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Abstract
This paper presents new results of stability analysis for a linear system with two delays.
We attempt to determine the asymptotic stability regions of the system in a
parameter space by using D-partition method. Moreover, some stability and instability
conditions in terms of coefficient inequalities have been obtained for the system.
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1 Introduction
While modeling by using ordinary differential equations, the delay in the system is always
ignored. However, even a small amount of delay may cause large changes in the system
solution. Therefore, the use of delay differential equations is more realistic when any en-
countered problems are modeled.

For a long time, many problems in the fields of engineering [1–4], biology [5–8], chem-
istry [9], physics [10, 11], economy [12], psychology [13, 14], etc. have been modeled by
delay differential equations.

In this paper, we consider the problem of stability of zero stationary solution of the fol-
lowing system:

x′(t) = α1x(t) + β1y(t) + θ1y(t – r1), (1)

y′(t) = α2x(t) + β2y(t) + θ2y(t – r2), (2)

where the coefficients α1, α2, β1, β2, θ1, and θ2 are real and r1, r2 are positive real delays.
To shorten the notation, we will write stability/instability of the system instead of sta-
bility/instability of zero solution of the system. Some similar systems were investigated
by many researchers, see, for example, the work by Nussbaum [15]. Another interesting
study of a similar system was conducted by Ruan and Wei [16]. Hale and Huang [17] gave
a very thorough characterization of the boundary of the stability region in the delay pa-
rameter space. Gu et al. [18] provided a detailed study on the stability crossing curves
for more general systems. Mohammad and Mohammad [19] presented a novel method
to study the stability map of linear fractional order systems with multiple delays. Josef
and Zdeněk [20] utilized the method of complexification and the method of Lyapunov–
Krasovskii functional to study asymptotic behavior of a differential system with a finite
number of non-constant delays. Additionally, the existence of positive periodic solutions
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for a fourth-order nonlinear neutral differential equation with variable delay was studied
by Ardjouni et al. [21]. Grace [22] established the results for oscillation of a third-order
nonlinear delay differential equation. Öztürk and Akın [23] investigated nonoscillatory
solutions of two-dimensional systems of first-order delay dynamic equations.

We attempt to determine the stability regions of the system in a parameter space by
using D-partition method [24] which is explained in Sect. 2.

2 D-partition method
The method originated from paper [24]. This method consists in obtaining a “partition”
of the parameter space in several regions, so that each region is bounded by a hyper sur-
face which corresponds to the case when at least one root lies on the imaginary axis. Fur-
thermore, for all the parameters lying in a given region, the corresponding characteristic
equation has the same number of roots with positive real parts [25]. Following theorems
and definitions and more details on them can be found in references [26–28] and [29].

In order to analyze the stability of the system, the characteristic equation of the system
is obtained. The characteristic roots λj, j = 1, 2, . . . , of equations (1)–(2) are obtained by
solving the characteristic equation

g(λ) = λ2 – (α1 + β2)λ + (α1 – λ)θ2e–λr2 – α2θ1e–λr1 + α1β2 – α2β1 = 0,

where λj is a complex number. If the characteristic roots have negative real parts, i.e.,
Re(λj) < 0 for all j = 1, 2, . . . , then the solution of the system is asymptotically stable; and
if at least one of the characteristic roots has positive real parts, i.e., Re(λj) > 0 for some
j = 1, 2, . . . , then the solution of the system is unstable.

The characteristic equation above is a special case of the general characteristic equation

g(λ, k1, k2) = 0, (3)

where g depends linearly on k1 and k2 which could be any two of the parameters α1, α2,
β1, β2, θ1, θ2.

The roots λ = ib are called critical roots of the characteristic equation since stability
regions of the system are determined by the analysis of the system at critical roots.

Substitute a pure imaginary number λ = ib in (3) of a system linearly depending on two
parameters k1 and k2. Equating the real and imaginary parts to zero, we have

U(b, k1, k2) := Re g(ib, k1, k2) = k1P1(b) + k2Q1(b) + R1(b) = 0, (4)

V (b, k1, k2) := Im g(ib, k1, k2) = k1P2(b) + k2Q2(b) + R2(b) = 0, (5)

where P1, P2, R1, R2, Q1, and Q2 are differentiable functions. Note that, for some values of
b, the function g(λ, k1, k2) becomes a real-valued function. Then, for these values of b, the
solutions of characteristic equation g(ib, k1, k2)=0 are called singular solutions.

It is well known that the solution of system (4)–(5) exists under the assumption
P1(b)Q2(b) – P2(b)Q2(b) �= 0.

Definition 1 The parametric curves

k1 = k1(b), k2 = k2(b),
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which are obtained by solving equations (4)–(5) and singular solutions, are called D-
curves [29].

Theorem 1 The D-curves divide the complex plane up into a finite number of regions [29].

Theorem 2 The characteristic equation g(λ) has a root on the imaginary axis if and only
if (k1, k2) is on the D-curves [29].

Theorem 3 In each region, determined by the D-curves in the (k1, k2) plane, g(λ) has the
same number of roots with positive real parts [29].

For every region uk of the D-partition, bounded by D-curves, it is possible to assign
a number k which is the number of roots with positive real parts of the characteristic
equation defined by the points of this region. Among the regions of this decomposition
are also found regions u0 (if they exist) on which the characteristic equation does not
have any root with positive real part. On these regions, the solutions are asymptotically
stable. The determination of these numbers for the individual domains is not an easy task.
One technique is analysis of sign of partial derivative along the D-curves. Alternatively,
without calculating partial derivatives, the following Stepan’s formulas [30] can also be
used to determine the number of roots with positive real parts.

Theorem 4 Assume that the characteristic equation g(λ) of the n dimensional system has
no zeros on the imaginary axis. If n is even, i.e., n = 2m with m being an integer, then the
number of unstable exponents is

N = m + (–1)m
r∑

k=1

(–1)k+1 sgn V (ρk), (6)

where ρ1 ≥ · · · ≥ ρr > 0 are the positive real zeros of U(b). If the n is odd, i.e., n = 2m + 1
with m being an integer, then the number of unstable exponents is

N = m +
1
2

+ (–1)m

[
1
2

(–1)s sgn U(0) +
s–1∑

k=1

(–1)k sgn U(σk)

]
, (7)

where σ1 ≥ · · · ≥ σs = 0 are the nonnegative real zeros of V (b) [30].

Since the delay terms have a direct effect on the solution of the characteristic equa-
tion, the delay differential equations with the same coefficients but different delay terms
r1, r2, . . . , rn may have different stability regions.

The following definitions are given for the delay differential equations with delay terms
r1, r2, . . . , rn.

Definition 2 The system the stability of which depends on the delay terms is called delay-
dependent stable system.

Let the delay-dependent stable region be defined as follows:

Sr =
{

(k1, k2) | the system is asymptotically stable for r = (r1, r2, . . . , rn)
}

,

where r1, r2, . . . , rn denote the values of the delays of the delay differential equation.
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Definition 3 The system for which the stability is preserved for every value of delay terms
is called delay independent stable.

Let the delay independent stable region be defined in the following form:

S∞ =
{

(k1, k2) | the system is asymptotically stable for ∀ri ∈ IR+}
,

where ri, i = 1, 2, . . . , n, denote the values of the delays of the equation.

Methodology The method evolves as follows:
(i) Find a parametric equation of D-curves of the system.

(ii) Construct the graph of the D-curves. (In this paper, D-curves are obtained by
means of MATLAB.)

(iii) Select specific points in the regions whose boundaries are the D-curves.
(iv) Determine the number of roots with positive real parts for the specific points by

using Theorem 4 and generalize them to the relevant regions.
(v) Denote the region, on which the number of roots with positive real parts is k for a

chosen specific point, by uk .

3 Stability regions and main results
In this section, system (1)–(2) is studied for two different cases in two different spaces. One
of these cases is r1 = r2 = r for which the characteristic equation becomes much simpler.
In other case, r1 �= r2 state, which constitutes the main part of our analysis.

3.1 (α1 – α2) parameter space
In this subsection, we determine the conditions under which the system is unstable. More-
over, the regions on which the characteristic equation has roots with the same number of
positive real parts are shown for fixed delay values.

In order to find the stability region of system (1)–(2) in the parameter space, the D-
partition method is applied. If the characteristic equation

g(λ) = λ2 – (α1 + β2)λ + (α1 – λ)θ2e–λr2 – α2θ1e–λr1 + α1β2 – α2β1 = 0, (8)

corresponding to system (1)–(2), has a zero root, then we have

(θ2 + β2)α1 = (θ1 + β1)α2. (9)

This straight line is one of the lines forming the boundary of the D-partition. Substituting
λ = ib in characteristic equation (8) and equating the real and imaginary parts to zero, we
have

U = –b2 – θ2b sin(br2) + α1θ2 cos(br2) – α2θ1 cos(br1) + α1β2 – α2β1 = 0, (10)

V = –α1b – β2b – θ2b cos(br2) – α1θ2 sin(br2) + α2θ1 sin(br1) = 0. (11)
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Figure 1 The D-curves and stability region of system (1)–(2) for β1 = 1.4, β2 = 0.4, θ1 = 1.25, θ2 = 1, r1 = 1, and
r2 = 0.25, 0.5, 1, 1.5, 1.8

From equations (10)–(11), D-curves are obtained as follows:

α1(b) =
θ1θ2b cos(b(r1 – r2)) + θ1b2 sin(br1) + θ1β2b cos(br1) + θ2β1b cos(br2) + β1β2b

θ1θ2 sin(b(r1 – r2)) + θ1β2 sin(br1) – θ2β1 sin(br2) – θ1b cos(br1) – β1b
,

(12)

α2(b) =
b3 + (θ2

2 + β2
2 )b + 2θ2β2b cos(br2) + 2θ2b2 sin(br2)

θ1θ2 sin(b(r1 – r2)) + θ1β2 sin(br1) – θ2β1 sin(br2) – θ1b cos(br1) – β1b
(13)

as b tends to 0, we obtain the cusp point

p1 := lim
b→0

α1(b) = –
(θ1 + β1)(θ2 + β2)

θ1 + β1 – θ1r1(θ2 + β2) + θ2r2(θ1 + β1)
,

p2 := lim
b→0

α2(b) = –
(θ2 + β2)2

θ1 + β1 – θ1r1(θ2 + β2) + θ2r2(θ1 + β1)
.

As the next step, these results are illustrated for various values of parameters. The curves
(12)–(13) and the straight line (9) form the D-partition shown in Fig. 1 for β1 = 1.4, β2 =
0.4, θ1 = 1.25, θ2 = 1, r1 = 1 and r2 = 0.25, 0.5, 1, 1.5, 1.8.

Lemma 1 If 0 ≤ 2A ≤ 1
rμ , then x2 + 2Ax sin(xr) ≥ 0 for ∀x ∈ IR, where r is a positive real

number and μ = sup( – sin x
x ) ≈ 0.218.

Proof Since f (x) = x2 + 2Ax sin(xr) is an even function, it is sufficient to show only for
∀x ≥ 0. When sin(xr) ≥ 0, we obtain

x2 + 2Ax sin(xr) ≥ x2 ≥ 0.

On the other hand, when sin(xr) < 0, we obtain the following inequality:

x2 + 2Ax sin(xr) ≥ x2 +
1

rμ
x sin(xr). (14)
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Suppose that x2 + 1
rμ x sin(xr) < 0 for ∀x ∈ IR+ when sin(xr) < 0. By taking x = y

r on the
left-hand side of inequality (14), we have

μ < –
sin(y)

y
,

which contradicts the definition of μ.
Consequently, the desired inequality

x2 + 2Ax sin(xr) ≥ 0 for ∀x ≥ 0

is obtained. �

Lemma 2 Let μ be defined as in Lemma 1. If r1 = r2 = r, β2θ1 = θ2β1, |θ1| < β1, and 0 ≤
2θ2 ≤ 1

rμ , then α2(b) ≤ 0 for ∀b ∈ IR.

Proof Under the conditions of the theorem, for ∀b ∈ IR–{0}, equality (13) can be rewritten
as follows:

α2(b) = –
b2 + θ2

2 + β2
2 + 2θ2β2 cos(br) + 2θ2b sin(br)

θ1 cos(br) + β1
. (15)

(i) If |θ1| < β1 for ∀b ∈ IR, then inequality θ1 cos(br) + β1 > 0 holds.
(ii) If θ2β2 ≥ 0, then

θ2
2 + β2

2 + 2θ2β2 cos(br) ≥ θ2
2 + β2

2 – 2θ2β2 = (θ2 – β2)2 ≥ 0

holds and if θ2β2 < 0, then

θ2
2 + β2

2 + 2θ2β2 cos(br) > θ2
2 + β2

2 + 2θ2β2 = (θ2 + β2)2 > 0

holds. As a result, θ2
2 + β2

2 + 2θ2β2 cos(br) > 0 holds for ∀b ∈ IR.
(iii) If 0 ≤ θ2 ≤ 1

rμ , then it follows from Lemma 1 that b2 + 2θ2b sin(br) ≥ 0 holds for
∀b ∈ IR.

It follows from (i), (ii), and (iii) that α2(b) ≤ 0 for all ∀b ∈ � – {0}. Moreover, we have

lim
b→0

α2(b) = –
(θ2 + β2)2

θ1 + β1
,

which is negative when |θ1| < β1. �

Lemma 3 If r1 = r2 = r, β2θ1 = θ2β1, |θ1| < β1, and 2|θ2| ≤ |β2|, then α2(b) ≤ 0 for ∀b ∈ IR.

Proof It follows from the proof of Lemma 2 that the denominator of equality (15) is
positive. Now let us investigate the following cases for the numerator of equality (15).
Since the numerator of equality (15) is an even function of b, it is sufficient to show for
∀b ≥ 0.
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(i) If 0 ≤ 2θ2 ≤ β2, then

b2 + θ2
2 + β2

2 + 2θ2β2 cos(br) + 2θ2b sin(br) ≥ b2 + θ2
2 + β2

2 – 2θ2β2 – 2θ2b

= (b + θ )2 + β2
2 – 2θ2β2 ≥ 0

holds.
(ii) If 0 ≤ 2θ2 ≤ –β2, then

b2 + θ2
2 + β2

2 + 2θ2β2 cos(br) + 2θ2b sin(br) ≥ b2 + θ2
2 + β2

2 + 2θ2β2 – 2θ2b

= (b – θ )2 + β2
2 + 2θ2β2 ≥ 0

holds.
(iii) If 0 ≤ –2θ2 ≤ β2, then

b2 + θ2
2 + β2

2 + 2θ2β2 cos(br) + 2θ2b sin(br) ≥ b2 + θ2
2 + β2

2 + 2θ2β2 + 2θ2b

= (b + θ )2 + β2
2 + 2θ2β2 ≥ 0

holds.
(iv) If β2 ≤ 2θ2 ≤ 0, then

b2 + θ2
2 + β2

2 + 2θ2β2 cos(br) + 2θ2b sin(br) ≥ b2 + θ2
2 + β2

2 – 2θ2β2 + 2θ2b

= (b + θ )2 + β2
2 – 2θ2β2 ≥ 0

holds. �

Theorem 5 We suppose that the conditions of Lemma 2 or Lemma 3 hold and if

(θ2 + β2)α1 < (θ1 + β1)α2,
α2 > 0

}
(16)

are satisfied, then the characteristic equation of system (1)–(2) has only one root with pos-
itive real part.

Proof It follows from Lemma 2 or Lemma 3 that D-curves of system (1)–(2) are located
outside of the region which is determined by inequality system (16) in (α1 – α2) parameter
space. Suppose that there were two points within the region (16) with different numbers
of roots with positive real parts. Then along any arc within that region connecting the
points there must be a point where some of the roots of the characteristic equation lie
on the imaginary axis. This point must lie on the D-curves, giving a contradiction. As a
result, the number of roots of the characteristic equation with positive real parts does not
change in the region (16). In other words, if the system is unstable for specific values of the
parameters which satisfy the conditions of the theorem, the instability of the system has
been shown. Using Stepan’s formula (6) with β1 = β2 = 1.2, θ1 = θ2 = 1, r1 = r2 = 1, α1 = 0.1,
α2 = 1 values, it is obtained that the characteristic equation of the system has one root
with a positive real part. �
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Theorem 6 We suppose that the conditions of Lemma 2 or Lemma 3 hold and if

(θ2 + β2)α1 > (θ1 + β1)α2,
α2 > 0

}
(17)

are satisfied, then the characteristic equation of system (1)–(2) has two roots with positive
real parts.

Proof The proof follows the lines of the proof of Theorem 5. �

It follows from Theorems 5 and 6 that since the region on which α2 > 0 has no curves but
straight line (9), the stability of the system does not change. Moreover, the straight line (9)
splits this region into two subregions on which the characteristic equation of the system
has either one or two roots with positive real parts. As a result, the system is unstable
under the assumption of Theorems 5 and 6.

3.2 (β1 – β2) parameter space
From equation (10)–(11), D-curves are obtained in (β1 – β2) parameter space as follows:

β1(b) = –
b3 + θ2b2 sin(br2) + α2θ1(b cos(br1) – α1 sin(br1)) + α2

1(b + θ2 sin(br2))
bα2

, (18)

β2(b) = –
α1b + θ2b cos(br2) + α1θ2 sin(br2) – α2θ1 sin(br1)

b
(19)

as b tends to 0, we obtain the cusp point

p1 := lim
b→0

β1(b) = –
α2

1(1 + θ2r2) + α2θ1(1 – α1r1)
α2

,

p2 := lim
b→0

β2(b) = –α1(1 + θ2r2) – θ2 + α2θ1r1.

The curves (18)–(19) and the straight line (9) that form the D-partition are shown in
Fig. 2 for α1 = 0.2, α2 = 0.2, θ1 = 1.25, θ2 = 1, r1 = 1, r2 = 0.25, 0.5, 1, 1.5, 2 and for r1 =
0.25, 1, 1.5, 2, 3, r2 = 1.

Proposition 1 There exist real numbers m and M such that m < β2(b) < M for ∀b ∈ IR.

Figure 2 The D-curves and stability region of system (1)–(2) for α1 = 0.2, α2 = 0.2, θ1 = 1.25, θ2 = 1, r1 = 1,
r2 = 0.25, 0.5, 1, 1.5, 2 and for r1 = 0.25, 1, 1.5, 2, 3, r2 = 1
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Proof Let μ = sup( – sin x
x ). If m and M are defined as follows:

m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–α1 – |θ2| + μα1θ2r2 + α2θ1r1 if α1θ2 < 0,α2θ1 < 0,

–α1 – |θ2| + μα1θ2r2 – μα2θ1r1 if α1θ2 < 0,α2θ1 > 0,

–α1 – |θ2| – α1θ2r2 + α2θ1r1 if α1θ2 > 0,α2θ1 < 0,

–α1 – |θ2| – α1θ2r2 – μα2θ1r1 if α1θ2 > 0,α2θ1 > 0,

(20)

M =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–α1 + |θ2| – α1θ2r2 – μα2θ1r1 if α1θ2 < 0,α2θ1 < 0,

–α1 + |θ2| – α1θ2r2 + α2θ1r1 if α1θ2 < 0,α2θ1 > 0,

–α1 + |θ2| + μα1θ2r2 – μα2θ1r1 if α1θ2 > 0,α2θ1 < 0,

–α1 + |θ2| + μα1θ2r2 + α2θ1r1 if α1θ2 > 0,α2θ1 > 0.

(21)

Then it is clearly obtained that m < β2(b) < M for ∀b ∈ IR. �

Theorem 7 If α2θ1–α1θ2+α2β1
α1

< β2 < m is satisfied, then system (1)–(2) is stable.

Proof From equation (9) and Proposition 1, the region which is determined by
α2θ1–α1θ2+α2β1

α1
< β2 < m does not include D-curves in (β1 – β2) parameter space.

In order to prove that on each region the characteristic equation of the system has the
same number of roots with positive real parts, let us suppose that in a region there were
two points for which the numbers of roots with positive real parts are different. Then along
any arc within that region connecting these points there must be a point where some of
the roots of the characteristic equation lie on the imaginary axis. This point must lie on
the D-curves, giving a contradiction. As a result, the number of roots of the characteristic
equation with positive real part does not change in the region. Thus, it is sufficient to
show that it is stable for specific values which satisfy the condition of the theorem. Using
Stepan’s formula (6) with α1 = 0.2, α2 = 0.2, β1 = –5, β2 = –2, θ1 = 1.25, θ2 = 1, r1 = 1, r2 = 2,
it is shown that the characteristic equation of the system has no root with apositive real
part, which implies the stability of the system (1)–(2). �

Theorem 8 Suppose that one of the following conditions holds:

(A1) M < β2 <
α2θ1 – α1θ2 + α2β1

α1
;

(A2) M < β2 and
α2θ1 – α1θ2 + α2β1

α1
< β2;

(A3) β2 < m and β2 <
α2θ1 – α1θ2 + α2β1

α1
;

then system (1)–(2) is unstable.

Proof The proof is similar to the proof of Theorem 7. Figure 2 can be used to find the
specific values that satisfy the conditions. �

Proposition 2 Let μ = sup( – sin x
x ). If 0 ≤ θ2 ≤ 1

r2μ
and α2 > 0, then there exists a real num-

ber N such that β1(b) < N for ∀b ∈ IR.
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Proof It follows from Lemma 1 and equation (18) that

β1(b) < –
α2θ1 cos(br1) + α2

1
α2

–
α2

1θ2 sin(br2)
bα2

+
θ1α1 sin(br1)

b
,

holds for ∀b ∈ IR. If N is defined as follows:

N =

⎧
⎨

⎩

α2|θ1|+α2
1 +μα2

1θ2r2
α2

+ θ1α1r1 if θ1α1 > 0,
α2|θ1|+α2

1 +μα2
1θ2r2

α2
– μθ1α1r1 if θ1α1 < 0,

then it is obtained that β1(b) < N for ∀b ∈ IR. �

Theorem 9 System (1)–(2) is unstable if N < β1 holds.

Proof The proof is similar to the proof of Theorem 7. Figure 2 can be used to find the
specific values that satisfy the conditions. �

4 Conclusion
It shown that the delay plays an important role on the stability of the system for both
cases. The stability region gets either expanded or contracted in one direction as the delay
increases. Having examined the stability locally, we found that a certain range of delays
gain stability. However, this is not a common result for all values of coefficients of the
system. In Fig. 2, increasing delay r1 does not change stability considerably.

In Theorems 5–9, new conditions in terms of coefficients are obtained for stability and
instability of the system. These conditions are derived by exploiting D-partition method.

In the future work, we will develop the conditions of theorems as figures imply.
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