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We revisit the problem of finding shortest unique substring (SUS) proposed recently by 
Pei et al. (2013) [12]. We propose an optimal O (n) time and space algorithm that can 
find an SUS for every location of a string of size n and thus significantly improve their 
O (n2) time complexity. Our method also supports finding all the SUSes covering every 
location, whereas theirs can find only one SUS for every location. Further, our solution is 
simpler and easier to implement and is more space efficient in practice, since we only 
use the inverse suffix array and the longest common prefix array of the string, while 
their algorithm uses the suffix tree of the string and other auxiliary data structures. Our 
theoretical results are validated by an empirical study with real-world data that shows our 
method is at least 8 times faster and uses at least 20 times less memory. The speedup 
gained by our method against Pei et al.’s can become even more significant when the 
string size increases due to their quadratic time complexity. We also have compared our 
method with the recent Tsuruta et al.’s (2014) [14] proposal, another independent O (n)

time and space algorithm for SUS finding. The empirical study shows that both methods 
have nearly the same processing speed. However, ours uses at least 4 times less memory 
for finding one SUS and at least 2 times less memory for finding all SUSes, both covering 
every string location.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Repetitive structure and regularity finding [2,1,13] has received much attention in stringology due to its comprehensive 
applications in different fields, especially in computational biology and bioinformatics research [11,10]. Finding shortest 
unique substrings (SUS) can be an indirect way for finding repetitive structures of a string, because any proper substring 
of a shortest unique substring occurs multiple times in the string and thus is a repeat [7]. Shortest unique substrings have 
been previously used in comparing DNA sequences [3]. However, efficient method for finding the shortest unique substring 
covering a given string location was not studied, until recently it was proposed by Pei et al. [12]. As pointed out in [12], 
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SUS finding also has its own other important usage in search engines and bioinformatics. We refer readers to [12] for its 
detailed discussion on the applications of SUS finding. Pei et al. proposed a solution that costs O (n2) time and O (n) space 
to find an SUS for every location of a string of size n. In this paper, we propose an optimal O (n) time and space algorithm 
for SUS finding. Our method uses simpler data structures that include the suffix array, the inverse suffix array, and the 
longest common prefix array of the given string, whereas the method in [12] is built upon the suffix tree data structure. 
Our algorithm also provides the functionality of finding all the SUSes covering every location, whereas the method of [12]
searches for only one SUS for every location. Our method not only improves their results theoretically, the empirical study 
also shows that our method is more space saving by a factor of at least 20 and is faster by a factor of 4. The speedup 
gained by our method can become even more significant when the string becomes longer due to the quadratic time cost 
of [12]. Due to the very high memory consumption of [12], we were not able to run their method with massive data on our 
machine.

Independence of our work After we posted an initial version of this proposal at arXiv [6], we were contacted via emails by the 
coauthors of [14] and [4], both of which solved the SUS finding using O (n) time and space. By the time we communicated, 
article [14] had been accepted but has not been published and [4] was still under review. We were also offered with their 
paper drafts and the source code of [14]. The methods for SUS finding in both papers are based on the search for minimum 
unique substrings (MUS), as what [12] did. Our algorithm takes a different approach and does not need to search for MUS. 
The problem studied by [4] is also more general, in that they want to find SUS covering a given chunk of locations in 
the string, instead of a single location considered by [12,14] and our work. So, by all means, our work is independent 
and presents a different optimal algorithm for SUS finding. We also have included the performance comparison with the 
algorithm of [14] in the empirical study. It shows that both methods have nearly the same processing speed, but our method 
uses at least 4 times less memory for finding one SUS for every string location and uses at least 2 times less memory for 
finding all SUSes for every string location. The algorithm from [4] cannot be empirically studied as the author did not prefer 
to release the code until their paper is accepted.

2. Preliminary

We consider a string S[1 . . .n], where each character S[i] is drawn from an alphabet Σ = {1, 2, . . . , σ }. A substring
S[i . . . j] of S represents S[i]S[i + 1] . . . S[ j] if 1 ≤ i ≤ j ≤ n, and is an empty string if i > j. String S[i′ . . . j′] is a proper 
substring of another string S[i . . . j] if i ≤ i′ ≤ j′ ≤ j and j′ − i′ < j − i. The length of a non-empty substring S[i . . . j], 
denoted as |S[i . . . j]|, is j − i + 1. We define the length of an empty string as zero. A prefix of S is a substring S[1 . . . i]
for some i, 1 ≤ i ≤ n. A proper prefix S[1 . . . i] is a prefix of S where i < n. A suffix of S is a substring S[i . . .n] for some i, 
1 ≤ i ≤ n. A proper suffix S[i . . .n] is a suffix of S where i > 1. We say the character S[i] occupies the string location i. 
We say the substring S[i . . . j] covers the kth location of S , if i ≤ k ≤ j. For two strings A and B , we write A = B (and say 
A is equal to B), if |A| = |B| and A[i] = B[i] for i = 1, 2, . . . , |A|. We say A is lexicographically smaller than B , denoted as 
A < B, if (1) A is a proper prefix of B , or (2) A[1] < B[1], or (3) there exists an integer k > 1 such that A[i] = B[i] for all 
1 ≤ i ≤ k − 1 but A[k] < B[k]. A substring S[i . . . j] of S is unique, if there does not exist another substring S[i′ . . . j′] of S , 
such that S[i . . . j] = S[i′ . . . j′] but i �= i′ . A substring is a repeat if it is not unique.

Definition 2.1. For a particular string location k ∈ {1, 2, . . . , n}, the shortest unique substring (SUS) covering location k, 
denoted as SUSk , is a unique substring S[i . . . j], such that (1) i ≤ k ≤ j, and (2) there is no other unique substring S[i′ . . . j′]
of S , such that i′ ≤ k ≤ j′ and j′ − i′ < j − i.

For any string location k, SUSk must exist, because the string S itself can be SUSk if none of the proper substrings of S is 
SUSk . Also there might be multiple candidates for SUSk . For example, if S = abcbb, then SUS2 can be either S[1, 2] = ab or 
S[2, 3] = bc.

For a particular string location k ∈ {1, 2, . . . , n}, the left-bounded shortest unique substring (LSUS) starting at location
k, denoted as LSUSk , is a unique substring S[k . . . j], such that either k = j or any proper prefix of S[k . . . j] is not unique. 
Note that LSUS1 = SUS1 always exists, because at least the whole string S is unique. However, for an arbitrary location k ≥ 2, 
LSUSk may not exist. For example, if S = abcabc, then none of LSUS4, LSUS5, and LSUS6 exists. An up-to-j extension of
LSUSk , denoted as LSUSj

k , is the substring S[k . . . j], where k + |LSUSk| ≤ j ≤ n.
The suffix array SA[1 . . .n] of the string S is a permutation of {1, 2, . . . , n}, such that for any i and j, 1 ≤ i < j ≤ n, we 

have S[SA[i] . . .n] < S[SA[ j] . . .n]. That is, SA[i] is the starting location of the ith suffix in the sorted order of all the suffixes 
of S . The rank array Rank[1 . . .n] is the inverse of the suffix array. That is, Rank[i] = j iff SA[ j] = i. The longest common 
prefix (lcp) array LCP[1 . . .n + 1] is an array of n + 1 integers, such that for i = 2, 3, . . . , n, LCP[i] is the length of the lcp of 
the two suffixes S[SA[i − 1] . . .n] and S[SA[i] . . .n]. We set LCP[1] = LCP[n + 1] = 0. In the literature, the lcp array is often 
defined as an array of n integers. We include an extra zero at LCP[n + 1] just to simplify the description of our upcoming 
algorithms. Table 1 shows the suffix array and the lcp array of the example string mississippi.

The next Lemma 2.1 shows that, by using the rank array and the lcp array of the string S , it is easy to calculate any 
LSUSi if it exists or to detect that it does not exist.
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Table 1
The suffix array and the lcp array of an example string S = mississippi.

i LCP[i] SA[i] suffixes

1 0 11 i
2 1 8 ippi
3 1 5 issippi
4 4 2 ississippi
5 0 1 mississippi
6 0 10 pi
7 1 9 ppi
8 0 7 sippi
9 2 4 sissippi

10 1 6 ssippi
11 3 3 ssissippi
12 0 – –

Lemma 2.1. For i = 1, 2, . . . , n:

LSUSi =
{

S[i . . . i + Li], if i + Li ≤ n
not existing, otherwise

where Li = max{LCP[Rank[i]], LCP[Rank[i] + 1]}.

Proof. Note that by the definition of the lcp array, Li is the length of the longest common prefix between the suffix S[i . . .n]
and any other suffix of S . The value of Li can be any number from the set {0, 1, . . . , n − i +1}. If i + Li ≤ n, i.e., Li < n − i +1, 
it means substring S[i . . . i + Li] exists and is unique, while substring S[i . . . i + Li − 1] is either empty or is a repeat. So, by 
the definition of LSUS, S[i . . . i + Li] is LSUSi . On the other hand, if i + Li > n, i.e., Li = n − i + 1, it means S[i . . . i + Li − 1] is 
indeed the suffix S[i . . .n] and is a repeat, so LSUSi does not exist. �
3. SUS finding for one location

In this section, we want to find the SUS covering a given location k using O (n) time and space. We start with finding 
the leftmost one if k has multiple SUSes. In the end, we will show a trivial extension to find all the SUSes covering location 
k with the same time and space complexities, if k has multiple SUSes.

Lemma 3.1. Every SUS is either an LSUS or an extension of an LSUS.

Proof. Let’s say we are looking at SUSk for any k ∈ {1 . . .n}. We know SUSk exists for any k, so let’s say SUSk = S[i . . . j], 
1 ≤ i ≤ k ≤ j ≤ n. If S[i . . . j] is neither LSUSi nor an extension of LSUSi , it means S[i . . . j] is a proper prefix of LSUSi and 
thus is a repeat, which contradicts the fact that S[i . . . j] = SUSk is unique. �

Example 1: S = abcbca, then SUS2 = S[1, 2] = ab, which is LSUS1. Example 2: S = abcbc, then SUS2 = S[1, 2] = ab, 
which is an extension of LSUS1 = S[1] to location 2.

By Lemma 3.1, we know SUSk is either an LSUS or an extension of an LSUS, and the starting location of that LSUS 
must be on or before location k. Then the algorithm for finding SUSk for any given string location k is simply to calculate 
LSUS1, LSUS2, . . . , LSUSk if existing, using Lemma 2.1. During this calculation, if any LSUS does not cover the location k, we 
simply extend that LSUS up to location k. We will pick the shortest one among all the LSUSes or their up-to-k extensions 
as SUSk . We resolve the tie by picking the leftmost one. It is possible this procedure can early stop if it finds an LSUS does 
not exist, because that indicates all the other remaining LSUSes do not exist either. Algorithm 1 gives the pseudocode of 
this procedure, where we represent SUSk by its two attributes: start and length, the starting location and the length of 
SUSk , respectively.

Lemma 3.2. Given a string location k and the rank and the lcp array of the string S, Algorithm 1 can find SUSk using O (k) time. If there 
are multiple candidates for SUSk, the leftmost one is returned.

Proof. The procedure starts with the candidate S[1 . . .n], which is indeed unique (Line 1). Then the For loop calculates the 
LSUSi for i = 1, 2, . . . , k (Lemma 2.1). If LSUSi exists (Line 4) and the length of LSUSi or its up-to-k extension is less than the 
length of the current best candidate (Line 5), then we will pick that LSUSi or its up-to-k extension as the new candidate 
for SUSk . This also resolves the possible ties by picking the leftmost candidate. In the end of the procedure, we will have 
the shortest one among LSUS1 . . . LSUSk or their up-to-k extensions, and that is SUSk . Early stop is made at Line 7 if the 
LSUS being calculated does not exist, because that means all the remaining LSUSes to be calculated do not exist either. Each 
step in the For loop costs O (1) time and the loop executes no more than k steps, so the procedure takes a total of O (k)

time. �
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Algorithm 1: Find SUSk . Return the leftmost one if k has multiple SUSes.
Input: The location index k, and the rank array and the lcp array of the string S
Output: SUSk . The leftmost one will be returned if k has multiple SUSes.

1 start ← 1; length ← n ; // Start location and length of the best candidate for SUSk.

2 for i = 1, . . . , k do
3 L ← max{LCP[Rank[i]], LCP[Rank[i] + 1]};
4 if i + L ≤ n then // LSUSi exists.

/* Extend LSUSi up to k if needed. Resolve the tie by picking the leftmost SUS. */
5 if max{L + 1, k − i + 1} < length then
6 start ← i; length ← max{L + 1, k − i + 1};

7 else break; // Early stop.
8 Print SUSk ← (start, length);

Algorithm 2: Find all the SUSes covering a given location k.
Input: The location index k, and the rank array and the lcp array of the string S
Output: All the SUSes covering location k.

1 start ← 1; length ← n ; // Start location and length of the best candidate for SUSk.

/* Find the length of SUSk. */
2 for i = 1, . . . , k do
3 L ← max{LCP[Rank[i]], LCP[Rank[i] + 1]};
4 if i + L ≤ n then // LSUSi exists.
5 if max{L + 1, k − i + 1} < length then // Extend LSUSi to location k if necessary.
6 start ← i; length ← max{L + 1, k − i + 1};

7 else break; // Early stop.
/* Find all SUSes covering location k. */

8 for i = 1, . . . , k do
9 L ← max{LCP[Rank[i]], LCP[Rank[i] + 1]};

10 if i + L ≤ n then // LSUSi exists.
11 if max{L + 1, k − i + 1} = length then // Extend LSUSi to location k if necessary.
12 Print (i, max{L + 1, k − i + 1});

13 else break; // Early stop.

Theorem 3.1. For any location k in the string S, we can find SUSk using O (n) time and space. If there are multiple candidates for SUSk, 
the leftmost one is returned.

Proof. The suffix array of S can be constructed by existing algorithms using O (n) time and space (for example, [9]). After 
the suffix array is constructed, the rank array (the inverse suffix array) can be trivially created using another O (n) time and 
space. We can then use the suffix array and the rank array to construct the lcp array using another O (n) time and space [8]. 
Combining the time cost of Algorithm 1 (Lemma 3.2), the total time cost for finding SUSk for any location k in the string 
S of size n is O (n) with a total of O (n) space usage. If multiple candidates for SUSk exist, the leftmost candidate will be 
returned as is provided by Algorithm 1 (Lemma 3.2). �
3.1. Extension: finding all SUSes for one location

It is trivial to extend Algorithm 1 to find all the SUSes covering a particular location k as follows. We can first use 
Algorithm 1 to find the leftmost SUSk . Then we start over again to re-calculate LSUS1 . . . LSUSk or their up-to-k extensions, 
and return all of those whose length is equal to the length of SUSk . Algorithm 2 shows the pseudocode. This procedure 
clearly costs an extra O (k) time. Combining the results from Theorem 3.1, we get the following theorem.

Theorem 3.2. For any location k in the string S, we can find all the SUSes covering location k using O (n) time and space.

4. SUS finding for every location

In this section, we want to find SUSk for every location k = 1, 2, . . . , n. If k has multiple SUSes, the leftmost one will be 
returned. In the end, we will show an extension to find all SUSes for every location.

A natural solution is to iteratively use Algorithm 1 as a subroutine to find every SUSk , for k = 1, 2, . . . , n. However, the 
total time cost of this solution will be O (n) + ∑n

k=1 O (k) = O (n2), where O (n) captures the time cost for the construction 
of the rank array and the lcp array and 

∑n
k=1 O (k) is the total time cost for the n instances of Algorithm 1. We want to have 

a solution that costs a total of O (n) time and space, which implies that the amortized cost for finding each SUS is O (1).
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By Lemma 3.1, we know that every SUS must be an LSUS or an extension of an LSUS. The next Lemma 4.1 further says 
if SUSk is an extension of an LSUS, it has some special properties and can be quickly obtained from SUSk−1.

Lemma 4.1. For any k ∈ {2, 3, . . . , n}, if SUSk is an extension of an LSUS, then (1) SUSk−1 must be a substring whose right boundary is 
the character S[k − 1], and (2) SUSk is the substring SUSk−1 appended by the character S[k].

Proof. Because SUSk is an extension of an LSUS, we have SUSk = S[i . . .k] for some i < k and LSUSi = S[i . . . j] for some 
j < k. We also know S[i . . .k − 1] is unique, because the unique substring S[i . . . j] is a prefix of S[i . . .k − 1]. Note that 
any substring starting from a location before i and covering location k − 1 is longer than the unique substring S[i . . .k − 1], 
so SUSk−1 must be starting from a location between i and k − 1, inclusive. Next, we show SUSk−1 actually must start at 
location i. The fact SUSk = S[i . . .k] tells us that |LSUSt | ≥ |SUSk| = k − i + 1 for every t = i + 1, i + 2, . . . , k; otherwise, any 
LSUSt that is shorter than k − i + 1 would be a better candidate than S[i . . .k] as SUSk . That means, any unique substring 
starting from t = i +1, i +2, . . . , k −1 has a length at least k − i +1. However, |S[i . . .k −1]| = k − i < k − i +1 and S[i . . .k −1]
is unique already and covers location k − 1 as well, so S[i . . .k − 1] is the only candidate for SUSk−1. This also means SUSk
is indeed the substring SUSk−1 appended by S[k]. �
4.1. The overall strategy

We are ready to present the overall strategy for finding SUS of every location, by using Lemmas 3.1 and 4.1. We will 
calculate all the SUS in the order of SUS1, SUS2, . . . , SUSn . That means when we want to calculate SUSk , k ≥ 2, we have 
had SUSk−1 calculated already. Note that SUS1 = LSUS1, which is easy to calculate using Lemma 2.1. Now let’s look at the 
calculation of a particular SUSk , k ≥ 2. By Lemma 3.1, we know SUSk is either an LSUS or an extension of an LSUS. By 
Lemma 4.1, we also know if SUSk is an extension of an LSUS, then the right boundary of SUSk−1 must be S[k − 1] and SUSk
is just SUSk−1 appended by the character S[k]. Suppose when we want to calculate SUSk , we have already calculated the 
shortest LSUS covering location k or have known the fact that no LSUS covers location k. Then, by using SUSk−1, which has 
been calculated by then, and the shortest LSUS covering location k, we will be able to calculate SUSk as follows:

Case 1: If the right boundary of SUSk−1 is not S[k − 1], then we know SUSk cannot be an extension of an LSUS (the 
contrapositive of Lemma 4.1). Thus, SUSk is just the shortest LSUS covering location k, which must be existing in this case.

Case 2: If the right boundary of SUSk−1 is S[k − 1], then SUSk may or may not be an extension of an LSUS. We will 
consider two possibilities: (1) If the shortest LSUS covering location k exists, we will compare its length with |SUSk−1| + 1, 
and pick the shorter one as SUSk . If both have the same length, we resolve the tie by picking the one whose starting location 
index is smaller. (2) If no LSUS covers location k, SUSk will just be SUSk−1 appended by S[k].

Therefore, the real challenge here, by the time we want to calculate SUSk , k ≥ 2, is to ensure that we would have already 
calculated the shortest LSUS covering location k or we would have already known the fact that no LSUS covers location k. 
If there exist multiple shortest LSUSes covering location k, we would like to know the leftmost one.

4.2. Preparation

We now focus on the calculation of the leftmost shortest LSUS covering every string location k, denoted by SLSk . Let 
Candidatek

i denote the leftmost shortest one among those of LSUS1, . . . , LSUSk that exist and cover location i. For an arbitrary 
k, 1 ≤ k ≤ n, SLSk may not exist, because the location k may not be covered by any LSUS at all. For example, if S = abcabc, 
then locations 5 and 6 are not covered by any LSUS, and thus SLS5 and SLS6 do not exist. However, if SLSk exists, by the 
definition of SLS and Candidate, we have the following fact.

Fact 4.1. SLSk = Candidatek
k = Candidatek+1

k = · · · = Candidaten
k , if SLSk exists.

Our goal is to ensure SLSk will have been known when we want to calculate SUSk , so we calculate every SLSk following 
the same order k = 1, 2, . . . , n, at which we calculate all SUSes. Because we need to know every LSUSi , i ≤ k in order to 
calculate SLSk (Fact 4.1), we will walk through the string locations k = 1, 2, . . . , n: at each walk step k, we calculate LSUSk
and maintain Candidatek

i for every string location i that has been covered by at least one of LSUS1, LSUS2, . . . , LSUSk . Note 
that Candidatek

i = SLSi for every i ≤ k (Fact 4.1). Those Candidatek
i with i ≤ k would have already been used as SLSi in the 

calculation of SUSi . So, after each walk step k, we will only need to maintain the candidates for locations after k.

Lemma 4.2. (1) LSUS1 always exists. (2) If LSUSk exists, then LSUS1, LSUS2, . . . , LSUSk all exist. (3) If LSUSk does not exist, then none 
of LSUSk, LSUSk+1, . . . , LSUSn exist.

Proof. (1) LSUS1 must exist, because the string S can be LSUS1 if every proper prefix of S is a repeat. (2) If LSUSk exists, 
say LSUSk = S[k . . . γk], then LSUSi exists for every i ≤ k, because at least S[i . . . γk] is unique due to the fact that S[k . . . γk]
is unique and also is a suffix of S[i . . . γk]. (3) If LSUSk does not exist, it means S[k . . .n] is a repeat, and thus every suffix 
S[i . . .n] of S[k . . .n] for i ≤ k is also a repeat, i.e., LSUSi does not exist for every i ≥ k. �
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The next lemma shows that the right boundary of LSUSi will be on or after the right boundary of LSUSi−1, if LSUSi exists.

Lemma 4.3. For each i = 2, 3, . . . , n: |LSUSi | ≥ |LSUSi−1| − 1.

Proof. We prove the lemma by contradiction. Suppose LSUSi−1 = S[i − 1 . . . j] for some j, i − 1 ≤ j ≤ n. If |LSUSi | <
|LSUSi−1| − 1, it means LSUSi = S[i . . .k], where i ≤ k < j. Because S[i . . .k] is unique, S[i − 1 . . .k] is also unique, whose 
length however is shorter than S[i − 1 . . . j]. This is a contradiction because S[i − 1 . . . j] is already LSUSi−1. Thus, the claim 
in the lemma is true. �

Now let’s look at the situation at the end of the kth walk step. By then, we have calculated LSUS1, LSUS2, . . . , LSUSk . By 
Lemma 4.2, we know that there exists some �k , 1 ≤ �k ≤ k, such that LSUS1, . . . , LSUS�k all exist, but LSUS�k+1 . . . LSUSk do not 
exist. If �k = k, that means LSUS1, . . . , LSUSk all exist. Let γk denote the right boundary of LSUS�k , i.e., LSUS�k = S[�k . . . γk]. By 
Lemma 4.3, we know γk is also the right boundary of the string locations covered by LSUS1, . . . , LSUS�k . So, every location 
1, 2, . . . , γk is covered by at least one LSUS from LSUS1, . . . , LSUS�k . That is, at the end of the kth walk step: (1) every 
location j = 1, . . . , γk has its candidate Candidatek

j calculated already. (2) If γk < n, every location j = γk + 1, . . . , n still does 
not have its candidate calculated, because every such location j has not been covered by any LSUS from LSUS1, . . . , LSUS�k

that we have calculated at the end of the kth walk step.

Lemma 4.4. At the end of the kth walk step, if γk > k, then for any i and j, k ≤ i < j ≤ γk, Candidatek
j also covers location i.

Proof. Candidatek
j is a substring starting somewhere on or before k and going through the location j. Because k ≤ i < j, it 

is obvious that Candidatek
j goes through location i. �

Lemma 4.5. At the end of the kth walk step, if γk > k, then

∣∣Candidatek
k

∣∣ ≤ ∣∣Candidatek
k+1

∣∣ ≤ · · · ≤ ∣∣Candidatek
γk

∣∣

Proof. By Lemma 4.4, we know Candidatek
j also covers location i, for any i and j, k ≤ i < j ≤ γk . Thus, if |Candidatek

j | <
|Candidatek

i |, location i’s current candidate should be replaced by location j’s candidate, because that gives location i a 
shorter candidate. However, the current candidate for location i is already the shortest candidate. It is a contradiction. So, 
|Candidatek

i | ≤ |Candidatek
j |, which proves the lemma. �

4.3. Finding SLS for every location

Invariant. We calculate SLSk for k = 1, 2, . . . , n by maintaining the following invariant at the end of every walk step k: (A) If 
γk > k, locations {k + 1, k + 2, . . . , γk} will be cut into chunks, such that: (A.1) All locations in one chunk have the same 
candidate. (A.2) Locations belonging to different chunks have different candidates. (A.3) Each chunk will be represented by 
a linked list node of four fields: ChunkStart, ChunkEnd, start, length, respectively representing the start and 
end location of the chunk and the start and length of the candidate shared by all locations of the chunk. (A.4) All nodes 
representing different chunks will be connected into a linked list, ordered by the string positions of the corresponding 
chunks. The linked list has a head and a tail, referring to the two nodes that represent the lowest positioned chunk and 
the highest positioned chunk. (B) If γk ≤ k, the linked list is empty.

Maintenance of the invariant. We describe in an inductive manner the procedure that maintains the invariant. Algorithm 3
shows the pseudocode of the procedure. We start with an empty linked list.

Base step: k = 1 We are walking the first step. We first calculate LSUS1 using Lemma 2.1. We know LSUS1 must exist. Let’s 
say LSUS1 = S[1 . . . γ1] for some γ1 ≤ n. Then, Candidate1

i = LSUS1 for every i = 1, 2, . . . , γ1. We record all these candidates 
by using a single node (1, γ1, 1, γ1). This is the only node in the linked list and is pointed by both head and tail. We 
know SLS1 = Candidate1

1 (Fact 4.1), so we return SLS1 by returning (head.start,head.length) = (1, γ1). We then change
head.ChunkStart from 1 to 2. If it turns out head.ChunkEnd= γ1 < 2, meaning LSUS1 really covers location 1 only, 
we delete the head node from the linked list, which will then become empty.

Inductive step: k ≥ 2 We are walking the kth step. We first calculate LSUSk using Lemma 2.1.

• Case 1: LSUSk does not exist. (1) If head does not exist. It means that location k is covered neither by any of 
LSUS1, . . . , LSUSk−1 nor by LSUSk , so SLSk simply does not exist and we will return (null,null). (2) If head
exists, we will return (head.start,head.length) as SLSk , because Candidatek = SLSk (Fact 4.1). Then we will 
k
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Algorithm 3: The sequence of function calls FindSLS(1), FindSLS(2), . . . , FindSLS(n) returns SLS1, SLS2, . . . , SLSn , if the 
corresponding SLS exists; otherwise, null will be returned.

1 Construct Rank[1 . . .n] and LCP[1 . . .n] of the string S;
2 Initialize an empty List; // Each node’s 4 fields: ChunkStart, ChunkEnd, start, length.
3 head ← 0; tail ← 0 ; // Reference to the head and tail node of the List

4 FindSLS(k)

/* Process LSUSk, if it exists. */

5 L ← max{LCP[Rank[k]], LCP[Rank[k] + 1]};

6 if k + L ≤ n then // LSUSk exists.
// Add a new list element at the tail, if necessary.

7 if head = 0 then List[1] ← (k, k + L, k, L + 1); head ← 1; tail ← 1 ; // List was empty.
8 else if k + L > List[tail].ChunkEnd then
9 tail + +; List[tail] ← (List[tail − 1].ChunkEnd + 1, k + L, k, L + 1);

/* Update candidates and merge the nodes whose candidates can be shorter. Resolve the tie by 
picking the leftmost one. */

10 j ← tail;
11 while j ≥ head and List[ j].length > L + 1 do j − −;
12 List[ j + 1] ← (List[ j + 1].ChunkStart, List[tail].ChunkEnd, k, L + 1); tail ← j + 1;

13 if head �= 0 then SLSk ← (head.start, head.length) ; // The list is not empty.
14 else SLSk ← (null,null) ; // SLSk does not exist.

/* Discard the information about location k from the List. */

15 if head > 0 then // List is not empty
16 if List[head].ChunkEnd ≤ k then
17 head + +; // Delete the current head node
18 if head > tail then head ← 0; tail ← 0; // List becomes empty
19 else List[head].ChunkStart ← k + 1;

20 return SLSk

remove the information about location k from the head by setting head.ChunkStart = k + 1. If it turns out that 
head.ChunkEnd< head.ChunkStart, we will remove the head node.

• Case 2: LSUSk exists and LSUSk = S[k . . . γk], γk ≤ n. By Lemma 4.2, we know LSUS1, LSUS2, . . . , LSUSk−1 all exist. Let 
γk−1 denote the right boundary of LSUS1, LSUS2, . . . , LSUSk−1. By Lemma 4.3, we know γk ≥ γk−1 and γk−1 is also the 
right boundary of LSUSk−1, i.e., LSUSk−1 = S[k − 1 . . . γk−1]. Note that both γk−1 < k and γk−1 ≥ k are possible.
1. If head does not exist, it means γk−1 < k and none of the locations {k . . . γk} is covered by any of LSUS1, LSUS2, . . . ,

LSUSk−1. We will insert a new node (k, γk,k, γk − k+ 1), which will be the only node in the linked list.
2. If head exists, it means γk−1 ≥ k. If γk > tail.ChunkEnd= γk−1 , we first insert at the tail side a new linked list 

node (tail.ChunkEnd+ 1, γk,k, γk − k+ 1) to record the candidate information for locations in the chunk after 
γk−1 through γk .

Then, we will travel through the nodes in the linked list from the tail side toward the head. We stop when we meet 
a node whose candidate is shorter than or equal to LSUSk or when we reach the head end of the linked list. We will 
merge all the nodes whose candidates are longer than LSUSk into a new linked list node. The chunk covered by the new 
node is the union of the chunks covered by the merged nodes, and the candidate of the new node is LSUSk .
This travel and merge process is valid because of Lemma 4.5. This merge process ensures every location maintains its 
best (shortest) candidate by the end of every walk step. It also resolves the possible ties of multiple shortest LSUSes 
covering a particular location by picking the leftmost one as that location’s candidate, because the merge process does 
not merge nodes whose candidates are of the same length.
We will return (head.start,head.length) as SLSk , since Candidatek

k = SLSk (Fact 4.1). Finally, we will remove the 
information about location k from the head by setting head.ChunkStart = k + 1. We will remove the head node if it 
turns out that head.ChunkEnd> head.ChunkStart.

Lemma 4.6. Given the lcp array and the rank array of S, the sequence of FindSLS(1), FindSLS(2), . . . , FindSLS(n) function calls will 
return SLS1, SLS2, . . . , SLSn if existing. The amortized time cost of one FindSLS() function call is O (1).

Proof. The correctness of Algorithm 3 is already given in the description of the procedure that maintains the invariance. All 
operations in an instance of FindSLS() function call clearly take O (1) time, except the while loop at Line 11, which is to 
merge linked list nodes whose candidates can be shorter. Thus, the lemma will be proved, if we can prove the amortized 
number of linked nodes that will be merged via that while loop is also bounded by a constant. Note that no node in the 
linked list ever splits due to Lemma 4.3. In the sequence of function calls FindSLS(1), FindSLS(2), . . . , FindSLS(n), there are at 
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Algorithm 4: Finding the leftmost SUSk , k = 1, . . . , n.

1 for k ← 1 . . .n do
2 (start, length) ← FindSLS(k) ; // SLSk; It is (null,null) if SLSk does not exist.
3 if k = 1 then Print SUSk ← (start, length);
4 else if SUSk−1.start + SUSk−1.length − 1 > k − 1 then Print SUSk ← (start, length);
5 else if (start, length) = (null,null) then Print SUSk ← (SUSk−1.start, SUSk−1.length + 1);
6 else if length < SUSk−1.length + 1 then Print SUSk ← (start, length);
7 else // Resolve the tie by picking the leftmost one.
8 Print SUSk ← (SUSk−1.start, SUSk−1.length + 1)

9

most n linked list nodes to be merged. We know the number of merge operations in merging n nodes into one node (in 
the worst case) is no more than O (n). Therefore, the amortized time cost on merging the linked list nodes in one FindSLS()

function call over the sequence of n function calls FindSLS(1), FindSLS(2), . . . , FindSLS(n) is O (1). This finishes the proof of 
the lemma. �
4.4. Finding the leftmost SUS for every location

Once we are able to sequentially calculate every SLSk or detect it does not exist, we are ready to calculate every SUSk by 
using the strategy described in Section 4.1. Algorithm 4 gives the pseudocode of the procedure. It calculates SUSes in the 
order of SUS1, SUS2, . . . , SUSn (Line 1). For each location k, the function call at Line 2 is to calculate SLSk or to find SLSk does 
not exist. Line 3 handles the special case where SUS1 = LSUS1 = SLS1. The condition at Line 4 shows that SUSi cannot be 
an extension of an LSUS (Lemma 4.1), so SUSk = SLSk , which must be existing in this case. Line 5 handles the case where 
SLSk does not exist, so SUSk must be SUSk−1 appended by S[k]. Line 6 handles the case where SLSk is shorter than the 
one-character extension of SUSk−1, so SUSk is SLSk . Lines 7–8 handle the case where SLSk is longer than or equal to the 
one-character extension of SUSk−1, so SUSk is SUSk−1 appended by S[k]. This also resolves the tie by picking the leftmost 
one if k is covered by multiple SUSes.

Theorem 4.1. Algorithm 4 finds SUS1, SUS2, . . . , SUSn of string S using a total of O (n) time and space. If any string location is
covered by multiple SUS, Algorithm 4 finds the leftmost one.

Proof. We can construct the suffix array of the string S in a total of O (n) time and space using existing algorithms (for 
example, [9]). The rank array is just the inverse suffix array and can be directly obtained from SA using O (n) time and 
space. Then we can obtain the lcp array from the suffix array and rank array using another O (n) time and space [8]. So the 
total time and space costs for preparing these auxiliary data structures are O (n).

Time cost. The amortized time cost for each FindSLS function call at Line 2 in the sequence of function calls 
FindSLS(1), . . . , FindSLS(n) is O (1) (Lemma 4.6). The time cost for Lines 3–8 is also O (1). There are a total of n steps in 
the For loop, yielding a total of O (n) time cost.

Space usage. The only space usage (in addition to the auxiliary data structures such as suffix array, rank array, and the 
lcp array, which cost a total of O (n) space) in our algorithm is the dynamic linked list, which however has no more than n
nodes at any time. Each node costs O (1) space. Therefore, the linked list costs O (n) space. Adding the space usage of the 
auxiliary data structures, we get the total space usage of finding every SUS is O (n).

Finding the leftmost SUS. For any particular location k, if one SUS covering location k is an extension of an LSUS, we 
know by Lemma 4.1, that SUS must be the substring SUSk−1 appended by the letter S[k]. Clearly this SUS is the leftmost 
one among all the SUSes covering location k and is guaranteed to be returned by Lines 7–8 in Algorithm 4. If all SUSes 
covering location k are LSUSes, the leftmost one of those LSUSes is already guaranteed to be returned by Algorithm 3
(Lemma 4.6). �
4.5. Extension: finding all SUSes for every location

It is possible that a particular location can have multiple SUSes. For example, if S = abcbb, then SUS2 can be either 
S[1, 2] = ab or S[2, 3] = bc. Algorithm 4 only returns one of them and resolve the tie by picking the leftmost one. However, 
it is easy to modify Algorithm 4 to return all the SUSes of every location, without changing Algorithm 3.

Suppose a particular location k is covered by multiple SUSes. We know, at the end of the kth walk step but before the 
linked list update (at the end of Line 14 in Algorithm 3), SLSk returned by Algorithm 3 is recorded by the head node and 
is the leftmost one among all the SUSes that are LSUS and cover location k. Because every string location maintains its 
shortest candidate and due to Lemma 4.5, all the other SUSes that are LSUS and cover location k are being recorded by 
other linked list nodes that are immediately following the head node. This is because if those other SUSes are not being 
recorded, that means the location right after the head node’s chunk has a candidate longer than SUSk or does not have a 
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Algorithm 5: Finding all choices of each SUSk , for k = 1, . . . , n.

1 for k ← 1 . . .n do
2 flag ← 0; (start, length) ← FindSLS(k) ; // SLSk; (null,null) if SLSk does not exist.
3 if k = 1 then
4 Print SUSk ← (start, length);

5 else if SUSk−1.start + SUSk−1.length − 1 > k − 1 then
6 Print SUSk ← (start, length); flag ← 1;

7 else if (start, length) = (null,null) then
8 Print SUSk ← (SUSk−1.start, SUSk−1.length + 1);

9 else if length ≤ SUSk−1.length + 1 then
10 Print SUSk ← (start, length); flag ← 1;

11 else
12 Print SUSk ← (SUSk−1.start, SUSk−1.length + 1);

/* Print out other SUSes that cover location k. */
13 if flag = 1 then
14 if SUSk−1.length + 1 = SUSk .length then
15 Print (SUSk−1.start, SUSk−1.length + 1);

16 j ← head;
17 while j > 0 and j ≤ tail do

/* List[ j].start �= SUSk .start condition checking is because the SUS from head node may have been printed.
*/

18 if List[ j].length = SUSk .length and List[ j].start �= SUSk .start then
19 Print (List[ j].start, List[ j].length); j ← j + 1;

20 else if List[ j].start �= SUSk .start then
21 Break;

candidate calculated yet, but that location is indeed covered by an SUSk at the end of the kth walk step. It’s a contradiction. 
Same argument can be made to the other next neighboring locations that are covered by SUSk .

Therefore, finding all the SUSes covering location k becomes easy—simply go through the linked list nodes from the
head node toward the tail node and report all the candidates whose lengths are equal to the length of SUSk that we 
have found. If the rightmost character of SUSk−1 is S[k −1] and the substring SUSk−1 appended by S[k] has the same length, 
that substring will be reported too. Algorithm 5 gives the pseudocode, where the flag is used to note in what cases it is 
possible to have multiple SUSes.

If flag is on, we will need to check the linked list nodes (Lines 17–21) as well as the one letter extension of SUSk−1
(Lines 14–15). The overall time and space cost of maintaining the linked list data structure (the sequence of function 
calls FindSLS(1), FindSLS(2), . . . , FindSLS(n)) is still O (n). The time cost of reporting the SUSes covering a particular location 
becomes O (occ), where occ is the number of SUSes that cover that location. That gives us the following theorem.

Theorem 4.2. Algorithm 5 finds all SUSes covering every location of a string of size n using O (n) space and O (N) time, where N =∑n
k=1 occk and occk ≥ 1 is the number of SUSes covering location k.

5. Experiments

We have implemented our proposal named IKXSUS in C++,2 using the libdivsufsort3 library for the suffix ar-
ray construction and Kasai et al.’s method [8] to compute the lcp array. We have compared our work against Pei et al.’s 
RSUS [12] and Tsurata et al.’s [14] OSUS implementations, on both one-SUS and all-SUS finding for every string location. 
Notice that OSUS also computes the suffix array using the same libdivsufsort package and computes the lcp array 
using Kasai et al.’s method.

RSUS was originally prepared with an R interface. We stripped off that R interface and built a standalone C++ executable 
for the sake of fair benchmarking. OSUS was originally developed in C++. We run OSUS both with and without the -l
option to compute a single leftmost SUS and all SUSes for every string location. In all three implementations, we also 
commented out the sections that print the results onto the screen and/or the disk as output, in order to measure the 
algorithmic performance better.

We run the tests on a machine that has Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz processor with 8192 KB cache size 
and 16 GB memory. The operating system was Linux Mint 14. We used the Pizza&Chili corpus in the experiments by taking 

2 Source code can be downloaded at: http://penguin.ewu.edu/~bojianxu/publications.
3 Available at: https :/ /code .google .com /p /libdivsufsort.

http://penguin.ewu.edu/~bojianxu/publications
https://code.google.com/p/libdivsufsort
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Fig. 1. The processing speed of RSUS, OSUS, and our proposal in finding the leftmost SUS of every location on several strings of different sizes.

the first 1, 5, 10, 20, 50, 100, and 200 MBs of the largest dblp.xml, dna, English, and protein files. The results are 
shown in Figs. 1, 2, 3, and 4.

Finding the leftmost SUS of every location, Figs. 1 and 2 It was not possible to run RSUS on longer strings, since RSUS requires 
more memory than what our machine has, and thus, only up to 20 MB files were included in the RSUS benchmark. Com-
pared to RSUS, we have observed that IKXSUS is in average more than 8 times faster and uses 20 times less memory. The 
experimental results also revealed that difference of the processing speeds of OSUS and IKXSUS is negligible, but in average 
OSUS uses 4 times more memory than IKXSUS.

Finding all SUSes of every location, Figs. 3 and 4 In the experiments of all-SUS finding for every string location, RSUS was 
not included as it does not have this functionality. We have observed that OSUS uses less memory in the all-SUS finding 
than what it needs for one-SUS finding, while IKXSUS’s memory cost does not change between the one-SUS and all-SUS 
finding. Overall, IKXSUS uses at least 2 times less memory space than OSUS and also marginally beats OSUS in terms of 
their processing speeds.

Although all three works have linear space complexity in both theory and experiments (note that the X axis in all figures 
uses log scale), IKXSUS and OSUS use significantly less memory space, due to the fact that these two works use simpler 
data structures rather than the suffix tree used by RSUS. On the other hand, although both IKXSUS and OSUS use the 
same set of data structures, such as suffix array, rank array (inverse suffix array), and the lcp array, and computing these 
arrays are done via the same library (libdivsufsort for suffix array construction) and the same algorithm (Kasai et al.’s 
method [8] for lcp array construction), the peak memory usage by OSUS is much higher than IKXSUS. The difference stems 
from different mechanisms these studies follow to compute the SUS. OSUS computes the SUS by using an additional array, 
which is named as the meaningful minimal unique substring array. Thus, the space used for that additional data structure 
makes OSUS require more memory.

With respect to the processing speed, both IKXSUS and OSUS present stable running times on all dblp, dna, protein, 
and English texts and scale well on increasing sizes of the target data conforming to their linear time complexity. On 
the other hand, RSUS exhibits its quadratic time complexity on all texts, and especially its running time on English text 
is much longer when compared to other text types. The speed-up of IKXSUS and OSUS against RSUS can be even more 
significant, when the string size becomes larger, due to the quadratic time complexity of RSUS.
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Fig. 2. The peak memory consumptions of RSUS, OSUS, and our proposal in finding the leftmost SUS of every location on several strings of different sizes.

Fig. 3. The processing speed of OSUS and our proposal in finding all SUSes of every location on several strings of different sizes.
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Fig. 4. The peak memory consumptions of OSUS and our proposal in finding all SUSes of every location on several strings of different sizes.

6. Conclusion

We proposed IKXSUS, an optimal linear-time and linear-space algorithm for shortest unique substring query. Our al-
gorithm significantly improved RSUS, the original work on shortest unique substring query proposed recently [12], both 
theoretically and empirically in both the space and the time costs. Our work is independently discovered without knowing 
OSUS, another recent linear-time and linear-space solution [14] for SUS finding, and uses a different approach. In practice, 
IKXSUS uses significantly less memory than OSUS while maintaining nearly the same processing speed.
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