
ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА

2019 Математические методы криптографии № 46

МАТЕМАТИЧЕСКИЕ МЕТОДЫ КРИПТОГРАФИИ

UDC 519.7 DOI 10.17223/20710410/46/3
CRYPTANALYTICAL FINITE AUTOMATON INVERTIBILITY

WITH FINITE DELAY1

1 The author is supported by the RFBR-grant no. 17-01-00354.

G. P. Agibalov

National Research Tomsk State University, Tomsk, Russia

E-mail: agibalov@mail.tsu.ru

The paper continues an investigation of the cryptanalytical invertibility concept with
a finite delay introduced by the author for finite automata. Here, we expound an
algorithmic test for an automaton A to be cryptanalytically invertible with a finite
delay, that is, to have a recovering function f which allows to calculate a prefix of
a length m in an input sequence of the automaton A by using its output sequence
of a length m + т and some additional information about A defining a type of its
invertibility and known to cryptanalysts. The test finds out whether the automaton A
has a recovering function f or not and if it has, determines some or, may be, all of
such functions. The test algorithm simulates a backtracking method for searching a
possibility to transform a binary relation to a function by shortening its domain to a
set corresponding to the invertibility type under consideration.

Keywords: finite automata, information-lossless automata, automata invertibility,
cryptanalytical invertibility, cryptanalytical invertibility test.

Introduction
To continue the research we have begun in [1], we first present the problem under

consideration, namely the automaton cryptanalytical invertibility, and connected with it
basic concepts and terms.

An arbitrary finite automaton is represented by a 5-tuple A = (X, Q, Y, ^, (), where X,
Q, and Y are the input alphabet , the set of states and the output alphabet respectively,

: X x Q Q and (: X x Q Y. The last functions, being defined for pairs xq G
G X x Q, are expanded on pairs aq G X* x Q by induction on the length |a| of a word
a G X*, namely the functions : X* x Q Q and (: X* x Q Y* are defined
as ' '(A-q) = q, ^(ae,q) = ((л^ = л, ^p(x,q) = ((x,q) and ^p(ae,q) =
= <p(a, q)<p(e, ^(a, q)). The symbol Л here denotes the empty word in any alphabet. Thus,
^(a, q) is a state to which the automaton A goes from the state q under the action of the
input word a, and <p(a,q) is a word which it outputs under this action.

Everywhere further, т means a natural number and is called a finite delay, and without
another note, it is supposed that a G Xm for m = |aJ| — т, 6 G XT, q G Q. In dependence
on context, the last symbols are considered as elements of the pointed sets respectively or
as variables with these sets as their ranges.

In connection with the automaton A, we believe that q, a, and 6 are the variables with
values from Q, Xm, and XT denoting, respectively, an initial state, an information word, and

mailto:agibalov@mail.tsu.ru

28 G. P. Agibalov

a delay word in an input sequence a6 of the automaton A, and K = {Vq, Va, V5, 3q, 35} is a
set of universal and existential quantifiers that binds these variables. Note that in K there is
no the quantifier 3a. This is explained with the following argument: for a cryptanalyst, an
information word a in an input word of the automaton A is supposed to be unknown and
not some one, but any one. As for the length m = |a| of the word a, it is proposed
to be known since it can be calculated as it is shown above where |a5| = |<p(a5, q)|
and (p(a5, q) is a sequence supervised on the output of A by a cryptanalyst. Also, let
V0 = {q, 5, ф(«, q), ф(«5, q)} where q, ф(«, q), and ф(«5, q) are, respectively, the initial,
intermediate and final states of the automaton A and 5 is a delay word. For any subset
и C V0, let u(q,a,5) be the system of functions (or vector function) represented by the
formulas in и and depending on variables q,a,5 denoting respectively an initial state, an
input word, and a delay word in the automaton A. Denote Du the range of the function
u(q,a,5), that is, the set of its possible values.

1. Automata cryptanalitical invertibility problem
The automaton A is called (cryptanalitically) invertible with a delay т if there exist

quantifiers K1, K2, K3 in K with the different variables from {q, a, 5}, a subset и C V0 and
a function f : Ym+T x Du Xm such that

KiK2K3(f (cp(a5,q),u(q,a,5)) = a); (1)
in this case f is called a recovering function (it recovers a using <p(a5, q) and u(q, a, 5)), the
4-tuple IT = (K1K2K3,u), the triple ID = (K1K2K3), and IO = и are respectively called
a type, a degree, and an order of (cryptanalytical) invertibility of the automaton A.

In this definition, Ki = Qixi for each i = 1, 2, 3, a quantifier symbol Qi G {V, 3}, and
a variable xi G {q,a,5}. Therefore, at the same time in the future, we equally use (1) and
the expression

Q1X1Q2X2Q3X3(f (<p(a5, q), u(q, a, 5)) = a), (2)

where {x1, x2, x3} = {q, a, 5} and Q1x1Q2x2Q3x3 = ID.
The main problem that we consider in the paper, the problem of automata

cryptanalytical invertibility — ACI, is the following decision one: given a finite automaton
A = (X, Q,Y, ф,^), an invertibility type IT = (K1K2K3,u) = (Q1x1Q2x2Q3x3, u), and
a natural number т, find out whether the automaton A is invertible of type IT with the
delay т and if so, construct a proper recovering function f satisfying the any of conditions (1)
or (2).

2. Function cryptanalytical invertibility problem
To decide the problem ACI, we first try to decide the following auxiliary abstract

mathematical problem of function invertibility — FI: given a function g(x1,..., xn), a
quantifier word Q1x1 . . . Qnxn, and a number k0 G {1, . . . , n} where Qk0 = V, find out
if there exist functions f such that the formula

Q1x1Q2x2...Qnxn(f(g(x1,x2,...,xn)) = xk0) (3)

is true, and if exist, construct some of them.
Using the terms related to the cryptanalytical invertibility of an automaton, we can

say that in this problem the question is about the invertibility of type (Q1x1 . . . Qnxn) for
the function g(x1, . . . , xn) with respect to a variable xk0 and with a recovering function
f : Dg Dk0 where Dg and Dk0 are the ranges of the function g and of the variable xk0

respectively.

Cryptanalytical finite automaton invertibility with finite delay 29

Clearly, the main problem (ACI) is obtained from the auxiliary one (FI) as the following
particular case: n = 3, k0 6 {1,2,3}, {x1,x2,x3} = {q,a,5}, xk0 = a, g(x1,x2,x3) =
= (</?(a5, q), u(q, a, 5)). Thus, any method deciding the auxiliary problem also decides the
main one, and, so, our problem ACI reduces to our problem FI.

Every of the predicate logic formulas under consideration in the paper including (1)-(3)
is written in a normal form Q1x1 ... QnxnP(x1, ..., xn), that is, with a quantifier prefix
Q1x1 . . . Qnxn and its scope being an underlying predicate expression P(x1, . . . , xn) without
quantifiers and, moreover, of the special kind (f(g(x1, . .., xn)) = xk0). We consider the
quantifierprefixQ1x1...Qnxninitasawaytodefineadomainofvaluesofsubjectvariables
x1, ..., xn that the underlying function P(x1, ..., xn) depends on. In fact, the quantifier
prefix in it generates some n-tuples a = a1 . . .an of values for the variable x = x1 . . .xn,
and the underlying expression calculates the values g(a) and determines f by the equalities
f (g(a)) = ak0. According to the quantifier logic [2], the quantifier Vxk generates all the
possible values ak of the variable xk from its range Dk and the quantifier 3xk generates a
one of the possible values ak taken from Dk in dependence on the values a1, ... , ak-1 of
the previous variables x1, . . . , xk-1 respectively. From the cryptanalytical point of view, we
suppose that the value ak provided by the quantifier 3xk as well as the rule of its generating,
the function h(x1, ... , xn) = f(g(x1, .. . , xn)) and, in general, the function of P(x1, ..., xn)
are a priori unknown to a cryptanalyst.

Note that under suppositions named above, we are forced to decide the FI problem
by trying different values allegedly generated by an existential quantifier what many times
complicates the deciding algorithm. The same effect results from determining a function f
by the equations f(g(a)) = ak0, because the last very often (for example, when g(a) = g(b)
and ak0 = bk0) determines not function f but a binary relation f which is not a function.

Consider (3) taking into account that has been just said in relation to the FI problem.
Let n = r + s, r > 1, s > 0, i1 < ... < ir, j < ... < js, {i1.... ,ir, j1,..., js} = {1,... ,n},
Qi1 = ... = Qir = V, Qj1 = ... = Qjs = 3, D1,..., Dn and Dg are the ranges of variables x1,
..., xn and the function g respectively. So k0 6 {i1,..., ir}, Qk0 = V, g : D1 x ... xDn^Dg,
f : Dg Dk0. In the case s = 0 it is supposed that {j\,...,js} = 0. Also, let for
k 6 {j\,..., js}, Ek : D1 x ... x Dk-1 Dk and Ek (a1,..., ak-1) denotes a value of
the variable xk, the existence of which is implied by a quantifier Qkxk with Qk = 3 in
dependence on the values a1, . . . , ak-1 chosen before by the quantifiers Q1x1, . . . , Qk-1xk-1

for the variables x1, . . . , xk-1 respectively. Further, in order to address or refer to functions
Ek(a1,..., ak-1), we call them existential ones for their relation to quantifiers of the
similar name. A function Ek(a1,..., ak-1) isn't obliged to essentially depend on each of
its arguments. In this case we exclude inessential arguments from the list under the sign of
the function. At last, if s = 0, that is, in the quantifier prefix under consideration there are
no existential quantifiers and hence Dj1 x ... x Djs = 0, then we have e1... Es = Л.

Believing the value Ek (a1,..., ak-1) be unknown, to find out it we can try different
elements ak in Dk as the real value for Ek and to pick out that of them, for which the
equations f(g(a1, . . . , an)) = ak0 determine f as a function. In the case when no element
in Dk satisfies this condition, we can change the value ak-1 of the previous variable xk-1

like in the method of backtracking search tree traversal [3-5].
For the quantifier prefix Q1x1... Qnxn in (3), define a subset Mn C D1 x ... x Dn

by induction on k = 1, 2,...,n, namely let M0 = {Л} and for each k 6 {1,...,n}, if
k 6 {i1,...,ir}, then Mk = {a1...ak-1ak : a1...ak-1 6 Mk-1,ak 6 Dk} = Mk-1x Dk,
otherwise if k 6 {j1, . . . , js}, then Mk = {a1 . . . ak-1ak : a1 . . . ak-1 6 Mk-1, ak =
= Ek(a1,... ,ak-1)} = Mk-1 x {Ek(a1,... ,ak-1)}. By this definition, Mn is uniquelly

30 G. P. Agibalov

defined by the existential functions ek(a1,... , ak-i), k G {ji,..., js}. Therefore, we denote
it M£ where e = j ... ejs is the vector existential function of Qixi... Qnxn, say that M£

corresponds to these functions or shorter to e and call M£ the existential domain of the
predicate word Q1x1 . . . Qnxn corresponding to existential functions in e.

Notice that by the definition,

a1... an G M£ о
о (ai... an G Di x ... x Dn) & (ая ... ajs = ejl(ai,.. aj1-1) . . . ejs(a1, . . . , ajs-1)),

that is, M£ consists of those vectors a1... an in D1 x ... x Dn which are generated by
the quantifier prefix by means of existential functions ej1, . . . , ejs (independently of the
underlying expression) in such a way that ak is any element in Dk if Qk = V or it is
ek(a1, . . . , ak-1) otherwise, k G {1, . . . , n}.

Also, please pay attention to the following property of the set M£, resulting from
the functionality of mappings ek in its definition: for all a1a2 ... an and b1b2 ... bn in M£

and for any k G {j1, . . . , js} if a1 . . . ak-1 = b1 . . . bk-1, then ak = ek(a1, . . . , ak-1) =
= ek(b1, . . . , bk-1) = bk.

Further, in dependence on context, we use the terms of existential function
ek (ai,..., ak-i) and of existential domain M£ in connection not only with a quantifier
prefix Q1x1 . . . Qnxn but with an automaton invertibility degree being denoted in the same
way.

Now, we give some examples demonstrating what we have just discussed.

3. Examples of existential functions and domains of a predicate prefix
Example 1. Let n = 3, x = x1x2x3, g(x) = g(x1, x2, x3) = (x1x2 + x3) mod 3,

Di = D2 = D3 = Dg = {0,1,2}, ko = 1 and Xk0 = xi, f : Dg Di,
Q1X1Q2X2Q3X3(f (g(xi,X2,X3)) = Xk0) = VxiVx23x3(f ((xiX2 + X3) mod 3) = xi), the
function e3 : Di x D2 D3 is given in the Table 1.

Tab le 1

X1X2 00 01 02 10 11 12 20 21 22
£3(xi,X2) 2 2 2 1 0 2 0 1 2

Then M£ = M£3 = {002, 012, 022,101,110,122, 200, 211,222}, the values g(x) and
f (g(x)) for x G M£ are presented in the Table 2.

Ta b l e 2

x G M£ 002 012 022 101 110 122 200 211 222
g(x) 2 2 2 1 1 1 0 0 0

f(g(x)) 0 0 0 1 1 1 2 2 2

It is immediately seen that M£ is really generated by the quantifier prefix VxiVx23x3 by
means of the existential function e3, and f is a function on Dg with the values in Di,
satisfying the underlying predicate equation for vectors in M£ and hence proving the
invertibility of type (Vxi, Vx2, 3x3) of the function g with respect to the variable xi and
with the recovering function f. We can add that in fact there are yet at least five other
existential functions and five other recovering functions f, with which the function g in the
example is invertible of the type VxiVx23x3 with respect to the variable xi.

Cryptanalytical finite automaton invertibility with finite delay 31

Example 2. This example only differs from the first one in the range D3 which now
is D3 = {0,1} and in the existential function e3 : D1 x D2 D3 (Table 3).

Tab le 3

X1X2 00 01 02 10 11 12 20 21 22
£3(xi,X2) 0 0 0 1 0 1 1 0 1

In this case we obtain the following set

Ta b l e 4

M£ = M£3 = {000, 010, 020,101,110,121, 201, 210, 221},

and the following functions g(x) and f(g(x)) defined on it (Table 4).

x 6 M£ 000 010 020 101 110 121 201 210 221
g(x) 0 0 0 1 1 0 1 2 2

f(g(x)) 0 0 0 1 1 0 1 2 2

From the Table 4, it is seen that f is a function on Dg but it doesn't satisfy the equation
f (g(x1, x2, x3)) = x1 on M£ and therefore g is not invertible of the type Vx1Vx23x3 with
existential function e and with respect to the variable x1. There is a suspicion that it is not
invertible of this type with any existential function e for 3 and with respect to the same
variable.

4. Existential functions and domains of automaton invertibility degrees
In [1], all the possible automaton cryptanalytical invertibility types were defined. In

the section 1 of this paper, we have repeated the definition. Each type IT is characterised
by an invertibility degree ID and invertibility order IO. Here, for each of all thirteen
possible IDs Q1 x1Q2x2Q3x3 of an automaton A = (X, Q,Y, ф,^), we give the general
description of ranges and domains for arbitrary existential functions e1, e2, e3 in it and,
for any e C {e1,e2,e3}, the general description of existential domain M£ in the form of
algorithm for computing vectors from D1 x D2 x D3 in it.

In order to make the text of this section to be nearer to the automata theory language
which we keep to in our research, instead of typical symbols x1, x2, and x3 of abstract
mathematical variables, we use the symbols q, а, and 6 usually denoting in automata
theory an initial state of the automaton A, its input information and its input delay words
respectively. Besides, m is the length of а and т is the length of 6.

1) ID = VqVаV6, e = Л, M£ = {да£ : q 6 Q, а 6 Xm, 6 6 XT};
2) ID = VqVа36, e3 : Q x Xm XT, M£ = M£3 = {дае3(д, а) : q 6 Q, а 6 Xm};
3) ID = Vq36Vа, e2 : Q XT, M£ = M£2 = {qe2(q^ : q 6 Q, а 6 Xm};
4) ID = 3qVаV6, e1 6 Q, M£ = MS1 = {е1а6 : а 6 Xm, 6 6 XT};

5) ID = 3qVа36, e1 6 Q, e3 : Q x Xm XT, M£ = M£1£3 = {е1ае3(е1, а) : а 6 Xm};
6) ID = 3q36Vа, e1 6 Q, e2 : Q XT, M£ = M£1£2 = {е1е2(е1)а : а 6 Xm};
7) ID = Vа3qV6, e2 : Xm Q, M£ = M£2 = {ае2(а)6 : а 6 Xm, 6 6 XT};
8) ID = Vа3q36, e2 : Xm Q, e3 : Xm x Q XT, M£ = M£2£3 =

= {ае2(а)е3(а,е2(а)) : а 6 Xm};
9) ID = VаV63q, e3 : Xm x XT Q, M£ = M£3 = {а6е3(а, 6) : а 6 Xm, 6 6 XT};

10) ID = Vа36Vq, e2 : Xm XT, M£ = M£2 = {ае2(а^ : а 6 Xm, q 6 Q};

32 G. P. Agibalov

11) ID = V63qVa, £2 : XT Q, M£ = M£2 = {6£2(6)a : a G Xm,6 G XT};
12) ID = 36VqVa, £i G XT, M£ = M£1 = {£iqa : q G Q, a G Xm};
13) ID = 36Va3q, £i G XT, £3 : XT x Xm Q, M£ = M£1£3 = {£ia£3(£i, a) : a G Xm}.

From the given expressions for the sets M£, we can see the expressions for the size |M£|
of these sets. The Table 5 contains them for all numbers of ID. In it k = |X|, h = |Q|.

Ta ble 5

N.ID 1 2 3 4 5 6 7 8 9 10 11 12 13
|M£| hkm+T hkm hkm fcm+т km km km+т km km+т hkm km+т hkm km

5. Test for function cryptanalytical invertibility
Lemma 1. For a function g(xi,..., xn), there exists a function f : Dg Dko with the

true formula (3), if and only if for each k G {ji, . . . , js} there exists an existential function
£k : Di x ... x Dk-i Dk such that the set M£ corresponding to £ = £j1 ... £js satisfies the
following condition:

Va = ai... an G M£ Vb = bi ...bn G M£ (a^ = bko g(a) = g(b)). (4)

Proof. Necessity: given 3f((3)), prove 3s((4)). We have:

3f ((3)) 3f (QiXi... QnXn(f (g(xi,..., Xn)) = Xko))
3f 3e(Va = ai... an G Ms(f (g(a)) = ako))

3f3£(Va G M£(f (g(a)) = ako) & Vb G M£(f (g(b)) = bko))
3f3£(Va G M£ Vb G M£(f (g(a)) = ako) & (f (g(b)) = bko))
3f 3£(Va G M£ Vb G M£(ako = bko f (g(a)) = f (g(b))))
3£(Va G M£ Vb G Me(ako = bko g(a) = g(b))) = 3£((4)).

Sufficiency: given 3£((4)), prove 3f ((3)). Define f : Dg Dko as f (g(a)) = ako, a G M£.
We have:

3£((4)) = 3£(Va G M£ Vb G Me(ako = bko g(a) = g(b)).

Therefore, g(a) = g(b) ako = bko f (g(a)) = f (g(b)) for any a and b from M£ what
means that f is a function on {g(a) : a G M£}. So, Va G M£(f(g(a)) = ako) that is equivalent
to ((3)). ■

So, by trying the different existential functions £ on satisfying the existential domains M£

to the condition (4), we can find out whether there exists a function f recovering a certain
variable of a given function g or not.

Corollary 1. A function g(xi, . . . , xn) is invertible of a type Qixi . . . Qnxn with
respect to a variable xko, k0 G {ii, . . . , ir}, if and only if there exist existential functions
£k : Di x ... x Dk-i Dk, k = ji,..., js, the corresponding to which set M£ satisfies the
condition (4).

So, by trying the different existential functions £ on satisfying the existential domains M£

to the condition (4), we can find out whether a function g is invertible of a certain type
with respect to some its variable or not.

Example 3. This is the end of Example 1. We see here that VxiVx23x3(f(g(x)) = xi),
that is, the state (3) is true as well as Va G M£ Vb G M£(ai = bi g(a) = g(b)), that is,

Cryptanalytical finite automaton invertibility with finite delay 33

the state (4) is true too. For instance, if (x1, x2) = (1, 2), then x3 = 2, g(x1, x2, x3) =
= (x1x2 + x3) mod 3 = 1 and f(g(x1, x2, x3)) = f(1) = 1 = x1, and also if a = 020 and
b = 101, then a1 = 0 = 1 = b1 and g(a) = g(020) = 0 = 1 = g(101) = g(b).

Example 4. This is the end of example 2. Here, both conditions (3) and (4) are false
because, for example, f(g(x)) = x1 for x = 121 and x = 201, a1 = b1 and g(a) = g(b) for
a = 000 and b= 121, fora = 020 and b = 121. Moreover, immediatelyfromtheTable4, it is
seen that, for this g, there doesn't exist f with the property f(g(x)) = x1 and it isn't possible
to recover the value x1 from the value g(x). Also, it's impossible to make the condition (4) to
become true in the way of choosing other values for x3 in points x G M£, since for any values
a3, b3 of variable x3, there exist some values a1, a2 and b1, b2 of the variables x1, x2 such that
a1,a2 are arbitrary, b1 is invertible modulo 3 and b2 = b1-1(a1a2 +a3 -b3) mod 3 and then
we will have what we need, namely: a1 = b1 and g(a) = a1a2 + a3 = b1b2 +b3 = g(b). So, if
for x we take the value b' = 120 instead of b = 121, then, from one side, for a = 020 and
b' = 120, we will have what we want, namely: a1 = 0 = 1 = bl and g(a) = 0 = 2 = g(b'),
and from another one, —unwanted fact, namely: a1 = 2 = 1 = bl and g(a) = 2 = 2 = g(b')
for a = 210 and b' = 120, etc.

6. Test for automaton cryptanalytical invertibility
Let q and s, a and в, 5 and y be the values from Q, X*, XT respectively and a1a2a3,

b1b2b3 G M£ where a1, a2, a3 and b1, b2, b3 are the different values from {q, a, 5} and {s, в, y}
respectively such that if ak is q, a or 5, then bk is s, в or y respectively, k G {1, 2, 3}.

Theorem 1. The automaton A is cryptanalytically invertible of a type (QlxlQ2x2Q3x3,
u(q, a, 5)), that is, there exists a function f such that (2) is true, if and only if for
Q1x1Q2x2Q3x3 there is an existential vector function s such that the following formula
is true:

Vaia2аз G M£ Vb^be G M£(a = в ((<p(a5, q), u(q, a, 5)) = (<р(в?, s),u(s, в, ?))))• (5)

Proof. The proposition under proof is a particular case of Lemma 1. ■

The theorem is the base for deciding by the following exhaustive search method if an
automaton A is cryptanalytically invertible of a given type (QlxlQ2x2Q3x3, u(q, a, 5)) or
not:

1) For every possible existential vector function s of the ID = QlxlQ2x2Q3x3, generate
the existential domain M£.

2) Apply Theorem 1 to M£, that is, verify whether (5) is true.
3) If for some s, (5) is true for M£, the automaton A is cryptanalytically invertible

of the type (QlxlQ2x2Q3x3, u(q, a, 5)). Otherwise, that is, if for all existential
functions s of the ID, the condition (5) is false for M£, then the automaton A
is not cryptanalytically invertible of this type.

7. Decision methods for function cryptanalytical invertibility problem
7.1. E x h a u s t i v e s e a r c h

1) For every possible existential function s = ej1 ... sjs where sk : D1 x ... x Dk-1 Dk,
k G {jl, . . . js}, generate the existential domain M£.

2) Apply Lemma 1 to M£, that is, verify whether (4) is true.
3) If for some s, (4) is true for M£, the invertibility problem under consideration is

positively solvable. Otherwise, that is, if for all s, (4) is false for M£, then the
invertibility problem has the negative solution.

34 G. P. Agibalov

7.2. S e a r c h b y c o l l i s i o n e l i m i n a t i o n
A pair (a, b) of words a and b in Di x . . . x Dn is called a collision if ak0 = bk0 and

g(a) = g(b). We call the collision (a, b) a collision in a subset U C Di x ... x Dn if a, b G U.
Also, we say that U has no collisions, or is free of collisions, if for every a and b in U the
pair (a, b) isn't a collision. Further, collisions in an existential domain M£ as depending on e
are called e-collisions.

Theorem 2. There exists a function f satisfying (3) if and only if for some e, the
existential domain M£ has no e-collisions.

Proof. According to lemma 1,
3f ((3)) о 3e((4)) о Va,b G M£ (ako = bko g(a) = g(b)) о Va,b G M£ (ako = bko V
Vg(a) = g(b)) о Va, b G M£—(ako = bko & g(a) = g(b)) о (M£ is free of e-collisions). ■

Corollary 2. A function g(xi, . . . , xn) is invertible of a type Qixi . . . Qnxn with
respecttoavariablexko,k0 G {ii,...,ir}, ifandonlyifforsomee, the existential domain M£

is free of e-collisions.
For a and b in M£, we say as well that the pair (a, b) is a non-e-collision if it is not a

e-collision, that is, if ako = bko or g(a) = g(b). The following operations are introduced
in order to eliminate the e-collisions from an existential domain M£ and to get a new
domain M£ without e'-collisions (if it is possible) or with other e'-collisions (otherwise), so
witnessing that the function g under consideration is respectively invertible or uninvertible
of a given type with respect to a given variable.

Let a = ai... aj-1... ajs ... an, A = aj1 aj2... ajs, A' = ajl aj2 ... ajs, and b = bi... bj1

...bjs ...bn, B = bji bj2 ... bjs, B' = bj bj2... bjs. Define a' = ai... a^-ia^... ajs ajs+i... an

and b' = bi... bj1-ibjl ... bjsbjs+i... bn. We say that a' and b' are obtained by substituting A
by A' and B by B', or A' for A and B' for B, and write a' = a(A' A) and b' = b(B' B)
respectively. Now we can transform the e-collision (a, b) in M£ to a non-e'-collision (a',b)
in M£ where a' = ai ...an = a(A' A), A' = A, g(a') = g(a), e' = ejl ... ejs, and
ek(ai... a'k_i) = a'k for each k G {j\,..., js}. Analogously, e-collision (a, b) in M£ can be
transformed to a non-e'-collision (a,b') in M£/.

So, in the Example 2, we have e-collisions (a, b) with a = 121 and b G {000, 010, 020}
and (a, b) with a = 201 and b G {101, 110}. In the case D3 = {0, 1} that we have it seems
impossible to eliminate these e-collisions without creating others. But if we correct this
example and allow D3 = {0, 1, 2} like in the Example 1, we get a possibility to eliminate
them at all by taking, for instance, e'3(12) = e'3(20) = 2. In this case e-collisions (a, b) =
= (121, b) and (a, b) = (201, b) in M£ are transformed to non-e'-collisions (122, b) and (202, b)
respectively in M£. At the same time we can note that an elimination of a e-collision by
correcting an existential function e can produce other collisions and complicate the process
of recognizing whether there is an existential function e without collisions in M£. Really,
in our example we could eliminate the collisions (121, b) for b G {000, 010, 020} by taking
e'(12) = 0 and obtain the new e'-collisions (120, b') where b' G {210, 221}.

Nevertheless, the notion of e-collision is very important in the cryptanalytical
invertibility theory in many ways. It is enough to say that the exhaustive method above
remains strong after changing the need of true condition (4) in it by the request for collision
absence (Corollary 2). The requirements of collisions lack in M£ follow from the need to
have a recovering function f (Theorem 2) or invertibility property of g (Corollary 2).

Cryptanalytical finite automaton invertibility with finite delay 35

7.3. S e a r c h b y f o r w a r d a n d b a c k t r a c k i n g
Further, we believe that on any finite set M under consideration a linear ordering

relation < (not greater than) is supposed to be given, and for any a, b 6 M we write a < b
(a less than b) if a < b and a = b. This relation extends to Cartesian products of linearly
ordered sets, for instance, as lexicographical ordering in the following way: a1a2 . . . an <
< b1b2 ... bn О ai < bi where i is determined from the conditions a1 = b1,..., ai-1 = bi-1,
ai < bi and i 6 {1, 2, . . . , n}, that is, i is the least number in {1, 2, . . . , n} such that ai = bi

and ai < bi.
Now we introduce some additional notation and notions, namely I = {i1, . . . , ir}, i1 <

< ... < ir, J = {j1,..., js}, j1 < ... < js, n = r + s, I П J = 0, I U J = {1, 2,... ,n},
D(I) = {d1, . . . , dmr} = Di1 x . . . x Dir, D(J) = {e1, . . . , ems} = Dj1 x . . . x Djs, uij =
= di®ej = a1a2 ... an where ai1... air = di and aj1... ajs = ej, i = 1,..., mr, j = 1,..., ms,
m = mr • ms, {u1,u2,...,um} = {uij : i = 1,...,mr,j = 1,...,ms}, Ut = {u1,...,ut},
1 < t < m.

So, here we consider each vector a = a1a2 ... an 6 D1 x ... x Dn as a blend d ® e of a
vector d = ai1 ai2 ... air 6 D(I) and a vector e = aj1 aj2... ajs 6 D(J) and write a = d ® e.

For every a = a1 . . . an 6 D1 x . . . x Dn and b = b1 . . . bn 6 D1 x . . . x Dn we say
that a and b are equivalent if for each k 6 J we have a1... ak-1 = b1... bfc_1 ^к = .
It is clear that this notion here comes from the functionality of the coordinates ек of
the existential vector function e. When a1... ak_1 = b1 ...Ьа-1 and ^к = Ьа. for some
k 6 J, we call the pair (a, b) inequality, and the replacement in a and b the elements a;,.

and b/,. by one and the same element from D(J) is called an inequality elimination. We also
say that a subset U C D1 x . . . x Dn, particularly M£, is an equivalence class if all the
elements in it are equivalent each other. It is not difficult to see that any such subset is
quite simply transformed into an equivalence class by applying, possibly repeatedly, the
inequality elimination to pairs of elements in it.

Here in reality, we consider the problem to determine an existential function e : D(I)
D(J), that is, for every d 6 D(I) to choose an element e(d) 6 D(J) so that the set

U£ = {d ® e(d) : d 6 D(I)} is namely an equivalence class without collisions (further
shortly called ECwC) or to show that such a function e doesn't exist. The first outcome
means that the function g(x1, . . . , xn) is invertible of a given type Q1x1 . . . Qnxn with respect
to a given variable xk , the second one - that g isn't invertible of this type. The correctness
of this decision of the problem is provided by a correct searching an ECwC U£ with the
help of so called forwardtracking (FT) and backtracking (BT) operations correctly defined
below and used on the space D(I) x D(J).

FT: given ECwC Ut = {u1,... ,ut}, 1 < t < mr; take e 6 D(J) and ut+1 = dt+1 ® e so
that ut+1 is equivalent to each of u1, . . . , ut and is not in collision with any of them; define
FT(Ut) = Ut+1 = {u1, . . . , ut, ut+1}. It is clear that if such an e exists, then FT transforms
ECwC Ut into ECwC Ut+1. Otherwise, the forwardtracking from ECwC Ut into ECwC Ut+1

is impossible and backtracking from Ut can be accomplished according to the following
general or particular definitions.

BT (general): given ECwC Ut = {u1,... ,ut}, t > 1, dt+1 6 D(I) and for each j 6 J
there is tj 6 {1,...,t} such that dt+1 ® ej isn't equivalent to utj = dtj ® etj or is in a
collision with it. This means that given Ut is impossible to transform by FT into Ut+1 with
given dt+1 6 D(I) and any ej 6 D(J) in ut+1 = dt+1 ® ej. In application to these data
the backtracking generally consists in taking a specific e from D(J) for ut+1 = dt+1 ® e
as well as some j 6 J and replacing in Ut the points utj = dtj ® etj by some other ones
uj = dtj ® ej which are equivalent to ut+1, to each other uj and to the rest of Ut and

36 G. P. Agibalov

aren't in collision with them. The set U/+1 = U/ U {ut+1}, where u/+1 and U/ are obtained
in the described way in the place of dt+1 and Ut respectively, is defined as a result of the
backtracking from Ut and dt+1, namely: Ut+1 = BT(Ut U {dt+1}).

For instance, in Example 1 let t = 3, Ut = {ut-2, ut-1, ut}, ut-2 = 010, ut-1 = 101,
ut = 120, dt+1 = 20, D(J) = {e1,e2,e3}, e1 = 0,e2 = 1,e3 = 2. We can see that every
possible value u/+1 is in collision with some utj 6 {ut-2, ut-1, ut}. Indeed, if u/+1 = d/+1 ®e1,
then u/+1 = 200 and is in collision with 010 = u/-2; in analogous way, we can show that if
u/+1 = d/+1 ® e2 = 201, then it is in collision with 101 = u/-1, and if u/+1 = d/+1 ® e3 = 202,
then it is in collision with 120 = u/.AtthesametimethesetU/itselfisanECwC,thatis,all
the points u/-2, u/-1, u/ in U/ are equivalent each other and there are no collisions between
them. The aim of backtracking operation is to attach a next data d/+1 to a given ECwC U/

as a component of its next member u/+1 = d/+1 ® e admitting the choice of any value e
from D(J) as the existential component in u/+1 and any correction of existential components
in other members of Ut with the only condition — preserving the ECwC properties of the
set under backtracking. The choice of the component e in u/+1 and the correction of the
existential components in members of U/ aren't one-valued and are possible in many different
ways. In our instance we have taken e = 2 and 0, 1, 2 as existential values in u/-2, u/-1, u/

respectively. So, U/+1 = BT(U/ U {dt+1}) = {u/-2, u/-1, u/, u/+1} = {010,101,122,202}.
It is directly verified that this set is ECwC what is required. The following is a result
of another variant of backtracking for the same instance: U/+1 = {u/-2, u/-1, u/, u/+1} =
= {011,102,120,200}. - -

BT (particular): as in general BT, given ECwC U/ = {u1, . . . , u/}, d/+1 6 D(I) and for

in a collision with it. The particular application of the backtracking to these data consists
in taking a free (for the first time) existential value e/ from D(J) for u/ = d/ ® e/ and e/+1

from D(J) for u/+1 = d/+1 ® e/+1 so that u/ is equivalent to each of u1,..., u/-1 and without
collisions with them, u/+1 is equivalent to each of u1,..., u/-1, u/ and without collisions with
them. The set U/+1 = {u1,... ,u/-1,u/, u/+1} is defined to be the result of the bachtracking
from U/ and d/+1, that is, U/+1 =BT(U/ U {d/+1}).

In case, when such an e/+1 doesn't exist, another free e/ is chosen in D(J) for u/ = d/®e/.
If e/ doesn't exist for choosing a needed e/+1, then another free e/-1 is chosen in D(J) for
u/-1 = d/-1 ® e/-1 and so on.

After executing BT and constructing U/+1 forwardtracking is tried to be applied to U/+1.
The computation ends when the beginning point without free existential values is achieved.
The analysed function g is adopted to be invertible of a certain type iff an ECwC of the
maximal size mr is demonstrated by this computation.

The author expresses his thanks to I. A. Pankratova for a valuable observation and
important correction of the paper.

REFERENCES
1. Agibalov G. P. Cryptanalytic concept of finite automaton invertibility with finite delay.

Prikladnaya Diskretnaya Matematika. 2019, no. 44, pp. 34-42.
2. Rasiowa H. Introduction to Modern Mathematics. Amsterdam; London, North-Holland

Publishing Company; Warszawa, PWN, 1973. 339 p.
3. Agibalov G. P. and Belyaev V. A. Tehnologiya Resheniya Kombinatorno-logicheskih Zadach

Metodom Sokraschyonnogo Obhoda Dereva Poiska [Technology for Solving Combinatorial-
Logical Problems by the Method of Shortened Search Tree Traversal]. Tomsk, TSU Publ.,
1981. 126p. (in Russian)

Cryptanalytical finite automaton invertibility with finite delay 37

4. Christofides H. Graph Theory. An algorithmic Approach. New York; London; San Francisco,
Academic Press, 1975.

5. Zakrevskij A., Pottosin Yu., and Cheremisinova L. Combinatorial Algorithms of Discrete
Mathematics. Tallinn, TUT Press, 2008. 193 p.

