodes

{𝑡k}
Nk−1
k=0 , where 𝑡0 = 0 and 𝑡k+1 = 𝑡k+𝑡f/𝑁k. Then each particle

is encoded as a vector representing a potential control sequence at

{𝑡k} and 𝐷 = 2 · 𝑁k + 1 stands the dimensional index of each

particle. More precisely, the following equation is used to present

the actual content of the particle and the swarm:

𝜇j = [𝜂j(𝑡0), ..., 𝜂j(𝑡Nk−1), 𝜔j(𝑡0), ..., 𝜔j(𝑡Nk−1), 𝑡f ]
Swarm = [𝜇1, ..., 𝜇Nj

] (12)

All particles in the first generation are obtained by randomly ini-

tializing all decision variables within the specified lower and upper

control bounds given by Eq.(2). During the solution-finding process,

the best position of the 𝑗th particle and the best position among

the current swarm in the 𝑠th generation are recorded as 𝑞j(𝑠) and

𝑔(𝑠), respectively. According to the definitions of 𝑞j(𝑠) and 𝑔(𝑠), the

velocity vector of the 𝑗th particle can then be updated by:

𝜈j(𝑠+ 1) = 𝜛𝜈j(𝑠) + 𝑟1𝑐1(𝑞j(𝑠)− 𝜇j(𝑠))
𝑟2𝑐2(𝑔(𝑠)− 𝜇j(𝑠))

(13)

In Eq.(13), several control parameters are introduced to generate

the new velocity vector. 𝜛 represents the inertia weight, whereas

𝑟1 and 𝑟2 are two random constants uniformly distributed on [0, 1].
𝑐1 and 𝑐2 can be treated as two acceleration parameters associated

with the cognitive component and the social component, respectively.

Using the updated velocity vector, the new position vector for the 𝑗th

particle can be computed by:

𝜇j(𝑠+ 1) = 𝜇j(𝑠) + 𝜈j(𝑠+ 1) (14)

From Eq.(13) and Eq.(14), it is obvious that the particle uses the

positional information of its own movement and the selected global

leader to update the position and velocity vectors. Besides, the

previous best position 𝑞j(𝑠) should be re-recorded via:

𝑞j(𝑠) =

⎧

⎨

⎩

𝑞j(𝑠− 1) if 𝜇j(𝑠) ≺ 𝑞j(𝑠− 1)
𝜇j(𝑠) if 𝜇j(𝑠) ≻ 𝑞j(𝑠− 1)
rand{𝜇j(𝑠), 𝑞j(𝑠− 1)} if 𝜇j(𝑠) ̸⊀≻ 𝑞j(𝑠− 1)

(15)

Here, the concept of Pareto optimality is adopted. 𝜇j(𝑠) ≺ 𝑞j(𝑠−1)
means 𝜇j(𝑠) is dominated by 𝑞j(𝑠−1) and it should be replaced. On

the other hand, the notation 𝜇j(𝑠) ̸⊀≻ 𝑞j(𝑠− 1) means the two are

mutually non-dominated. In this case, one of them will be selected

randomly (e.g., rand{𝜇j(𝑠), 𝑞j(𝑠− 1)}).

Defining 𝐴(𝑠) = [𝑎1(𝑠), 𝑎2(𝑠), ..., 𝑎NA
(𝑠)] as the external

archive (external non-dominated set), to update the archive 𝐴(𝑠),
we need the previous archive 𝐴(𝑠− 1) and 𝑞j(𝑠) information. That

is, if 𝑞j(𝑠) is non-dominated by any individuals in 𝐴(𝑠 − 1), then

𝐴(𝑠) = 𝐴(𝑠− 1) ∪ 𝑞j(𝑠). If 𝑞j(𝑠) is dominated by an individual in

𝐴(𝑠−1), 𝑞j(𝑠) is discarded. If there are some individuals in 𝐴(𝑠−1)

that are dominated by 𝑞j(𝑠), the 𝐴(𝑠 − 1) firstly removes elements

that are dominated by 𝑞j(𝑠) and then augments by 𝑞j(𝑠).

B. Multi-Objective Gradient Operation

To strengthen the local exploitation capability of the

MOPSO approach, a local gradient search is applied. The Ja-

cobian vector of 𝐽 with respect to 𝜇 can be written as

∇µj𝐽i(𝜇j(𝑠))=[
∂Ji(µj(s))

∂µj,1(s)
, ...,

∂Ji(µj(s))

∂µj,D(s)
], 𝑖 = 1, 2, ...𝑀 . Here, 𝑀

is the number of objectives. Based on the Jacobian vector, a local

descent direction can be determined:

𝑒j = −(
∑︀

M
i=1 𝑤i

∇µj
Ji(µj(s))

‖∇µj
Ji(µj(s))‖

),
∑︀

M
i=1 𝑤i = 1 (16)

From Eq.(16), 𝑒j can be understood as a linear combination of the

steepest descent direction for all objectives. Subsequently, the particle

can be updated by applying:

�̄�j(𝑠) = 𝜇j(𝑠) + ∆𝛿𝑒j (17)

in which ∆𝛿 is the step length along the direction 𝑒j . Notice that

the gradient operation is applied to the current population and the

improved particles are integrated back to the swarm. Moreover, the

gradient operation is applied once every generation.

C. Handling of Mission Constraints

For most engineering optimization problems, different types of

mission constraints are commonly required to be considered simulta-

neously when optimizing the objectives. For the parking movement

planning problem (10), we apply a direct transcription method to

deal with the path and collision-free constraints. This method, named

multi-objective constraint handling (MOCH), is based on the principle

of multi-objective optimization and it reformulates the constrained

multi-objective problem to an unconstrained equivalent form. To

do this, the total amount of constraint violation for each particle

is computed. Subsequently, this value is assigned as the additional

mission objective, which means the dimension of the objective is

increased by one. For example, the additional objective 𝐽M+1 can

be defined by:
𝐽M+1 = min(𝑉G + 𝑉I) (18)

𝑉G and 𝑉I are, respectively, the total violation degrees for the

inequality constraints 𝑔i(·) > 𝑧i, 𝑖 = 1, ..., 𝑁G and the equality

constraints 𝐼i(·) = 0, 𝑖 = 1, ..., 𝑁I . To calculate their values,

we apply 𝑉G =
∑︀NG

i=1⟨𝑔i(·)⟩ and 𝑉I =
∑︀NI

i=1 |𝐼i(·)|. Here,

𝑔i = (𝑔i(·)/𝑧i) − 1. The notation ⟨𝑔i⟩ returns |𝑔i| if 𝑔i < 0.

Otherwise, it returns zero. Compared with other constraint handling

methods, the MOCH does not introduce additional parameters and

can be easily implemented.

D. Controller Design of Flight Parameters

In traditional MOPSO, the flight parameters (𝜛, 𝑐1 and 𝑐2) are

specified as fixed constants [11]. According to experimental results

presented in the literature [19], [20], it can be summarised that a

smaller 𝜛, a smaller 𝑐1 and a larger 𝑐2 tend to result in better local

exploitation. By contrast, the larger 𝜛 and 𝑐1, together with a smaller

𝑐2, can improve the global exploration ability of the algorithm.

Based on these conclusions, in this subsection, we are interested

in designing an adaptive controller to automatically tune the flight

parameters. Inspired by the work presented in [19], the tuning is

achieved by applying a hybrid strategy that takes into consideration

the hypervolume (HV) and spacing (SP) information.

Until now, many multi-objective performance indicators have

been designed to measure the quality of the obtained Pareto set [21],

[22]. Detailed analysis and definitions of these metrics can be found



in [23]. One type of indicator that has been widely applied is the

distance-based metrics. These metrics calculate the distance between

the true Pareto-optimal set and the approximated set obtained via

a given method. However, for the considered parking problem, the

true Pareto-set is unknown. Therefore, we apply the volume- and

diversity-based measures (such as the HV and SP indicators [23]).

The HV value can be computed by:

𝐻(𝑠+ 1) = 𝐿𝑒𝑏(
⋃︁

a∈A

[𝐽1(𝑎), 𝑅1]× · · · × [𝐽M (𝑎), 𝑅M ]) (19)

Here 𝐿𝑒𝑏(·) denotes the Lebesgue measure. 𝑅 = [𝑅1, ..., 𝑅M ] is the

reference point. From Eq.(19), 𝐻 can be understood as the union

of all the rectangular areas and it reflects both the distribution and

convergence of the archive. Besides, to further quantify the degree

of the distribution, an SP metric is used, which can be written as:

𝑆𝑃 (𝑠+ 1) = (
1

𝑁A − 1

NA
∑︁

j=1

(�̄�(𝑠+ 1)− 𝑙j(𝑠+ 1))2)0.5 (20)

in which �̄�(·) stands for the average minimum Manhattan distance

(MD) of particles, whereas 𝑙j(·) is the minimum MD of the 𝑗th

particle. Notice that the SP equation is identical to the one formally

defined in [24], and the distance measure used is different from the

minimum Euclidean distance. From Eq.(20), if the solutions are near

uniformly spread, then the resulting distance measure tends to be

small. As a result, it is desired to find a set of Pareto-optimal solution

with a smaller SP value.

The HV and SP values will be used as the primary metrics to

design the flight parameter controller. Specifically, if the inputs of

the controller are 𝐻(𝑠+ 1) and 𝑆𝑃 (𝑠+ 1), then the outputs can be

written as:

𝜛(𝑠 + 1) =











𝜛(𝑠), if H(s+1)>H(s), SP(s+1)<SP(s);

𝜛(𝑠)∆1(𝑠), if H(s+1)>H(s), SP(s+1)>SP(s);

𝜛(𝑠)(∆2(𝑠) + 1), if H(s+1)<H(s), SP(s+1)>SP(s);

𝜛(𝑠)( 1
2∆3(𝑠) + 1), if H(s+1)<H(s), SP(s+1)<SP(s).

(21)

𝑐1(𝑠 + 1) =











𝑐1(𝑠), if H(s+1)>H(s), SP(s+1)<SP(s);

𝑐1(𝑠)∆1(𝑠), if H(s+1)>H(s), SP(s+1)>SP(s);

𝑐1(𝑠)(∆2(𝑠) + 1), if H(s+1)<H(s), SP(s+1)>SP(s);

𝑐1(𝑠)(
1
2∆3(𝑠) + 1), if H(s+1)<H(s), SP(s+1)<SP(s).

(22)

𝑐2(𝑠 + 1) =











𝑐2(𝑠), if H(s+1)>H(s), SP(s+1)<SP(s);

𝑐2(𝑠)(∆1(𝑠) + 1), if H(s+1)>H(s), SP(s+1)>SP(s);

𝑐2(𝑠)(∆2(𝑠)), if H(s+1)<H(s), SP(s+1)>SP(s);

𝑐2(𝑠)(
1
2∆3(𝑠) + 1), if H(s+1)<H(s), SP(s+1)<SP(s).

(23)

where ∆1(𝑠) = max{ H(s)
H(s+1)

, SP (s)
SP (s+1)

}, ∆2(𝑠) =

max{H(s+1)
H(s)

, SP (s)
SP (s+1)

} and ∆3(𝑠) = min{H(s+1)
H(s)

, SP (s+1)
SP (s)

}.

𝜛(𝑠 + 1), 𝑐1(𝑠 + 1) and 𝑐2(𝑠 + 1) are the updated inertia weight

and acceleration parameters, respectively.

Remark 3. It is worth noting that in the proposed adaptive strategy,

the worst case scenario is 𝐻(𝑠+1) < 𝐻(𝑠) and 𝑆𝑃 (𝑠+1) > 𝑆𝑃 (𝑠).
This reveals that the obtained solutions is losing diversity and exten-

siveness. Therefore, the global exploration should be emphasized.

On the other hand, if the HV value is increasing and SP indicator

is shrinking (e.g., 𝐻(𝑠 + 1) > 𝐻(𝑠) and 𝑆𝑃 (𝑠 + 1) < 𝑆𝑃 (𝑠)), it

can be expected that the Pareto front is converging and uniformly

distributed. As a result, we keep the flight parameters unchanged.

Remark 4. One potential problem of the SP indicator is that it does

not suffice to infer evenness distribution of the solutions, as it does not

take into account gaps in the Pareto front. For instance, an hypothet-

ical Pareto front [(𝑥1, 𝑦1), (𝑥1 + 𝜖, 𝑦1 − 𝜖), (𝑥2, 𝑦2), (𝑥2 + 𝜖, 𝑦2 − 𝜖)]
would have a near optimal SP value without regard of the actual

positions of the four point. Therefore, follow-up research can be

encouraged to deal with this issue.

Algorithm 1 Framework of the HM-AGMOPSO

Input: Control parameters of the algorithm 𝜛(0), 𝑐1(0), 𝑐2(0), 𝑟1, 𝑟2, 𝑁j , 𝑁k ,

and 𝑆max;

Step 1: Initialize the velocity 𝜈 and position 𝜇 vector;

/*Main Loop*/

Step 2: Compute the objective values for each particle;

Step 3: Perform the local gradient operation to update the current swarm;

Step 4: Perform the nondominant sorting;

Step 5: Record the non-dominated solutions in 𝐴(𝑠);

Step 6: Find the global best 𝑔(𝑠) from 𝐴(𝑠);

Step 7: Compute the HV(𝑠) and SP(𝑠) indicators;

Step 8: Perform the flight parameter controller via Eqs.(21)-

(23) to update (𝜛(𝑠), 𝑐1(𝑠), 𝑐2(𝑠));

Step 9: Update 𝜈 and 𝜇 via Eq.(13) and Eq.(14);

Step 10: Check if 𝑆 > 𝑆max is satisfied

if not, 𝑆 = 𝑆 + 1 and go back to Step 2;

/*End main iteration*/

Output: The final Pareto set;

E. Overall Algorithm Structure

According to the above statement and analysis, a pseudocode

of the proposed HM-AGMOPSO is constructed in order to better

describe the overall procedures of the algorithm (see Algorithm 1).

IV. MULTI-OBJECTIVE PARKING MANEUVER RESULTS

A. Parameter/Scenario Specification

In this subsection, all the parameters/variables used to generate

the multi-objective optimal parking maneuver results are specified.

The simulation results were obtained based on a real autonomous

vehicle (e.g., illustrated in Fig.2(a)) under a real parking scenario.

The vehicle is 2.4m long and 1.54m wide. The values for 𝑚, 𝑙, and

𝑛 are set as 0.4m, 1.45m and 0.55m, respectively. As for the parking

slot, its size is illustrated in Fig.2(b), where 𝑙SL, 𝑙SW , and 𝐶𝐿 are

5.0m, 2.5m, and 4.0m, respectively.

a) Autonomous Vehicle b) Parking Slot 

 

Fig. 2: Autonomous vehicle and parking space

Regarding the vehicle state variables, their ranges are demon-

strated in Table II. Two control path constraints associated with the

jerk variable 𝜂 and the curvature derivative �̇� are 𝜂 ∈ [−0.5, 0.5] and

�̇� ∈ [−0.6, 0.6], respectively. The initial condition of the vehicle is

[𝑝x(0), 𝑝y(0), 𝑣(0), 𝛼(0), 𝜃(0), 𝜑(0)]=[9.0𝑚, 2.0𝑚, 0𝑚/𝑠, 0𝑚/𝑠2,
0∘, 0∘].

TABLE II: Ranges of state variables

Variables Ranges Variables Ranges

𝑝x [−10, 15]m 𝑝y [−2, 3.5]m
𝑣 [−2, 2]m/s 𝛼 [−0.75, 0.75]m/𝑠2

𝜃 [−180∘, 180∘] 𝜑 [−33∘, 33∘]

On the other hand, the control variables with regard to the

proposed HM-AGMOPSO are illustrated in Table III. These values

are used to start the optimization algorithm [16] and they are

dynamically adjusted via the strategy developed in Sec III.D.



TABLE III: Control parameters for the HM-AGMOPSO

Control variables Values/ranges Control variables Values/ranges

𝜛(0) (1 + 𝑟1)/2 𝑟1, 𝑟2 [0, 1]
𝑐1(0) 1.49445 𝑁j 200
𝑐2(0) 1.49445 𝑆max 500
𝑡f [10, 50] 𝑁k 40

B. Effectiveness of the Constraint Handling Strategy

In this subsection, the performance of applying MOCH-based

MOEAs for solving the optimal parking maneuver problem is tested.

Three test cases are firstly established and performed. For example:

Case 𝑖, 𝑖 = 1, 2, 3, stands for minimizing 𝐽i with the consideration

of all constraints. The algorithm proposed in this paper is compared

to seven approaches of the literature, optimizing these three mission

cases. Specifically, the algorithms selected for the comparative study

are the penalty function-based GA (denoted as PF-GA) [25], the

PF-based PSO algorithm [26], the PF-based artificial bee colony

algorithm (PF-ABC) [27], the infeasible rejection GA (IR-GA) [28],

the infeasible rejection PSO algorithm (IR-PSO) [28], the MNSGA-

II algorithm [29] and the MOEA/D approach [30], respectively. The

first five algorithms are typical single-objective optimizers, while the

last two algorithms are Pareto-based MOEAs using MOCH.

It should be noted that Case 3 was also considered in [9], where

two mission objectives, the coordinate errors and the oriental angle

error, were optimized via PF-GA through aggregation. Therefore, we

re-perform this mission case using PF-GA and compare the result

with the proposed method. Since the implementation of heuristic

algorithms might introduce some randomness, it is not reliable to

only present the experimental result in one single trial. Therefore, all

the techniques were performed for 20 trials independently and the

statistical results are tabulated in Table IV.

From the results presented in Table IV, it can be seen that

compared with other techniques investigated in this paper, the multi-

objective approaches using MOCH strategy can generally produce

better solutions. This can be explained that different from other

constraint handling strategies which infeasible solutions are always

considered worse than the feasible one, the MOCH strategy may

accept some infeasible solutions to the next iteration. Sometimes

infeasible candidates might contain valuable information and they

can be used to guide the evolution direction toward more promising

results. If these infeasible solutions are simply removed, it may cause

convergence issues especially when a problem contains disconnected

feasible regions. Therefore, we suggest that for the optimal parking

problem researched in this paper, it is advantageous to consider the

total amount of constraint violation as a new objective function.

TABLE IV: Statistical results of Cases 1-3

Different Average optimal values

methods Case 1 (𝐽1) Case 2 (𝐽2) Case 3 (𝐽3)

PF-GA 9.1420 1.3088 0.0154

IR-GA 9.0775 1.2927 0.0153

PF-PSO 8.9924 1.3057 0.0146

IR-PSO 9.0996 1.2887 0.0146

PF-ABC 9.1420 1.4219 0.0246

MOEA/D 8.9901 1.2850 0.0146

MNSGA-II 8.9878 1.2797 0.0145

HM-AGMOPSO 8.9680 1.2746 0.0145

To provide more indications with respect to the accuracy and

distribution of the obtained solutions, final results for the three

mission cases are displayed by box plots in Fig.3.

Fig.3 reflects the ranges of the solution, including the non-

averaged best and worst values. These results further confirm that

the performance of multi-objective solvers with MOCH strategy tends

to be superior to that of other solvers for the three single-objective

HM-AGMPSOIR-GA MOEA/D IR-PSOMNSGA-IIPF-PSO PF-GA PF-ABC
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Fig. 3: Box plots of final results

mission cases. Moreover, it is clear from Fig.3 that final results

generated via the proposed method for Case 2 are much better than in

any other case. Since the aim of Case 2 is to minimize the smoothness

indicator, the use of the gradient operation can provide improvement

to the objective and decrease the �̇� path constraint violation value

at the same time, which in turn improves the convergence of the

algorithm.

C. Bi-Objective Optimal Parking Results

In this subsection, we perform the bi-objective case study so as

to demonstrate the trade-off parking results computed by applying

the HM-AGMOPSO algorithm. For example,

∙ Case 4: minimizing 𝐽1 and 𝐽2.

∙ Case 5: minimizing 𝐽2 and 𝐽3.

∙ Case 6: minimizing 𝐽1 and 𝐽3.

Cases 4-6 were performed using the MOCH strategy with 𝑉 as the

additional objective, thereby resulting in a three-objective formula-

tion. The performance of the HM-AGMOPSO algorithm is compared

against two Pareto-based multi-objective evolutionary algorithms

such as the MNSGA-II algorithm [29] and the MOEA/D approach

[30]. It should be noticed that the mission case studied in [10] is

equivalent to Case 4 considered in this paper. More precisely, in [10]

the authors optimized 𝐽1 and 𝐽2 (e.g., through aggregation) using PF-

GA. Therefore, it is worth adding a comparison between the proposed

method and the PF-GA method for optimizing all the multi-objective

mission cases considered in this paper (denoted as PF-MOGA).

The Pareto front solutions for Cases 4-6 are visualized in Fig.4,

from where it can be observed that minimizing the path length

and minimizing the path smoothness indicator are two contradicting

objectives. This can be explained that if the vehicle wants to have

a smoother parking trajectory, the variation of the instantaneous

curvature, which is mainly affected by the angular velocity of the

vehicle, will be decreased. This means that the vehicle will not use the

maximum allowable control and the manoeuver time will be longer.

Consequently, the total path length will be increased. Similarly, in

Case 5 minimizing the path smoothness and optimizing the parking

achievement indicator display a contradicting relationship. To park

the vehicle in a desirable position, sharply varied control signals are

usually required and this might result in an increase with respect to

the smoothness indicator.

D. Three-Objective Optimal Parking Results

In this subsection, the three mission objectives are considered

simultaneously (denoted as Case 7). Similar with Cases 4-6, Case 7

was performed using the MOCH strategy with 𝑉 as the additional

objective (e.g., 𝐽4 = min(𝑉G + 𝑉I)). The resulting four-objective



9 9.1 9.2 9.3 9.4

J1: Minimize path length

2

2.2

2.4

2.6

2.8

3

J
2

: 
M

in
im

iz
e

 p
a

th
 s

m
o

o
th

n
e

s
s

Case 4

PF-MOGA

MNSGA-II

MOEA/D

HM-AGMOPSO

0 0.2 0.4 0.6 0.8

J3: Parking achivement

1.5

2

2.5

3

3.5

J
2

: 
M

in
im

iz
e

 p
a

th
 s

m
o

o
th

n
e

s
s

Case 5

PF-MOGA

MNSGA-II

MOEA/D

HM-AGMOPSO

9.3 9.35 9.4 9.45 9.5

J1: Minimize path length

0

0.1

0.2

0.3

0.4

0.5

0.6

J
3

: 
P

a
rk

in
g

 a
c
h

iv
e

m
e

n
t

Case 6

PF-MOGA

MNSGA-II

MOEA/D

HM-AGMOPSO

Fig. 4: Pareto solution for Cases 4-6

formulation was solved by applying different algorithms stated pre-

viously.

The obtained Pareto results are displayed in Fig.5, where the

solutions are projected onto two plane (e.g., 𝐽1 versus 𝐽2 and

𝐽2 versus 𝐽3). From the trade-off front, it is clear to know that

how the optimal path length result reduces the path smoothness

indicator and how the optimal path smoothness solution affects

the optimality of the parking achievement objective. These so-

lutions (along the obtained front) are considered equally good,

but in practical situations, only one optimized solution is needed.

Therefore, a proper compromise between extreme solutions should

be usually made. Based on the obtained Pareto-optimal solutions,

the intermediate point [𝐽1, 𝐽2, 𝐽3]=[9.10, 2.10, 0.41] can be recog-

nised as the best compromised solution. This point is obtained

by searching the solution 𝑝i among the final Pareto set 𝑃 via

𝑝*i = argmaxpi∈P

∑︀3
i=1(1 −

Ji(pi)−J*
i

Jmax
i

−J*
i
). Here 𝐽*

i and 𝐽max
i are

the extreme (best and worst) values of 𝐽i. This procedure can be

understood as searching a solution along the obtained Pareto front

such that the distance between this point and the origin can be

minimized. Similar procedures can also be applied to Cases 4-6 to

calculate the compromised solutions.
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Fig. 5: Pareto front for Case 7

E. Analysis of Results

Regarding the performance of different algorithms (e.g., the

Pareto-based MOEAs and the aggregation approach PF-MOGA), as

can be seen from Fig.4, the proposed HM-AGMOPSO can generally

perform better than its counterparts for mission Cases 4-6. This

conclusion can be reflected by the obtained Pareto front solution.

That is, the MNSGA-II, MOEA/D, and MOGA solutions/results are

generally covered by the HM-AGMOPSO solutions. In addition, the

Pareto-results produced by HM-AGMOPSO tend to be more uniform

than the others in the objective space. This can be attributed to the

implementation of the adaptive flight parameter controller which can

balance the exploitation and exploration of the evolution process,

thus making the solution more optimal and uniform. According to

the Case 7 results shown in Fig.5, the Pareto solutions produced by

MNSGA-II, MOEA/D and MOGA are again covered by the solution

calculated via the proposed method. Moreover, the HM-AGMOPSO

solutions tend to be more well-distributed than other techniques.

Remark 5. It should be noted that even if most of literature algorithms

are single-objective optimizers, they still can provide useful baselines

in multi-objective contexts. For example, if we directly apply PF-PSO

algorithm to optimize individual objective 𝐽1 in Case 4, the values

for 𝐽1 and 𝐽2 are 8.971 and 3.784, respectively. Based on the result

presented in Fig.4, although 𝐽2 is significantly sacrificed, this solution

point (𝐽1, 𝐽2) can be treated as an extreme solution. However, if we

apply this algorithm to optimize a normalised aggregation of 𝐽1 and

𝐽2 to find a compromised solution, the final values of (𝐽1, 𝐽2) are

dominated by the solutions obtained via the Pareto-based MOEAs.

Similar results can also be obtained for the other four single-objective

optimizers investigated in this paper. Therefore, it is more suitable

to apply Pareto-based MOEAs to address the multi-objective parking

maneuver planning cases.

In order to analyze the quality of the obtained Pareto solution

and the performance of different multi-objective solvers, a statistical

study was carried out with respect to the HV value for different

mission cases. To compute the HV indicator, the obtained Pareto-

optimal solutions are firstly normalized. This step is achieved by

placing all non-dominated solutions found via different algorithms in

one set. Then we extract the minimum and maximum values for each

objective and normalize all the solutions. The reference points for

mission Cases 4-6 are set to 𝑅 = [1.1, 1.1], while the reference points

for Case 7 is assigned as 𝑅 = [1.1, 1.1, 1.1]. Then the statistical HV

results for Case 4-7 are summarised in Table V, where all results

were averaged on 20 independent trials.

TABLE V: Best, average and worst HV results for Cases 4-7

HV

Case No. PF-MOGA [10] MNSGA-II [29] MOEA/D [30] HM-AGMOPSO

0.4565 0.5448 0.4931 0.5761

4 0.4563 0.5446 0.4930 0.5758

0.4561 0.5442 0.4928 0.5756

0.6037 0.8664 0.6936 0.9442

5 0.6031 0.8650 0.6928 0.9429

0.6026 0.8641 0.6923 0.9412

0.7769 0.8172 0.8018 0.8375

6 0.7767 0.8169 0.8014 0.8373

0.7766 0.8166 0.8011 0.8370

0.4563 0.5433 0.4617 0.5648

7 0.4556 0.5427 0.4614 0.5646

0.4552 0.5423 0.4610 0.5641

According to the data presented in Table V, it is obvious that

the HM-AGMOPSO technique designed in this paper is able to

achieve the highest HV values among the four multi-objective solvers.

Moreover, all the Pareto-based MOEAs can statistically outperform

the aggregation-based optimizer for the considered parking maneuver

planning cases.

To further study the robustness and convergence of different

Pareto-based MOEAs, the evolution of the HV value along the

iterations is given concerns. Fig.6 displays the HV evolution histories

for Case 4-7. From Fig.6, it is obvious that compared with other

Pareto-based MOEAs, the proposed method tends to converge to

more optimal solution sets in relatively-fewer number of iterations for

all the considered mission cases. This further confirms the superiority

of applying the proposed strategy.

In addition, to contrast the significance of the Pareto-optimal

solutions obtained via different multi-objective optimizers, the

Wilcoxon signed-ranks test is adopted (encouraged and demonstrated

in [31]). This is a typical non-parametric statistical hypothesis test and

it has the capability to rank the difference in performance between

various multi-objective optimization methods studied in this section.

The test was carried out with respect to the HV performance metric

and the results are tabulated in Table VI. In this table, the 𝑝-values
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Fig. 6: HV evolution histories for Case 4-7

and ℎ-values calculated for all pairwise comparisons concerning HM-

AGMOPSO are reported. It is worth remarking that ℎ = 1 reflects

that a significant improvement in terms of the HV performance

can be achieved with 𝜀 = 0.05 (level of significance). As can

be observed from Table VI, the proposed method demonstrates a

significant improvement over other multi-objective optimizers for the

considered mission cases. These statistical results further improve

the confidence in the verification of enhanced performance of the

proposed strategy.

TABLE VI: Non-parametric statistical test results

Pairwise comparison
Case 4 Case 5

𝑝-value ℎ-value 𝑝-value ℎ-value

HM-AGMOPSO vs PF-MOGA <e-04 1 <e-04 1

HM-AGMOPSO vs MNSGA-II <e-04 1 <e-04 1

HM-AGMOPSO vs MOEA/D <e-04 1 <e-04 1

Pairwise comparison
Case 6 Case 7

𝑝-value ℎ-value 𝑝-value ℎ-value

HM-AGMOPSO vs PF-MOGA 4.88e-04 1 <e-04 1

HM-AGMOPSO vs MNSGA-II 4.88e-04 1 <e-04 1

HM-AGMOPSO vs MOEA/D 4.88e-04 1 <e-04 1

TABLE VII: Best, average and worst HV results via MOPSO-based methods

HV

Case No. MOPSO GMOPSO HM-AMOPSO HM-AGMOPSO

0.5017 0.5114 0.5538 0.5761

4 0.5014 0.5113 0.5536 0.5758

0.5012 0.5111 0.5533 0.5756

0.7227 0.7538 0.8829 0.9442

5 0.7225 0.7537 0.8827 0.9429

0.7223 0.7536 0.8826 0.9412

0.7816 0.7927 0.8205 0.8375

6 0.7815 0.7924 0.8203 0.8373

0.7813 0.7922 0.8201 0.8370

0.4624 0.4836 0.5516 0.5648

7 0.4621 0.4835 0.5513 0.5646

0.4619 0.4834 0.5512 0.5641

Though a better performance can be achieved via the proposed

method, it is not clear whether the use of the gradient operation or

the self-adaptation strategy will have contributions to the algorithm.

To address this concern, experiments were performed to compare

the results obtained using the approach with no adjustment (e.g., the

original MOPSO), the approach with only the gradient operation (de-

noted as GMOPSO), and the approach with only the self adaptation

strategy (denoted as HM-AMOPSO). The aim of carrying out this

analysis is to study and appreciate the contributions made by each

individual component.

The corresponding HV results for different mission cases are

tabulated in Table VII, from where it can be observed that both the

gradient operation and the flight parameter controller can have pos-

itive influences on the algorithm performance for all the considered

mission cases. Furthermore, compared with the gradient operation,

the use of the flight parameter controller can lead to a more significant

improvement to the algorithm.

V. EXPERIMENTAL RESULTS

Apart from the simulation studies, it is also necessary to

carry out a set of experiments in order to verify the reliability

of the planned parking trajectory obtained via the proposed HM-

AGMOPSO method.

A. Tracking of Planned Trajectory

To fulfill the automatic parking, a controller should be used so

as to track the pre-planned parking movement. The control method

used in this work is a simple application of the result in [17]. The

control input to be applied to the vehicle is 𝑢 = [𝑣, 𝜔]. Denoting

the pre-planned trajectory as [𝑝rx, 𝑝
r
y, 𝜃

r, 𝜑r], based on Eq.(1), the

tracking error vector [𝑝ex, 𝑝
e
y, 𝜃

e, 𝜑e] follows the equation:
⎡

⎢

⎢

⎣

�̇�ex
�̇�ey
𝜃e

�̇�e

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

𝑣 cos 𝜃 − 𝑣r cos 𝜃r

𝑣 sin 𝜃 − 𝑣r sin 𝜃r

𝑣 tan𝜑− 𝑣r tan𝜑r

𝜔 − 𝜔r

⎤

⎥

⎥

⎦

(24)

where [𝑣r, 𝜔r] is the reference input. The aim for the controller is

to produce an input vector such that the current vehicle’s motion

can track the desired trajectory. That is, (𝑝ex, 𝑝
e
y, 𝜃

e, 𝜑e) should be

bounded and converge to a small neighborhood of zero. According

to [17], a simple control law can be designed in the form of:
⎧

⎨

⎩

𝑣 = (𝑣r cos 𝜃r − 𝜒(𝑝ex))/ cos 𝜃
𝜔 = �̇�/(1 + 𝜙2)
𝜙 = (−𝜎𝑝ey − 𝜔 − 𝛽𝜃e + 𝑣r tan𝜑r)/𝑣

(25)

where 𝜒, 𝜎, 𝛽 > 0.

B. Experimental Setup
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Fig. 7: Experimental setup: Sensors and Systems

The experiment was performed on the autonomous vehicle

illustrated in Fig.2. This intelligent vehicle uses the drive-by-wire

technology and is equipped with sensors for mapping and localiza-

tion. Fig.7(a) and Fig.7(b) illustrate some important sensors installed

on the vehicle, while Fig.7(c) and Fig.7(d) demonstrate the driving

cabin of the vehicle. Besides, to achieve a high computational per-

formance, the NVIDIA Jetson TX2 kit (dual-core NVIDIA Denver2

and quad-core ARM Cortex-A57, 8GB 128-bit LPDDR4 memory

and integrated 256-core NVIDIA Pascal GPU) is applied as the

onboard computer of the autonomous vehicle. As for the control

box, a graphical illustration is given by Fig.8, where the in-vehicle
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communication between the control box and three control subsystems

is achieved via the controller area network (CAN). The battery is used

as the power supplier of the control box (as shown in Fig.8(c)).

C. Results and Discussions

The real-time capability as well as the impact of initial position

perturbations are firstly analyzed. To boost the processing speed of

the optimization algorithm proposed in this paper, we apply a homo-

geneous parallel computing structure [14]. Specifically, the idea is to

separate the original population and archive to several subpopulations

and subarchives. In this way, the entire optimization task can be

equally distributed to a number of available processors and processed

in parallel, thereby significantly reducing the required processing

time. A graphical demonstration regarding this homogeneous parallel

computing structure is given by Fig.9, from where it is obvious

that for each processor, the HM-AGMOPSO optimization process

is executed and updates will be made on the subpopulation and

subarchive. The sizes of the subpopulation and subarchive, along with

the number of processor, are assigned as 40, 25 and 6, respectively.

Other algorithm-related parameters remain the same as specified in

Table III. Using this configuration, we have tested the algorithm over

100 trials and the average as well as the worst-case processing times

are 2.714s and 3.117s, respectively. These results are almost 50 times

lesser than the one obtained using a single processor, which confirms

the advantage of applying the parallel computing structure.

The control algorithm is then applied to track the pre-planned

trajectory for Case 4. The initial condition was perturbed by

[𝑝x(0), 𝑝y(0), 𝜃(0)] = [𝑝x(0), 𝑝y(0), 𝜃(0)] + [𝛿𝑝x, 𝛿𝑝y, 𝛿𝜃], where

|𝛿𝑝x| ≤ 0.4m, |𝛿𝑝y| ≤ 0.2m and |𝛿𝜃| ≤ 0.5∘. 500 Monte-Carlo

tests were performed and the error evolution profiles are displayed

in Figs.10(a)-(b), while the distribution and histogram regarding the

average execution time per control action are plotted in Fig.10(c)

and Fig.10(d). From Figs.10(a)-(b), it is obvious that although the

initial condition perturbations can diverge the actual trajectory from

the reference, the error will be steered to around zero via the control.

Moreover, based on the algorithm execution results presented in

Fig.10(c) and Fig.10(d), the real-time applicability can be justified.

In terms of the real-world experiments, Fig.11 demonstrates the

automatic parking experimental results. Specifically, Fig.11 illustrates

the actual parking movements of the autonomous vehicle for mission

Case 4. From the test, although the pre-planned path is not accurately

followed, the vehicle can successfully fulfill the parking task for
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the mission without colliding with the slot boundary. This further

confirms the reliability of the proposed trajectory planning method

and the produced parking trajectory. Videos were also submitted to

prove this conclusion in real parking situations 1.

VI. CONCLUSION

In this investigation, a HM-AGMOPSO approach was designed

and implemented to solve the multi-objective wheeled vehicle park-

ing motion planning problem. To improve the local search ability

and better control the evolution process of the algorithm, a local

1https://youtu.be/OQLlKZrX Zg or https://v.youku.com/v show/id
XNDA5OTgxODQ2MA



gradient operation, along with a novel flight parameter controller,

was designed and embedded in the MOPSO framework. A detailed

experimental study was performed so as to demonstrate the key

features of the multi-objective solutions and the reliability of the HM-

AGMOPSO. From the simulation results, we have obtained that:

1) Considering the total constraint violation as an additional objec-

tive can effectively improve the quality of the final results for

the investigated problem (supported by the results in Table IV

and Fig.3).

2) For optimizing multi-objective parking mission cases, the pro-

posed HM-AGMOPSO algorithm is able to produce non-

dominated results with more uniform and optimal distribution

(supported by the results in Table V and Figs.4-6).

3) The proposed gradient operation and flight parameter controller

can indeed provide contributions to the algorithm (supported by

the data in Table VII).

Field tests were performed and the results confirm the availabil-

ity of using the proposed design in real-wold applications. Thus, we

suggest using the proposed algorithm to offer an effective Pareto-

optimal solution for the multi-objective parking trajectory optimiza-

tion problem
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