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Abstract: In this work, effective methods for monitoring friction and wear of journal bearings

integrated in future UltraFan® jet engines containing a gearbox are presented. These methods are

based on machine learning algorithms applied to Acoustic Emission (AE) signals. The three friction

states: dry (boundary), mixed, and fluid friction of journal bearings are classified by pre-processing

the AE signals with windowing and high-pass filtering, extracting separation effective features

from time, frequency, and time-frequency domain using continuous wavelet transform (CWT) and

a Support Vector Machine (SVM) as the classifier. Furthermore, it is shown that journal bearing

friction classification is not only possible under variable rotational speed and load, but also under

different oil viscosities generated by varying oil inlet temperatures. A method used to identify

the location of occurring mixed friction events over the journal bearing circumference is shown in

this paper. The time-based AE signal is fused with the phase shift information of an incremental

encoder to achieve an AE signal based on the angle domain. The possibility of monitoring the run-in

wear of journal bearings is investigated by using the extracted separation effective AE features.

Validation was done by tactile roughness measurements of the surface. There is an obvious AE

feature change visible with increasing run-in wear. Furthermore, these investigations show also

the opportunity to determine the friction intensity. Long-term wear investigations were done by

carrying out long-term wear tests under constant rotational speeds, loads, and oil inlet temperatures.

Roughness and roundness measurements were done in order to calculate the wear volume for

validation. The integrated AE Root Mean Square (RMS) shows a good correlation with the journal

bearing wear volume.

Keywords: journal bearing; acoustic emission; machine learning; friction classification; friction

localization; run-in wear; long-term wear

1. Introduction

An effective means of improving turbofan engine efficiency is to increase the bypass ratio (BPR).

The BPR is driven by the fan diameter associated with aerodynamic influences combined with the

thermodynamic requirements of the turbine design. Ideally, the fan operates at slow speeds and the
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turbine at high rotational speeds. These contradicting requirements can be sorted out by using a

planetary gearbox between the components. However, using a gearbox introduces additional failure

modes such as journal bearing wear caused by mixed or dry friction. A breakdown of this component

could have a negative impact on the product reliability which causes high maintenance costs and

downtime. This paper outlines journal bearing monitoring opportunities to address technical diagnosis

of the world’s most powerful aircraft gearbox.

The Power Gearbox (PGB) is a demonstrator programme in preparation for future UltraFan®

design standard jet engine products. In this planetary gearbox monitoring of journal bearings is

required. It is a general requirement for an aero engine to enable early fault detection. To meet this

requirement, an analysis of the novel power plant architecture was performed using various System

Design tools such as Function Failure Mode & Effect Analysis (FFMEA) to identify journal bearing

monitoring options. Previous works have already shown the possibility of identifying journal bearing

mixed and dry friction by using the acoustic emission (AE) technology [1–4]. Other options such as

temperature, friction torque, debris, or position monitoring can not be applied for several reasons

e.g., sensor sensitivity or limited design space.

In addition to knowledge of the current state of friction, knowledge of the current state of wear,

which means the current loss of material, is also necessary. Some work already focused on the

detection of wear using AE analysis [5–9]. However, the literature only contains investigations on

pin-disc tribometers, the results of which are supposed to prove the possible applicability to real

systems. In most cases, the correlation between wear measurements and AE features is investigated.

These investigations are idealized and in most cases the applicability to real applications is not proven.

Wear investigations based on AE using grease-lubricated journal bearings were done by Hase [10].

He shows the possibility to detect different modes of wear with AE. The applicability to oil-lubricated

journal bearings is not shown.

As already noted a reduction gearbox is integrated between fan and turbine. This gearbox can be

designed as star arrangement with a fixed carrier and direct access to measure the bearings. To increase

the gear ratio a planetary design is used, with a fixed ring gear and a rotating carrier-shaft. To measure

the acoustic emission signal of the journal bearing the sensor must be located on the carrier-shaft and

the signal must be transferred to a static location while the shaft is rotating with fan speed wc [11].

Figure 1 shows a schematic of the PGB design with applied wireless data transfer unit (WDTU).

Sun gear

ωc ωs

ωp
Planet gear

Planet carrier

Power harvesting system

Rotating antenna

Static antenna

Demodulation device

Ring gear

AE 

sensor

Diagnostic 

Unit

Figure 1. Schematic of planetary gearbox and applied Wireless Data Transfer Unit (WDTU).

The environmental conditions in the PGB are very harsh. The WDTU must deal with high

vibrations and temperatures above 120 ◦C, which limits the use of active electronics to measure the

AE signal on the rotating part. A solution was identified in [12–14] to transfer the AE signal from

the rotating planet to the stationary gearbox for an aviation gearbox application. To demonstrate the
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option of detecting the journal bearing mixed friction in a PGB environment it is planned to apply the

WDTU on a subscale gearbox [15,16], before a full scale test will be carried out.

With the announced digital strategy of Rolls-Royce to create intelligent engines, further

signal processing enables gathering additional information about the UltraFan® power plant [17].

With this option, condition-based maintenance can be done in addition to time-based maintenance.

The advantages of this maintenance method are, for example, the extension of operating time and

the advance planning of maintenance. A reliable diagnosis and prognosis system is essential for the

application of such a condition-based maintenance. For this purpose, machine learning algorithms

can be applied to the acquired sensor signals. Figure 2 shows a pattern recognition scheme for

diagnosis of different friction states with additional possibility to predict the actual wear condition via

regression analysis.

Figure 2. Pattern recognition chain for diagnosis of friction states and prognosis of wear condition.

The following research activities can be divided in journal bearing friction investigations such as

friction states classification or friction localization, and journal bearing wear investigations including

run-in and long-term wear based on a subscale test rig located at Technische Universität Berlin. For the

first purpose machine learning methods were applied to classify the three basic journal bearing

friction states fluid, mixed, and dry friction. As a result of these first investigations the location

on the bearing surface at which mixed friction is occurring can be determined [18]. Furthermore,

it will be investigated whether the extracted AE features are applicable for run-in and long-term wear

monitoring of oil-lubricated hydrodynamic journal bearings. Run-in wear is generated during removal

of the roughness peaks and long-term wear changes the round shape of the journal bearing. Above a

certain degree of shape deviation, the supporting lubrication film can no longer be formed, so that the

end of lifetime is reached [19]. The roughness and roundness of the journal bearing was measured

for validation.

2. Experimental Methods

In this section, experimental methods including the used materials, test rigs and experimental

procedures are presented.

2.1. Materials

The test item used in this work was a journal bearing bush made of the cast material red brass

(Cu Sn7 Zn4 Pb7-C). This material made of a copper-zinc-tin alloy offers good sliding and dry running

properties and is relatively resistant to wear and cavitation. This material was chosen because it is

used in many applications such as turbines, piston engines and gearboxes. The bearing width was

40 mm for the results shown in Sections 3.1–3.3. For the results shown in Section 3.4 the bearing width

was reduced to 25 mm in order to increase the specific pressure p.

A hardened shaft made of 16MnCr5 steel was used as sliding partner. Manganese chromium

alloys are used when high wear resistance is required. As friction and wear are investigated in this
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paper, this material was used to avoid failure of the sliding partner. Figure 3 shows the test item and

the sliding partner with their significant characteristics.

Inner diameter [mm]:     50 D6

Outer diameter [mm]:     60 r6

Bearing width [mm]:       40 (sec. 3.1 - 3.3)

Bearing width [mm]:       25 (sec. 3.4) 

Material:                        RG 7

Surface roughness [µm]: Rz = 4 

Diameter [mm]:             50 h5

Material:                        16MnCr5

Surface roughness [µm]: Rz = 4 

Bearing clearance [µm]: 93.5

Rel. bearing clearance: 1.9 ‰

Figure 3. Test item (top) and sliding partner (bottom) used for friction and wear experiments.

2.2. Journal Bearing Test Rigs

Two test rigs were used for the friction and wear investigations: the small journal bearing test

rig (STR) described in Section 2.2.1, and the temperature-controlled journal bearing test rig (TCTR)

described in Section 2.2.2. Table 1 shows the linking of the different test rigs to the respective section

of results.

Table 1. Linking test rigs to the respective section of results.

Test Rig Results in Section

STR Section 3.1.1–3.1.4/Section 3.2/Section 3.3

TCTR Section 3.1.5/Section 3.4

2.2.1. Small Journal Bearing Test Rig (STR)

The STR was specifically developed for this application. It was designed to prove concepts rather

than to be representative of the operating environment. Figure 4 shows this test rig and the main

operating parameters.

FN

Servo motor

Shaft

Pneumatic cylinder

Oil inlet

Nylon 6.6
Support bearings

 

 

FN 
   

 = 0 - 3 kN

= 0 - 1,5 MPap

 

Toil, in 

nshaft = 0 - 3000 rpm

nshaft

= 27 °C

= 2 barpoil, in

Operating parameters

Figure 4. Small journal bearing test rig (STR) and operating parameters.

The principle is that a radial load FN is applied to the stationary journal bearing, pressing it

against the rotating shaft. If the load is higher than the hydrodynamic lubricating film pressure, which
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is generated between the journal bearing and the shaft, the two sliding partners come into contact and

mixed or dry friction occurs, otherwise fluid friction is generated.

The shaft is driven by a speed-controlled servo motor from Mattke (HSR0530/ L4-60-P).

Control is achieved via a servo controller (Mattke MDR 2300 SE). A pneumatic cylinder from Festo

(ADVC-63-10-A-P) is used to generate the radial load FN . Two support bearings are fitted to the right

and left of the journal bearing to allow easy mounting and dismounting. Two nylon 6.6 rings have

been fitted between the shaft and the support bearings to dampen interference signals generated from

the support bearings. The bearing back consists of two parts, which are fixed with screws, to allow

easy replacement of the journal bearing. The sliding surfaces were lubricated with a mineral oil of

ISO VG class 10. The oil had an approximately constant temperature of Toil,in = 27 ◦C during the tests.

As heating of the oil was not possible at this time, this low viscosity became necessary in order to

be able to generate all three friction conditions with the given speed and load limits. The oil supply

pressure poil,in was set to 2 bar.

2.2.2. Temperature-Controlled Journal Bearing Test Rig (TCTR)

To be able to set defined values of oil temperature the STR was equipped with a temperature

control system. This became necessary because journal bearing friction states are not only influenced

by rotational speed and load variations, but also by changes in oil viscosity, which is mostly affected

by the oil temperature. The TCTR and the possible operating parameters can be seen in Figure 5.

The modified parameters are marked in red. The mechanical construction described in Section 2.2.1

was extended with a hydraulic unit consisting of an insulated oil reservoir, two hydraulic pumps, two

heating elements, a cooling unit, and an electrical pressure control valve, and is located under the

experimental area. The oil passes a metal filter before feeding the journal bearing to prevent damage

from metal particles. For further information regarding the temperature control system refer to [20].

The possibility to increase the oil inlet temperature Toil,in of up to 100 ◦C made it possible to use

an oil of higher viscosity. A lubricating oil from Addinol (CKT 68) of ISO VG class 68 was used. Due

to this change, the pressure application also had to be changed, since higher forces were required to

generate mixed or dry friction. The modified hydraulic cylinder can offer up to FN,hydr. = 20 kN.

Hydraulic

Unit 

Oil inlet

Metal filter

 

 

   

FN, hydr.

Servo motor

Shaft

Hydraulic cylinder

Nylon 6.6
Support 

bearings

nshaft

Operating parameters

 

 

FN, hydr. 
   

 = 0 - 20 kN

= 0 - 15 MPap

 

Toil, in 

nshaft = 0 - 3000 rpm

= 20 - 100 °C

= 2 barpoil, in

Figure 5. Temperature-controlled journal bearing test rig (TCTR) and operating parameters.

At this modified test rig it was further possible to measure the contact voltage (CV) between

shaft and bearing. The CV measurement was used in Section 3.1.5 to validate the assumed friction

states. A voltage source provides U0 = 5 V input voltage. Rc represents the total resistance of the test
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components such as the journal bearing and the shaft and is about 0.2 Ω. The resistance of the oil Roil

is variable and changes with the state of friction. The CV is measured over the resistance R, which has

a value of 50 Ω. In fluid friction, the journal bearing and the shaft are separated by a lubricating film.

Due to the low electrical conductivity of the oil, a very high resistance is produced at Roil. The voltage

drops over this resistance so that the CV measured over R is zero. In dry friction, the journal bearing

and the shaft come into contact, so that the resistance Roil is almost zero. Nearly the entire voltage can

then drop over R. The electrical diagram of the CV measurement can be seen in figure 6.

Roil ~ 2 MΩ 

V

U0 = 5 V

RoilRc ~ 0.2 Ω

R = 50 Ω

i

CV

During fluid friction 

CV ~ 0 V

During dry friction 

Roil ~ 0 Ω CV ~ 5 V

Figure 6. Electrical diagram for contact voltage (CV) measurements.

2.2.3. Acoustic Emission (AE) Measurement Equipment

To measure occurring acoustic emissions, the broadband piezoelectric Physical Acoustics

Corporation (PAC) Wideband (WD) sensor with a frequency range of 100–900 kHz was used

(see Figure 7). Epoxy was used as coupling material to the journal bearing back. Since the signal

amplitude generated during friction is mostly in the range of microvolts, an amplifier with an integrated

bandpass filter (2/4/6 preamplifier) was used. It amplifies the signals into a range of millivolts or

volts, thus improving the signal-to-noise ratio. The three amplifier stages 20, 40 and 60 dB can be

set, whereby 60 dB was selected for this work because friction signals have a particularly low signal

amplitude. A band-pass filter was used to attenuate very low- or very high-frequency noise signals.

The bandwidth of this filter is 20–1200 kHz. The output of the pre-amplifier is a voltage in the range

of 10 Vpp. This analogue output signal was connected to a 16 bit high-speed analog-to digital (A/D)

measuring card from Spectrum (MX4963), which can provide a sampling rate of up to 50 MS/s.

The sampling rate was set to 2 MS/s for the AE measurements.

Material: 

Frequenzy range: 

Coupling material: 

Amplifier + band-pass filterAE sensor

Amplification: 

Band width: 

Output voltage: 

Ceramik

100 - 900 kHz

Epoxy

20/40/60 dB

20 - 1200 kHz

10 Vpp

details in mm

Bearing back

Bearing bush

AE sensor

Figure 7. Acoustic Emission (AE) sensor, pre-amplifier and sensor position.

2.3. Experimental Procedures

Different sets of experiments were carried out: friction experiments (Section 2.3.1), to develop the

friction state classifier and to determine the friction localization and wear experiments (Sections 2.3.2

and 2.3.3), to monitor the run-in and long-term wear.
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2.3.1. Generation of Different Friction States

The primarily requirement for these experiments was to generate all three friction states in order

to create a sufficient training data set for the friction state classifier. Mixed and dry friction is in most

cases generated during low rotational speeds, high loads or low oil viscosities. In this work first of all

the rotational speed and load were varied, later also oil viscosity changes were investigated.

To define suitable operating points DIN 31652 [21] was used for the calculation of the minimum

lubricating film thickness hmin at varying rotational speeds, radial load and oil viscosity combinations.

The critical minimum lubricating film thickness hmin,crit indicates the transition to mixed friction and

is defined as follows [21]:

hmin,crit = (0.5...0.75...1.0) · (Rz,sha f t + Rz,bearing). (1)

If hmin is below hmin,crit the journal bearing will experience mixed or dry friction otherwise fluid

friction occurs. With this information suitable rotational speed ranges can be defined for each load

and oil viscosity level so that the journal bearing can experience all three friction states. It should be

noted that the calculation according to DIN 31652 cannot indicate the exact transition to mixed friction

because of simplifications such as the neglect of surface smoothing by friction. This calculation should

only support the selection of suitable operating points.

Speed and Load Combinations

Several speed ramps under different radial loads were conducted at the STR described in

Section 2.2.1. Figure 8 shows the test procedure and the determined rotational speed-load combinations

with regard to the minimum lubricating film thickness hmin.

R
o
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n
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l 
S
p
e
d

Time

Start

L
o
a
d

End
measurement

recording
measurement

recording

Load 

in N

Speed ramp 

in rpm

1250

1500

1750

2000

2250

2500

2750

3000

420 - 60

430 - 70

440 - 80

450 - 90

460 - 100

460 - 100

480 - 120

480 - 120

Figure 8. Test procedure and determined operation points for speed ramps at constant loads.

Speed, Load and Temperature Combinations

As some of the TCTR conditions such as oil type, mean surface pressure or the possibility to

control the oil temperature have changed in comparison to the previous setup, the experiments

conducted at the STR have to be updated. Figure 9 shows the test procedure and the determined

rotational speed-load-oil inlet temperature combinations with regard to the minimum lubricating film

thickness hmin. The data acquired from these experiments were not used to train the classifier, but to

investigate the possibility of differentiating the three friction states with AE features under varying

speeds, loads and oil temperatures.
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Figure 9. Test procedure and determined operation points for speed ramps at constant loads and oil

inlet temperatures.

2.3.2. Generation of Run-in Wear

The primary requirement for these experiments was to operate in mixed friction conditions for

a defined period of time in order to generate run-in wear. Furthermore, the risk of seizure in dry

friction should also be minimized by selecting suitable operating points. For these experiments the

STR described in Section 2.2.1 was used.

Investigations by Meier [19] have shown that a journal bearing repeatedly “rescues” itself to fluid

friction by smoothing the surface roughness when operating without a change to system configuration

during the run-in period. Thus, a continuous mixed friction condition within the run-in period is

not possible without a change to system configuration. The conditions must be adapted in order to

generate further run-in wear. For this reason, Meier [19] defined a short-term test procedure consisting

of stationary speed stages and subsequent speed ramps. The test scheme used in this work can be seen

in Figure 10.
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Figure 10. Test procedure for short-term tests.
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By gradually reducing the speed the larger gap between journal and shaft, caused by smoothing,

is reduced, so that mixed friction can occur again [22]. In this work the stationary speed stages were

held for 2 h. After each speed stage, a speed ramp was run to indicate the transition to mixed friction.

After each speed ramp the journal bearing was dismounted and the surface roughness was measured

tactilely. The measurements were carried out for eleven positions distributed around the circumference

with a distance of 30 ◦. A total of nine speed stages were carried out so that the journal bearing was

run for a total time of 18 hours.

2.3.3. Generation of Long-Term Wear

The primary requirement for these experiments was to operate in mixed friction condition for a

long period of time in order to generate long-term wear. Furthermore, the risk of seizure in dry friction

should also be minimized by selecting suitable operating points. For these experiments the TCTR

described in Section 2.2.2 was used in order to hold the rotational speed, load and oil inlet temperature

almost constant over a test period of 18 hours.

After every test period the bearing was removed and the roundness and roughness was measured

tactilely. The bearing was then remounted and operated for further 18 h at constant operating

conditions. The long-term wear experiments were stopped once a total testing time of 162 h was

reached. AE signals were measured every five minutes for a period of 20 s. The experimental

conditions are shown in Table 2.

Table 2. Experimental conditions for long-term wear tests.

Number of Measurement Rotational Speed in rpm Load in kN Temperature in ◦C Testing Time in h

1 400 8 60 18
2 300 8 60 18
3 200 8 60 18
4 150 8 60 18
5 100 8 60 18
6 80 8 60 18
7 70 8 60 18
8 65 8 60 18
9 55 8 60 18

3. Results and Discussion

In this section, the results of friction and wear monitoring based on AE and machine learning

algorithms are presented. Journal bearing friction monitoring is divided into two main sections:

• Classification of the three main friction states by using machine learning algorithms applied on

AE signals (Section 3.1).

• Mixed friction localization over the circumference of the journal bearing by using the AE

modulation effect generated during friction (Section 3.2).

Journal bearing wear monitoring refers to:

• Investigations of run-in wear (Section 3.3) by using AE features and tactile measurements as

validation.

• Investigations of long term wear (Section 3.4) by using AE features and tactile measurements as

validation.

3.1. Classification of Journal Bearing Friction States

The procedure for developing a friction state classifier refers to the pattern recognition chain

shown in Figure 2. Before a classifier can be trained, signal processing steps are necessary: signal

pre-processing to maximize the signal-to-noise ratio or the extraction and selection of separation
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effective features. The results of these steps are presented in the following. Afterwards the outcome of

the Support Vector Machine (SVM) classifier is shown.

3.1.1. AE Signal Pre-Processing

Pre-processing of the acquired AE signals is an important step for successful feature extraction.

Without pre-processing, the useful signal, which is in our case the friction signal, is overlaid with noise

from other components. The windowing and filtering of the AE signals as central pre-processing steps

will be presented in the following.

Windowing: For successful feature extraction the AE data should be segmented in such a way

that only one friction state class exists within a signal pattern. If windowing is not done there may be

an uncertainty in the assignment of the actual friction state class, since multiple friction states could

be present in a single set of data. In this work windowing of one shaft revolution was done to avoid

different friction state classes in one signal pattern. Figure 11 shows windowed AE signals of the three

different friction states generated by reducing the rotational speed n.

Fluid friction: n = 330 rpm, FN = 1500 N

Mixed friction: n = 110 rpm, FN = 1500 N

Dry friction: n = 70 rpm, FN = 1500 N

Figure 11. Plot of the windowed AE signal over time for fluid friction (top), mixed friction (middle)

and dry friction (bottom).

Filtering: During operation, the AE signals emitted by friction are overlaid by other machine

noises, which makes the subsequent classification of friction states extremely difficult or even

impossible. The advantage of using the ultrasonic range for friction detection was already shown by

other authors [2]. Machine noises tend to be in the audible range, whereby friction is also detectable in

the high-frequency range. The use of a frequency range of 100 kHz–300 kHz for friction detection has

so far been proven effective in the literature [23]. In this work, however, a filter bank of band-, high-

and low-pass filters was generated, which is shown in Figure 12, to adjust the frequency range for this

application. To evaluate the influence of these filters on the AE signal, the root mean square (RMS)

value, which is commonly used as an AE feature in the literature, is used.

Ideally, a separation effective feature should not show any major changes in the area of fluid

friction, since no mechanical friction occurs in this area. At the transition to mixed friction, the feature

should increase with increasing dry friction part in order to be able to distinguish between fluid friction

and the other two friction states. The greater the difference between fluid friction RMS value and

mixed or dry friction RMS value, the better the friction conditions can be differentiated. In order to

distinguish mixed and dry friction other features are needed to create a feature space.

When applying the low-pass filter LP1 with a cut-off frequency of 50 kHz, an increase in the RMS

value with increasing speed scan be seen in the area of fluid friction. One of the reasons for this is

the presence of machine noises. The transition area to mixed friction is also considerably damped by

machine noises. It is difficult to differentiate between fluid and mixed friction by using this kind of

filter. In contrast, the use of bandpass or high-pass filters significantly attenuate the machine noises.

In fluid friction area an almost linear curve can be seen and the transition area to mixed friction is
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clearly distinguishable from fluid friction. The best result is provided by the digital high-pass filter

HP1 with a cut-off frequency of 100 kHz.

Figure 12. Filter bank (left) and the AE root mean square (RMS) over the rotational speed at a constant

load of 2250 N after signal decomposition (right).

3.1.2. Feature Extraction

For feature extraction, statistical features such as RMS, skewness, kurtosis, crest factor,

clearance factor, Shannon entropy, median frequency etc. were extracted from time, frequency,

and time-frequency domain [24,25]. Afterwards, the most separation effective features were used for

the classifier. These features were selected manually using a-priori knowledge as the common feature

reduction methods could not be applied due to missing labels of the actual friction states. This manual

procedure allows a small number of features, which can also be checked for plausibility. Afterwards,

the selected separation effective features were used to label the data, which was done by k-means

clustering (Section 3.1.3).

Time domain features: Equation (2) shows the calculation of the RMS, where y(n) is a signal

series and N represents the number of data points.

RMS =

√

∑
N
n=1(y(n))

2

N
(2)

Figure 13 shows the RMS curves extracted from the windowed and 100 kHz high-pass filtered AE

signals for speed ramps at constant loads of 1250 N and 1750 N. The analogy to the Stribeck curve is

clearly visible. As the speed decreases, the RMS value also decreases, whereby a minimum is reached

at 120 rpm for a load of 1250 N. From this speed on the RMS value increases again. It is quite obvious

that this minimum could indicate the transition to mixed friction (transition MF). Furthermore, it is

known from the theory of the Stribeck curve that this minimum shifts towards higher speeds with

increasing load. This can also be seen in the RMS of the AE signal when compared with the load

1750 N. The transition to dry friction becomes visible by combining several features. This combination

is illustrated in Section 3.1.3.

It should be noted that the marked border to mixed friction is an assumption based on the change

of the feature at this speed. The assignment of the feature patterns to the respective friction states is

done by a clustering procedure (described in Section 3.1.3), since no validation value was available at

this point.
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Transition MF (assumed)

Load = 1250 N Load = 1750 N 

Transition DF (assumed)

Transition MF (assumed)

Transition DF (assumed)

Figure 13. RMS of the windowed and high-pass filtered AE signal over the rotational speed at a

constant load of 1250 N (left) and 1750 N (right).

In Equation (3) the calculation of the kurtosis is shown:

Kurtosis =
∑

N
n=1(y(n)− Mean)4

(N − 1) · StandardDeviation4
(3)

Mean =
∑

N
n=1 y(n)

N
(4)

StandardDeviation =

√

∑
N
n=1(y(n)− Mean)2

N − 1
(5)

Figure 14 illustrates that the kurtosis does not show any significant change with decreasing speed

until the transition to mixed friction. When reaching the transition to mixed friction the roughness

peaks come into contact causing the AE patterns start to change in shape (peakedness is generated).

The kurtosis starts to rise for that reason. A maximum is reached and the kurtosis starts to decrease as

the roughness peaks are removed and sliding contact becomes stronger. The shift of the transition area

to higher speeds at higher loads can also be seen for this feature.

Transition MF (assumed) Transition MF (assumed)

Load = 1250 N Load = 1750 N

Transition DF (assumed) Transition DF (assumed)

Figure 14. Kurtosis of the windowed and high-pass filtered AE signal over the rotational speed at a

constant load of 1250 N (left) and 1750 N (right).

The Shannon Entropy is calculated as follows:

Shannon Entropy = −∑
N

n=1
y(n)2 · log(y(n)2) (6)

It describes the information content of a signal. If no new information is contained in the signal,

the entropy does not change. If, on the other hand, further information is created, the entropy increases.

Figure 15 shows the similarity of the entropy curve to the RMS curve. They differ, however, especially
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in the area of fluid friction. The entropy curve is much flatter there, which makes it much easier to

distinguish between fluid and mixed friction.

Transition DF (assumed)

Transition MF (assumed)

Load = 1250 N Load = 1750 N 

Transition DF (assumed)

Transition MF (assumed)

Figure 15. Shannon Entropy of the windowed and high-pass filtered AE signal over the rotational

speed at a constant load of 1250 N (left) and 1750 N (right).

The Shannon Entropy seems to be, compared to the RMS, more separation effective for the

classification of the friction states.

Frequency domain features: The median frequency fMedF was extracted from the

frequency range:
∫ fMedF

f1

f · U( f )2d f =
∫ f2

fMedF

f · U( f )2d f (7)

It describes the frequency at which the power spectrum is divided into two regions of equal

amplitude. It is also described as half the total power. Figure 16 shows the Median Frequenzy plotted

over the rotational speed for different constant loads. At the transition to mixed friction, the median

frequency seems to increase suddenly and remains almost constant with decreasing speed. This is due

to the increased influence of high-frequency signal components on the power spectrum during mixed

and dry friction. This feature seems be effective for differentiating fluid friction from the other two

frictional states.

Load = 1250 N 

Transition MF (assumed) Transition MF (assumed)

Transition DF (assumed) Transition DF (assumed)

Figure 16. Median Frequency of the windowed and high-pass filtered AE signal over the rotational

speed at a constant load of 1250 N (left) and 1750 N (right).

Time-frequency domain features: In addition to the features extracted from time and frequency

domain, features from time - frequency domain were also extracted and evaluated. Continuous wavelet

transform (CWT) was used for this purpose. The Morlet Wavelet was used as the mother wavelet in

this work.

To obtain separation effective features, the wavelet coefficients should be determined for small

scales. The scales between 6–16 were determined, since these correspond to pseudo frequencies of

approx. 100–270 kHz for the Morlet Wavelet. To evaluate the CWT, compared to high-pass filtered
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signals, features were extracted from identical operating points. Figure 17 shows that the use of CWT

slightly improved the separation efficiency of each feature.

Figure 17. Comparison of kurtosis (left) and Shannon entropy (right) each for 100 kHz high-pass

filtered and continuous wavelet transform (CWT) coefficients of scale 8 for a speed ramp at a constant

load of 2250 N.

3.1.3. Data Labelling

A clustering procedure became necessary in order to label the data because of missing validation

values. Such methods are used for example in unsupervised learning and are therefore suitable for

applications where the assignment of a data series to the correct class is not known. The method used

in this work is the k-means algorithm. The pattern xn is assigned to a predefined number of clusters k

in such a way that the sum of the squared distances of each pattern to its cluster center of gravity µk is

minimal. The variable rnk ∈ describes a set of binary indicator variables. It is rnk = 1 if xn is assigned

to cluster k, otherwise rnk = 0. Therefore, the values for rnk and µk must be selected in such a way that

the following function is minimized [26]:

J = ∑
N

n=1 ∑
K

k=1
rnk||xn − µk||

2. (8)

The friction state patterns to be labelled were derived from the combination of kurtosis, Shannon

entropy and median frequency. In Figure 18, the clustered feature patterns grouped with k-means

clustering are shown in color.

Figure 18. Clustered feature patterns with k-means clustering.

3.1.4. SVM Classifier

The SVM classifier trained with this data set achieved an overall detection rate of 96.7% for the

three-class problem. The efficiency of the classifier for the classification of the different friction states is

shown by the confusion matrix in Figure 19. A detection rate of 90% was achieved for mixed friction,

10% of the feature patterns were wrongly assigned to dry friction. With this training data set and
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with this procedure of labelling, pre-processing and feature extraction a detection rate of 100% could

be achieved for fluid and dry friction. For further investigations the data should be labelled with a

validation value such as friction torque or contact voltage (CV). Since this set of data was acquired at

the STR no validation measurement was possible. The trained classifier can now be applied to new

and unseen friction data.
T
r
u
e
 C

la
s
s

Predicted Class

FF

DF

MF

Figure 19. Result of the trained Support Vector Machine (SVM)-classifier with cross validation.

3.1.5. Influence of Temperature Variations

Figure 20 shows the CV over the rotational speed for different oil inlet temperatures at

constant loads of 6 kN and 8 kN. It is known from the Stribeck curve that with increasing oil

temperature the oil viscosity decreases and therefore the supporting characteristic of the oil decreases

as well. The consequence is that the transition area from mixed to fluid friction is shifted to higher

rotational speeds.

If there is no mechanical contact between shaft and journal bearing, the CV is zero. With decreasing

speed, the roughness peaks of the two sliding partners come into contact at a certain transition speed,

so that the CV begins to rise. The maximum CV is reached when the shaft and the journal bearing are

fully in contact. Furthermore, it can be seen that the transition to mixed friction (transition MF) moves

towards higher speeds with increasing oil temperature. This agrees with the theory that a decrease in

oil viscosity leads to lower supporting properties of the oil.

Load = 6 kN Load = 8 kN

Transition MF 

Figure 20. CV over the rotational speed for different oil inlet temperatures at a constant load of 6 kN

(left) and 8 kN (right).

Figure 21 shows the AE feature Shannon entropy over the rotational speed for different oil inlet

temperatures at constant loads of 6 kN and 8 kN. The expected flat curve in the area of fluid friction
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can be seen for all curves. With decreasing speed the transition speed to mixed friction is reached

and the curves start to rise. This observation also agrees with the results obtained for speed and load

combinations. It can further be seen that the amplitude in mixed friction increases with increasing oil

temperature. This indicates the detectability of the influence of the lower oil viscosity on the friction

force with this AE feature. Furthermore, the amplitude of this feature is lower for a load of 6 kN

compared to a load of 8 kN. This could indicate the lower friction force generated for lower loads in

mixed friction, under otherwise identical operating conditions.

Load = 8 kNLoad = 6 kN

Figure 21. Shannon Entropy over the rotational speed for different oil inlet temperatures at a constant

load of 6 kN (left) and 8 kN (right).

To illustrate the transition speeds to mixed friction for this feature, Figure 22 is used. It shows a

detailed section. The CV was used as validation value to mark the transitions to mixed friction. It can be

seen that for the same load, the minimum of the curves moves towards higher speeds with increasing

temperature. It can also be observed that the feature in the area of fluid friction, although flat, has a

higher amplitude for lower oil temperatures. A higher oil viscosity causes higher resistance in fluid

friction and thus a higher hydrodynamic coefficient of friction. However, the amplitude in the range

of fluid friction is low enough that it should not have a significant influence on the differentiation of

mixed and fluid friction. This feature thus provides plausible results even under variable oil viscosity,

caused by different oil inlet temperatures.

Load = 6 kN Load = 8 kN

Transition MF (marked by means of CV)

Figure 22. Detail section of the Shannon entropy over the rotational speed for different oil inlet

temperatures at a constant load of 6 kN (left) and 8 kN (right).

Figure 23 shows the kurtosis of the AE signal. Again, the transitions to mixed friction have been

marked using the CV. As expected, the kurtosis has a relatively flat trend in fluid friction. At the

transition to mixed friction the kurtosis starts to increase. Furthermore, shortly after the transition,

a further decrease in kurtosis can be observed, followed by a significant increase. The reason for this

could not be conclusively clarified.
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Load = 6 kN Load = 8 kN

Transition MF (marked by means of CV)

Figure 23. Kurtosis over the rotational speed for different oil inlet temperatures at a constant load of

6 kN (left) and 8 kN (right).

3.2. Localization of Journal Bearing Mixed Friction Events

Although the developed classifier can differentiate between the different friction states, a statement

about the friction position φ or friction distance sR is not possible. This knowledge is significant for

applications where friction does not occur at the same location, such as for non-stationary load zones

or shaft imbalances. These parameters provide important information for determining the remaining

useful lifetime (RUL) of a journal bearing. Repeated friction at the same position reduces the lifetime

more than friction events of the same number distributed over the circumference. The accumulation

of mixed friction events at the same circumferential position can thus be interpreted as a measure of

the journal bearing coating wear. Furthermore, sR is directly related to the wear volume Vw by the

following equation:

Vw = kw · FR · sR, (9)

where kw represents the specific wear rate or wear intensity and must be determined experimentally

and FR the friction force.

AE signal

high-pass filter 

(100 kHz)
Envelope

Savitzky-Golay- 

Filter (Smoothing)
Resampling  

Friction position

Incremental encoder

zero-pulse signal 

Friction distance

sR

 

φ

Time domain

Angle domain

AEenv,smooth(t)

AEenv,smooth(φ)

sR

φ

Figure 24. Procedure for localization of mixed friction events.

In Figure 11 a clear amplitude modulation can be seen within mixed friction state. Other

authors [27,28] already detected this modulation effect in seals and interpreted it as occurring friction
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events. In his work Hall [27] determines the friction position of different seals along a shaft by using

this AE modulation effect. Inspired by this work, the idea is to use this modulation effect to determine

φ and sR over the bearing circumference. Figure 24 shows the procedure of this localization method.

3.2.1. Envelope Curve and Smoothing in Time Domain

In the first step, all values of the high-pass filtered AE signal smaller than zero were set to a

value of zero. The envelope curve was then generated to determine the local minima and maxima.

Methods such as the Hilbert transformation can be used to create the envelope. For the application

presented here it is sufficient to determine the energy of the envelope because it is only necessary to

know where local maxima and minima occur. The method used here calculates the RMS value over a

certain number of signal points and saves this value in a new vector. This creates a kind of moving

average of the signal, from which the local maxima and minima can be determined. However, this

envelope is affected by some noise, so that this curve was smoothed for further determination of the

local minima and maxima. Low-order approximation polynomials are suitable for this purpose in

order to achieve the best possible smoothing. One possibility is to use the Savitzky-Golay-Filter. This

method smooths a signal by fitting a polynomial function piecewise to the signal. The local minima

and maxima can now be clearly determined from this new curve.

3.2.2. Resampling to Angle Domain

In the next step, the smoothed envelope is transferred from time to angular domain.

The zero-pulse signal is used for this purpose. From a time t1 to a time t2 exactly one rotation

and thus 2π has passed. Between the peaks, the missing angles are interpolated in such a way that the

same number of samples is created as the smoothed envelope of the AE signal. Each data point of the

AE signal can thus be assigned to an angle. In Figure 25 the smoothed envelope is plotted over the

shaft angle.

By defining a certain threshold value on the y-axis, a estimated friction distance ŝR can be

determined. It is the distance between the points of intersection of the threshold value with the

envelope. The threshold value must be determined for each application.
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Figure 25. Smoothed envelope of the AE signal during mixed friction at 80 rpm and 1500 N over the

shaft angle.

To prove this method and to determine a suitable threshold value, the roughness of the bearing

surface has to be measured. This allows a validation of the assumed friction distance ŝR and position φ

as these areas should be smoothed.
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3.3. Monitoring of Journal Bearing Run-in Wear

For complete monitoring of journal bearings besides the knowledge of the current friction state

also the knowledge of wear caused by friction is necessary. The state of health of journal bearings

is affected by wear. The shape changes so that the supporting lubricating oil film can no longer be

formed above a certain wear level. The total wear of a journal bearing over its lifetime consists of

run-in, long-term and progressive wear. The maximum amount of wear is reached at the transition to

progressive wear. So, to determine the state of health, the wear level should be monitored up to this

stage of wear.

It can be assumed that the AE features already determined for friction monitoring could also

be applicable for wear monitoring, since it is known that there is often a proportional relationship

between friction and wear. This section shows the possibility of monitoring the run-in wear of a journal

bearing using AE technology and the already developed separation effective features. Run-in wear is

the amount of wear caused by the smoothing of surface roughnesses. It starts from the beginning of

the run-in time with a brand new journal bearing and ends when the contact surfaces have be adapted

to each other.

The speed ramps carried out after each speed stage are suitable for evaluating the relationship

between feature drift and run-in wear (see Section 2.3.2). These ramps show the transition to mixed

friction. In case of identical speed ramps, a shift can only be caused by a change of the bearing surface.

Figure 26 shows the Shannon entropy and kurtosis of the AE signals for speed ramps 40–400 rpm

and 1500 N after the corresponding stationary speed stages. The feature Shannon entropy, which

indicates the transition speed to mixed friction, shifts towards lower speeds as the test time increases.

The maximum of the kurtosis, which also indicates the transition to mixed friction, shifts towards

lower speeds as well. Only one outlier is visible. The reason for this could be a wear particle in

the lubrication gap. The already mentioned smoothing of the journal bearing surface can thus be

determined by AE features. Since this set of data was acquired at the STR no validation measurement

was possible. The transitions to MF result from the investigations shown in Section 3.1.5, where CV

could be used as a validation parameter.

Transition to MF (assumption due to results of section 3.1.5)

Outlier

Figure 26. Shannon Entropy and Kurtosis of AE signals for speed ramps 40–400 rpm and 1500 N after

the corresponding stationary speed stages.

In his work, Meier [19] shows that the coefficient of friction decreases with increasing run-in wear

for the same operating point. It is interesting to note that this can also be seen in the feature Shannon

entropy. As an example, the speed 40 rpm is mentioned here: The amplitude decreases chronologically

with the testing time. For this reason, it can be assumed that this feature cannot only distinguish

between friction states, but also indicates a variable correlating with the frictional force FR. This is an

important finding for further investigations regarding long-term wear. This would make it possible to

determine the actual wear amount due to the proportional relationship between friction and wear.
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To validate these results, the averaged mean surface roughness Rz of the journal bearing was

determined after each speed ramp:

Rz =
Rz30 + Rz60 + ... + Rz300 + Rz330

11
(10)

With the mean surface roughness Rz:

Rz =
1

5
· (Rz,lr1 + Rz,lr2 + Rz,lr3 + Rz,lr4 + Rz,lr5). (11)

The measuring distance lr is standardized and in this case lr = 0.8 mm.

Figure 27 shows the averaged mean surface roughness Rz over the testing time. After the first

four hours, a significant reduction in surface roughness is visible. After 6 h the roughness seems to

increase slightly, but this may be due to metal particles on the surface or measurement uncertainty of

the equipment. Afterwards the roughness decreases again.

Figure 27. Averaged Mean surface roughness Rz over the testing time after every test run.

The evaluation of the roughness was stopped after 8 h of testing time, which corresponds to a

stationary speed stage of 100 rpm.

3.4. Monitoring of Journal Bearing Long-Term Wear

In this section, results of long-term wear investigations are shown. Tactile measurements are used

as validation for AE.

After every test run of 18 h the surface roughness was measured in order to determine the

smoothing of the surface and to calculate the run-in wear. Figure 28 shows the distribution of the mean

surface roughness Rz for the initial state and after a total testing time of 162 h. A strong worn area is

clearly visible in the load zone. Outside the load zone a slight smoothing can be seen, which can be

attributed to mounting and dismounting as well as to measurement errors. Wear has not occurred

continuously over the width of the bearing. The reason for this could be an uneven journal bearing

surface on the one hand or the inconsistent pressure distribution over the width of the journal bearing

which leads to deformations of the bearing or the shaft on the other hand. To illustrate the progression

of roughness over time, the averaged mean surface roughness at an angle of 180◦ was plotted over the

testing time and can also be seen in Figure 28. The surface roughness value starts at Rz = 4.8µm and

decreases with increasing testing time. At the end of the testing time a value of Rz = 2µm is reached.
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Initial state
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Figure 28. Distribution of the mean surface roughness Rz for the initial state and after a total testing time

of 162 h (left) as well as the averaged mean surface roughness Rz at 180◦ (right) over the testing time.

The run-in wear Vw,ri caused by the removal of the roughness peaks has only a minor effect on the

roundness of the bearing. Since this removal has a significant influence on the AE signal, a method for

determining the amount of Vw,ri using the roughness measurement data is presented. The roughness

profiles R acquired after each wear experiment differ in centerline because the surface conditions are

different. To be able to match the profiles and finally calculate Vw,ri, another reference line must be

found. At this point it should be noted that the procedure is based on the assumption that only the

peaks are affected by wear and therefore the valleys do not change. First, the median value of all

valleys is determined, both for the initial Rini,valleys and wear Rwear,valleys measurement. By subtracting

these values from each other, an offset is given which is then added to the wear roughness profile

data Rwear:

Offset = Median(Rini,valleys)− Median(Rwear,valleys) (12)

Rwear,new = Rwear + Offset (13)

Thus, the two roughness profiles have nearly the same reference. To determine the wear volume

of each R-profile, the integral of the positive values is determined and multiplied by the circumference

of the bearing. The run-in wear volume Vw,ri is then calculated:

Vw,ri = Vini − Vwear, (14)

where Vini is the volume calculated from the initial R-profile and Vwear from the worn R-profile.

Roundness measurements with a tactile measurement device were done in order to calculate the

long-term wear volume Vw,lt. The roundness was measured at six positions distributed over the

bearing width. Interpolation was made between the different widths. Figure 29 shows the roundness

plot for the initial state and after 162 h. A clear deepening can be seen in the load zone area. This

change in shape results from long-term wear.
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FN

Figure 29. Roundness of journal bearing for initial state and after 162 h of testing.

The total wear volume is calculated as follows:

Vw = Vw,ri + Vw,lt (15)

Figure 30 shows the total wear volume Vw as well as the integrated AE RMS over the testing time

t. The wear volume and the AE feature both rise with increasing testing time.

Int AE RMS =
∫ t

0
RMSAE dt (16)

Figure 30. Total Wear volume Vw calculated from roundness and roughness measurements (left) and

integrated AE RMS (right) over testing time.

To demonstrate the relationship between these two parameters, the integrated AE RMS was

plotted over the wear volume (see Figure 31). The coefficient of determination R2 is 95.78%. This data

set shows a good correlation, so that a regression analysis with a larger data set should be done in

future. In order to determine the wear volume using only AE features, further wear measurements are

necessary. The long-term wear investigations have not been finished at this point. In future, regression

algorithms will be applied to estimate the wear condition.
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R
2
 = 0.9578

Figure 31. Integrated of AE RMS over wear volume.

4. Conclusions

In this work, possibilities of monitoring hydrodynamic journal bearings, experiencing friction

and wear, and using AE technology and machine learning algorithms were presented.

• Friction state classification: This was done under varying rotational speeds and radial loads

by pre-processing the AE signals, extracting and selecting suitable AE features from time,

frequency and time-frequency domain using CWT and applying SVM as classifier. A feature

vector consisting of the features Shannon entropy, kurtosis and median frequency was the input

for the classifier. An overall detection rate of 96.7% was achieved for this three class problem.

Furthermore, it was shown that it is possible to distinguish the three friction classes with AE even

under different oil viscosities.

• Mixed friction localization: This was done over the circumference of the bearing by making use

of the AE modulation effect. The envelope of the AE signal was smoothed and fused with the

zero-phase signal of an incremental encoder to resample it from time to angle domain. The local

maxima show the friction position φ and by adding a threshold the friction distance sR can also

be determined.

• Monitoring of run-in wear: Short-term wear test were done to monitor the run-in wear with

the use of separation effective AE features. With increasing run-in wear there was a clear shift

visible in the AE features. These results were validated with tactile measurements of the journal

bearing surface.

• Monitoring of long-term wear: Long-term wear investigations were done. There is a correlation

visible between the wear volume and the integrated AE RMS but further research is needed in

this area.

5. Further Work

In parallel to this work a wireless power and data system has been under development to

ensure AE sensors can be emplaced within the planet carriers of the planetary gearbox and that

good signal could be obtained in the necessary frequency bands despite the very high amplitude

noise from gear mesh and other sources that would be expected in this environment. The system

was originally developed under an EASA project [14] and has since undergone further refinement to

improve performance in specific implementations.

Figure 32 shows the wireless system arrangement. The transceiver A uses 12 V DC power from

a switch mode power supply and a coax connection for the sensor telemetry. It is connected to a

coil matching network (B) which is case mounted and provides good impedance match between

the driving system and the coil while not being such a good match as to reduce signal bandwidth

potential between the matched coils. The coil on the rotating side is connected to a power harvesting

system (C) which also includes the sensor amplification and filtering system to support the AE sensor
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(D). Available power on the rotating side is limited to about 10 mW but is sufficient for acquisition,

amplification, filtering, and transmission needs of the current sensor.

Figure 32. WDTU system arrangement.

A sample of the test results shown in Figure 33 shows the stability of the signal at 277.85 kHz as

the test rig decelerates and the strength of the signal of interest (green trace in bottom plot) at about

40 db above the local noise floor (red trace). The areas of the spectrogram from which these traces are

taken are indicated by the dotted green and red lines in the middle plot which is the relevant portion

of the spectrogram. The top plot shows the rpm of the test rig during this time.

Figure 33. Test rig RPM profile, signal spectrogram section, and signal and noise comparison

from testing.

The joint application of the developed journal bearing monitoring methods together with the

WDTU on a planetary gearbox is the topic of investigations at Technische Universität Munich chair of

FZG in 2020.

6. Patents

Nowoisky, S.; Mokhtari, N. Method and Device for Monitoring a Slide Bearing. in European Patent

Office, EP3447469, 23.08.2019.

Nowoisky, S.; Mokhtari, N.; Pelham, J. G. Method and Device for Monitoring a Journal Bearing.

DE 10 2018 123 025.7, 19.09.2018, pending Patent.

Nowoisky, S.; Mokhtari, N.; Grzeszkowski, M. Verfahren und Vorrichtung zur Schätzung des

Verschleißzustandes eines Gleitlagers. DE 10 2018 123 571.2, 25.09.2018, pending Patent.

Nowoisky, S.; Ciciriello, L.; Grzeszkowski, M.; Mokhtari, N. Method and system for detecting a

functional failure in a power gearbox and a gas turbo engine. EP19194753.0, 30.08.2019, pending Patent.
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Abbreviations

The following abbreviations are used in this manuscript:

A/D Analog-to-digital

AE Acoustic emission

BPR Bypass ratio

CV Contact voltage

CWT Continuous wavelet transform

EASA European Union Aviation Safety Agency

DF Dry friction

FF Fluid friction

FFMEA Function Failure Mode & Effect Analysis

FZG Forschungsstelle für Zahnräder und Getriebebau

Int Integrated

MF Mixed friction

PAC Physical Acoustic Cooperation

PGB Power Gearbox

RFID Radio Frequency Identification Device

RMS Root Mean Square

RPM Revolutions per minute

RUL Remaining useful lifetime

STR Small journal bearing test rig

SVM Support Vector Machine

TCTR Temperature-controlled journal bearing test rig

WD Wideband

WDTU Wireless Data Transfer Unit
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