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Satellite control using magneto-torquers represents a control challenge combined with strong nonlinearity, variable dynam-
ics and partial controllability. An automatic differentiation-based nonlinear model predictive control (NMPC) algorithm is
developed in this work to tackle these issues. Based on the previously developed formulation of NMPC, a novel variable
sampling-time scheme is proposed to provide a better trade-off between transient control performance and closed-loop stabil-
ity. More specifically, a small sampling time is adopted to improve the response speed when the satellite is far away from the
desired position, and a large sampling time is employed for the closed-loop stability when the satellite is around its equilib-
rium position. This scheme also significantly reduces the online computational burden associated with fixed sampling-time
NMPC where a large prediction horizon has to be adopted in order to the ensure closed-loop stability. The proposed approach
is demonstrated through nonlinear simulation of a specific satellite case with satisfactory results obtained.

Keywords: predictive control; nonlinear systems; satellite; magneto-torquer; automatic differentiation; variable sampling
time

1. Introduction
Using magnetic rods as the only actuators for spacecraft
attitude control has been attracting a lot of attention in
recent years due to its simplicity, low cost and power
efficiency (Wood and Chen, 2013). This technique is espe-
cially suitable for low-Earth orbit satellites with modest
control performance requirements. The control concept is
based on that interaction between the magnetic moment
generated within a spacecraft and the magnetic field of the
Earth produces a torque which can be used to control the
attitude of the spacecraft. For satellites whose attitude is
controlled by chemicals or other thrusters, by exploring the
usage of magnetic torquers, it could significantly reduce
the consumption of chemicals so to extend the life of the
satellites.

Satellite attitude control using magneto-torque actua-
tors has a number of challenges. The dynamic system is
strongly nonlinear, particularly when the satellite is in the
stage of orbit installation. The magneto-torque actuator can
only provide partial controllability to the satellite at any
moment. The dynamics of the system are time varying
and the response time can vary from seconds to several
hours. Traditional proportional-integral-derivative control
cannot provide satisfactory performance. In recent years,
attempts have been made in applying model predictive con-
trol (MPC) to satellite attitude control, for example, Silani
and Lovera (2005), Wood, Chen, and Fertin (2006), and

∗Corresponding author. Email: y.cao@cranfield.ac.uk

Wood and Chen (2008). However, the linear model-based
MPC can only work for a specified attitude with rela-
tively small actuations. On the other hand, although the
minimum time control of satellites using magneto-torquers
has been studied using optimal control principles, stability
of the system when satellite approaching a desired atti-
tude has not been analysed (Liang, Fullmer, and Chen,
2004). In this work, a novel varying sampling-time non-
linear model predictive control (NMPC) solution using
automatic differentiation (AD) is proposed to tackle the
challenging problem of the satellite attitude control using
magneto-torquers for orbit installation or altering attitude.

AD is a technique to automatically generate derivatives
through computer programming. It does not like numerical
calculations, where derivatives are approximated through
finite differences, hence are inaccurate and very ineffi-
cient. It also avoids code growth issues normally relat-
ing to symbolic computations. In the recent work (Cao,
2005), a new NMPC scheme has been developed using
AD techniques. Using this approach, high-order Taylor
coefficients of states and outputs can be automatically gen-
erated at each sampling instant, so that future trajectory
can be predicted efficiently and accurately. Meanwhile,
AD can also produce sensitivities of Taylor coefficients
against control signals in a very efficient way. This makes
the online optimization problem to be solved much more
quickly. An improvement of one to two orders of mag-

c© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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nitude in computation speed has been observed in case
studies (Al-Seyab and Cao, 2008a, 2008b; Cao, 2005).

In this work, the satellite attitude model with magneto-
torque actuator has been converted into an iterative Taylor
model based on AD principles. Using the iterative Taylor
model, the satellite attitude system can be simulated much
more efficiently and also much more accurately than tra-
ditional ordinary differential equation solvers. The Taylor
model also enables a continuously variable sampling-time
scheme to be implemented with the NMPC. That is, at
each control interval, future behaviour of the system is
predicted through iteratively calculating high-order Taylor
coefficients. An error estimation approach is then adopted
to calculate the maximum time interval, which makes the
dynamic response prediction within a specified error toler-
ant range. Based on this, a fraction of the maximum time
interval is used as the length of the next control interval.
In this way, the NMPC can automatically adjust sam-
pling time from the initial quick move to alter attitude to
final slow move when the satellite approaches the desired
attitude. This scheme works very well with the satellite atti-
tude control system, where a fixed sampling rate may result
in either a very slow and very poor response when the sam-
pling time is too large, or an enormous computation load
and potential stability problems when sampling time is too
short.

The rest of this paper is organized as follows. In
Section 2, a mathematical model describing the dynam-
ics of a satellite equipped with magneto-torque actuators
is presented. Then, in Section 3, algorithms of AD-based
NMPC with variable sampling time are to be developed.
Section 4 presents a case study with specific satellite
parameters and control performance is evaluated through
nonlinear simulation. This work is concluded in Section 5.

2. Satellite with magneto-torquer actuators
The model of a satellite equipped with magneto-torquers
can be described in various reference frames (Wertz, 1978).
In this work, the reference system described by Lovera
and Astolfi (2004) is adopted. That is the Earth-centred
inertial reference axes plus satellite body axes. The atti-
tude dynamics can be represented by the well-know Euler’s
equations (Wertz, 1978), whilst the attitude kinematics are
described by the Euler quaternions. Therefore, the com-
plete dynamics model of the system is given as follows:

Ixω̇x = ωyωz(Iy − Iz) + Tx, (1)

Iy ω̇y = ωzωx(Iz − Ix) + Ty , (2)

Izω̇z = ωxωy(Ix − Iy) + Tz, (3)

q̇1 = (ωzq2 − ωyq3 + ωxq4)

2
, (4)

q̇2 = (ωxq3 − ωzq1 + ωyq4)

2
, (5)

q̇3 = (ωyq1 − ωxq2 + ωzq4)

2
, (6)

q̇4 = (−ωxq1 − ωyq2 − ωzq3)

2
, (7)

where ωx, ωy and ωz are spacecraft angular rates expressed
in the body frame, Ii and Ti, for i = x, y, z are the iner-
tial components and external toques in the satellite body
axes, respectively, whilst qi, i = 1, 2, 3, 4 are the Euler
quaternions, which satisfy the constraint:

q2
1 + q2

2 + q2
3 + q2

4 = 1. (8)

Note, the quaternion constraint (8) is implicitly represented
by Equation (7). The magneto-torquers are modelled as
follows:

Tx = b3u2 − b2u3, (9)

Ty = b1u3 − b3u1, (10)

Tz = b2u1 − b1u2, (11)

where ui, i = 1, 2, 3 are control inputs (magnetic rod dipole
moments), whilst bi, i = 1, 2, 3 are local magnetic field
components in the body frame converted from the orbit
frame: ⎡

⎣b1
b2
b3

⎤
⎦ = Mq

⎡
⎣bx

by
bz

⎤
⎦ . (12)

The conversion matrix, Mq is given as

Mq =

⎡
⎢⎣

1 − 2(q2
2 + q2

3) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1 − 2(q2
1 + q2

3) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1 − 2(q2
1 + q2

2)

⎤
⎥⎦ .

(13)

The magnetic field components can be approximated as
follows:

bx = μfa cos(ω0t) sin(α), (14)

by = −μfa cos(α), (15)

bz = 2μfa sin(ω0t) sin(α), (16)

where μfa = μf/ae with μf being the Earth dipole strength
and ae the orbit radius, ω0 the orbit frequency and α the
orbit inclination angle.

The above satellite system with magneto-torquers rep-
resents a difficult control challenge due the following
reasons:

• The system is strongly nonlinear and time variant
because of the varying local magnetic field strength
along the orbit.

• The system is only partially controllable at any time
instance. This is because at any time instance, the
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torques generated by the magnetic actuators have
only two independent effective directions.

• Depending on actuation strength and satellite angu-
lar rate, the system dynamic response can be from
very fast (time constant in few milliseconds) to very
slow (time constant in few hours).

Most previous works focused on the first two issues.
Linear and nonlinear solutions to this problem have been
summarized by Silani and Lovera (2005). However, the
issue of variable response speed has not been considered in
these studies so that all these solutions, even with nonlinear
formulations (Lovera and Astolfi, 2004), resulted in very
slow dynamic response. The only exception is the work
reported by Liang et al. (2004), where a time optimal con-
trol was developed to drive the satellite from a given initial
attitude to quickly reach the desired attitude. However, in
that work, the stability of system at the desired attitude
has not been considered so that the approach cannot be
directly applied to a real satellite system. In the following
section, an AD-based NMPC approach is to be developed
to control the satellite attitude. The advantage of AD makes
the nonlinear model predictive controller work at a vari-
able sampling-time mode so that both response speed and
stability issues can be handled satisfactorily.

3. NMPC with variable sampling time
An AD-based NMPC formulation was proposed by one
of the authors (Cao, 2005). It is based on the recursive
algorithms to automatically generate a high-order Tay-
lor expansion of a wide class of nonlinear functions.
Such recursive formulations of commonly used functions
are given in the appendix. AD tools, such as ADOL-C
(Griewank, Juedes, and Utke, 1996) available on public
domain, can be directly used to generate Taylor coefficients
and associated sensitivities. In this work, this formulation
is expended to variable sampling time. Firstly, for tutorial
purpose, analytic NMPC formulations are derived in Sec-
tions 3.1–3.3. Then, the variable sampling-time extension
is developed in Section 3.4.

3.1. Integration using high-order Taylor expansion
Let ωi(t), i = x, y, z and qi(t), i = 1, 2, 3, 4 be approxi-
mated by the truncated Taylor series around t0:

ωi(t) =
d∑

k=0

ω
[k]
i (t − t0)k, i = x, y, z, (17)

qi(t) =
d∑

k=0

q[k]
i (t − t0)k, i = 1, 2, 3, 4. (18)

The first coefficients in these series can be determined
from the initial values, i.e. ω

[0]
i = ωi(t0), i = x, y, z and

q[0]
i = qi(t0), i = 1, 2, 3, 4. According to the automatic dif-

ferential theory (Rall, 1981), all high-order coefficients
can be recursively determined. The recursive equations are
derived from the differential equations (1)–(7) using the
rules provided by Rall (1981)

ω[k+1]
x = Iy − Iz

(k + 1)Ix

⎛
⎝ k∑

j =0

ω[j ]
y ω[k−j ]

z + b[k]
3 u2 − b[k]

2 u3

Iy − Iz

⎞
⎠ ,

(19)

ω[k+1]
y = Iz − Ix

(k + 1)Iy

⎛
⎝ k∑

j =0

ω[j ]
z ω[k−j ]

x + b[k]
1 u3 − b[k]

3 u1

Iz − Ix

⎞
⎠ ,

(20)

ω[k+1]
z = Ix − Iy

(k + 1)Iz

⎛
⎝ k∑

j =0

ω[j ]
x ω[k−j ]

y + b[k]
2 u1 − b[k]

1 u2

Ix − Iy

⎞
⎠ ,

(21)

q[k+1]
1 = 1

2(k + 1)

k∑
j =0

(
ω[j ]

z q[k−j ]
2 − ω[j ]

y q[k−j ]
3 + ω[j ]

x q[k−j ]
4

)
, (22)

q[k+1]
2 = 1

2(k + 1)

k∑
j =0

(
ω[j ]

x q[k−j ]
3 − ω[j ]

z q[k−j ]
1 + ω[j ]

y q[k−j ]
4

)
, (23)

q[k+1]
3 = 1

2(k + 1)

k∑
j =0

(
ω[j ]

y q[k−j ]
1 − ω[j ]

x q[k−j ]
2 + ω[j ]

z q[k−j ]
4

)
, (24)

q[k+1]
4 = −1

2(k + 1)

k∑
j =0

(
ω[j ]

x q[k−j ]
1 + ω[j ]

y q[k−j ]
2 + ω[j ]

z q[k−j ]
3

)
. (25)

The Taylor coefficients of bi, i = 1, 2, 3 are derived from
Equation (12)

⎡
⎢⎣

b[k]
1

b[k]
2

b[k]
3

⎤
⎥⎦ =

k∑
j =0

⎡
⎢⎢⎣

m[j ]
11 m[j ]

12 m[j ]
13

m[j ]
21 m[j ]

22 m[j ]
23

m[j ]
31 m[j ]

32 m[j ]
33

⎤
⎥⎥⎦
⎡
⎢⎣

b[k−j ]
x

b[k−j ]
y

b[k−j ]
z

⎤
⎥⎦ , (26)

where

m[k]
11 =

k∑
j =0

(q[j ]
1 q[k−j ]

1 − q[j ]
2 q[k−j ]

2 − q[j ]
3 q[k−j ]

3 + q[j ]
4 q[k−j ]

4 ),
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m[k]
12 = 2

k∑
j =0

(q[j ]
1 q[k−j ]

2 + q[j ]
3 q[k−j ]

4 ),

m[k]
13 = 2

k∑
j =0

(q[j ]
1 q[k−j ]

3 − q[j ]
2 q[k−j ]

4 ),

m[k]
21 = 2

k∑
j =0

(q[j ]
1 q[k−j ]

2 − q[j ]
3 q[k−j ]

4 ),

m[k]
22 =

k∑
j =0

(−q[j ]
1 q[k−j ]

1 + q[j ]
2 q[k−j ]

2

− q[j ]
3 q[k−j ]

3 + q[j ]
4 q[k−j ]

4 ),

m[k]
23 = 2

k∑
j =0

(q[j ]
2 q[k−j ]

3 + q[j ]
1 q[k−j ]

4 ),

m[k]
31 = 2

k∑
j =0

(q[j ]
1 q[k−j ]

3 + q[j ]
2 q[k−j ]

4 ),

m[k]
32 = 2

k∑
j =0

(q[j ]
2 q[k−j ]

3 − q[j ]
1 q[k−j ]

4 ),

m[k]
33 =

k∑
j =0

(−q[j ]
1 q[k−j ]

1 − q[j ]
2 q[k−j ]

2

+ q[j ]
3 q[k−j ]

3 + q[j ]
4 q[k−j ]

4 ).

The Taylor coefficients of bi, i = x, y, z are obtained recur-
sively according to Equations (14)–(16) as follows:

v
[0]
1 = cos(ω0t0), (27)

v
[0]
2 = sin(ω0t0), (28)

v
[k+1]
1 = −ω0

k + 1
v

[k]
2 , k ≥ 0, (29)

v
[k+1]
2 = ω0

k + 1
v

[k]
1 , k ≥ 0, (30)

b[0]
y = −μfa cos(α), (31)

b[k]
y = 0, k > 0, (32)

b[k]
x = μfa sin(α)v

[k]
1 , (33)

b[k]
z = 2μfa sin(α)v

[k]
2 . (34)

Equations (17)–(34) provide a complete solution to the
initial value problem of the satellite differential equation
system. Let ti+1 = ti + hi, i = 0, . . . , n and tf = tn+1. Then,
initial values at ti can be iteratively calculated using Equa-
tions (17) and (18) until the specified final time, tf reaches.
The order of Taylor series is determined by the integration
step and the tolerance specified (Cao, 2005).

Note, in the above formulation, the actuating inputs are
treated as constant. In MPC, these inputs are piecewise

constant. Therefore, whenever an input changes its value,
a new integration step should start.

The advantage of this integration approach against
other numerical integration methods is its efficiency. It is
able to provide a high-accuracy solution within a very short
time. For the satellite differential equation system, one par-
ticular problem is that the algebraic constraint (8) cannot
be satisfactorily agreed with solutions provided by tradi-
tional differential equation solvers. This problem is easily
overcome by the high-order Taylor series-based approach
as indicated in Section 4.

3.2. Sensitivity
The NMPC problem presented in Section 3.3 requires to
solve a nonlinear least-square problem in real time, where
the computation efficiency is a critical issue to make the
control approach practically applicable. Experience shows
that more than 90% of computation time is associated
with derivative calculation in solving such an NMPC prob-
lem (Cao, 2005). Therefore, to accelerate the computation
speed of the NMPC, an efficient algorithm to solve the
sensitivity equations associated with the differential equa-
tions (1)–(7) is desirable. Based on the high-order Taylor
coefficients derived above to solve the differential equa-
tions, the associated sensitivity problem can also be solved
by deriving the corresponding Taylor coefficients of the
sensitivity variables as follows.

Let s = [ωx ωy ωz q1 q2 q3 q4]T. For Equations
(1)–(7), two sensitivity matrices are defined as follows:

A[k]
s :=

[
A[k]

ωω A[k]
ωq

A[k]
qω A[k]

qq

]
, A[k]

u :=
[

A[k]
ωu

0

]
, (35)

where

A[k]
ωω :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ω[k]
z

Iy − Iz

Ix
ω

[k]
y

Iy − Iz

Ix

ω[k]
z

Iz − Ix

Iy
0 ω

[k]
x

Iz − Ix

Iy

ω
[k]
y

Ix − Iy

Iz
ω

[0]
x

Ix − Iy

Iz
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A[k]
ωq :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−u3

Ix

u2

Ix
u3

Iy
0

−u1

Iy

−u2

Iz

u1

Iy
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

β
[k]
11 β

[k]
12 β

[k]
13 β

[k]
14

β
[k]
21 β

[k]
22 β

[k]
23 β

[k]
24

β
[k]
31 β

[k]
32 β

[k]
33 β

[k]
34

⎤
⎥⎥⎦ ,

A[k]
qω := 1

2

⎡
⎢⎢⎢⎢⎢⎣

q[k]
4 −q[k]

3 q[k]
2

q[k]
3 q[k]

4 −q[k]
1

−q[k]
2 q[k]

1 q[k]
4

−q[k]
1 −q[k]

2 −q[k]
3

⎤
⎥⎥⎥⎥⎥⎦ ,
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A[k]
qq := 1

2

⎡
⎢⎢⎢⎢⎢⎣

0 ω[k]
z −ω

[k]
y ω

[k]
x

−ω[k]
z 0 ω

[k]
x ω

[k]
y

ω
[k]
y −ω

[k]
x 0 ω[k]

z

−ω
[k]
x ω

[k]
y ω[k]

z 0

⎤
⎥⎥⎥⎥⎥⎦ ,

A[k]
ωu :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
b[k]

3

Ix

−b[k]
2

Ix

−b[k]
3

Iy
0

b[k]
1

Iy

b[k]
2

Iz

−b[k]
1

Iz
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β
[k]
11 := 2

⎛
⎝q[k]

2 by +
k∑

j =0

(q[j ]
1 b[k−j ]

x + q[j ]
3 b[k−j ]

z )

⎞
⎠ ,

β
[k]
12 := 2

⎛
⎝q[k]

1 by −
k∑

j =0

(q[j ]
2 b[k−j ]

x + q[j ]
4 b[k−j ]

z )

⎞
⎠ ,

β
[k]
13 := 2

⎛
⎝q[k]

4 by −
k∑

j =0

(q[j ]
3 b[k−j ]

x − q[j ]
1 b[k−j ]

z )

⎞
⎠ ,

β
[k]
14 := 2

⎛
⎝q[k]

3 by +
k∑

j =0

(q[j ]
4 b[k−j ]

x − q[j ]
2 b[k−j ]

z )

⎞
⎠ ,

β
[k]
21 := 2

⎛
⎝−q[k]

1 by +
k∑

j =0

(q[j ]
2 b[k−j ]

x + q[j ]
4 b[k−j ]

z )

⎞
⎠ ,

β
[k]
22 := 2

⎛
⎝q[k]

2 by +
k∑

j =0

(q[j ]
1 b[k−j ]

x + q[j ]
3 b[k−j ]

z )

⎞
⎠ ,

β
[k]
23 := 2

⎛
⎝−q[k]

3 by −
k∑

j =0

(q[j ]
4 b[k−j ]

x − q[j ]
2 b[k−j ]

z )

⎞
⎠

β
[k]
24 := 2

⎛
⎝q[k]

4 by −
k∑

j =0

(q[j ]
3 b[k−j ]

x − q[j ]
1 b[k−j ]

z )

⎞
⎠ ,

β
[k]
31 := 2

⎛
⎝−q[k]

4 by +
k∑

j =0

(q[j ]
3 b[k−j ]

x − q[j ]
1 b[k−j ]

z )

⎞
⎠ ,

β
[k]
32 := 2

⎛
⎝q[k]

3 by +
k∑

j =0

(q[j ]
4 b[k−j ]

x − q[j ]
2 b[k−j ]

z )

⎞
⎠ ,

β
[k]
33 := 2

⎛
⎝q[k]

2 by +
k∑

j =0

(q[j ]
1 b[k−j ]

x + q[j ]
3 b[k−j ]

z )

⎞
⎠ ,

β
[k]
34 := 2

⎛
⎝−q[k]

1 by +
k∑

j =0

(q[j ]
2 b[k−j ]

x + q[j ]
4 b[k−j ]

z )

⎞
⎠ .

The sensitivity Taylor coefficients are derived as follows:

B[k+1]
s := ds[k+1]

ds[0] = 1
k + 1

k∑
j =0

A[j ]
s B[k−j ]

x , (36)

B[k+1]
u := ds[k+1]

du[0] = 1
k + 1

⎛
⎝A[k]

u +
k∑

j =0

A[j ]
s B[k−j ]

u

⎞
⎠ .

(37)

Therefore,

Bs(t0 + h0) := ds(t0 + h0)

ds(t0)
=

d∑
k=0

B[k]
s hk

0, (38)

Bu(t0 + h0) := ds(t0 + h0)

du(t0)
=

d∑
k=0

B[k]
s hk

0. (39)

At the time, ti = ti−1 + hi−1, i = 1, . . . , n, the sensitivity
can be obtained using the chain-rule iteratively

Bsj (ti) := ds(ti)
ds(tj )

=
i−(j +1)∏

k=0

Bs(ti−k), j < i, (40)

Buj (ti) := ds(ti)
du(tj )

=
i−(j +2)∏

k=0

Bs(ti−k)Bu(tj +1), j < i.

(41)

3.3. Predictive control
The control performance of the satellite system is measured
by a quadratic integration as follows:

φ := 1
2

n∑
k=0

∫ tk+hk

tk
((s − s0)

TQ(s − s0) + uTRu) dt, (42)

where s0 is the desired reference vector of s, Q and R are
performance weights of states and inputs, respectively. Let
φk represent the performance measure from tk to tk + hk
and

Ek :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1/2
k

⎡
⎢⎢⎢⎢⎢⎣

Q1/2(s[0] − s0)

Q1/2s[1]

...

Q1/2s[d]

⎤
⎥⎥⎥⎥⎥⎦

R1/2u(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

where the (i, j )th element of Fk is hi+j −1
k /(i + j − 1).

Then, it can be proven that φk = 1
2 ET

k Ek. Stack all Ek

together as E = [ET
0 · · · ET

n ]T then φ = 1
2 ETE. This is

a standard nonlinear least-square problem. To solve the
problem, the Jacobian matrix, J of E against u(tk), k =
0, . . . , n, is required. Partition J into Jij , i, j = 1, . . . , n +
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1, where Jij is the Jacobian matrix of Ei−1 against uj −1.
Therefore,

Jij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i⎡
⎢⎢⎢⎢⎢⎢⎣

F1/2
i

⎡
⎢⎢⎢⎣

0
Q1/2B[1]

u
...

Q1/2B[d]
u

⎤
⎥⎥⎥⎦

R1/2

⎤
⎥⎥⎥⎥⎥⎥⎦

, j = i,

⎡
⎢⎢⎢⎢⎢⎢⎣

F1/2
i

⎡
⎢⎢⎢⎣

Q1/2Buj (ti)
Q1/2B[1]

s Buj (ti)
...

Q1/2B[d]
s Buj (ti)

⎤
⎥⎥⎥⎦

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, j < i.

Remark 1 Stability analysis for MPC of constrained non-
linear dynamics system has been established by adding an
appropriate terminal weighting in the performance index
for example see Chen and Cao (2012). However, the added
terminal term complicates the control tuning as it is very
hard to choose in particular for a nonlinear system and
consequently understand its influence on the system per-
formance. The satellite with magneto actuation system is
partially controllable, where the uncontrollable subspace
is periodically varying. In order to ensure stability, the
prediction horizon has to be long enough to cover such
uncontrollable subspace variation. Nevertheless, the time
period of variation of controllable and uncontrollable sub-
spaces depends on the velocity of the satellite. Therefore,
it is particularly difficult to choose an appropriate terminal
term for such a system. To focus on the variable sampling-
time scheme, the cost function used in this paper, similar to
classic MPC, has no terminal weights. Stability is ensured
by tuning MPC parameters. It remains as an open problem
to perform stability analysis for this kind of nonlinear MPC
and only very limited results exist in the literature (Chen,
2010).

Based on the Levenberg–Marquardt algorithm
(Marquardt, 1963), using the Jacobian, J , and the per-
formance vector, E, the inputs, U := [uT(t0) uT(t1) · · ·
uT(tn)]T is iteratively updated as follows:

Uk+1 = Uk − (J TJ + λI)−1J TE, (44)

where λ is determined by the algorithm to make sure the
performance measure is reduced at each iteration step. The
optimal solution, U∗ is obtained when the algorithm is
converged, whilst only the first block of U∗, i.e. u∗(t0) is
applied to the system until the next sampling instance.

Note that in the above configuration, it is assumed that
there is no any state constraint. Standard algorithm is read-
ily available to deal with input constraints, e.g. by using the
lsqnonlin function in MATLAB Optimization Toolbox
(MathWorks, 2007).

3.4. Variable sampling time
Performance of discrete control systems is limited by the
sampling time. Fast response requires a short sampling
time. However, on the other hand, to ensure closed-loop
stability of MPC, the predictive period should be long
enough. Combining both requirements may result in an
impractical large prediction horizon (number of predictive
steps) so that computation load of NMPC is not tractable.
The situation is even worse in the satellite control sys-
tem, where the dynamic response speed depends on the
magnitude of actuating inputs. The rotating speed under
the maximum actuating force can be three to four orders
of magnitude higher than that under the minimum force.
On the other hand, the partially controllable nature and the
time-varying magnetic field along the earth orbit make the
stabilization of the system only achievable over sufficient
long periods (Lovera and Astolfi, 2004). Therefore, a novel
variable sampling-time scheme is proposed in this work to
tackle this problem.

Naturally, when the satellite is far away from its desired
equilibrium position, a relatively large actuating force is
required to drive the satellite to the desired position as
quickly as possible. In this situation, control performance,
i.e. response speed is the main concern. Hence, a relatively
small sampling time should be adopted. As the satellite
gradually approaches the desired position, the required
magnitude of actuating force is reduced and the stability
issue becomes more and more important. In general, for
a performance index as given in Equation (42), the stabil-
ity of the MPC algorithms can be achieved by employing
a sufficiently large horizon. Therefore, the sampling time
should increase so that within the tractable computation
time closed-loop stability can be ensured. Both require-
ments are satisfied by adjusting the sampling time to match
the integration steps, which is determined based on the
error tolerance control algorithm described as follows.

Assume that the state of the satellite at the next sam-
pling time is estimated by the Taylor series as s(h) =∑d

k=0 s[k] + ε(h, d), which has the radius of convergence
equal to r. Then,

ε(h, d) ≈ C
(

h
r

)d+1

, (45)

where C is constant. For sufficient large d,

r ≈ rd := ‖s[d−1]‖∞
‖s[d]‖∞

. (46)

Since, ε(h, d − 1) ≈ ε(h, d)(rd/h) ≈ ε(h, d) + ‖s[d]‖∞hk,
it leads to the following estimation of the truncation error:

ε(h, d) = hd+1‖s[d]‖2
∞

‖s[d−1]‖∞ − h‖s[d]‖∞
. (47)

Therefore, for a given d and a specified error tolerance, ε0,
the integration step (sampling time) can be estimated from
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ε(h, d) ≤ ε0. For h > 1, it leads to

h ≤
(

ε0‖s[d−1]‖∞
‖s[d]‖2∞

)1/(d+1)

. (48)

When the satellite position is far away from its desired
attitude and a large actuating force is imposed, a small sam-
pling time is determined by applying the above estimation.
Therefore, the control system has fast response speed. As
the satellite approaches the desired attitude, actuation from
the MPC is small. The above estimation will result in a
large sampling time and hence a long predictive horizon,
which then ensures the closed-loop stability.

4. Case study and simulation
The developed AD-based NMPC with variable sampling-
time algorithm is implemented in MATLAB and tested
with a specific satellite case, which has the follow-
ing parameters: Ix = 128, Iy = 600 and Iz = 500 all in
[kg m2]; α = 50◦, ω0 = 2π/5400 (rad/s) and μf = 0.0632
based on orbit height 500 (km). The maximum dipole
moment of each magnetic rod is 400 (A m2).

The NMPC is configured with two sets of parameters
in Equation (42) depending on the angle velocity: for fast
rotating speed, ‖ω‖ > 0.001 (rad/s), n = 4 and

Q = diag(30 2 30 0.2 0.0001 0.3 0.0001)2,

R = 0.0082I .

For slow rotating speed, ‖ω‖ < 0.001 (rad/s), n = 6, and

Q = diag(1202Ix 1202Iy 1202Iz 3 3 3 3),

R = diag(303 3.4 253)2.

For variable sampling time, the error tolerance is given
as ε0 = 10−16 and the Taylor series order d = 20.

To test the performance of the NMPC, a set of initial
conditions are randomly generated. The NMPC is able to
achieve satisfactory control performance and ensure the
closed-loop stability as indicated in Figure 1.

In the simulation, initially, the controller adopts the
sampling time as small as 500 (ms) to facilitate the max-
imum control action, as shown in sub-figure (c) so that
the rotating speed of the satellite decreases quickly as indi-
cated in sub-figure (a). Overall, the system is able to reach
the desired attitude within 2 h as seen from sub-figure (b).
When the system is close to its desired equilibrium posi-
tion, the sampling time is gradually increased to 50 (s),
which is about 100 time larger than the minimum sam-
pling time such that the stability is observed over a long
time period (6 h) as shown in sub-figure (b). Finally, sub-
figure (d) shows the residual of the algebraic constraint,
which is very difficult to be maintained at a small tolerance
by using traditional differential equation solvers. By using
the high-order Taylor series-based formulation developed
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Figure 1. Simulation results of satellite NMPC (a) angular
velocities, (b) Euler parameters (quaternion), (c) actuating forces
and (d) residual of the algebraic constraint.
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Figure 2. Computation time against sampling time (a) in short
time scope, 0–30 s and (b) in long time scope, 0–6 h.

in this work, the residual is comfortably maintained at a
very small level.

The computation efficiency is examined by checking
the ratio of computation time against the sampling time,
which is shown in Figure 2. The result was obtained by
using an Intel� CoreTM Duo Process T2500 (2.0 GHz,
2 MB L2 Cache, 667 MHz FSB) running MATLAB c©

R2009b. From Figure 2, it can be seen that in most
time, the computation time spent is less than one-tenth of
the sampling time. Therefore, the proposed scheme can
comfortably handle the NMPC problem studied.

In contrast with the variable sampling-time scheme, if
the traditional fixed sampling-time scheme were adopted,
to cope with the large initial offset in ωx (≈ 0.9 rad/s), the
sampling time had to be fixed at 500 (ms), whilst to ensure
the stability using the similar configuration adopted in the
variable sampling-time scheme, the prediction horizon had
to be 300 (s), i.e. the 600 sampling intervals. To fully
implement the NMPC scheme proposed in Section 3.3,
the Jacobian matrix would be in size of 120, 000 × 1800,
which requires at least 2 GB memory, hence is difficult to
be implemented in a normal personal computer. Even with
a simplified formulation given in Cao (2005), the error vec-
tor, E in Equation (44) would still have (7 + 3) × 600 =
6000 elements and the Jacobian matrix, J would be in size
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Figure 3. Simulation result of fixed sampling rate of 0.5 (s).
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Figure 4. Simulation result of the fixed sampling rate of 10 (s).

of 6000 × 1800. To solve such a large size NMPC problem
within 500 (ms) demands a huge computation power mak-
ing the approach computationally forbidden. For example,
on the same PC described above, it requires more than
60 (s) to calculate a single update shown in Equation (44).
Therefore, to solve the NMPC problem within a sampling
interval of 0.5 (s) requires at least a 128-core supercom-
puter, which is almost impossible to be available on a small
satellite like the one under study.

To highlight the advantage of the varying sampling-
time scheme proposed, two fixed sampling-time schemes
with sampling time at 0.5 and 10 (s) are simulated and the
corresponding results are illustrated in Figures 3 and 4,
respectively. In the 0.5 (s) sampling time, the satellite can
be quickly converged to the desired attitude. However,
due to the partial controllability, with such small sampling
time, the desired attitude cannot be maintained. It can be
observed that the satellite will deviate from, then converge
back to the desired attitude periodically. In the second case
when the sampling time is 10 (s), the stability around the
desired attitude can be maintained. However, due to the
large sampling time, it takes a very long time, longer than

20 h, for the satellite to converge from the initial state to
the desired attitude.

5. Conclusions
An AD-based NMPC formulation is developed for the
satellite attitude control problem using magneto-torquers.
A novel variable sampling-time mechanism has been pro-
posed to tackle the problem where due to the coupling
between the local magnetic field and the satellite attitude,
the satellite dynamics change dramatically from initial
orbit installation to the end of the manoeuvre so that
both control performance and closed-loop stability can be
maintained satisfactorily. Nonlinear simulation on a partic-
ular satellite case demonstrates the superior remits of the
proposed control scheme.
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Appendix. Recursive calculation of Taylor coefficients
Let x[k] represent the kth Taylor coefficient of function x(t), i.e.

x(t) = x[0] + x[1]t + · · · + x[d]td. (A1)

The Taylor coefficients of arithmetic and simple functions can
be directly derived in Tables A1 and A2.

Taylor coefficients of most other elementary functions, z =
f (x) can be derived through differentiation, ż = f ′(x)ẋ.

Table A1. Taylor coefficients.

Function Taylor coefficients

z = x ± y z[k] = x[k] ± y[k]

z = xy z[k] =
k∑

i=0

x[i]y[k−i]

z = x/y z[0] = x[0]/y[0], z[k] = (x[k] −∑k−1
i=0 z[i]y[k−i])/y[0]

z = x2 z[k] =
k∑

i=0

x[i]x[k−i]

z = √
x z[0] =

√
x[0], z[k] =

(
x[k] −

k−1∑
i=1

z[i]z[k−i]

)
/(2z[0])

z = dx/dt z[k] = (k + 1)x[k+1]

Table A2. Taylor coefficients through differentiation.

Function Derivative Taylor coefficients

z = xa żx = azẋ z[0] = (x[0])a, z[k+1] = z[k]
1 − z[k]

2
(k + 1)x[0]

z[k]
1 = a

k∑
i=0

(k − i + 1)z[i]x[k−i+1]

z[k]
2 =

k−1∑
i=0

(i + 1)z[i+1]x[k−i]

z = ex ż = zx z[0] = ex[0]
,

z[k+1] = 1
k + 1

k∑
i=0

z[i]x[k−i]

z = ln x zx = ẋ z[0] = ln x[0],

z[k] = ((k + 1)x[k+1]

−
k−1∑
i=0

z[i]x[k−i])/x[0]

u = sin(x) u̇ = vẋ u[0] = sin(x[0]), v[0] = cos(x[0])

v = cos(x) v̇ = −uẋ u[k+1] = 1
k + 1

k∑
i=0

(k − i + 1)v[i]x[k−i+1]

v[k+1] = −1
k + 1

k∑
i=0

(k − i + 1)u[i]x[k−i+1]
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