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by Spectral Intensity Bioaerosol Sensor
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• Highly variable bioaerosol emissions
were observed at WWTP and back-
ground site.

• Fluorescence spectra were multimodal
with distinctive features at two sam-
pling sites.

• Similarity between SIBS spectra and
wastewater excitation-emission matrix

• SIBS can contribute to enhancing selec-
tivity for characterisation of bioaerosols.
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Bioaerosol emissions fromwastewater treatment plants may pose adverse health impact onworkers and nearby
communities. To detect and characterise bioaerosol emissions from wastewater treatment plant (WWTP), a
novel real-time bioaerosol sensor, Spectral Intensity Bioaerosol Sensor (SIBS) was employed at a WWTP and a
background site. The SIBS records a range of data (size, shape, and fluorescence emission across 16 wavelength
bands from 298 to 735 nm for two excitation wavelengths (285 nm and 370 nm)) on single particles in real
time. Additionally, excitation-emission matrix (EEM) of wastewater samples obtained by a spectrofluorometer
was compared with SIBS spectra from WWTP. The results showed that the average number concentrations of
total particles (NT) and fluorescence particles (NF) were both higher at the WWTP (NT = 2.01 cm−3, NF =
1.13 cm−3) than the background site (NT = 1.79 cm−3, NF = 1.01 cm−3). The temporal variation of NF and
NT was highly variable at theWWTP and the concentration peaks were consistent with on-site activities. More-
over, the time-resolved number-size distribution of fluorescent particles revealed the predominance of fine scale
particles (b1 μm) and the time-series channel by channel number concentrations demonstrated the temporal
variability of dominant bio-fluorophores. Furthermore, the overall and size-segregated fluorescence spectra at
two sites were multimodal. In particular, the fluorescence intensity increases with increasing particle size in
WWTP spectra, which is not present in the background spectra. In addition, the highly resolved SIBS fluorescence
spectrawere broadly similar to EEMofwastewater. Thesefindings confirmed that the spectrally resolvedfluores-
cence detected by SIBS is capable of providing reliable bio-fluorophores information of bioaerosol emissions gen-
erated from wastewater, thus holding the potential for better characterisation of bioaerosols in real time.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
⁎ Corresponding author.
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.137629&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scitotenv.2020.137629
mailto:z.a.nasar@cranfield.ac.uk
Journal logo
https://doi.org/10.1016/j.scitotenv.2020.137629
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 J. Tian et al. / Science of the Total Environment 721 (2020) 137629
1. Introduction

The world's increasing population and urbanisation processes exac-
erbate wastewater generation (IWA, 2018). Thus, there is a growing
number of wastewater treatment plants (WWTPs) to ensure safe inland
discharge, disposal and reuse (Mateo-Sagasta et al., 2015; IWA, 2018;
Korzeniewska, 2011). Different WWTP operations may lead to aerosol-
ization of diverse biological materials (Michałkiewicz, 2019; Pascual
et al., 2003; Rizzo et al., 2013), capable of allergenic, infectious or toxic
potential, leading to growing concerns of potential health risks to the
sewage workers and nearby communities (Gerardi and Zimmerman,
2004; Fracchia et al., 2006; Korzeniewska et al., 2008; Prazmo et al.,
2003; Fracchia et al., 2006). Understanding the concentration, distribu-
tion, composition and resultant impact of bioaerosols is critical to eluci-
date the potential risks of public health, especially on occupational
exposure at WWTP (Swan et al., 2003). Consequently, there is an in-
creasing interest in the detection and characterisation of bioaerosol
emissions from WWTPs.

Traditional bioaerosol sampling approaches with a range of off-line
post-collection analysis for bioaerosol monitoring (culture-based and
culture-independent) can only provide snapshot data with poor time
resolution (hours to days), poor repeatability and are labour intensive
(Korzeniewska, 2011; Griffiths and Decosemo, 1994; Chi and Li, 2007;
Heidelberg et al., 1997), which cannot capture the true nature andmag-
nitude of bioaerosol emissions from a source. Thus, there is a need for
rapid bioaerosols detection and characterisation methods to advance
bioaerosol risk assessment and management from environmental
sources including WWTPs (Nasir et al., 2019).

In recent years, advancements in laser-induced fluorescence (LIF)
spectroscopy techniques have contributed to the application of qualita-
tive and quantitative studies of bioaerosols in real time (Pöhlker et al.,
2012; Després et al., 2007; Bowers et al., 2009; Fröhlich-Nowoisky
et al., 2009; Garcia-Alcega et al., 2017; Garcia-Alcega et al., 2018;
Ferguson et al., 2019). It is based on the principle that a specific organic
molecule of biological origin (e.g. proteins, coenzymes, structural com-
pounds, pigments) exhibits intrinsic fluorescence (or autofluorescence)
(Pöhlker et al., 2012; Pan, 2015). In general, a given fluorophore usually
characterised by the excitation (λex) and emissionwavelengths (λem),
while excitation-emission matrix (EEM) could enhance the qualitative
assignment of spectral modes to known fluorophores, providing insight
into molecular origin of fluorescence accordingly (Miao et al., 2003).
The ultraviolet aerodynamic particle sizer (UV-APS) and Wideband In-
tegrated Bioaerosol Sensor (WIBS) series are LIF-based instruments
which have been utilised in continuous measurement of bioaerosols in
urban area (e.g. Huffman et al., 2010), industrial processes (O'Connor
et al., 2015; Li et al., 2016), high altitude (Crawford et al., 2016; Gabey
et al., 2013; Perring et al., 2015; Ziemba et al., 2016; Yue et al., 2019)
etc. for many years, but their application is relatively rare in WWTP.
However, the broad emission detection bands of UV-APS and WIBS
make it difficult to precisely classify among different categories of
bioaerosols (Pöhlker et al., 2012; Nasir et al., 2019). In addition, the
complexity of the molecular components and non-biological
interferents that fluoresce (e.g. mineral dust, polycyclic aromatic hydro-
carbons, secondary organic aerosol) in a natural environment also im-
pede their application (Pöhlker et al., 2012).

Lately, building on the WIBS, an upgraded device with highly re-
solved fluorescence intensity measurements known as the Spectral In-
tensity Bioaerosol Sensor (SIBS) has been developed by Droplet
Measurement Technologies Inc. (Longmont, USA). The WIBS measures
fluorescence emission in three emissions (λem) bands for two excita-
tion wavelengths (λex = 280 nm and 370 nm) as follows: FL1:
λex=280nm,λem~310–400nm, FL2:λex=280nm,λem~420–650-
nm, and FL3: λex= 370 nm, λem ~ 420–650 nm. In contrast, SIBS uses
dual excitation wavelengths (λex = 285 nm and λex = 370 nm) and
provides measurements of size, shape and spectrally resolved fluores-
cence in 16 channels (λem = 298–735 nm) at two excitation
wavelengths (Nasir et al., 2018; Könemann et al., 2019; Nasir et al.,
2019). Thus, highly resolved fluorescence spectral information offered
by SIBS in comparison to WIBS can improve the selectivity to discrimi-
nate and classify bioaerosol emissions. An earlier study by Nasir et al.
(2019) demonstrated that SIBS offered additional spectral information
to theWIBS (Nasir et al., 2019). However, the resolved emission spectra
require meaningful interpretation in terms of assigning spectral re-
sponses to bio-fluorophores. Based on the available literature on excita-
tion and emission matrix spectra of atmospherically relevant biological
fluorophores (Hernandez et al., 2016; Pöhlker et al., 2012; Pan et al.,
2010; Hill et al., 2009), a tangible explanation of the molecular origin
of fluorescence in different emission channels in SIBS could be deduced.

In the present study, the SIBSwas used to detect and characterise the
bioaerosol emissions from aWWTP and comparedwith the background
environment. Furthermore, the fluorescence spectra provided by SIBS
and the wastewater EEM analysed by a spectrofluorometer were com-
pared to evaluate the extent to which the highly resolved fluorescence
intensity measurements by SIBS could be used to characterise
bioaerosol emissions from wastewater treatment.

2. Materials and methods

2.1. Sampling procedure

Samplings were conducted at theWWTP (coordinate: 52°04′45.3″N
0°37′35.3″W) and the campus background site (coordinate: 52°04′
22.4″N 0°37′37.4″W) at Cranfield University, UK (Fig. 1). The back-
ground site was chosen as a control site with significantly different
emission sources in comparison to WWTP. For each site, five measure-
ments were carried out during daytime at a height of 1 m by SIBS, and
on-site activity was recorded during each sampling period. A general
description of the two sites and sampling strategy are provided in
Table 1.

Additionally, fivewastewater sampleswere collected from the trick-
ling filter (TF) ponds at the WWTP with a sterile 15 ml conical centri-
fuge tubes (Falcon™) at the end of each sampling day. The
wastewater samples were stored in the fridge at 4 °C before being
analysed by the spectrofluorometer FluoroMax®-Plus (HORIBA JOBIN
YVON INC, USA) in the laboratory. The meteorological data were pro-
vided by Kisanhub Weather Station Network located in the university
campus and the WWTP.

2.2. Instrumentation and analysis

2.2.1. Spectral Intensity Bioaerosol Sensor (SIBS)
The detailed information about the operation principle of SIBS was

comprehensively described by Nasir et al. (2019) and Könemann et al.
(2019). Briefly, SIBS records single-particle fluorescence spectrum
across 16 emission wavelength bands (from 298 to 735 nm) at two ex-
citation wavelengths (λex = 285 nm and 370 nm) along with size and
shape in real time. The wavelength ranges of 16 fluorescence emission
channels are listed in Table 2.

SIBS records size, shape and fluorescence emission intensity across
different channels for single particles as HDF5 format. These files were
imported into a data analysis toolkit (SIBS Toolkit) for offline data anal-
ysis. An averaging interval of 60 s and particle size limit of 0.50–15 μm
was chosen when processing for the total and size segregated (15
bins) number concentration time-series data. The background fluores-
cence signal of SIBS was recorded by running a Forced Trigger (FT)
mode prior to each measurement, involving sample pump off and the
xenon lamps firing at an interval of 150ms. Aminimum of 5min forced
trigger data was recorded before each measurement at a site. This
‘Forced Trigger’ fluorescence emission intensity data was used to set a
lower fluorescence threshold to determine fluorescent particles. In
this study, the mean + 3 × standard deviation (σ) of emission fluores-
cence intensity in each channel was applied to define the fluorescent FT



Fig. 1. The location of sampling sites in the wastewater treatment plant (a) and university campus (b).

Table 2
Fluorescence measurement channels (Ch) and wavelength ranges.

Channel Lower wavelength (nm) Upper wavelength (nm)

1
298.2 316.4
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threshold value for each channel. In addition, two xenon flash lamps
were recharged for a very short time, so some particles might have
not been flashed (excited). Hence, three particle categories were ob-
tained: total particles, excited particles and fluorescent particles.
Eq. (1) was used for correcting the number concentration of fluores-
cence particles:

Fluorescentparticle conc: ¼ F
E
� T ð1Þ

where T, E, F refer to the number concentrations (#/cm3) of total, ex-
cited and fluorescent (calculated from fluorescent threshold value of
FT data) particles (Nasir et al., 2018; Nasir et al., 2019). # denotes the
number of particles.

Fluorescence spectra of each measurement at WWTP and back-
ground site were calculated from excited particle by particle emission
intensity values minus FT threshold values (mean + 3σ) across each
channel, followed by the calculation of mean fluorescence intensity
Table 1
Description of the sampling sites and sampling strategy.

Site Description Sampling strategy

Background A grassed area with mature trees
nearby; surrounded by
university campus buildings

• Sampling conducted at the
grass plot at Cranfield Univer-
sity (Fig. 1b).

• Five repeated measurement
periods for 3–3.5 h during
daytime.

• Sampling on 27th, 28th and
29th June 2019 and 1st and
2nd July 2019 (labelled as day
1, day 2, day 3, day 4 and day 5
in the Results and discussion
section)

WWTP A trickling filter based WWTP
treating domestic wastewater
and storm drains within the
campus with a daily capacity of
450 m3; surrounded by
agricultural fields and woodland

• Sampling between the second-
ary trickling filter beds (TF1)
and the upper sludge storage
tank (Fig. 1a)

• Five repeated measurement
periods for 4 h during daytime
each.

• Sampling on 15th, 22nd, 29th,
30th and 31st May 2019
(labelled as day 1, day 2, day 3,
day 4 and day 5 in the Results
and discussion section)
within each emission channel for two excitation wavelengths. Finally,
amean fluorescence spectrumwas calculated for each site. Additionally,
size fractionated fluorescence spectral profiles were also calculated by
grouping fluorescent particles into five size ranges: 0.5–1, 1–2.5,
2.5–4, 4–10 and 10–15 μm.

2.2.2. FluoroMax®-Plus: Bench-top spectrofluorometer
Two milliliters of each wastewater sample were transferred into a

cuvette which was then placed in the sample chamber of FluoroMax®-
Plus. Three repeated measurements of variable excitation wavelength
from 220 to 650 nm (increment = 20 nm), emission wavelength from
2
316.4 344.8

3
344.9 362.5

4
377.5 401.5

5
401.5 429.7

6
430.2 457.5

7
456.7 485.6

8
486.0 514.0

9
514.1 542.0

10
542.0 569.8

11
569.9 597.6

12
597.6 625.2

13
625.3 652.8

14
652.8 680.2

15
680.3 707.5

16
707.5 734.7
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270 to 740 nm (increment = 5 nm) and fluorescence intensity were
employed for each wastewater sample. The increment in a wavelength
scan is the spacing between adjacent data pointswhich affected the res-
olution of the spectrum and total time for data acquisition. Considering
the instrument's spectral response and influence of the light-
absorbance properties of the wastewater sample, 20 nm increment of
λex and 5 nm increment of λem was selected (Horiba, 2009; Gilmore,
2011). Calibration was carried out prior to each operation. The spectral
data were acquired when the analysis finished. The entire process was
controlled by the FluorEssence™ software with Origin® embedded for
graphic presentation. The correction including dark offset, blank sub-
traction and correction-factor filewere activated in FluorEssence™ soft-
ware and applied automatically on the excitation-emission matrix
(EEM) spectra by following the equation: Scorrected (or Sc) =
(Smeasured − Sdark − Sblank) × Correction-factor file (Horiba,
2012). Thus the emission intensity showing on the EEM contour map
was S1c/R1c (corrected fluorescence emission intensity). First and sec-
ond order Rayleigh scattering was masked in order to avoid the influ-
ence of distorted sharp peak of fluorescence intensity caused by elastic
scattering and second order effect (Pöhlker et al., 2012).

3. Results and discussion

3.1. Number concentrations

3.1.1. Average particle number concentrations
The average number concentrations of total particles (NT) and fluo-

rescence particles (NF) at WWTP (NT = 2.01 cm−3, NF = 1.13 cm−3)
were both higher than the background site (NT = 1.79 cm−3, NF =
1.01 cm−3) (Table 3). A non-parametric Mann-Whitney U test has
been undertaken to test the difference in total particles (NT), fluores-
cent particles (NF) and ratio (NF/NT) between theWWTP and the back-
ground site. There was a statistically significant difference between
WWTP and the background concentration of NT and NF (p b 0.05). Fur-
thermore, there was a larger variation in the fluorescent particle frac-
tions (ratio of NF/NT) at the WWTP site (from 0.42 to 0.85) compared
to the background site (from 0.55 to 0.68). The coefficient of variation
(the ratio of the standard deviation to themean) also illustrated a larger
variability in NF andNT at theWWTP site. However, therewas no statis-
tically significant difference between the ratio (NF/NT) at WWTP and
background site. This finding, keeping in view the larger variation in
the fluorescent particle fraction at the WWTP suggested that while the
average ratios of fluorescent particles at two sites do not differ signifi-
cantly, NF are more dynamic and affected by on-site operations and ac-
tivities around WWTP leading to intermittent higher fluorescent
fraction (up to 0.85). Hence, real-time sampling holds the potential to
quantify the temporal variability of bioaerosol emissions at theWWTPs.
Table 3
Descriptive statistics of particle concentrations at thewastewater treatment plant and the
background site.

Number concentration Ratio

Parameter NT (cm−3) NF (cm−3) NF/NT

WWTP Average 2.01a 1.13b 0.57
Max 5.84 4.97 0.85
Min 0.36 0.21 0.42
CV (%) 54 54 10

Background Average 1.79a 1.01b 0.56
Max 3.99 2.66 0.68
Min 0.27 0.14 0.55
CV (%) 41 43 6.0

NT = number concentrations of total particles, NF = number concentrations of fluores-
cent particles, ratio of NF/NT = fluorescent fractions, CV = coefficient of variation. The
values with the same superscript were significantly different at the 0.05 level of signifi-
cance (a, b).
The particle number concentrations in this study were higher in
comparison to previous work at the same WWTP by Nasir et al.
(2019) (NT = 1.03 cm−3, NF = 0.25 cm−3). This was likely due to dif-
ferences in the chosen particle size ranges. The particle size reported
by Nasir et al. (2019) was 0.5–7 μm, while the particle size range for
this study was 0.5–15 μm.

3.1.2. Temporal variation of particle number concentrations
Fig. 2 shows the temporal variation of particle number concentra-

tions at the WWTP and the background sites. The meteorological data
are provided in Table S1. While, the NF and NT were variable at both
sampling sites, the levels were higher at the WWTP in comparison to
the background site. Specifically, thefluctuation of particle number con-
centration was most obvious on day 4 at the WWTP (Fig. 2a), which
corresponded to high and variable wind speed on that day (Table S1).
Thismay have contributed to the aerosolization of wastewater. Further-
more, most of the particle concentration peakswere consistentwith the
daily records, which is mowing activity (13:20 on day 1, and
14:20–14:50 on day 4), sludge dredging (at 12:00 and 12:45 on day
2) and tank flushing (9:30–9:50 on day 4, and 9:50 on day5). Addition-
ally, sharp peaks in particle number concentrations observed during the
afternoon on day 1 (15:00), day 4 (14:00) and day 5 (14:20) could be
due to high flow of wastewater to tricking filters leading to increased
aerosolization (Table S2).

The peak of NT and NF at the background site (Fig. 2b) were related
to the exhaust fan operation, vehicular activities andwind-blownmate-
rials nearby the sampling site (Table S2). The highest concentrationwas
recorded on day 2, since therewas a continuous fuel burning smell orig-
inating from Cranfield airport and this along with high wind speed had
probably resulted in high NT and NF.

These results indicate that the fluorescent aerosol emissions were
largely affected by the on-site operation and activities, and highlight
that “snapshot” sampling methods could not capture the true magni-
tude and variation of bioaerosol emissions from environmental sources
(Nasir et al., 2019).

Apart from that, temperature, relative humidity and solar radiation
were reported to be themajor influential factors on the level of concen-
tration of bioaerosols in the cultivation methods (Forde et al., 2018;
Zhong et al., 2016; Kowalski and Pastuszka, 2018). Generally, with an
increase of solar radiation intensity, the concentration of bioaerosols
was lower because of the biological sensitivity to sterilization by UV
light (Kowalski and Pastuszka, 2018). However, there is no clear rela-
tionship between temperature, solar radiation, relative humidity and
fluorescent particle concentrations in this study (Table S1). This was be-
cause the detection and quantification by SIBS is based on intrinsic fluo-
rescence from biological fluorophores regardless of viability status of
airborne biological materials.

3.1.3. Time-resolved number-size distribution of fluorescent particles
Fig. 3 illustrates the number-size distribution of fluorescent particles

at the WWTP and the background site. The majority of fluorescent parti-
cleswere b1 μm(fineparticle),which indicated that a large fraction of de-
tected particles consists of submicron biological materials. Shifts in
particle size and noticeable fluctuations of particle concentrations were
observed over different measurement days at both sites. These variations
correspond to the activities discussed previously. Particularly, during day
1 at 15:00 andday 4 at 14:00, therewere obvious increases in particle size
up to 4.31 μmand 9.57 μmat theWWTP (Fig. 3a). These corresponded to
a higher flow of wastewater in the trickling filter. Similarly, on day 2 at
12:00 and 12:45, sludge dredging, and tank flushing happenedwhen par-
ticle size went up to 4.83 μm. Finally, on day 4 at 14:00, the particle size
had significantly increased up to 7 μm during the mowing activity. An-
other comparable study by Li et al. (2016)measured the bioaerosol levels
and size distribution at aWWTP in Beijing by using UV-APS. Their results
showed the predominant fluorescent particle size were centred on
3–4 μm among seven intra-plant sampling sites, which was explained



Fig. 2. Temporal variation of total and fluorescent particle number concentrations at (a) wastewater treatment plant and (b) background site (NT = number concentrations of total
particles; NF = number concentrations of fluorescent particles).

5J. Tian et al. / Science of the Total Environment 721 (2020) 137629
by the dominance of fungal species or bacterial aggregates. This is proba-
bly because UV-APS utilises a single excitation (355 nm) and emission
band (420 to 575nm) to detectfluorescence particles. Therefore, thefluo-
rescent particlesmay have escaped from the detection comparing to dual
wavelength excitation and multi-channel emission measurements of
SIBS. Furthermore, discrimination of the fluorescent particles is signifi-
cantly influenced by the applied fluorescence threshold (Healy et al.,
2014; Huffman et al., 2012; Huffman et al., 2019).

At the background site (Fig. 3b), thefine particleswere also predom-
inant across the five sampling days and the variations corresponded to
the activities observed and discussed earlier. The fluorescent particle
concentration at this site was primarily influenced by local sources
such as windblown dust and organic matter, vehicular and fossil fuel
emissions from university airport and exhaust from buildings.

The information on particle size distribution is important to under-
stand and predict aerodynamic behaviour, survival, dispersal and po-
tential deposition site of particles in the human respiratory system
(Galès et al., 2015; Clauß, 2015), as well as classification and/or discrim-
ination of bioaerosols. The finding of the predominance of fluorescent
particles in fine size fraction (below 1 μm) is in line with Nasir et al.
(2019). However, it is important to have certainty that the origin offluo-
rescence in this fraction is from biological materials rather than non-
biological interfering compounds (soot, PAH). In order to elucidate the
potential fluorophores in particles b1 μm, size fractionated fluorescence
spectra were analysed (Section 3.2.2).
3.1.4. Channel by channel particle number concentrations
Figs. 4 and 5 provide the time series of the channel by channel

number concentrations of fluorescent particles. At the WWTP, Ch7
and Ch9 of Xe1 were predominant channels on day 1–3 and 5,
while Xe1Ch16 was absent during the five-day sampling period
(Fig. 4). Specifically, Ch7, Ch9 of Xe1 and Ch7 of Xe2 showed uniform
concentration during day 1, while a readily apparent alteration in
concentrations were observed at 15:00 (Ch4–5, Ch9, Ch13, Ch16 of
Xe2) (Fig. 4a) which is in agreement with the higher flow rate of
wastewater activity at the WWTP. Similarly, Ch7 and Ch9 of Xe1
were persistently present on day 2, but absent in Ch1, Ch3, Ch16 of
Xe1, and Ch4, Ch5 and Ch10 of Xe2. The concentrations shifted at
12:10 (Ch2–15 of Xe1, Ch7 and Ch11–12 of Xe2) and 12:45
(Ch4–15 of Xe1, Ch7 and Ch9 of Xe2) being consistent with sludge
dredging and tank flushing activities (Fig. 4b). Ch6–10 of Xe1 were
dominant channels on day 3, but varied at 11:10 (Ch4–5 of Xe1,
Ch5, Ch8, Ch12–15 of Xe2), 12:10 (Ch4–5, Ch11–14 of Xe1,
Ch11–16 of Xe2) and 12:30 (Ch4–12 of Xe1) (Fig. 4c). Ch2, Ch5 and
Ch7 of Xe1 were only exhibited during 10:30–13:00 as the most
sustained channels (Fig. 4d). Similarly, Ch2, Ch4–10 of Xe1 and
Ch4, Ch10, Ch13, Ch15 of Xe2 were predominant channels on day 5
(Fig. 4e). The blank area between 10:40 and 11:25 signifies the sam-
pling interruption caused by raining (Fig. 4e). Afterwards, the emis-
sion channels were dominated by Ch2 and Ch4–15 of Xe1. While
there were some channels exhibiting uniform concentration, the



Fig. 3. Time-resolved (1 min) number-size distribution of fluorescent particles at (a) the wastewater treatment plant and (b) the background site.
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shifts in concentration to other emission channels were recorded
during site-specific activities.

In contrast to the WWTP, Ch11–15 of Xe2 exhibited high number
concentrations among five days, while Ch14–16 of Xe1 and Ch10 of
Xe2 showed the lowest number concentrations at background site
(Fig. 5). Several changes in emission channels agreed with on-site sam-
pling record. For instance, a significant increase in particle number con-
centrations happened at 11:30 on day 4 showing highest on Ch4 and
Ch7–13 of Xe1 and Ch12–15 of Xe2 (Fig. 5d). This peak was probably
caused by the sudden opening of a ventilation fan of a nearby air condi-
tioning unit which contributed to the disturbance of airborne particles
near the sampling site. Nevertheless, there were no distinct changes in
channels in any time duration on day 2 and day 5 at the background
site, but higher concentrations were in Ch1–9 of Xe1 and Ch4–16 of
Xe2 (being highest concentration on Xe1Ch7) on day 2, and Ch1–2,
Ch4–12 of Xe1, Ch4–9 and Ch11–16 of Xe2 on day 5 (Fig. 5b and e).

The predominant channels, along with the assignment of potential
atmospheric bio-fluorophores based on the fluorescence emission in-
tensities in each channel, can be used to further characterise temporal
variability of bioaerosols based on potential bio-fluorophore from a
source. The observed trends in concentration profile of fluorescent par-
ticles across different channels and their qualitative assignment to SIBS
relevant fluorophores (present in Section 3.2) implied that plant alka-
loids, terpenoids, phenolics (secondary metabolites-like), sporopol-
lenin, lignin (structural compound-like), cellular age-related pigments,
flavonoids, lipofuscin and ceroid (pigment-like), pteridine nucleotides
(cofactors, coenzymes, vitamins-like) fluorophores were generally ex-
hibited at the WWTP. However, tryptophan (amino acid-like), vitamin
B6 compounds, pteridine compounds (coenzymes-like), chitin, cellu-
losic materials (structural compound-like), structurally smaller alka-
loids (secondary metabolites-like), chlorophylls (pigments-like) were
only assigned to the mowing activity period. These fluorophores are
likely to originate from fungal spores, various bacteria and insects' frag-
ments in the ambient air, and grass pollen was the main bioaerosol
sources during themowing activity. Moreover, CaDPAwas only present
during sludge dredging activity, which was considered to be a unique
component of bacterial endospores, thus has been used for spore detec-
tion (Pöhlker et al., 2012; Bronk et al., 2000).

The prominent fluorophores at the background site could be
assigned to flavonoids, chlorophylls a, b and bacterio-chlorophylls (pig-
ment-like), sporopollenin (structural biopolymers-like), terpenoids
(secondary metabolites-like), which mainly stemmed from pollen/
plants, bacteria, fungi spores and their cellular fragments. Furthermore,
PAHs and HULIS were found to be the potential non-biological
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Fig. 4. Channel by channel number concentrations of fluorescent particles at the WWTP.
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interferents possibly generated from vehicular emissions and wind-
blown organic matter.

3.2. Fluorescence spectra

3.2.1. Overall fluorescence spectra of WWTP and background site
The overall fluorescence spectra (0.50–15 μm) at both sites are pre-

sented in Fig. 6. The sample size of the fluorescent particles
(0.50–15 μm) for the analysis of fluorescence spectra is summarised in
Table 4.

Overall, the fluorescence emission intensity at λex = 285 nm (Xe
1) showed a tendency to be higher than those at λex = 370 nm (Xe
2). This finding corresponds to the findings of Könemann et al. (2019)
and is also comparable to multiple WIBS studies (e.g., Hernandez
et al., 2016; Perring et al., 2015; Savage et al., 2017). The overall and
the size-resolved fluorescence emission spectra (Figs. 6 and 7) depict
a multimodal spectral profile at two sites. Spectra profile at each site is
explained in terms of emission modes as a function of emission wave-
length for both Xe1 and Xe2.

The available information on excitation-emission characteristics for
a range of atmospherically relevant bio-fluorophores (Hernandez
et al., 2016; Pöhlker et al., 2012; Hill et al., 2009; Pan et al., 2010)
could help elucidate themolecular origin offluorescence frombiological
materials and give an insight to deduce spectral modes to most likely
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Fig. 5. Channel by channel number concentrations of fluorescent particles at the background site.
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bio-fluorophores. Consequently, seven categories of potential bio-
fluorophores in terms of their excitation and emission wavelengths rel-
evant to SIBS were summarised following Pöhlker et al. (2012). Table 5
provides an overview of potential fluorophores with reference to SIBS
excitation and emission wavelengths across various channels.

The overall spectra of the WWTP showed three major fluorescence
peaks for excitation wavelength (λex) at 285 nm as follows in increas-
ing order of emission wavelengths (λem): 316.4–344.8 nm (Ch2),
430.2–457.5 nm (Ch6), 486–514 nm (Ch8), along with a secondary
peak at 652.8–680.2 nm(Ch14) (Fig. 6A).While for the excitationwave-
length at 370 nm, twominor modes and one broad emission peak were
observed at 430.2–457.5 nm (Ch6), 514.1–542 nm (Ch9) and
652.8–734.7 nm (Ch14–16). In contrast, the dominant and common
peaks (Ch2 and Ch8 at λex = 285 nm; Ch9 and Ch15 at λex =
370 nm) of the background emission spectrum were comparable to
the WWTP spectra (Fig. 6B). Moreover, the background spectrum had
an emission peak at 401.5–429.7 nm (Ch5) at both excitation wave-
lengths. Additionally, the emission spectrum for 370 nm excitation
had peaks at 569.9–597.6 nm (Ch11) and 625.3–652.8 nm (Ch13).

Among the overall spectra of two sites, the common emissionmodes
could be assigned to tryptophan (amino acid-like), chlorophylls,
lipofuscin and ceroid, bacteriochlorophyll, cellular age-related pigments
and flavonoids (pigment-like), plant alkaloids, terpenoids, structurally
smaller alkaloids (secondarymetabolite-like), and chitin, sporopollenin
(structural compound-like) fluorophores,which related to the presence
of cellular fragments, bacteria, pollen and fungi. Moreover, pyridine
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Fig. 6. Overall fluorescence spectra of (A) wastewater treatment plant and (B) background site.
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nucleotides (coenzymes-like) fluorophore was only present in WWTP,
which is a signal of active cell metabolite (Hairston et al., 1997). In con-
trast, vitamin B6 compounds, flavins (vitamins-like), cellulosic mate-
rials (structural compound-like), Calcium salt CaDPA (other
fluorophores), phenolics (secondary metabolite-like) compounds
could be assigned to the background spectra. HULIS (humic-/protein-
acid like fluorescence) and PAHs could be assigned to both spectra,
which were likely to be generated from dispersion of organic matter
and fossil fuel emissions near the sampling site. Nasir et al. (2019)
also analysed the fluorescence spectra at the WWTP. It was reported
that a broad emission peak at 430.2–514 nm (Ch6–8) followed by a sec-
ondary peak at 597.6–625.2 nm (Ch12) and 680.3–707.5 nm (Ch15) for
280 nm excitation was observed (primary peaks at Ch2, Ch6, Ch8 and
secondary peak at Ch14 in this study), while the emission spectrum
for 370 nm excitation had peaks at 514–542 nm (Ch9),
597.6–652.8 nm (Ch12–13) and 680.3–707.5 nm (Ch15) (while Ch6,
Ch9, Ch15 in this study). The emission modes and the assignment of
fluorophores in these studies were comparable.

3.2.2. Size-resolved spectra profiles of WWTP and background site
For the size-segregated spectra at the WWTP (Fig. 7A–E), the peak

fluorescence emission in 316.4–344.8 nm (Ch2) and 430.2–457.5 nm
(Ch6) at λex = 285 nm, 514.1–542 nm (Ch9) at λex = 370 nm were
found across each size ranges, and slight changes in modes were also
observed. For instance, the 285 nm excitation spectra had a major
peak in 514.1–542nm(Ch9)when particleswere b1 μm,while it shifted
to 486–514 nm (Ch8) as the particle size increased. In addition, new
modes also emerged in 652.8–680.2 nm (Ch14) for particle size
1–10 μm. Particles N2.5 μm reflected three emission peaks for the
370 nm excitation spectra, and small changes from 680.3–707.5 nm
(Ch15) to 652.8–680.2 nm (Ch14) were found when particles were
Table 4
Sample size of fluorescent particles for the analysis of fluorescence spectra (particle diam-
eter: 0.50–15 μm) across different wavelength bands at each site.

Sites Number of fluorescent particles

Sampling
1

Sampling
2

Sampling
3

Sampling
4

Sampling
5

Total

WWTP 115,126 50,976 40,065 196,009 40,974 443,150
Background 31,033 82,280 25,253 27,634 22,733 188,932
N4 μm.Moreover, it was found that the fluorescence intensity increased
with the increase in particle size. This could be because fluorescence
emission intensity is a function of particle size, and larger particles are
likely to have fluorophores, capable of emitting plenty of photons to
give integrated light intensity signal, thus a higher fluorescence inten-
sity was recorded (Hill et al., 2001; Savage et al., 2017; Sivaprakasam
et al., 2011). Furthermore, tryptophan, chitin, dipicolinic acid (DPA),fla-
vonoids, plant alkaloids and sporopollenin fluorophores could be
assigned to all the size ranges in terms of their common emission chan-
nels. While terpenoids fluorophore only assigned to particle sizing
1–10 μm, and chlorophyll and bacterio-chlorophyll fluorophores were
potentially present in the particles with a diameter between 2.5 and
4 μm.

On the contrary, for the background site, there were complex pat-
terns shown in the size-segregated spectra profile (Fig. 7A–E: back-
ground site). Only Ch5 at λex = 370 nm was consistently observed in
the different size range. With reference to differences across different
sizes, Ch2 (at λex = 285 nm) and Ch5 (at λex = 370 nm) were only
present in 0.50 to 10 μm indicating the presence of structural
compounds-like (e.g. chitin, cellulosic material), amino acids-like (e.g.
tryptophan), and secondarymetabolite-like (e.g. terpenoids, phenolics)
fluorophores. While Ch11, Ch13, Ch15 (λex = 370 nm) were observed
from0.50 - 4 μmsize range, which implied that pigments-like (e.g. chlo-
rophyll, flavonoids, age-related pigments, lipofuscin and ceroid), sec-
ondary metabolite-like (e.g. terpenoids) and structural compounds-
like (e.g. sporopollenin) fluorophores could be assigned into this parti-
cle size. Notably, there was no considerable increase in fluorescence in-
tensity and number of modes with the increase in particle size in
background spectra, which suggests more heterogeneity in the compo-
sition of biological materials at the WWTP in comparison to the back-
ground site. However, there was a clear shift of the primary
fluorescence peak in 285 nm excitation spectra from Ch2 to Ch4 and
Ch13 with an increase in particle size at background site (Fig. 7-E),
which illustrates the dominant fluorophores changed from chitin, tryp-
tophan to vitamin B6 compound, cellulose material, pigments and ter-
penoids categories.

Comparing size-segregated spectra at both sites in the same particle
size range, differences were present in emission modes as well as
assigned potential fluorophores. For size range 0.50–1 μm, Ch2 at
λex = 285 nm and Ch5 at λex = 370 nm (amino acid-like, structural
compound-like, secondary metabolite-like and vitamins-like



Fig. 7. Size-resolved fluorescence emission spectra profiles at WWTP (left) and
background site (right). A: 0.50–1 μm, B: 1–2.5 μm, C: 2.5–4 μm, D: 4–10 μm, E: 10–15 μm.
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fluorophores) were both common between WWTP and background
site, but Ch11, Ch13, Ch15 at λex = 370 nm (mainly refer to pigment-
like fluorophores) and Ch8 at λex = 285 nm (secondary metabolite-
like fluorophores) only exhibited at background site. For particle size 1
to 2.5 μm, Ch2 (at λex = 285 nm) (e.g. tryptophan) was existing in
both spectra, while Ch9 (at λex= 285 nm) (coenzymes-like, structural
compound-like fluorophores) and Ch5, Ch8, Ch11, Ch13, Ch15 (at
λex = 370) (pigments-like fluorophores) only exhibited in the back-
ground site. The commonality and differences between two sites for
the size range of 2.5–4 μm were broadly similar to particles from 1 to
2.5 μm. The emission modes of 4–10 μm particles in both spectra were
the most complicated, the primary peak for both spectra was located
at Ch2. However, Ch6, Ch8, Ch14 (at λex = 285 nm) and Ch6, Ch9,
Ch14 were only present in the WWTP spectra, and Ch5, Ch9, Ch11,
Ch13 (at λex = 285 nm) and Ch5, Ch8, Ch11, Ch15 were only present
in the background spectra. Particles between 10 and 15 μm showed
that only Ch14 at λex = 370 nm was common between two sites, but
there were considerable differences between the spectra at both sites.

Nevertheless, the comparison of emission intensity levels should be
carefully applied as a semi-quantitative method, as fluorescence prop-
erties (e.g. spectral intensity) of a fluorophore are highly influenced by
the molecular environment within biological cells or cellular fragments
in atmospheric bioaerosols comparing to lab-based studies of pure
fluorophores (Pöhlker et al., 2012; Pan, 2015). Additionally, the overlap-
ping integrated fluorescence signals within each channel and the possi-
ble interfering non-biological compounds also make the discrimination
of fluorophores challenging. Hence, lab-based studies with atmospher-
ically relevant biological aerosols are required to build a comprehensive
SIBS fluorescence spectra library. Such a library will greatly contribute
to the elucidation of spectrally integrated signals and thus improve
measurement selectivity for bioaerosol emissions (Nasir et al., 2019).

3.3. Excitation-emission matrix of wastewater samples

The comparison of SIBS fluorescence spectra from airborne particles
and EEMofwastewater sampleswas performed to gain insights into the
molecular origin of fluorescence and to improve assignment of SIBS
spectral modes to known fluorophores. Fig. 8 demonstrates the EEM
spectra of wastewater obtained from FluoroMax®-Plus. The highest
fluorescence intensity area was centred at λex/λem = 285 nm /
340 nm (A. area), which is a typical signal of protein-like (containing
tryptophan) fluorescence (Chen et al., 2003). As the most important
contaminant in wastewater (Ahmad et al., 2002), it mainly originated
from schoolyard domestic sewage, food residues and human faeces
etc. within the university. The two secondary fluorescence peaks were
concentrated at λex/λem = 260 nm / 430 nm (B. area) and λex/
λem = 340 nm / 420 nm (C area), which belongs to the characteristic
spectral position of humic acid and fulvic acid-like fluorescence
(Coble, 1996). Humic acid is broadly existing inwastewater, being a sig-
nificant component of natural organic matters (NOM) (Yamashita and
Tanoue, 2003) thatwere generated by natural decay and subsequent at-
mospheric oxidation of biological material (Andreae and Gelencsér,
2006).

According to the assignment of possible fluorophores of SIBS spectra
in Table 5, the three high fluorescence intensity areas probably cover
amino acid-like (e.g. tryptophan, tyrosine), coenzyme-vitamins-like
(e.g. pyridine nucleotides: NADH and NADPH, vitamin B6 compounds),
structural compound-like (e.g. cellulose, chitin, lignin, sporopollenin),
secondary metabolite-like (e.g. phenolics, terpenoids) bio-
fluorophores. Those fluorophores reflected the presence of bacteria,
fungi spores in the wastewater (e.g. Johansson and Lidén, 2006;
Kopczynski et al., 2005; Lenardon et al., 2010; Wlodarski et al., 2006).
Moreover, these emission modes (fluorophores) are broadly similar to
the assignment fluorophores of SIBS resolved fluorescence spectra
(Fig. 6A), which reveals that these compounds in wastewater are likely
to be aerosolized into the ambient air at WWTP thus being detected by
the SIBS. Furthermore, secondary organic aerosol (SOA) could be the
non-biological compound since ammonia and nitrogen are rich in
wastewater, and certain nitrogen-containing SOA was considered to
be a vital source of autofluorescence (Bones et al., 2010). However,
pigment-like fluorophores were hardly embraced in the EEM, which
could explain that the pigment-like fluorophores within fluorescent
aerosols detected by SIBSweremainly originated fromnaturalmaterials
(plants/grass), instead of aerosolization of wastewater.

There are several possible reasons for interpreting the similarity and
difference between the SIBS spectra and wastewater EEM. Firstly, as a



Table 5
Overview of SIBS relevant excitation emission assignment to potential fluorophores.

Source/categories Potential fluorophores Excitation
wavelength of
SIBS (λex)

Corresponding
SIBS emission
channels

Fluorescence
emission
wavelength
range (nm)

Reference

Amino acid Tryptophan Only at
285 nm

Ch2–3 340–353 Ramanujam (2000)

Cofactors, coenzymes, vitamins Pyridine nucleotides: NADH and NADPH
(Nicotinamide adenine dinucleotide (phosphate))

Both at
285 nm and
370 nm

Ch6–7 440–470 Billinton and Knight (2001)

Flavins: Riboflavin, Flavin mononucleotide (FMN),
Flavin adenine dinucleotide (FAD)

Both at
285 nm and
370 nm

Ch9–10 520–560 Pöhlker et al. (2012);
Kopczynski et al. (2005)

Vitamin B6 compounds: Pyridoxine, Pyridoxamine,
Pyridoxal, 4-Pyridoxic acid, Pyridoxal-5′-phosphate

Both at
285 nm and
370 nm

Ch3–5 350–425 Pöhlker et al. (2012)

Pteridine compounds: Folic acid (vitamin B9), Pterin,
Biopterin, Neopterin, Lumazine

Only at
370 nm

Ch4–7 373–458 Kopczynski et al. (2005)

Structural biopolymers and cell wall
compounds

Cellulosic materials Both at
285 nm and
370 nm

Ch 4–5 −420 Castellan et al. (2007)

Lignin Both at
285 nm and
370 nm

Ch6–10 450–565 Pöhlker et al. (2012)

Sporopollenin (mixture of fluorescent compounds
(e.g., phenolics, carotenoids, azulene))

Only at
370 nm

Ch4–13 400–650 Roshchina (2003)

Chitin Only at
285 nm

Ch1–5 −410 Dreyer et al. (2006)

Pigments Cellular age-related pigments Both at
285 nm and
370 nm

Ch6–13 450–640 Andersson et al. (1998)

Bacteriochlorophyll at 370 nm Ch15 Könemann et al. (2019)
Chlorophyll a and b Only at

370 nm
Ch13–16
(Ch14)

630–730 Könemann et al. (2019)

Lipofuscin and ceroid Both at
285 nm and
370 nm

Ch6–13 430–670 Eldred et al. (1982);
Andersson et al. (1998)

Flavonoids: e.g., anthocyanins, flavons, flavonols,
isoflavones

Only at
370 nm

Ch6–12 440–610 Roshchina (2003);
Roshchina and Mel'nikova
(2001)

Secondary metabolites Plant alkaloids Only at
285 nm

Ch5–12 410–600 Roshchina (2003, 2005)

Terpenoids: i.e. monoterpenes (e.g. menthol),
sesquiterpenes (e.g. azulenes), diterpenes

Both at
285 nm and
370 nm

Ch5–16 400–725 Roshchina (2003)

Phenolics Both at
285 nm and
370 nm

Ch4–8 400–500 Roshchina et al. (2004)

Structurally smaller alkaloids (e.g. atropine) Only at
370 nm

Ch5–9 410–520 Pöhlker et al. (2012)

Other fluorophores (e.g., DNA and
RNA as well as dipicolinic acid
(DPA))

Calcium salt CaDPA Only at
285 nm

Ch5 ~−410 Alimova et al. (2003);
Sarasanandarajah et al.
(2005)

DPA (pure, dry state)
Only at
285 nm

Ch6 ~−440 Bronk et al. (2000)

Potential interferences/non-biological
fluorophores

(HULIS) Humic-like fluorescence
Only at
370 nm

Ch4–8 400–500
Coble (1996); Hudson et al.
(2007); Muller et al. (2008)

Pure polycyclic aromatic hydrocarbons (PAHs)
Only at
370 nm

Ch5–8 310–540 Kumke et al. (1995)

Several nitrogen-containing secondary organic
aerosols (SOA)

Only at
285 nm

Ch5 420 Bones et al. (2010)
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source of bioaerosol emission, wastewater and ambient air partly
shared the same biological fractions. Secondly, the fluorescence proper-
ties of wastewater samplesmay be affected by the storage conditions or
transport process, as well as themicrobe's decay period. Thirdly, the air
samples largely comprised of bioaerosols emitted from the ambient
vegetation and were affected by the meteorological conditions and the
operations of thewastewater treatment plant. In addition, the SIBS fluo-
rescence emissions spectra were obtained from the average of all the
fluorescent particles in every size range. There is need for developing
advanced data analysis methods such as a clustering algorithm (e.g. hi-
erarchical agglomerative cluster (HAC) analysis) (Crawford et al., 2015;
Forde et al., 2018) to further elucidate bioaerosol emissions fromWWTP
utilising the highly resolved fluorescence intensity measurements of
SIBS.

4. Conclusions

This study demonstrated that SIBS can provide real time and
high-resolution signal for bioaerosols monitoring at WWTP and con-
tribute to significantly advance the information on the nature and
the magnitude of bioaerosols emission. The average level of NF and
NT for bioaerosol emissions at the WWTP were higher than the



Fig. 8. Average excitation-emission matrix of five-day wastewater samples.

12 J. Tian et al. / Science of the Total Environment 721 (2020) 137629
background site, and the temporal variation of NF and NT were
highly variable and largely influenced by site-specific activities. In
addition, the number-size distribution profile indicated the predom-
inance of fine size particles (b1 μm) among fluorescent particles.
Fluorescence emission spectra profiles were multimodal, and the as-
signment of the overall and size-segregated emission modes to
existing SIBS relevant bio-fluorophores revealed the differences in
fluorescence signature between the two sites. Moreover, the SIBS
fluorescence spectra and EEM of the wastewater samples were
broadly similar which demonstrates that SIBS can help to overcome
the selectivity challenges to discriminate and classify bioaerosol
emissions. Furthermore, the time-series channel-by-channel num-
ber concentration profile can provide a temporal variability of poten-
tial bio-fluorophores. However, it should be noted that SIBS is a beta
version device therefore the data analysis capability is limited in its
present form. Although the size-segregated fluorescence spectra ap-
pear to be different in emission modes there is a need for further
analysis of time-dependent size-segregated SIBS spectra to give in-
sight into what emission channels (or bio-fluorophores) are more
dominant under a short time period and how it changes along with
the time. Finally, the fluorescence threshold in each channel has
been determined as the average + 3σ of FT fluorescence intensity
measurements. This method assumes that FT fluorescence intensity
among different channels of the SIBS is normally distributed. How-
ever, the fluorescence intensity may not be normally distributed in
all the channels. Alternative approaches to set the fluorescence
threshold should be further developed. With reference to the devel-
opment of data analysis approaches, the existing data analytics being
developed for WIBS (Crawford et al., 2015; Forde et al., 2018, Ruske
et al., 2018) need to be explored for the SIBS specific data analysis
tools.
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