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Abstract. The paper presents methodology and algorithm for calculating the equations of gas 

dynamics on arbitrary computational meshes with a mixed type of cells. The calculation 

method is based on the method of linear reconstruction proposed by Barth and Jesperson. The 

algorithm for determining the geometric parameters of arbitrary computational cell is 

presented. To implement the calculation algorithm, a data storage system has been proposed 

and tested. The algorithm of the solver and the algorithm of docking the computational meshes 

in the case of using block-structured meshes are proposed. The efficiency of methodology and 

developed program of calculation are demonstrated by the calculation example of the air flow 

in flat air intakes. The structure of flow and position of the bow shock wave are determined. 

These results with the theoretical values were compared. The application of the proposed 

methodology and calculation algorithm to arbitrary computational meshes with a mixed cell 
type makes it possible to optimize the process of constructing computational mesh and conduct 

numerical studies of gas dynamics in regions of complex geometry.  

1.  Introduction 

For simulation of combustion products flow in the gas-dynamic tracts of rocket engines numerical 
methods of increased accuracy are widely used based on the Godunov scheme [1-3]. Methods of this 

type have been developing for more than forty years, and by now a huge number of their variants and 

implementations have been developed [4]. For the first time, a scheme of the second order of accuracy 
in space based on Godunov's method was proposed by Kolgan in 1972 [5, 6]. The main idea of the 

Godunov-Kolgan scheme was in to replace the piecewise constant distribution of a function inside a 

cell by a piecewise linear distribution. To meet the conditions of preservation of the total variation 
(Total Variation Diminishing, TVD), Kolgan proposed to use the principle of the minimum value of 

the derivative. In 1979, the approach proposed by Kolgan was developed in the works of Van Lier [7, 

8], in which the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) scheme 

was proposed. The scheme became very popular, and as a result of its development, a large family of 
schemes of the MUSCL type was born [9]. However, the use of schemes such as MUSCL on 

unstructured computational mesh is accompanied by a number of computational difficulties [10]. In 

this connection, the method of linear reconstruction of the solution (Piecewise linear reconstruction) 
Barth and Jesperson [11], which is the development of the approach of Telyaeva [12], is often used to 

calculate currents on unstructured mesh. Using the Barth and Jesperson approach it is easy enough to 

obtain solutions on unstructured computational meshes. However, for the development of universal 
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solver that allows calculations on arbitrary computational meshes with different number of faces of the 

computational cell, it is necessary to implement special solver algorithms and data storage systems. 

The present work is devoted to solving these problems. 

2.  Calculation methodology 
The Euler equations, which govern the compressible, inviscid gas flow in three-dimensions, are [13]: 
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where:   – density;   – time;   – pressure;   [     ]  – gas velocity;  ̂ – 3×3 identity tensor;   –
 specific internal energy;       (        )  ⁄  – total energy per unit volume; G – final 

volume in three-dimensional space;           – element of volume; S – surface limiting the 

volume G;        – orientable surface element S, where   – external normal unit vector to the 

surface S;    – differential surface element. 

System (1) – (3) is closed by equation of state: 
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In order to build difference scheme the finite volume method is applied. Therefore, we will cover 
all computational domains with discrete cells consisting of arbitrary convex polyhedrons with volume 

  , where           – volume number, and  ( ) – face number of   finite volume. Each face of   
finite volume has surface   , where            ( ). Approximation of integral equations in each of 

polyhedrons obtains in the following way: 
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As a result we will get Godunov’s scheme [14] for custom computational mesh. Here        , 

and    – time step. Lower index   signifies value of functions, which are referred to mass center of   
polyhedrons, and lower index   signifies values referred to center of   face of discrete cell. Upper 

index   signifies the number of time step. “Large” values of  ,  ,  ,   signify correspondingly 
density, velocity, pressure and total energy at faces of control volume. These values are defined from 

the solution of Riemann problem [14] in the direction of outward normal. Also for the flow 

calculations can be used other methods, based on approximate solutions of Riemann problem: Roe, 

Osher, HLL, HLLC, HLLE and others [15]. Scheme (5) – (7) is easily generalized for two dimensional 
and axisymmetric approaches [14]. 

2.1.  Piecewise linear reconstruction 

To increase the order of accuracy in space on unstructured computational mesh, the method of linear 
reconstruction of the solution, proposed by Barth and Jesperson in 1989 [11], is widely used. The 

parameters of linear reconstruction method on the right and left boundaries of the computational cell 

are determined using the following relationships:  

         (    ⃗  )   (8) 
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where    – parameter in center of computational cell  ,    – parameter in center of computational cell 
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  gradient   in center of cell  ,  ⃗   – vector-centroid connecting center cell   and 

center of the face,    – function limiter for cell  .  
To determine the gradients, the least squares method is used: 
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where  ( )   ( )  ( ) ,  – number of neighboring cells. 

To satisfy TVD conditions, a limiter function “Barth and Jesperson” is used:  
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where         ⃗  ,         ⃗  , 

        (         ( )(  )),         (         ( )(  )). 

2.2.  Topology of arbitrary computational  
For simplicity of presentation, consider a two-dimensional computational mesh with an arbitrary 

number of cell faces. Let the cell C of an arbitrary mesh be represented as a list of vertices 
(               ), faces (               ) and neighboring cells (               ), having a 

common face with the cell under consideration, where   – number of cell vertices (figure 1). The 

vertices are numbered by traversing the cell counterclockwise. Cell faces are indexed similarly,  

starting with the face passing through the vertices    and   . Neighboring cell is assigned an index 

common face. 
 

 

Figure 1. Topology of an arbitrary 

computational mesh. 
 

Then the coordinates of the center of an arbitrary cell are calculated as follows:  
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The lengths of the faces can be calculated as follows: 
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where   – number of face [    ]. 
The unit normal vectors are calculated using the following relation: 
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To calculate the area of an arbitrary cell, we divide it into k triangles using any triangulation 

algorithm (figure 2).  
 

 

Figure 2. Example of calculating area of an arbitrary cell. 

 

Then area of the cell can be defined as the sum of the areas of the triangles: 

    ∑   
 
       

The algorithm described above makes it possible to construct all the basic types of two-dimensional 
computational grids. 

3.  System of data storage and solver algorithm 

The simplest approach for organization the solver algorithm is the approach based on data storage in 

isolated arrays and their further correlation by using indexes of corresponding elements. This approach 
quite quickly allows developing solvers for meshes with topology known in advance, however, even at 

the slightest alteration of mesh topology it is necessary to modify the data storage system and solver 

algorithm. In this regard, for realization of solver algorithm, adapted to arbitrary face number in cells, 
it is suggested the following data structure should be used (figure 3): 

Class «Cell». Instances of class «Cell» keep information about cell geometry (mass center, area and 

so on) and gas parameters in cell. 

Class «Face». Instances of class «Face» keep information about geometry (area or length, normal 
vector) and gas parameters (big values) at the cell face. 

Data model of computational mesh is presented in the form of collections of class instances «Cell» 

and «Face». 
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Interconnection «Cell» - «Face» is realized by storage of collection references on class instances 

«Face» in class «Cell», and connection «Face» – «Cell», by storage in class «Face» references on class 

instances «Cell». 

 

 

Figure 3. Interconnection between classes «Cell» and «Face». 
 

Such system of data storage does not have any dependence on computational mesh topology, and 
allows conducting calculations on meshes of custom configuration. When using object-oriented 

programming languages, scheme of solver (5) – (7) can be written in a quite simple and compact way 

(figure 4). 
 

 

Figure 4. A listing of the example of solver source code of time step. Language C#. 
 

Here «cells» are collection of class instance cell, «cell.faces» are collection of reference on cell 
faces, «stream_1», «stream_2», «stream_3» – sum of flux through faces of computational cell for 

conservation equation of mass, momentum and energy correspondingly. Fields «face.Gas.Ro», 

«face.Gas.V», «face.Gas.P» signify density, velocity and pressure at the face of computational cell and 

calculate by solving Riemann problem (not given in the listing). «face.S», «face.N» – area and unit 
vector of outward normal. «cell.Gas», «cell.Gas_Next» are gas parameters in the сell center at the 

current and next time step correspondingly, «cell.G» is cell volume, «dt» is current time step, which 

calculated from Courant–Friedrichs–Lewy condition. Fields «V», «N» and variable «stream_2» – 
instances of class «Vector» for which standard vector operations are identified. The use of suggested 

data storage system and solver algorithm allow conducting calculations at meshes with arbitrary 

topology. 
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3.1.  Mesh coupling 

At the usage of blocked structured or unstructured meshes, the task of meshes coupling among sub 

domains comes up. In operation, for meshes coupling among sub domains the algorithm, which is 

based on edges division of the cells (on the coupling line) into composite edges, is used. As an 
example, let look at the coupling algorithm of two two-dimensional computational sub domains shown 

in figure 5. 

For each boundary cell (c) from the first sub domain, the edge (p2-p4) is given out, which join on 
the boundary of sub domains separation.  

Boundary cells of the second sub domain (c2, c3) are defined, the ones that have common 

boundaries with the analyzed cell (c). 

The vertex (p3) of cells (c2, c3) is defined, which situated on the edge (p2-p4). 
The edge (p2-p4) of the cell (c) is broken into several edges (e2, e3) along the vertex (p3). 

Algorithm for each cell from the first domain is repeated. 

 

 

Figure 5. Coupling scheme of two computational sub domains. 
 

For more complex configurations of couplings the algorithm is analogous. Algorithm can be used 

for coupling of sub domains with different topology, and also it is easily generalized on three-
dimensional computational meshes. 

4.  Calculation of supersonic flow in air intake 

To verify algorithm and methodology of calculation series of calculations on simple flat hypersonic air 

intake was conducted. General scheme of air intakes under consideration is given in figure 6. 
 

 

Figure 6. Air intake scheme. 
 

Where H = 1 – characteristic dimension; L = 8 – length of air intake;   – inclination angle at inlet 

of air intake,   – angle of reflected shock wave,        – height of straight section of air intake.  

In describing the flow of an inviscid ideal gas, the relationship between the inclination angle   and 

the angle of the reflected shock wave   has the form [16]: 
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Using the dependence (12), air intake configurations for the angles of the reflected shock wave 20, 

25 and 30 and the speed M=5 of the incoming air flow are constructed. The geometric parameters of 
the air intakes are given in table 1.  

 

Table 1. Geometric parameters of air intake. 

Type of configuration     

Type 1 10.665 20 

Type 2 15.644 25 

Type 3 20.173 30 

 

To build the computational mesh the computational domain was divided into 3 computational sub 

domains, which are shown on figure 7. Structured computational grid was built in each subdomain. A 

computational mesh coupling among sub domains was conducted with the use of above-mentioned 
algorithm. As an example, figure 8 shows a part of computational mesh in A-B coupling area. Table 2 

shows the mesh size of A, B and C of computational domain. 

 

 

Figure 7. Computational domains for air intake’s configuration with        
 

 

Figure 8. Computational mesh in A-B coupling area. 

 
Table 2. Mesh size parameters. 

Type of 

configuration 
Area A Area B Area C 

Type 1 60×40 350×90 650×90 
Type 2  60×40 200×90 700×90 

Type 3 60×40 200×90 950×90 



PFSD-2018

IOP Conf. Series: Journal of Physics: Conf. Series 1145 (2019) 012048

IOP Publishing

doi:10.1088/1742-6596/1145/1/012048

8

At all inner elements of air intake’s construction, the boundary condition is solid wall. At exit 

section of air intake – supersonic outflow. At other boundaries of outer domains – supersonic inflow 

with the speed M0 = 5. Working gas is air. At figure 9 distribution of Mach number is shown for three 

configurations of air intakes.  
 

 

Figure 9. Distribution of Mach number for air intake Type 1 (a), Type 2 (b) and Type 3 (с). 
 

Table 3 shows the calculated    and projected   flows deflection angles for all air intake 
configurations.  

 

Table 3. Angle of the reflected shock wave. 

Type of configuration      

Type 1 20 20.13 

Type 2 25 25.16 

Type 3 30 30.09 

 
It can be seen that the results of the calculation are in good agreement with the analytical procedure 

(12). 

5.  Conclusion 
The method of calculation of ideal gas flows on an arbitrary computational mesh is developed. An 

algorithm for determining the geometric parameters of an arbitrary computational cell is presented. 

The data storage system, solver algorithm, and the algorithm for coupling computational meshes are 
shown. Calculations of gas flow in a supersonic air intake are carried out. The calculation results are in 

good agreement with the analytical method [16]. The application of the proposed methodology and 

calculation algorithm to arbitrary computational mesh with a mixed cell type makes it possible to 

optimize the process of constructing computational mesh and conduct numerical studies of gas 
dynamics in regions of complex geometry. 
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