
1

Solving Trajectory Optimization Problems in the
Presence of Probabilistic Constraints

Runqi Chai, Member, IEEE, Al Savvaris, Member, IEEE, Antonios Tsourdos, Member, IEEE, Senchun Chai,
Yuanqing Xia, Senior Member, IEEE, and Shuo Wang

Abstract—The objective of this paper is to present an
approximation-based strategy for solving the problem of nonlin-
ear trajectory optimization with the consideration of probabilistic
constraints. The proposed method defines a smooth and differen-
tiable function to replace probabilistic constraints by determin-
istic ones, thereby converting the chance-constrained trajectory
optimization model into a parametric nonlinear programming
model. In addition, it is proved that the approximation function
and the corresponding approximation set will converge to that of
the original problem. Furthermore, the optimal solution of the ap-
proximated model is ensured to converge to the optimal solution
of the original problem. Numerical results, obtained from a new
chance-constrained space vehicle trajectory optimization model
and a 3-D unmanned vehicle trajectory smoothing problem,
verify the feasibility and effectiveness of the proposed approach.
Comparative studies were also carried out to show the proposed
design can yield good performance and outperform other typical
chance-constrained optimization techniques investigated in this
research.

Index Terms—Trajectory optimization, probabilistic con-
straints, chance-constrained, nonlinear programming, approxi-
mation function.

I. INTRODUCTION

IN the past decades, trajectory planning problems have
attached considerable attentions due to their increasing

importance in industry and military fields [1]–[3]. The main
objective of this type of problem is to generate a feasible
path or control sequence, for a given vehicle, to achieve
a pre-specified target. During the planning phase, certain
requirements may also need to be considered such as the
energy cost or the obstacle avoidance. Relative works on this
research area can be found in various engineering applications
such as autonomous vehicle trajectory generation [4], multiple
robot/agent path planning [5], [6], and space vehicle trajectory
design and control system [7]–[9]. Specifically, Zhu et al. [10]
solved a multiple autonomous underwater vehicle dynamic
trajectory planning problem by integrating an improved neural
network and a velocity synthesis method. In [11], the motion
paths for a team of unmanned aerial vehicles (UAVs) were
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generated by applying a two-loop path planning strategy. In
addition, a dynamic multirobot coverage planning problem
was studied in [12], wherein a novel capacitated arc routing
based approach was designed and applied to calculate the
coverage paths. These planning strategies reported earlier are
capable of generating feasible trajectories subject to some
mission-dependent requirements, however it is still difficult
to plan the motion under a highly constrained environment.

Recently, there has been growing interest in the devel-
opment of optimal control theory-based trajectory planning
techniques [13], [14]. One important advantage of using such a
strategy is that multiple mission requirements can be modeled
as objectives or constraints and entailed in the optimization
model [15]–[19]. Contributions made to design or apply this
kind of technique can be found in the literature [20]–[22]. Gen-
est et al. [20] generated an energy-optimal control trajectory
for a wave energy converter with the consideration of model
physical constraints. A manipulator motion planning problem
was investigated in [21], wherein a modified particle swarm
optimization algorithm was employed to optimize the state
and control trajectories. Besides, in [22] the authors developed
an interactive fuzzy physical programming technique so as
to solve the multi-objective spacecraft trajectory planning
problem.

Although all the aforementioned optimization-based tech-
niques have been shown to be promising and powerful frame-
works for generating optimal control profiles, they only target
at deterministic models. In many real-world trajectory opti-
mization problems, various parameter disturbances or actuator
uncertainty must frequently be considered during the trajectory
planning phase. Therefore, a proper treatment of the constraint
influenced by stochastic parameters is required, and this brings
the development of robust trajectory planning [23] and chance-
constrained optimal path design [24].

Robust trajectory planning is based on robust optimiza-
tion (RO) algorithms. The main advantages with the RO
method are that it is easy to apply and simple to understand.
In recent years, a large amount of research work has been
reported in this field [25]–[29]. In particular, Li and Shi [26]
designed a robust distributed model predictive control scheme
for a class of nonlinear multi-agent system. In their work, the
model uncertainty was handled by introducing a robustness
constraint in the optimization model. In [27], authors proposed
a differential evolution-based technique to solve the minimax
optimization problems that naturally arise in practical robust
designs. Wang and Pedrycz [28] developed an adaptive data-
driven RO method in order to solve a class of optimiza-
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tion problem with the consideration of parameter uncertainty.
Moreover, a new robust optimization methodology, named
active robust optimization, was investigated in [29]. It is well
known that the RO formulation aims to find the solution of
the worst-case optimization scenario. This indicates that the
calculated solution can satisfy all constraints with respect to
any realization of the stochastic parameters. In other words,
constraint violations are not allowed in an RO formulation.

Alternatively, chance-constrained optimal path design re-
lies on chance-constrained optimization (CCO) algorithms.
This type of algorithm allows constraint violations to be
less than a user-specified risk parameter. A detailed review
regarding different CCO algorithms can be found in [30] and
the references therein. In [31], the authors proposed a CCO-
based model predictive control scheme so as to optimize the
movement of the ego vehicle. Considering the uncertainty
in the system state as well as the constraint, a hybrid CCO
method was designed in [32] and applied to solve an au-
tonomous vehicle motion planning problem. Compared with
RO methods, the CCO methods tend to be less conservative
[30]. However, one challenge of the use of CCO methods is
that the probabilistic functions and their derivatives cannot
be calculated directly. An effective strategy to handle this
issue is to replace or approximate these constraints by using
deterministic functions or samples [33]–[35]. The motivation
for the use of approximation-based strategies relies on their
ability in dealing with general probability distributions for the
uncertainty as well as preserving feasibility of approximation
solutions. Until now, some approximation techniques have
been proposed based on Bernstein method [24], [33], con-
straint tightening approach [36], scenario approximation [37],
etc. Although these strategies can be feasible for replacing the
probabilistic constraints, there are still some open problems.
For example, an important issue is that the conservatism is
usually high and difficult to be controlled. Furthermore, the
smoothness, differentiability and convergence properties of the
approximation strategy can hardly be preserved.

To deal with these issues, this paper designs a smooth
and differentiable probability function to replace probabilistic
constraints by deterministic ones. The convergence properties
with respect to the approximation function and the correspond-
ing solution set are also analyzed. Compared with other typical
approximation techniques, the conservatism resulting from the
presented approximation can be effectively reduced. Besides,
it can achieve better solution optimality at the same time.

Our main contributions of the present work can be
summarised in the following aspects:

1) A smooth and differentiable approximation strategy with
guaranteed convergence properties is introduced and ap-
plied to approximate the probabilistic constraint.

2) The chance constraint handling strategy is embedded in a
newly-proposed hybrid optimal control solver [38] such
that this integrated computational framework can have
the capability to deal with chance-constrained trajectory
optimization problems.

3) Two deterministic trajectory optimization problems con-
structed in [8] and [39] are further extended by taking into
account the terminal state and actuator chance constraints.

Subsequently, these problems are solved via the proposed
computational framework.

4) Experimental results and comparative studies are provid-
ed in order to verify the effectiveness and reliability of
the proposed design.
The remainder of this paper is constructed as follows.

Section II presents some mathematical preliminaries. The new
approximation approach and its convergence properties are
described in Section III. In Section IV, the approximation
method developed in Section III is embedded in a newly-
proposed hybrid optimal control framework. Following that,
in Section V, two newly-researched trajectory optimization
problems are extended to the chance-constrained version. Sec-
tion VI presents experimental results of the obtained optimal
trajectories with the consideration of chance constraints. In
Section VII, the conclusions are drawn.

II. PRELIMINARY

Prior to introducing in detail the proposed design, it
is necessary to provide some mathematical preliminaries. A
general chance-constrained trajectory optimization problem,
also known as chance-constrained optimal control problem
(CCOCP) can be illustrated in the form:

minimize
𝑢(𝑡)

𝐽 = Φ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

subject to 𝑥̇ = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝜓(𝑥(𝑡0), 𝑡0, 𝑥(𝑡𝑓 ), 𝑡𝑓 ) = 0

ℎ𝑒(𝑥(𝑡), 𝑢(𝑡), 𝜉) = 0

𝑃𝑟{𝑔𝑖(𝑥(𝑡), 𝑢(𝑡), 𝜉) ≤ 0} ≥ 𝜖𝑖

𝑢 ∈ U , 𝑒 ∈ 𝐼𝑒, 𝑖 ∈ 𝐼𝑖

(1a)

(1b)
(1c)
(1d)
(1e)
(1f)

where 𝑢(𝑡) ∈ U ⊂ R𝑛𝑢 denotes the control variable and
is defined on the time interval 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. 𝑥 ∈ R𝑛𝑥 is the
state variable. 𝜉 is assumed to be a random variable with a
known probability density function (PDF) 𝑅(𝜉) defined on the
measurable set Ω ⊂ R𝑝. U is a compact set, whereas Ω is an
open set. 𝑃𝑟{·} means the probability. 𝑒 ∈ 𝐼𝑒 = {1, 2, ..,𝑚}
and 𝑖 ∈ 𝐼𝑖 = {1, 2, .., 𝑛} are the number of stochastic equality
and chance constraints, respectively. In Eq.(1), Φ : R𝑛𝑥×R ↦→
R, 𝐿: R𝑛𝑥 × U ↦→ R, 𝑓 : R𝑛𝑥 × U ↦→ R𝑛𝑥 , 𝜓: R𝑛𝑥 × R ×
R𝑛𝑥 × R ↦→ R, and ℎ𝑒: R𝑛𝑥 × U × Ω ↦→ R.

Eq.(1e) stands for a set of probabilistic or chance con-
strains with an acceptable probability of occurrence 𝜖. This
equation can be understood that the valid state and control
variables should satisfy the inequality 𝑔𝑖(·) ≤ 0 where 𝑔𝑖 :
R𝑛𝑥 × U × Ω ↦→ R with probability 𝜖𝑖. It is assumed
that the functions 𝐿, 𝑓 , and ℎ𝑒, 𝑔𝑖 are at least one-time
continuously differential with respect to (𝑥, 𝑢) ∈ R𝑛𝑥×U and
(𝑥, 𝑢, 𝜉) ∈ R𝑛𝑥×U ×Ω, respectively. 𝜖 ∈ [0, 1] can be treated
as the prescribed risk parameter. Note that the stochastic
equality constraint given by Eq.(1d) can be easily transformed
to the chance constraint (e.g. 𝑃𝑟{ℎ𝑒(𝑥(𝑡), 𝑢(𝑡), 𝜉) = 0} = 1).
Therefore without loss of generality, only the chance con-
straints described by Eq.(1e) is considered throughout the
paper. Furthermore, since the state variable 𝑥 depends on the
control 𝑢 and the stochastic parameter 𝜉, a more transparent
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expression of the chance constraint can be obtained by drop-
ping the dependence on 𝑥. That is,

𝑃𝑟{𝑔𝑖(𝑥(𝑢(𝑡), 𝜉), 𝑢(𝑡), 𝜉) ≤ 0} = 𝑃𝑟{𝑔𝑖(𝑢, 𝜉) ≤ 0} (2)

The subsequent part of this section gives some properties
regarding problem (1) and chance constraints. The probability
function can be defined as:

𝑃𝑖(𝑢) = 𝑃𝑟{𝑔𝑖(𝑢, 𝜉) ≤ 0}, 𝑖 ∈ 𝐼𝑖 (3)

Based on Eq.(3), the feasible set of the chance constraint can
be written as:

F := {𝑢 ∈ U |𝑃𝑖(𝑢) ≥ 𝜖𝑖, 𝑖 ∈ 𝐼𝑖} (4)

An equivalent expression of the chance constraints can be
described as:

𝑃𝑖(𝑢) = 𝑃𝑟{𝑔𝑖(𝑢, 𝜉) ≤ 0} = 1− 𝑃𝑟{𝑔𝑖(𝑢, 𝜉) ≥ 0} (5)

Defining the unit jump function (also known as Heaviside
function) with respect to 𝑔𝑖(𝑢, 𝜉):

𝐻(𝑔𝑖(𝑢, 𝜉)) =

{︂
1 if 𝑔𝑖(𝑢, 𝜉) ≥ 0
0 if 𝑔𝑖(𝑢, 𝜉) < 0

(6)

Then it is obvious to obtain

𝑃𝑖(𝑢) = 1− E(𝐻(𝑔𝑖(𝑢, 𝜉))) (7)

where E stands for the expectation operator and

E(𝐻(𝑔𝑖(𝑢, 𝜉))) =

∫︁
Ω

𝐻(𝑔𝑖(𝑢, 𝜉))𝑅(𝜉)𝑑𝜉

III. APPROXIMATION OF PROBABILISTIC CONSTRAINTS

Unlike traditional optimal control problems [14], the
CCOCP model given by Eq.(1) is not solvable in its present
form. This is because the probabilistic functions (e.g. Eq.(1d)
and Eq.(1e)) and their derivatives cannot be calculated directly.
Hence, it is desired to replace or approximate these constraints
by using deterministic functions.

A. Inner and outer estimations

According to Eqs.(3)-(7), the original chance constraint
shown in Eq.(1e) can be rewritten as:

E(𝐻(𝑔𝑖(𝑢, 𝜉))) ≤ 1− 𝜖𝑖 (8)

Correspondingly, the feasible set F of the chance constraint
becomes:

F := {𝑢 ∈ U |E(𝐻(𝑔𝑖(𝑢, 𝜉))) ≤ 1− 𝜖𝑖} (9)

The key idea of the approximation of chance constraints
is to design a 𝐶∞ smooth function Ψ(𝑘, 𝑔) : [1,+∞)×R ↦→
R. An important feature of this approximating function is that
it has an upper bound 𝐶 > 1 and is strictly greater than the
step function. More precisely, the inequality 𝐻(𝑔𝑖(𝑢, 𝜉)) <
Ψ(𝑘, 𝑔𝑖) ≤ 𝐶 < +∞ holds true for Ψ(𝑘, 𝑔𝑖). Replacing
𝐻(𝑔𝑖(𝑢, 𝜉)) by Ψ(𝑘, 𝑔𝑖) in Eq.(7) and Eq.(8), it is then easy
to have the following approximation of 𝑃𝑖(𝑢):

1− E(Ψ(𝑘, 𝑔𝑖(𝑢, 𝜉))) ≤ 𝑃𝑖(𝑢) ≤ E(Ψ(𝑘,−𝑔𝑖(𝑢, 𝜉))) (10)

In Eq.(10), the left and right terms can be used as the
lower and upper estimations with respect to 𝑃𝑖(𝑢). That is,
two approximations of Eq.(8) can be written as:

E(Ψ(𝑘, 𝑔𝑖(𝑢, 𝜉))) ≤ 1− 𝜖𝑖
E(Ψ(𝑘,−𝑔𝑖(𝑢, 𝜉))) ≤ 𝜖𝑖

(11)

As a result, the corresponding inner and outer approxi-
mation sets are defined as:

I (𝑘) :={𝑢 ∈ U |E(Ψ(𝑘, 𝑔𝑖(𝑢, 𝜉))) ≤ 1− 𝜖𝑖, 𝑖 ∈ 𝐼𝑖}
O(𝑘) :={𝑢 ∈ U |E(Ψ(𝑘,−𝑔𝑖(𝑢, 𝜉))) ≤ 𝜖𝑖, 𝑖 ∈ 𝐼𝑖}

(12a)
(12b)

where 𝑘 ∈ [1,+∞]. These two approximation sets can be used
to replace F and they have the relationship I (𝑘) ⊂ F ⊂
O(𝑘).

It is worth noting that for the outer approximation
set O(𝑘), not all the interior point can be in the chance-
constrained feasible set F , thereby resulting in constraint
violations. Regarding the inner estimation, since I (𝑘) is a
subset of F , any interior point in I (𝑘) can be feasible for
the original CCOCP (e.g. ∀𝑢𝑖 ∈ I (𝑘), 𝑢𝑖 ∈ F ). However,
one problem is that the conservatism associated with it tends
to be high. In this paper, only the lower approximation of
the probability function and the inner approximation of the
feasible set are considered and applied so as to remove
constraint violations at the expense of conservatism.
Remark 1. It should be noted that from a statistical point of
view, the approximation of the step function 𝐻(·) is equivalent
to replace 𝐻(·) by a well-distributed cumulative distribution
function (CDF). In other words, it is desired to find a specific
probability density function (PDF) such that its integral can
cover the step function.

B. A smooth and differentiable approximation
Following the discussion stated in the previous subsec-

tion, a typical estimation technique that has been applied in
practical applications is the use of exponential function (also
known as Bernstein method [33]). For instance, Ψ(𝑘, 𝑔) =
𝑒𝑘𝑔(𝑢,𝜉), 𝑘 > 0. It is obvious that the exponential function
can always be an upper bound of the step function 𝐻(·).
However, the conservatism associated with it tends to be high.
As a result, the optimality of the obtained solution will be
sacrificed significantly. Inspired by relative works, a modified
exponential function, by introducing three auxiliary variables
(𝑚1, 𝑚2, and 𝑘), is proposed and applied to approximate
the 𝐻(·) function in this study. Defining 𝑠 = 𝑔(𝑢, 𝜉), an
approximation function or a CDF can be designed as:

Ψ(𝑘, 𝑠) =
𝑘 +𝑚1

𝑘 +𝑚2𝑒−𝑘𝑠
(13)

where 𝑠 ∈ R, 𝑘 ∈ [1,+∞). 𝑚1 and 𝑚2 are two positive
constants with the relationship 𝑚1 ≤ 𝑚2. For the approxi-
mation function or CDF given by Eq.(13), the corresponding
derivative or PDF can be written as:

𝜇(𝑘, 𝑠) =
𝜕

𝜕𝑠
Ψ(𝑘, 𝑠) =

𝑘(𝑘 +𝑚1)(𝑘 +𝑚2𝑒
−𝑘𝑠)

(𝑘 +𝑚2𝑒−𝑘𝑠)2
(14)

Based on Eq.(13) and Eq.(14), it can be observed that
Ψ is positive for any value of 𝑠. In addition, if 𝑠 ≥ 0,



4

then Ψ(𝑘, 𝑠) ≥ 1. These two properties guarantee that the
step function can be upper bounded by Ψ(𝑘, 𝑠), which is
the prerequisite for the design of approximation functions
discussed in the previous section. In order to clearly show
the approximation accuracy of the present method, a compar-
ison between different approximations of the 𝐻 function is
presented in Fig.1.
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Fig. 1: Different approximations

As can be seen from Fig.1, the Bernstein approximation
function (illustrated by the blue line and the blue dash line)
tends to result in large conservatism. Compared with the
Bernstein method, the design given by Eq.(13) with fixed 𝑚1

and 𝑚2 (e.g. 𝑚1 = 1 and 𝑚2 = 0.5) can better fit the step
function as the control parameter 𝑘 increases.

C. Convergence properties of the proposed approximation

After constructing the approximation function, it is nec-
essary to analyze the convergence properties of the proposed
method. Specifically, the convergence properties with respect
to the present approximation function Ψ(𝑘, 𝑠) and the resulting
approximation set I (𝑘). These convergent results are derived
in the following two theorems.

Theorem 1. Given an approximation function in the form of
Eq.(13), then for a sufficiently large control parameter 𝑘 ,
Ψ(𝑘, 𝑠) will converge to the step function 𝐻(·) uniformly for
𝑠 ∈ (−∞,−𝜀] ∪ [0,+∞). That is,

lim
𝑘→+∞

|Ψ(𝑘, 𝑠)−𝐻(𝑠)| = 0 (15)

where 𝜀 > 0 denotes an arbitrary positive constant. More-
over, the Ψ(𝑘, 𝑠) function holds the following two additional
properties:
(a) Ψ(𝑘, ·) is a monotonically increasing function with respect

to 𝑠.
(b) If 𝑚1 and 𝑚2 can further be chosen to satisfy 0 ≤

𝑚1

1+𝑚1
≤ 𝑚2 ≤ 𝑚1, then for 𝑘 ∈ [1,+∞), Ψ(·, 𝑠) is

non-increasing.

Proof. From the definition of Ψ(𝑘, 𝑠), an upper estimation can
be obtained for 𝑠 ≥ 0. As 𝑒−𝑘𝑠 < 1 and Ψ(𝑘, 𝑠) for 𝑠 ≥ 0,
we have:

1 ≤ Ψ(𝑘, 𝑠) =
𝑘 +𝑚1

𝑘 +𝑚2𝑒−𝑘𝑠
≤ 𝑘 +𝑚1

𝑘
= 1 +

𝑚1

𝑘
(16)

Taking the limit of the above inequality on both sides as 𝑘
goes to infinity, we have:

1 ≤ lim
𝑘→+∞

Ψ(𝑘, 𝑠) ≤ lim
𝑘→+∞

(1 +
𝑚1

𝑘
) = 1 (17)

Therefore, lim
𝑘→+∞

Ψ(𝑘, 𝑠) = 1 for 𝑠 ≥ 0. Similarity, for 𝑠 ≤
−𝜀, the following estimation holds true:

Ψ(𝑘, 𝑠) =
𝑘 +𝑚1

𝑘 +𝑚2𝑒−𝑘𝑠
=

1 + 𝑚1

𝑘

1 + 𝑚2

𝑘 𝑒
−𝑘𝑠

≤
1 + 𝑚1

𝑘

1 + 𝑚2

𝑘 𝑒
𝑘𝜀

(18)

Taking the limit of the above inequality on both sides as 𝑘
goes to infinity, we have:

lim
𝑘→+∞

Ψ(𝑘, 𝑠) ≤ lim
𝑘→+∞

(
1 + 𝑚1

𝑘

1 + 𝑚2

𝑘 𝑒
𝑘𝜀
) = 0 (19)

Since Ψ(𝑘, 𝑠) > 0, lim
𝑘→+∞

Ψ(𝑘, 𝑠) = 0 for 𝑠 ≤ −𝜀.
Consequently, combining the regions (−∞,−𝜀] ∪ [0,+∞), it
follows that

lim
𝑘→+∞

|Ψ(𝑘, 𝑠)−𝐻(𝑠)| = 0,∀𝑠 ∈ (−∞,−𝜀] ∪ [0,+∞)

In terms of properties (a) and (b), from Eq.(14) it is
transparent that 𝜕

𝜕𝑠Ψ(𝑘, 𝑠) > 0, ∀𝑠 ∈ R. Thus, the property
(a) holds true. In order to verify (b), by differentiating Ψ(𝑘, 𝑠)
with respect to 𝑘, one can obtain:

𝜕

𝜕𝑘
Ψ(𝑘, 𝑠) =

𝑘 +𝑚2𝑒
−𝑘𝑠 − (𝑘 +𝑚1)(1−𝑚2𝑠𝑒

−𝑘𝑠)

(𝑘 +𝑚2𝑒−𝑘𝑠)2
(20)

Since the term (𝑘 +𝑚2𝑒
−𝑘𝑠)2 > 0, one can have:

𝑘 +𝑚2𝑒
−𝑘𝑠 − (𝑘 +𝑚1)(1−𝑚2𝑠𝑒

−𝑘𝑠)
= 𝑘 +𝑚2𝑒

−𝑘𝑠 − 𝑘𝑚2𝑠𝑒
−𝑘𝑠 −𝑚1

+𝑚1𝑚2𝑠𝑒
−𝑘𝑠 −𝑚1

(21)

Denoting 𝜈 = 𝑘𝑠 and applying the inequality 1+𝜈
𝑒𝜈 ≤ 1, it

follows that

𝑚2(1 + 𝜈)𝑒−𝜈 +𝑚1𝑚2
1
𝑘𝜈𝑒

−𝜈 −𝑚1

≤ 𝑚2 −𝑚1 +𝑚1𝑚2
1
𝑘

≤ 𝑚2(1 +𝑚1)−𝑚1

≤ 0

(22)

Therefore, 𝜕
𝜕𝑘Ψ(𝑘, 𝑠) ≤ 0, which means the approxima-

tion function Ψ(𝑘, 𝑠) is non-increasing with respect to the
control parameter 𝑘.

The next theorem conveys the convergence property in
terms of the inner approximation set I (𝑘) as 𝑘 goes to
infinity. Prior to proving in detail this convergence property, it
should be noted that not only the compactness of U is of inter-
est, but also the smoothness and monotonicity of E(Ψ(𝑘, 𝑠))
with respect to 𝑘 for all 𝑢 ∈ U are concerned. Therefore, a
Lemma is firstly constructed, which illustrates the transformed
chance-constraint function is smooth and monotonic.

Lemma 1. Given a transformed chance-constraint function
in the form of 𝜒(𝑘, 𝑢) = E(Ψ(𝑘, 𝑠)), then for any values of
𝑢 ∈ U , 𝜒(𝑘, 𝑢) is 𝐶∞ smooth and monotonic with respect to
the control parameter 𝑘.

Proof. Based on the definition of the expectation operator, the
transformed chance-constraint function 𝜒(𝑘, 𝑢) can be written
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as:
𝜒(𝑘, 𝑢) = E(Ψ(𝑘, 𝑠)) =

∫︁
Ω

Ψ(𝑘, 𝑠)𝑅(𝜉)𝑑𝜉 (23)

According to the definition of Ψ and Theorem.1, it is
known that Ψ(𝑘, 𝑠) is upper bounded and the integrand of
Eq.(23) (e.g. the term Ψ(𝑘, 𝑠)𝑅(𝜉)) is monotonic with respect
to (𝑘, 𝑢) ∈ [1,+∞)×U as well as 𝐶∞ smooth with respect to
𝑘. Applying the Lebesgue’s majorized convergence theorem,
it is obtained that 𝜒(𝑘, 𝑢) smooth and monotonic with respect
to the control parameter 𝑘.

The results of Lemma.1, together with the compactness
of U , are used to prove the continuing theorem.

Theorem 2. Given a transformed chance constraint function
in the form of Eq.(23) that can be smooth and monotonic with
respect to 𝑘, then for an increasing sequence {𝑘𝑖}𝑖∈𝑁+ , the
inner approximation set I (𝑘𝑖) will converge to F . That is,

lim
𝑘𝑖→+∞

I (𝑘𝑖) = F (24)

Proof. Let {𝑘𝑖}𝑖∈𝑁+ be an increasing sequence. Based on
Lemma 1 and the compactness of U , it can be concluded that
{I (𝑘𝑖)}𝑖∈𝑁+

is a sequence of compact set and is monotonic.
That is,

I (𝑘𝑖) ⊂ I (𝑘𝑖+1)

which indicates ∪𝑖∈𝑁+
{I (𝑘𝑖)} ⊂ F .

In addition, according to the Lebesgue’s majorized con-
vergence theorem, it is obtained that

lim
𝑘𝑖→+∞

𝜒(𝑘𝑖, 𝑢) = lim
𝑘𝑖→+∞

E(Ψ(𝑘𝑖, 𝑠))

= lim
𝑘𝑖→+∞

∫︁
Ω

Ψ(𝑘𝑖, 𝑠)𝑅(𝜉)𝑑𝜉

=

∫︁
Ω

lim
𝑘𝑖→+∞

Ψ(𝑘𝑖, 𝑠)𝑅(𝜉)𝑑𝜉

=

∫︁
Ω

𝐻(𝑠)𝑅(𝜉)𝑑𝜉

=E(𝐻(𝑠))

=1− 𝑃 (𝑢)

Since lim
𝑘𝑖→+∞

(1 − 𝜒(𝑘𝑖, 𝑢)) = 𝑃 (𝑢), there exist a positive

𝑘ø > 1 such that for all 𝑘𝑖 ∈ [𝑘ø,+∞), 1 − 𝜒(𝑘𝑖, 𝑢)) ≥ 𝜖.
As a result, 𝑢 belongs to the union of I (𝑘𝑖+1), and F :=
{𝑢 ∈ U |𝑃 (𝑢) ≥ 𝜖} ⊂ ∪𝑖∈𝑁+

{I (𝑘𝑖+1)} holds true, which
completes the proof.

D. Chance constraints transformation
To deal with the stochastic chance constraint described in

Eq.(1e), the approximation function (20) is employed. More
precisely, for a fixed value of 𝑘, the original CCOCP problem
(1) can be reformulated as:

minimize
𝑢

𝐽 = Φ(𝑥(𝑡𝑓 ), 𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

subject to 𝑥̇ = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝜓(𝑥(𝑡0), 𝑡0, 𝑥(𝑡𝑓 ), 𝑡𝑓 ) = 0

E(Ψ(𝑘, 𝑔𝑖(𝑥, 𝑢, 𝜉))) ≤ 1− 𝜖𝑖

𝑢 ∈ U , 𝑖 ∈ 𝐼𝑖

(25a)

(25b)
(25c)
(25d)
(25e)

Since the proposed chance-constrained optimal control
scheme is largely depended on the optimization process, the
asymptotic convergence should be established to guarantee the
approximated formulation can achieve a stable and reliable
performance. According to the convergence property of Ψ
and I , the following theorem is constructed, which conveys
the fact that the solution sequence {𝑢𝑘}𝑘∈𝑁+

of Eq.(25) will
converge to local optimal solutions of the original problem as
long as 𝑘 is chosen large enough.

Theorem 3. Define an approximated optimization model in
the form of Eq.(25). Suppose that {𝑢𝑘}𝑘∈𝑁+

is a local optimal
solution sequence of the approximated formulation. Then there
exist a convergent subsequence {𝑢𝑘𝑖

}𝑘𝑖∈𝑁+
of {𝑢𝑘}𝑘∈𝑁+

such
that for 𝑘𝑖 sufficiently large, the following equation holds true:

lim
𝑘𝑖→+∞

𝑢𝑘𝑖
= 𝑢*

where 𝑢* ∈ F is a local optimal solution of the original
problem (1).

Proof. The entire proof can be divided into two steps: 1). We
show that there exist convergent subsequences of {𝑢𝑘} and
their limits are feasible solutions of the original problem; 2).
We show that any limit point of these subsequences is a local
optimal solution of the problem (1).

It is well known that in a compact set, all sequences
have convergent subsequences. Therefore, for {𝑢𝑘} ∈ U ,
there exist a subsequence {𝑢𝑘𝑖} with lim

𝑘𝑖→+∞
𝑢𝑘𝑖 = 𝑢*. From

Theorem 2, we have 𝑢𝑘𝑖 ∈ I (𝑘𝑖) and lim
𝑘𝑖→+∞

I (𝑘𝑖) = F .

Consequently, it is easy to obtain 𝑢* ∈ F (𝑢* is a feasible
solution of the original problem).

Suppose 𝑢* is not a local optimal solution of problem
(1). As a result, there exist a local optimal solution 𝑢

′ ∈ F
such that 𝐽(𝑢

′
) ≤ 𝐽(𝑢*). Based on Theorem 2, there exist

an increasing sequence {𝑢′

𝑘}𝑘∈𝑁+
such that 𝑢

′

𝑘 ∈ I (𝑘) as
well as lim

𝑘→+∞
𝑢

′

𝑘 = 𝑢
′
. Due to the compactness of I (𝑘), a

subsequence {𝑢′

𝑘𝑖
} can be found and it satisfies

𝐽(𝑢
′

𝑘𝑖
) ≥ 𝐽(𝑢𝑘𝑖)

Note that the above relationship holds true due to the local
optimality of 𝑢𝑘𝑖

. Taking the limit of the above inequality on
both sides as 𝑘𝑖 goes to infinity, we have

𝐽(𝑢*) ≥ 𝐽(𝑢
′
)

Since 𝐽(𝑢
′
) ≤ 𝐽(𝑢*), it can be concluded that 𝐽(𝑢

′
) = 𝐽(𝑢*),

which means 𝑢* is a local optimal solution of problem (1).

IV. CHANCE-CONSTRAINED TRAJECTORY OPTIMIZATION
PROBLEMS

To solve the continuous-time CCOCP numerically, an im-
portant procedure is to discretize/parametrize the continuous-
time system such that the original problem formulation can be
transcribed into a static chance-constrained nonlinear program-
ming problem. Recently, a hybrid optimal control framework
has been designed to solve deterministic trajectory optimiza-
tion problems [38]. This section aims to embed the proposed
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chance constraint handling method into the hybrid optimal
control solver such that it can have the capability of solving
CCOCPs. It should be noted that in this framework, the Radau
pseudospectral method (RPM) is utilized to parameterize the
dynamics. One important advantage with RPM is that high
accuracy can be achieved with much less temporal nodes [40].
For the sake of completeness, a brief description of the RPM
is recalled.

A. Radau pseudospectral discretization

To use the RPM, the time domain is firstly transformed
from 𝑡 ∈ [𝑡0, 𝑡𝑓 ] to 𝜏 ∈ [−1, 1] via 𝑡 =

𝑡𝑓−𝑡0
2 𝜏 +

𝑡𝑓+𝑡0
2 .

By using the Lagrange interpolation, the state and control
variables are discretized over the time interval [−1, 1] as:

𝑥(𝜏) ≈ 𝑋(𝜏) =

𝑁𝑘+1∑︁
𝑗=1

𝑥𝑗
𝑎(𝜏)

𝑎(𝜏𝑗)
𝑌𝑗(𝜏)

𝑢(𝜏) ≈ 𝑈(𝜏) =

𝑁𝑘∑︁
𝑗=1

𝑢𝑗
𝑎(𝜏)

𝑎(𝜏𝑗)
𝑌𝑗(𝜏)

(26a)

(26b)

where 𝑁𝑘 stands for the number of temporal nodes. 𝑥𝑗 =
𝑥(𝜏𝑗) and 𝑢𝑗 = 𝑢(𝜏𝑗). {𝜏𝑗} can be obtained by solving
𝑃𝐾−1(𝜏) + 𝑃𝐾(𝜏) = 0, in which 𝑃𝐾 denotes the 𝐾th
order Legendre polynomials [7], [8], [40], [41]. 𝑌𝑗 is the
Lagrange interpolation basis function. For the RPM, 𝑎(𝜏)

𝑎(𝜏𝑗)
= 1.

Differentiating the state approximation equation (26a), one can
get

𝑥̇(𝜏) ≈ 𝑑𝑋(𝜏)

𝑑𝜏
=

𝑁𝑘+1∑︁
𝑗=1

𝑑

𝑑𝑡
(
𝑎(𝜏)

𝑎(𝜏𝑗)
𝑌𝑗(𝜏))𝑥𝑗 (27)

Note that the term 𝑑
𝑑𝜏 (

𝑎(𝜏)
𝑎(𝑡𝜏 )

𝑌𝑗(𝜏)) can be obtained at time
nodes and it can be compacted into a differentiation matrix.
That is

𝐷𝑗 =
𝑑

𝑑𝜏
(
𝑎(𝜏)

𝑎(𝜏𝑗)
𝑌𝑗(𝜏)) |𝜏=𝜏𝑗 (28)

where 𝐷𝑗 denotes the elements of the 𝑁𝑘 × (𝑁𝑘 + 1)
differentiation matrix [8], [40], [41].

Consequently, the dynamic equation given by Eq.(1b) can
be transcribed to:

𝑁𝑘+1∑︁
𝑗=1

𝐷𝑗𝑥𝑗 =
𝑡𝑓 − 𝑡0

2
𝑓(𝑥𝑗 , 𝑢𝑗) (29)

which is an algebraic equation.
Similarly, the integral cost in Eq.(1a) can be rewritten as:∫︁ 1

−1

𝐿(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 =

𝑁𝑘∑︁
𝑗=1

𝑤𝑗𝐿(𝑥𝑗 , 𝑢𝑗) (30)

where 𝑤𝑗 represents the quadrature weight coefficients asso-
ciated with the temporal nodes.

B. RPM transformation

Applying the RPM discretization technique stated in the
previous subsection, the approximated CCOCP formulation

(25) can be further written as:

minimize
𝑢𝑗

𝐽 = Φ(𝑥𝑁𝑘+1, 𝜏𝑁𝑘+1) +

𝑁𝑘∑︁
𝑗=1

𝑤𝑗𝐿(𝑥𝑗 , 𝑢𝑗)

subject to
𝑁𝑘+1∑︁
𝑗=1

𝐷𝑗𝑥𝑗 −
𝑡𝑓 − 𝑡0

2
𝑓(𝑥𝑗 , 𝑢𝑗) = 0

𝜓(𝑥𝜏1 , 𝜏1, 𝑥𝑁𝑘+1, 𝜏𝑁𝑘+1) = 0

E(Ψ(𝑘, 𝑔𝑖(𝑥𝑗 , 𝑢𝑗 , 𝜉))) ≤ 1− 𝜖𝑖

𝑢𝑗 ∈ U , 𝑖 ∈ 𝐼𝑖

(31a)

(31b)

(31c)
(31d)
(31e)

From the optimization model constructed in Eq.(31), the
next step is to calculate the expectation value raised from the
approximation of chance constraints. As suggested in [24],
the Markov chain Monto-Carlo sampling strategy is applied.
A detailed description regarding this method can be found in
[42]. Let us initialize a set of random variables with a known
PDF (e.g. {𝜉𝑚}𝑁𝑚=1 ∼ 𝑅(𝜉)). Then Eq.(31d) is further written
as:

1

𝑁

∑︁
𝑚∈𝐼𝑁

Ψ(𝑘, 𝑔𝑖(𝑥𝑗 , 𝑢𝑗 , 𝜉
𝑚)) ≤ 1− 𝜖𝑖 (32)

where 𝐼𝑁 = {1, 2, ..., 𝑁}. Based on the expression of Ψ(·, ·),
the derivative of Eq.(32) with respect to the decision variable
𝑢 can be calculated by:

1
𝑁

∑︁
𝑚∈𝐼𝑁

∇𝑢Ψ(𝑘, 𝑔𝑖(𝑥𝑗 , 𝑢𝑗 , 𝜉
𝑚))

= 1
𝑁

∑︁
𝑚∈𝐼𝑁

[
𝜕

𝜕𝑠
Ψ(𝑘, 𝑠)∇𝑢𝑔𝑖(𝑥𝑗 , 𝑢𝑗 , 𝜉

𝑚)]|𝑠=𝑔(𝑥𝑗 ,𝑢𝑗 ,𝜉𝑚)

(33)
where 𝜕

𝜕𝑢Ψ(𝑘, 𝑠) is calculated based on Eq.(14). The deriva-
tive of Eq.(32) with respect to the state variable can be
obtained similarly.
Remark 2. In our investigation, the dynamical system model
is nonlinear but deterministic. Therefore, the way to address
the problem reduces to the proper treatment of the constraints
affected by stochastic variables. It should be mentioned that
some studies reported in the literature considered the noise-
perturbed dynamic model [19], [30], [36]. Since the stochastic
effects are introduced in the dynamics, the objective function
should be formulated in an expectation form. Due to the
nonlinearity of the system equations, the gradient evaluation of
state trajectories and objectives becomes more difficult. This
is partly the reason why most numerical trajectory planning
works only target at linear stochastic systems.

C. Implementation considerations

In order to better present the manner of implementa-
tion, the overall implementation flowchart of the proposed
optimization scheme is summarised and plotted in Fig.2. The
procedures of the chance constrained optimization process are
extracted and detailed in the pseudocode (see Algorithm 1).

The chance constrained optimization process is imple-
mented over sequential calls to several function files carrying
out the Newton iteration, calculating the Newton step, and
adjusting the step length. A number of function files are
created for different components of the algorithm to produce:
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Fig. 2: Implementation flowchart

1) The temporal nodes, differentiation matrix 𝐷𝑗 and the
corresponding quadrature weight coefficients.

2) The initial reference trajectory to start the Newton itera-
tion.

3) The approximation function Ψ(𝑘, 𝑠) and simultaneously
producing the the chance constraint trajectory.

4) The first/second-order derivatives of the objective func-
tion.

5) The derivative of the approximated chance constraints.
6) The step length regulated by the Goldstein condition [43].

As can be seen from Algorithm 1, one unique part in
this framework lie in its initial guess creation component
[8], where a heuristic algorithm is firstly applied to obtain
a feasible solution of the decision variable. In addition, an
improved gradient inner optimizer is performed to calculate
the optimal result. It was shown in [38] that by employing this
multi-layer structure, the convergence ability and convergence
speed can be effectively improved.

From Algorithm 1 and Fig.2, an adaptive procedure
(e.g. Steps.3-9 in Algorithm 1) is also introduced such that
the proposed computational framework can have sufficient
flexibility to produce desired chance constraint approximation
accuracy (this argument can be validated by Theorem 2 and
Theorem 3). In Step.9, the optimal solution in the previous
run is assigned as the initial guess solution for the continuing
iteration. In this way, the optimization algorithm will have a
warm start and the efficiency of searching the optimal solution

Algorithm 1 Chance constrained optimization process

Input: The control parameters of the approximation func-
tion 𝑚1, 𝑚2 and 𝑘0;
/*Main Loop*/
Step 1: Assign the parameter 𝑖 = 0 and Δ = [];
Step 2: Perform the initial guess generator [8] to obtain

the decision variable 𝑢𝑖;
Step 3: Create a set of random variables {𝜉𝑚}𝑁𝑚=1 ∼ Ω;
Step 4: Establish the transformed CCOCP model given by

Eq.(31) and Eq.(32);
Step 5: Optimize the transformed model via a two-nested

gradient-based algorithm [43];
Step 6: Check if the Newton stopping criterion is satisfied,

if yes, go to Step 7;
Step 7: Output the optimal solution 𝑢*𝑖 in the 𝑖th run;
Step 8: Set Δ = ‖𝑢*𝑖 − 𝑢*𝑖−1‖;
Step 9: Stop if Δ < 𝜀, where 𝜀 is a small value. Otherwise

set 𝑖 = 𝑖+1, 𝑢𝑖 = 𝑢*𝑖−1, increase 𝑘 and return back
to Step 3;

Output: The optimal control solution 𝑢*𝑖 and the optimal
cost value 𝐽*;

can be improved.

Remark 3. It is worth noting that the chance-constrained
trajectory optimization problem can also be converted into
a deterministic nonlinear programming problem by utilizing
a non-smooth approximation. Contributions made to apply
these non-smooth approximation strategies can be found in the
literature [44], [45]. Although these strategies are potentially
available to solve the CCOCP problem, current investigations
are limited to probabilistic constraints defined in the form of
𝑃𝑟{𝑔(𝑢(𝑡)) + 𝜉 ≤ 0} ≥ 𝜖. Besides, in this paper, we are
interested in applying gradient-based optimizers to address
the nonlinear programming problem. This means that reliable
gradient information of the chance constraints is desired. As
a result, it is suggested to use the smooth and differentiable
approximation method defined in the form of Eq.(13) for
solving the CCOCP optimization problem.

V. TWO APPLICATION EXAMPLES

In this section, two application examples of the proposed
CCOCP solver are presented. Firstly, a time-optimal space
vehicle trajectory optimization problem considered in [8], [38]
is further extended by taking into account the control and
terminal state chance constraints. Secondly, a deterministic
3-D unmanned vehicle trajectory smoothing problem studied
in [39], [46] is reformulated by introducing uncertainties in
control path constraints. These chance constraints are estab-
lished into stochastic inequalities and are employed to search
the optimal control profile. Therefore, the first step is to
construct their CCOCP optimization models used throughout
this investigation.
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A. Problem formulation: Time-optimal spacecraft entry tra-
jectory planning

The deterministic version of this optimal spacecraft tra-
jectory planning problem is constructed as follows [8]:

minimize 𝐽 = 𝑡𝑓
subject to 𝑟̇ = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

𝜑̇ = 𝑉 cos 𝛾 cos𝜓
𝑟

𝑉̇ = −𝐷(𝛼)
𝑚

− 𝑔 sin 𝛾

𝛾̇ = 𝐿(𝛼) cos𝜎
𝑚𝑉

+ (𝑉
2−𝑔𝑟
𝑟𝑉

) cos 𝛾

𝜓̇ = 𝐿(𝛼) sin𝜎
𝑚𝑉 cos 𝛾

+ 𝑉
𝑟
cos 𝛾 sin𝜓 tan𝜑

[𝑟(0), 𝜃(0), 𝜑(0), 𝑉 (0), 𝛾(0), 𝜓(0),𝑚(0)]
= [𝑟0, 𝜃0, 𝜑0, 𝑉0, 𝛾0, 𝜓0,𝑚0]
[𝑟(𝑡𝑓 ), 𝛾(𝑡𝑓 )] = [𝑟𝑓 , 𝛾𝑓 ]

(34)

where 𝑡 ∈ [0, 𝑡𝑓 ]. The state variables are the radial distance
𝑟, longitude 𝜃, latitude 𝜑, velocity 𝑉 , flight path angle 𝛾 and
heading angle 𝜓, respectively. The control variables are the
angle of attack 𝛼 and bank angle 𝜎. The parameters 𝑚 and
𝑔 represent the vehicle’s mass and the gravity acceleration,
respectively. 𝐷 and 𝐿 stand for the drag and lift forces and
they are functions with respect to the angle of attack. For
reasons of brevity, all the state and control variables defined
above are compacted in 𝑥 = [𝑟, 𝜃, 𝜑, 𝑉, 𝛾, 𝜓] and 𝑢 = [𝛼, 𝜎].
Then the vehicle dynamics can be abbreviated as 𝑥̇ = 𝑓(𝑥, 𝑢)
with 𝑥(0) = 𝑥0 and 𝑥(𝑡𝑓 ) = 𝑥𝑓 , respectively.

As can be observed from Eq.(34), the overall objective
of this problem is to generate the optimal state and control
trajectories, for a given flight vehicle, to strike the pre-specified
terminal conditions (e.g. 𝑥𝑓=[𝑟𝑓 , 𝛾𝑓 ]) in the shortest flight time
duration.

1) Control rate limits: During the flight mission, several
types of constraints should be entailed in the optimization
model (34) so as to protect the structure of the vehicle.
For instance, one requirement is considered with respect to
the angular rate of control variables. That is, the control
variable and its derivative should have a certain limit such
that the actual control cannot vary significantly. Hence, two
rate constraints are introduced, which can be written as:{︂

𝛼̇ = 𝑘𝛼(𝛼𝑐 − 𝛼)
𝛼𝑐 ∈ [𝛼𝑚𝑖𝑛𝑐 , 𝛼𝑚𝑎𝑥𝑐 ]

{︂
𝜎̇ = 𝑘𝜎(𝜎𝑐 − 𝜎)
𝜎𝑐 ∈ [𝜎𝑚𝑖𝑛𝑐 , 𝜎𝑚𝑎𝑥𝑐 ]

(35)

where [𝛼𝑚𝑖𝑛
𝑐 , 𝛼𝑚𝑎𝑥

𝑐 ] and [𝜎𝑚𝑖𝑛
𝑐 , 𝜎𝑚𝑎𝑥

𝑐 ] are the tolerable region-
s of the controls. In this case, Eq.(35) is adhered to Eq.(34),
and 𝛼𝑐 as well as 𝜎𝑐 are now treated as the control commands.

2) Hard constraints: Another important type of con-
straint is the fight path constraint. Three path constraints are
considered during the flight and they are formulated as

𝐶(𝑥, 𝑢) =

⎡⎣ 𝑄̇(𝑥, 𝑢)
𝑃𝑑(𝑥, 𝑢)
𝑛𝐿(𝑥, 𝑢)

⎤⎦ =

⎡⎢⎣ 𝐾𝑄𝜌
0.5𝑉 3

1
2
𝜌𝑉 2

√
𝐿2+𝐷2

𝑚𝑔

⎤⎥⎦ ≤

⎡⎣ 𝑄̇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥𝑑

𝑛𝑚𝑎𝑥𝐿

⎤⎦
(36)

where 𝐾𝑄 is a constant, whereas 𝜌 stands for the density
of the atmosphere. 𝑄̇, 𝑃𝑑 and 𝑛𝐿 represent the heating rate,
dynamic pressure and normal load, respectively. The vector
[𝑄̇𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥

𝑑 , 𝑛𝑚𝑎𝑥
𝐿 ]𝑇 contains the maximum allowable val-

ues of the path constraints.

3) Modelling of control and state chance constraints:
For the mission scenario considered in this study, the terminal
position and attitude specified at the beginning of the mis-
sion is not assumed to be deterministic. Alternatively, they
are modeled by applying two random variables 𝜉1 and 𝜉2.
Besides, the maximum attainable control actuation level by
the vehicle might not be fixed and is usually influenced by
some uncertainties (e.g. 𝜉𝛼 and 𝜉𝜎). Therefore, the control and
state chance constraints selected for analysis are summarised
as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃𝑟{|𝑟(𝑡𝑓 )− 𝑟𝑓 + 𝜉1| ≤ 𝛿1} ≥ 𝜖1

𝑃𝑟{|𝛾(𝑡𝑓 )− 𝛾𝑓 + 𝜉2| ≤ 𝛿2} ≥ 𝜖2

𝑃𝑟{𝛼𝑐 + 𝜉𝛼 ≤ 𝛼𝑚𝑎𝑥𝑐 } ≥ 𝜖𝛼

𝑃𝑟{𝜎𝑐 + 𝜉𝜎 ≤ 𝜎𝑚𝑎𝑥𝑐 } ≥ 𝜖𝜎

(37a)
(37b)
(37c)
(37d)

in which 𝜖1, 𝜖2, 𝜖𝛼 and 𝜖𝜎 are the permissible risk values
(acceptable probabilities of occurrence). 𝛿1 and 𝛿2 are the
maximum allowable dispersions between the actual final state
conditions and the pre-specified terminal state conditions.

B. Problem formulation: 3-D unmanned vehicle trajectory
smoothing

In this application example, the equations of motion of
the unmanned vehicle are given by [39], [46]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑝𝑥

𝑑𝑠 = cos𝜙(𝑠) cos 𝜈(𝑠)
𝑑𝑝𝑦

𝑑𝑠 = cos𝜙(𝑠) sin 𝜈(𝑠)
𝑑𝑝𝑧

𝑑𝑠 = sin𝜙(𝑠)
𝑑𝜈
𝑑𝑠 = 𝜇1
𝑑𝜙
𝑑𝑠 = 𝜇1

(38)

where (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) is the pose of the vehicle. 𝜈 and 𝜙 represent,
respectively, the heading angle and pitch angle. 𝑠 stands for
the curvilinear abscissa along the path. The control variables
are 𝜇1 and 𝜇2.

1) Geometric and path constraints: During the move-
ment, some geometric and variable path constraints should be
taken into account. For example:

1) The curvature radius 𝑅(𝑠) should satisfy |𝑅(𝑠)| > 𝑅𝑚𝑖𝑛,
where 𝑅(𝑠) can be calculated via

𝑅(𝑠) = 1/
√︁
𝜇2
1(𝑠) cos

2 𝛾(𝑠) + 𝜇2
2

2) The pitch angle should satisfy 𝜙𝑚𝑖𝑛 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥.
3) The control variables should satisfy |𝜇1| ≤ 𝜇𝑚𝑎𝑥

1 and
|𝜇2| ≤ 𝜇𝑚𝑎𝑥

2 .

The primary objective of this mission is to find the
optimal control sequences (𝜇*

1, 𝜇
*
2) such that the unmanned

vehicle can be guided from an initial pose to a desired final
pose and the path length can be minimized. That is, the
objective function is described as

𝐽2 =

∫︁ 𝑠𝑓

0

𝑑𝑠 (39)

where 𝑠𝑓 denotes the length of the planned trajectory.
2) Control chance constraints: Similar with the first

example, it is assumed that the maximum attainable control
actuation of the unmanned vehicle will be affected by some
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uncertainties (e.g. 𝜉𝜇1
and 𝜉𝜇2

). To present these effects, the
following probabilistic constraints are used:{︃

𝑃𝑟{|𝜇1 + 𝜉𝜇1
| ≤ 𝜇𝑚𝑎𝑥

1 } ≥ 𝜖𝜇1

𝑃𝑟{|𝜇2 + 𝜉𝜇2
| ≤ 𝜇𝑚𝑎𝑥

2 } ≥ 𝜖𝜇2

(40a)
(40b)

where 𝜖𝜇1 and 𝜖𝜇2 are the acceptable probabilities of occur-
rence for these two inequalities.

VI. EXPERIMENTAL RESULTS AND ANALYSIS:
SPACECRAFT TRAJECTORY PLANNING PROBLEM

A. Parameter specification

In this section, the experimental results of using the
proposed chance-constrained optimization method to the s-
tochastic time-optimal trajectory planning problem formulat-
ed in Section V are presented. The state boundary values
at the initial time 𝑡0 = 0 and terminal time 𝑡𝑓 are set
as 𝑥0=[80𝑘𝑚, 0𝑑𝑒𝑔, 0𝑑𝑒𝑔, 7802.9𝑚/𝑠, −1𝑑𝑒𝑔, 90𝑑𝑒𝑔] and
𝑥𝑓=[𝑟𝑓 , 𝛾𝑓 ]=[50𝑘𝑚, 0𝑑𝑒𝑔], respectively. The lower and upper
bounds associated with the control variable are given by
[𝛼𝑚𝑖𝑛

𝑐 , 𝛼𝑚𝑎𝑥
𝑐 ]=[0, 40𝑑𝑒𝑔] and [𝜎𝑚𝑖𝑛

𝑐 , 𝜎𝑚𝑎𝑥
𝑐 ]=[−90𝑑𝑒𝑔, 1𝑑𝑒𝑔],

whereas the maximum allowable values for the path con-
straints are [𝑄̇𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥

𝑑 , 𝑛𝑚𝑎𝑥
𝐿 ]=[160, 280, 2.5].

To discretized the continuous-time system, 𝑁𝑘 = 40
temporal nodes are employed. The strategy developed in
Section III of this paper is applied to transform the chance
constraints given by Eq.(37). Based on Eqs.(8)-(12), these four
chance constraints can be rewritten as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E𝜉1(Ψ(𝑘, |𝑟(𝑡𝑓 )− 𝑟𝑓 + 𝜉1| − 𝛿1)) ≤ 1− 𝜖1

E𝜉2(Ψ(𝑘, |𝛾(𝑡𝑓 )− 𝛾𝑓 + 𝜉2| − 𝛿2)) ≤ 1− 𝜖2

E𝜉𝛼(Ψ(𝑘, 𝛼𝑐 + 𝜉𝛼 − 𝛼𝑚𝑎𝑥
𝑐 )) ≤ 1− 𝜖𝛼

E𝜉𝜎 (Ψ(𝑘, 𝜎𝑐 + 𝜉𝜎 − 𝜎𝑚𝑎𝑥
𝑐 )) ≤ 1− 𝜖𝜎

(41a)
(41b)
(41c)
(41d)

where 𝜉1 and 𝜉2 are supposed to have a normal distribution
(e.g. 𝜉1 ∼ 𝑁(0, 0.12) and 𝜉2 ∼ 𝑁(0, 0.052)), while 𝜉𝛼 and
𝜉𝜎 are assumed to have an exponential distribution. The prob-
ability density function is given by 𝑓(𝑥;𝜆) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0
with the rate parameter 𝜆 = 1.5. Besides, the prescribed risk
parameters 1− 𝜖 are specified as 1− 𝜖1 = 1− 𝜖2 = 0.05 (5%)
and 1 − 𝜖𝛼 = 1 − 𝜖𝜎 = 0.10 (10%), respectively. 𝛿1 = 0.2
and 𝛿2 = 0.1. The control parameters of the chance constraint
approximation technique are set as 𝑚1 = 1.0 and 𝑚2 = 0.5. In
addition, a sufficiently large-sized sample (e.g. 𝑁 = 2× 105)
should be selected in order to achieve convergent optimization
results.

Following the transformation process, the original
chance-constrained time optimal trajectory optimization prob-
lem is reformulated to a deterministic optimal control problem,
which can be solved via several optimal control solves. In this
study, all the experimental results were carried out by using the
new integrated optimal control solver constructed in Section
IV with an improved gradient-based inner optimizer embedded
in it [43]. All the numerical simulations were executed under
Windows 7 and Intel(R) i7-4790 CPU, 2.90GHZ, with 4.00
GB RAM.

B. Optimal trajectories

The effectiveness of the proposed chance-constrained
optimization design is firstly evaluated. The optimized trajec-
tories of the nominal model (without consideration of Eq.(41))
and the chance-constrained problem are plotted in Fig.3 and
Fig.4, from where it can be observed that the proposed
algorithm achieves a cost value 𝐽* = 584.34s, which is greater
than the nominal solution 𝐽*

𝑁 = 569.13s.
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Fig. 3: Optimized state trajectories
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Time (s)
0 200 400 600 800

C
on

tr
ai

nt
 v

io
la

tio
n 

of
 α

c

0

0.02

0.04

0.06

0.08

0.1

Time (s)
0 200 400 600 800

C
on

tr
ai

nt
 v

io
la

tio
n 

of
 σ

c

0

0.02

0.04

0.06

0.08

0.1

Risk value
Proposed
SBM
SO
BM
RO

Fig. 5: Chance constraint violation histories

Furthermore, according to the control profile shown in
Fig.4, the chance-constrained solutions are able to keep a
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Fig. 6: Time histories for Eq.(41d) (Hard constraints)

bang-bang behaviour but the magnitude is different from its
nominal counterpart. This is because with the consideration
of stochastic actuator limits, the control variable cannot reach
their boundary values exactly. The constraint violation history
of the proposed technique is shown in Fig.5, whereas the
time histories of the hard constraints given by Eq.(36) are
plotted in Fig.6. Obviously, all the hard constraints can be
satisfied strictly. Besides, from Fig.5, the violation rate of
chance constraints can be smaller than the maximum allowable
values 1 − 𝜖𝛼 = 0.1 and 1 − 𝜖𝜎 = 0.1 during the whole
time history. These results indicate that the effectiveness of
the proposed design can be guaranteed.

Remark 4. It is worth mentioning that for the mission scenario
considered in this paper, the optimal control sequence 𝑢*(𝑡)
can be expected to have a bang-bang structure for any 𝑡 ∈
[𝑡0, 𝑡𝑓 ]. Since the control variables are not involved in the the
path constraints explicitly, the optimal control sequence might
contain corners. This conclusion can be verified by applying
the Proposition 3 derived in [38].

C. Comparison against other techniques and performance
assessment

To further verify the performance of the proposed
approximation-based CCOCP method, comparative studies
were conducted to analyze the optimal trajectories and con-
straint violation histories obtained by performing the proposed
strategy and other typical techniques. For example, the Bern-
stein method (BM) reported in [33], a segmented Bernstein
method (SBM) developed in [24], a scenario optimization
(SO) technique reported in [37], and a robust optimization-
based (RO) design studied in [29]. It is worth mentioning that
both the BM and SBM belong to the class of approximation-
based techniques, where the estimation of the step function
is achieved by applying exponential functions for these two
methods. For the purpose of comparison, the default parameter

setting suggested in the original paper is used. The SO method
employs a set of samples for the stochastic variable 𝜉 so as to
approximately replace probabilistic constraints by determin-
istic ones. On the other hand, the RO method considers the
worst-case scenario caused by the random variable and creates
a Min-Max optimization formulation. The optimal state and
control trajectories calculated via different techniques are also
plotted in Fig.3 and Fig.4, while the corresponding constraint
violation histories are shown in Fig.5 and Fig.6.

Detailed results regarding the solution effectiveness, con-
servatism and optimality are tabulated in Table I and Table II.
Specifically, Table I summarises the maximum values of hard
constraints, whereas Table II presents the maximum violation
rates for the chance constraints 𝑉𝜉· and the optimal value of
objective 𝐽* obtained for different methods. These values are
used as the performance measures/indicators of the proposed
scheme with respect to other methods investigated in this
study.

TABLE I: Effectiveness indicators for different methods

Methods Hard constraints
𝑚𝑎𝑥(𝑄̇) 𝑚𝑎𝑥(𝑃𝑑) 𝑚𝑎𝑥(𝑛𝐿)

BM 158.21 280 2.19
SBM 157.83 280 2.36
SO 157.86 280 2.43
RO 160.00 280 2.16
Proposed method 157.78 280 2.49

TABLE II: Conservatism & optimality indicators for different
algorithms

Methods Maximum violation rate Objective (s)
𝑉𝜉1

𝑉𝜉2
𝑉𝜉𝛼 𝑉𝜉𝜎 𝐽*

BM 2.17% 1.28% 3.59% 3.60% 591.62
SBM 4.21% 4.27% 9.15% 9.16% 585.76
SO 3.84% 3.88% 8.24% 8.24% 587.56
RO 0% 0% 0% 0% 620.11
Proposed method 4.72% 4.81% 9.92% 9.92% 584.34

According to the data provided in Table.I and Figs.5-6,
path constraints as well as chance constraints can be satisfied
by all the strategies. Therefore, it can be concluded that all
the techniques investigated in this research can be feasible for
solving the chance-constrained spacecraft trajectory optimiza-
tion problem.

As can be seen from Fig.5 and Table II, the proposed
method can generally perform better than other approximation-
based techniques and the SO strategy in terms of achieving
a smaller cost value and a more aggressive violation rate
for this mission case. More precisely, compared with other
typical techniques, the constraint violation history obtained
via the proposed method is closer to the maximum violation
rate, thereby offering more optimality of the solution. As for
the performance of the RO-based algorithm, the calculated
trajectories are relatively less aggressive. In other words,
RO-based solutions shown in Figs.3-6 tend to have greater
conservatism compared with the approximation-based opti-
mization and scenario-based optimization. Note that the RO
method aims to satisfy all constraints exactly with respect to
any realization of the stochastic parameters. This means that
constraint violations are not allowed in an RO formulation
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and the optimality of solutions will be sacrificed significantly.
Hence, as shown in Fig.5, the constraint violation histories
(indicated by the blue dash line) keep zero during the entire
time history.

D. Impact of parameter variations

In this subsection, the effect of parameter variations on
the control scheme with the proposed optimization strategy
is studied. It should be noted that one important parameter
that can have significant influence is 𝑘 in Eq.(20). It is
usually hard to select a proper 𝑘 as 𝑘 does not contain any
physical meaning. Based on Theorem 2 and Theorem 3 stated
in Section III, using a larger 𝑘 will improve the solution
accuracy. However, it might result in some computational
difficulties for the optimization method. By specifying 𝑘 =
(500, 1000, 2000, 3000, 4000, 5000), the objective and chance
constraint results are generated and presented in Fig.7.
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Fig. 7: Sensitivity results with respect to 𝑘

According to the trajectories shown in Fig.7, the optimal
results tend to be sensitive with respect to the value of 𝑘.
A better objective value, together with a more aggressive
constraint violation history, can be obtained by increasing
the value of 𝑘. Therefore, it can be concluded that a proper
treatment of the factor 𝑘 is required, and this motivates our
design of the adaptive strategy stated in Algorithm 1.

E. Dispersion model analysis

This subsection displays the results of a 2000-trial Monto-
Carlo analysis. The purpose for carrying out this analysis is
to further test the robustness and stability of the proposed
algorithm with initial condition perturbations. In each trial, the
initial state variable is defined as 𝑥̂0 = 𝑥0+𝜁0, where |𝜁0| ≤ 𝐷
and 𝐷=[500𝑚, 0.1𝑑𝑒𝑔, 0.1𝑑𝑒𝑔, 50𝑚/𝑠, 0.1𝑑𝑒𝑔, 0.05𝑑𝑒𝑔]. The
evolution of the state, control and chance constraint profiles
for 500 realizations of noise perturbations is displayed in Fig.8
and Fig.9.

As can be seen from these two figures, the introduction
of initial condition perturbations will result in some deviations
with respect to the optimal trajectory. However, it is obtained
that all the violation rates corresponding to the control and
terminal state chance constraints are less than the pre-assigned
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Fig. 8: 500 evolutions of the state results
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Fig. 9: 500 evolutions of the control and constraint results

risk parameter (e.g., the probabilities of occurrence are less
than 10% and 5%, respectively). Furthermore, all the trials
can successfully converge to the near-optimal solution, indi-
cating that the proposed algorithm can achieve a stable and
robust performance with the consideration of initial conditions
perturbations.

VII. EXPERIMENTAL RESULTS AND ANALYSIS: 3-D
UNMANNED VEHICLE TRAJECTORY DESIGN PROBLEM

The performance of the proposed chance-constrained
optimization scheme is evaluated on a laboratory unmanned
vehicle, which is illustrated in Fig.10. It is assumed that 𝜉𝜇1

,
𝜉𝜇2

∼ 𝑁(0, 0.052) and 𝜖𝜇1
= 𝜖𝜇2

= 0.9. 𝑅𝑚𝑖𝑛 is set to 40m,
whereas 𝜈 ∈ [−15, 20] and [𝜇𝑚𝑎𝑥

1 , 𝜇𝑚𝑎𝑥
2 ] = [1, 1]. Several

different test cases were performed. The initial and terminal
pose information, alone with the obtained results, are tabulated
in Table III. A longer distance case (e.g., case 4) is extracted.
The optimal trajectories with and without considering the
chance constraints are presented in Fig.11.

As can be seen from Table III and Fig.11, the proposed
method can effectively guide the unmanned vehicle from the
initial pose to the desired pose under the consideration of
control chance constraints. The experimental result of these
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TABLE III: Results for different test cases

Case Initial pose Final pose Cost CPU(s)
𝑝𝑥,𝑦,𝑧 𝜈 𝜙 𝑝𝑥,𝑦,𝑧 𝜈 𝜙

1 (380, 230, 200) 0 30 (280, 150, 30) 0 200 671.78 0.4377
2 (−80, 10, 250) 0 20 (50, 70, 0) 0 240 980.84 0.4389
3 (120,−30, 250) -10 100 (220, 150, 100) -10 300 581.20 0.4292
4 (500, 100, 300) 15 240 (−100, 400, 0) 15 45 1229.73 0.4637

Fig. 10: The laboratory unmanned vehicle
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Fig. 11: Nominal and chance-constrained results

two application problems not only confirms that the proposed
design can offer a valid and effective alternative for optimizing
the chance-constrained trajectory optimization problem con-
sidered in this study, but also indicates it can perform better
over other methods that are feasible for solving CCOCPs.

A. Processing capability analysis

TABLE IV: Processing capability analysis

Values for 𝜖𝑛 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7
Cost value (m) 613.14 593.19 581.20 580.33 579.71 578.54
CPU time (s) 0.4072 0.4196 0.4292 3.7472 6.1718 15.2839

In this subsection, the processing capability of the pro-
posed optimization scheme is studied and analyzed. The over-
all computational cost of an optimal control problem addressed
via the RPM-based optimization method is mainly contributed
by two components: the function evaluations and the time
required by the computation of NLP solver. If 𝑁𝑘 Radau
points are utilized, then the number of optimization variables
becomes 𝒪((𝑁𝑘 + 1)𝑛𝑥 + 𝑁𝑘𝑛𝑢). The number of function
evaluations becomes 𝒪(𝑁𝑘(𝑛𝑥 + 𝑛𝐼𝑒 + 𝑛𝐼𝑖 + 1)). Compared

with the function evaluation part, the computation required
by the NLP solver is relatively large. Moreover, this process
tends to be sensitive with respect to the index of accuracy
𝜖𝑛. A sensitivity analysis was performed and the results are
displayed in Table IV.

From Table IV, it is obvious that the processing time
is monotonically increasing as 𝜖 becomes smaller. Finding a
more accurate 3-D path may result in a significant influence
in terms of the processing capability. To balance the compu-
tational burden and the solution accuracy, 𝜖 is set to 10−4

throughout this research according to our test trials.

Remark 5. It is important to remark that the consideration
of chance constraints tends to have negative influences for
the numerical optimization process. That is, under a highly
constrained environment, the optimization algorithm might
stuck at a locally infeasible point or even fail to converge.
Based on our investigations, one way to overcome this issue
and improve the computational efficiency is to calculate the
optimal solution without considering the stochastic constraints.
Subsequently, the optimal results for the nominal model is
utilized as the starting point to the chance-constrained version.

VIII. CONCLUSION

In this work, a convergent approximation method has
been constructed and applied for solving nonlinear trajectory
optimization problems in the presence of chance constraints.
An unique feature of this algorithm is that it utilizes a
smooth and differentiable function to construct a subset of
feasible points of the CCOCP problem. Moreover, it is shown
that this approximation (e.g. the approximation function and
feasible set) will converge uniformly to the original probability
function of a chance constraint as the control parameter 𝑘
increases. The present chance constraint handling method is
then embedded in a newly-developed optimal control solver
such that it can have the capability to solve CCOCPs. In order
to verify the effectiveness and optimality of the construct-
ed computational framework, a newly-investigated spacecraft
trajectory optimization task and a 3-D unmanned vehicle
trajectory smoothing problem are further extended by taking
into account stochastic perturbations involved in the actuators
and terminal conditions. Subsequently, the proposed CCOCP
solver is applied to calculate the optimal trajectory of these
two chance-constrained path planning problems. Experimental
results and the comparative study demonstrate that compared
with other typical techniques, the proposed design can perform
better in terms of reducing the conservatism and achieving
more aggressive results.
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