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Abstract
Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has
been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and
nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are
widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their
chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional
organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf
life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed:
quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disul-
fide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with
useful information on the current state of research in the field.
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Introduction

The so-called Förster resonance energy transfer (FRET; also
referred to as fluorescence resonance energy transfer) was,
first described at around 1950 and has strongly improved the
sensing capabilities of fluorometry. It is characterized by rapid
response and multiplexing capability even in small sample

volumes [1, 2] . FRET is a non-radiat ive energy
transfer process that occurs over nanometer scale separations
(up to 10 nm) between an emitter (donor) and an absorber
molecule (acceptor), often called a “FRET pair”. If this
donor-acceptor pair is correctly oriented and luminescence
spectrum of the donor overlaps with the absorption spectrum
of the acceptor, energy can be transferred non-radiatively. This
energy transfer leads to luminescence quenching of emission
from donor and FRET-sensitized acceptor pairs, when the ac-
ceptor is luminescent [3].

Several critical parameters should be considered when
designing a FRET pair. Both the rate of FRET (kFRET)
and the FRET efficiency (EFRET) vary directly with the
distance separating the FRET pair (R), the luminescence
quantum yield of the donor molecule in the absence of
the acceptor (ΦD), the spectral overlap of the donor
emission profile and acceptor absorption profile (J),
and the luminescence lifetime of the donor (τD) [4].
As shown in the Eqs. 1–4 [5, 6] and Fig. 1 [7],
FRET reaches its maximum efficiency when R is small-
er than R0, which is the donor-acceptor distance corre-
sponding to an efficiency of 50%, and the FRET
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efficiency decreases with R−6. Hence, FRET occurs only
over very short distances, i.e., up to 10 nm. Dependence
of FRET on separation distance enables the conversion
of near-field detection to a far-field signal that produces
high detection sensitivity, even for small concentrations
of analyte [8]. The rate of FRET can be described as.

kD→A ¼ 1

τD

� �
� R0

R

� �6

ð1Þ

where τD is the luminescence lifetime of the donor, R
is the separation distance between the donor and the
acceptor, and R0 is the Förster distance. The Förster
distance is defined as.

R0 ¼ 9 ln10ð Þκ2ΦD
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where κ2 is the orientation factor of donor and acceptor
dipoles, ΦD the luminescence quantum yield of the donor,

and n the refractive index of the surrounding environment.
Spectral overlap of donor emission and acceptor absorption
is accordingly determined by.

J ¼ ∫J λð Þdλ ¼ ∫FD λð Þλ4ϵA λð Þdλ ð3Þ

where FD is the normalized photoluminescence emission
of the donor, ϵA the spectral extinction coefficient of the ac-
ceptor, and λ the wavelength [9]. Finally, FRETefficiency can
be reduced to.

EFRET ¼ kD→A

kD→A þ τ−1D
¼ R6

0

R6
0 þ R6 ð4Þ

Nanomaterials as energy donors offer significant advan-
tages over conventional dyes for FRET applications. Several
nanoparticles are associated with the quantum confinement
effect, which can provide tunable optoelectronic properties
through control of their size and shape during synthesis.
Accordingly, they show narrow emission profiles with high
quantum yields, which can result in higher FRET efficiencies
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Fig. 1 Fundamental FRET principles: (a) A simplified energy level
scheme represents the excitation of the donor from a ground state to an
excited state. A donor fluorophore in proximity to an acceptor, initially in
its excited state, may transfer energy to an acceptor through the non-
radiative dipole-dipole coupling (blue arrow). This additional energy
pathway causes faster luminescence decay of the donor (dotted arrow)
and excitation of the acceptor in energetic resonance. If the acceptor is
also a fluorophore, sensitization by FRET from the donor can lead to

acceptor luminescence (red arrow); (b) spectral overlap between emission
spectrum of a donor dye (green continuous line, Alexa Fluor 555) and
absorption spectrum of an acceptor dye (red dashed line, Alexa Fluor
647) that leads to FRET; (c) FRET efficiency (EFRET) as a function of
donor-acceptor distance (taking a Förster radius R0 as 5 nm). Adapted
from reference [7], which is an open-access article distributed under the
Creative Commons Attribution 4.0 International License
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over conventional dyes [10]. Acceptor-type nanomaterials of-
fer efficient quenching, as widely reported for gold nanopar-
ticles (AuNPs) – in this case, the energy transfer is called
NSET for nanosurface energy transfer— and graphene oxide
(GO) [11, 12]. FRET acceptors combine efficient quenching
with tunable FRET-sensitized emissions for multiplexed de-
tection that requires specific FRET-donors, such as lanthanide
complexes, bio/chemiluminescent molecules or upconverting
nanoparticles (UCNPs) [13]. Mechanical, electronic, structur-
al, physical and chemical properties arising from high surface
area density make nanoparticles highly desirable components
for detection applications [14–17]. To use nanomaterials in
FRET assays, one must control the distance between donor
and acceptor molecules. Intermolecular interactions between
donors and acceptors should be sufficiently strong to render
them a FRET couple, yet weak enough to allow their disasso-
ciation in the presence of a target molecule or analyte [18].
Additionally, selectivity for the desired analyte should be
achievable at luminescence intensities that are sufficient for
reliable detection. To overcome such design and response lim-
itations, there are different target-specific affinity probes al-
ready available in the market.

Antibodies and aptamers are the most commonly used af-
finity probes in biosensing applications, due to well
established selectivity toward their targets. Antibodies are at-
tractive affinity probes for protein-based analyte detection
studies. However, existing antibodies are mostly produced
in vivo, where batch to batch quality often fluctuates, render-
ing them expensive and difficult to implement. Antibodies
have a short shelf-life and low tolerance to changes in envi-
ronmental conditions, such as buffer, pH or temperature.
Moreover, the amino acid components of antibodies are bulky
and show limited variation in secondary structure [19],
restricting their utility in FRET biosensors, where molecular
flexibility is essential to manage the distance between partic-
ipating molecules. Aptamers are short and can be found as
synthetic RNA, single-stranded DNA (ssDNA) or peptide
chains. They show superior chemical stability over antibodies,
because they are synthesized by solid-phase chemical reac-
tions. In contrast to antibodies, aptamers are much smaller in
size and have rich and reversible secondary structure confor-
mations. Moreover, they can be labeled and tailored chemi-
cally for any desired nucleotide point [20–22], which provides
an essential advantage in FRET to control the distance be-
tween acceptor and donor molecules. The advantages of
aptamers have greatly expanded their utilization as affinity
probes in FRET-based biological applications.

FRETassays are usually split into two types as turn/switch/
signal-ON and turn/switch/signal-OFF assays. As introduced
above and illustrated in Fig. 2, bringing an acceptor and a
donor molecule into close proximity results in FRET under
certain conditions. Before introducing an analyte into an assay
environment, fluorescent (donor) molecule can be entirely

quenched by the acceptor, leading to a significant decrease
in the overall emission signal of the donor. In the presence
of an analyte, aptamer-modified FRET partner prefers to bind
to the corresponding analyte because of the higher selectivity
and affinity. Finally, optimal distance condition between the
FRET couple is broken, resulting in the recovery of the lumi-
nescence signal that is theoretically proportional to the analyte
concentration. In this type of “signal-on” FRET assays, the
fluorescent signal increases in the presence of the analyte.
By contrast, in the case of “signal-OFF” methods, the overall
fluorescent signal of donor decreases by the increase in the
amount of analyte molecule [23, 24]. Herein, the recent ad-
vances in aptamer and nanomaterial-based FRET biosensors
are reviewed. General properties of aptamer-modified
nanomaterials employed as donor (quantum dots, up-
conversion nanoparticles, graphene quantum dots, and
metal-organic frameworks) and acceptor molecules (quantum
dots, graphene, graphene oxide, reduced graphene oxide and
gold nanoparticles) in FRET assays are discussed in detail by
giving examples from the current literature.

Aptamers in FRET

Aptamers are selected in vitro from random oligonucleotide
pools of DNA or RNA molecules through the method, known
as “Systematic Evolution of Ligands by EXponential
Enrichment” (SELEX) [25]. They are capable of binding to
target molecules with high affinity and specificity. Aptamers
can be in two or more structural conformations, such as hairpin
shape, loop or a hybridized form upon target binding. These
properties make aptamers ideal identification elements in the
development of biosensors [20, 26, 27]. Aptamers have critical
advantages such as thermal and chemical stability, large-scale
chemical production, controlled in vitro selection, low immu-
nogenicity and target versatility [20]. These advantages make
aptamers alternative diagnostic and therapeutic tools for future
biomedical applications in comparison with the antibody-based
detection methods. Aptamers can be selected from sizeable
combinatorial oligonucleotide pools against a wide range of
target analytes such as proteins [28], heavymetals [29], bacteria
[30] and nanomaterials [31]. It is worth mentioning that
aptamers are certain materials for diverse areas, not only as
alternatives to antibodies but also as the fundamental parts in
scientific andmedical equipment. Aptasensor is a type of sensor
which depends on target-specific aptamers as the central detec-
tion element [32]. A variety of aptamer-based methodologies
have been reported so far, including electrochemical biosensors
[33], fluorescence-based optical aptasensors [26] and colori-
metric aptasensors [34].

Aptamers are non-fluorescent (in the visible) like other
nucleic acids. Thus, post-selectionmodifications with external
fluorophores has to be performed to convert aptamers into
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visibly fluorescent signalling reporters. Detection is related to
the disparity in fluorescence properties of a molecular identi-
fication part when it interacts with the target [3]. Researchers
use nano-fluorophores, such as QDs or UCNPs as labels for
aptamer modification. Change of fluorescence intensity or an-
isotropy, resulting from the change of the rotational motion of
the fluorophore, plays a vital role in a target-aptamer binding
in the single fluorophore-labeled type of aptamers. In FRET
assays, aptamers act as excavators that mainly seek the target
analytes from a complex sample with the aim of binding. Also
during the process of binding, intermolecular and intramolec-
ular FRET between the donor and acceptor molecules gives
rise to higher sensitivity [35], due to the considerably small
size of aptamers (10–50 kDa) in comparison to full-size anti-
bodies (around 150 kDa). Consequently, aptamer-based
FRET assays can be developed to detect various analytes like
large (bacteria) and small molecules (ions and nucleic acids),
according to aptamers available in the market. Several factors
influence the sensitivity of aptamer-based FRET assays; for
example, the degree of combination with the target, the num-
ber of fluorophores integrated with the aptamer, the closeness
of the fluorophore and the quencher molecules [36]. It should
be noted that the coupling of aptamers with nanomaterials can
enhance the nuclease resistance of the oligonucleotides, fur-
ther protecting them from renal filtration, due to increased
size; on the other hand, antibody-nanomaterial pairs usually
do not encounter such limitations, owing to their greater mo-
lecular weight (around 150 kDa) and better pharmacokinetic
properties [20]. Additional chemical modifications are also

available in the market, for instance, the use of 2′-fluoro- or
2′-amino-substituted pyrimidines or 2′-O-methyl nucleotides
during oligo synthesis, to enable oligonucleotides to withstand
against potential nuclease attacks in serum [37].

Having a distinct variety in 2D/3D conformations before and
after binding with the target is one of the salient features of
aptamers. In particular, aptamers are used as a bridge in be-
tween FRET donor and acceptors, and their critical feature is
in their secondary structure, the so-called “hairpin”. The loop
part in hairpin structures is formed through non-complementary
nucleobases interactions. In the presence of an analyte, on the
other hand, the chain elongates when the Watson-Crick pair is
broken to form a bond with an analyte, which brings the FRET
acceptor and donor out of proximity for energy transfer,
resulting in the turn-on signal. A counter example is one in
which the hairpin structure forms in the presence of an analyte,
such as that occurring in small analyte detection cases like ions
[38]. The hairpin structure was well employed by Ghosh et al.
[39] to detect glycated albumin (GA). According to that study,
QDs, and AuNPs coupled to each end of the GA-selective
aptamer, forming a hairpin structure in the absence of the target
due to the guanine content. Consequently, FRET couple stayed
in sufficient proximity for transfer of the excited donor energy,
which led quenching of the signal by AuNPs. On the other
hand, the broken structure of the hairpin in the presence of
target brought the FRET probes out of proximity and led to
the recovery of the QD signal. A limit of detection (LoD) of
ca. 1 nMwas achieved by this secondary structure-based FRET
aptasensor [39].

Fig. 2 Schematic representation of a Fluorescence Resonance Energy Transfer based aptamer nanoprobe in the absence and presence of a given target
molecule. Structures not drawn to their original scales
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Another distinctive 3D conformation, Nanopyramids, are
self-assembled, complex 3D aptamer structures that contain
FRET acceptor or donor molecules at each corner of the pyr-
amid. As a structure formed by short aptamers, donors and
acceptors located at the corners are close enough to support
resonant energy transfer. Hence, all fluorescence emitted by
the donors is quenched effectively by the acceptors. However,
in the presence of an analyte, which is a complementary
nucleic acid chain, the 3D structure of the aptamers is
destroyed, due to the higher affinity of one or more aptamer
towards the target. Consequently, turn-on sensing is achieved
upon the liberation of the donor molecules [40]. Nanotweezers
are another type of self-assembled 3D structure, in which
FRET donor and acceptor molecules are bound to the corners
of the nanostructure. He et al. [2] demonstrated fabricated
tetrahedron nanotweezers that offered the dual advantages of
aptamer structural versatility and control over the binding
points of aptamers. In the absence of an analyte, which was
a tumor-related mRNA, the acceptor and donor were separat-
ed far enough to suppress energy transfer via the aptamer
structure holding them together. Hence, fluorescence was ob-
served. However, when the analyte was introduced, the 3D
aptamer structure was deformed, bringing the acceptors and
donors into closer proximity that resulted in FRET. Quenching
occurred, and turn-off detection was achieved.

Through direct modification with fluorophores, the struc-
tural conversion of aptamers has a significant impact on the
participating FRET molecules. During the binding process,
the signal alteration can indicate the spatial separation range,
either by increasing (i.e., the “signal-on”mode) or by decreas-
ing (i.e., the “signal-off” mode). In the “signal-on” biosensor
of fluorescently-labeled aptamers, one end of the aptamer is
connected to a fluorophore, where a quencher later blocks its
fluorescence signal during energy transfer. Upon separation of
the fluorophore and the quencher (through target binding), the
fluorescence signal is recovered, thereby enabling qualitative
and quantitative detection of the target concentration [41].
Figures of merit for detection can generally be quantified
and evaluated by an LoD and dynamic detection range.
Limit of detection, or detection limit, represents the lowest
amount of analyte that can be detected with statistical confi-
dence. Dynamic detection range (dynamic range or linear
range), on the other hand, indicates the range between the
lowest and highest amount of analyte that can be quantified.
FRETcan also be applied for “signal-off” type assay construc-
tion, which is usually less sensitive than those based on the
“signal-on” principle. Signal-off methods occasionally result
in better detection of targets with high-affinity aptamers.
However, “signal-off” types are labor-saving and cost-
effective due to their simpler design. In general, a fluorescence
donor and an acceptor molecule are connected to either end of
the aptamer. Target binding is followed by a structural change
of the aptamer, which induces the donor and quencher in

proximity. This phenomenon causes fluorescence quenching
[42]. Besides modifying probe materials, chemical interac-
tions can also be tuned by the structural change of the
aptamers. The thrombin aptamer, for instance, is a guanine-
rich ssDNA sequence that forms an intramolecular quadruplex
structure upon target binding [37]. Recently, more exotic
nanomaterials have been used for aptamer-based thrombin
detection: graphene, which acts as an acceptor [43],
upconverting nanophosphors, carbon nanoparticles [44], and
quantum dots (QDs) [37]. In addition, a considerable number
of different analytes were also detected by use of aptamers and
nanomaterials, including Carcinoembryonic antigen (CEA)
[45], PSA [46], different types of bacteria [42], as well as
drugs such as theophylline [47] and cocaine [48]. Those
nanomaterials, coupled with target-specific aptamers in
FRET assays are comprehensively discussed in the next
section.

Nanomaterials as detection probes
in FRET-based aptasensors

Semiconductor Quantum Dots (QDs)

Choosing a donor material with high quantum yield is a crit-
ical factor for achieving high FRET rates. As reported in many
studies, the use of organic dyes as donor materials in conven-
tional FRET systems suffers from photo-bleaching [38]. This
issue motivates the growing emergence of photo-stable inor-
ganic materials with the high quantum yield for energy
transfer-based applications. QDs provide a convenient solu-
tion to this problem as a result of their stable physicochemical
properties [13]. The energy levels of QDs are discontinuous
and confined by their small size. Absorption and emission
spectra of QDs can be tailored from the near-infrared (NIR)
to ultraviolet (UV), as represented in Fig. 3 [49], with exten-
sive absorption, narrow emission spectra and high quantum
yield [50]. These parameters enable QDs as efficient FRET
donors. From the structure perspective, commonly used QDs
can be classified as core and core/shell types. The core-type
QDs are synthesized through encapsulation by organic surfac-
tants. This method of quantum confinement causes defects on
the QD surface, which act as traps and lead to a decrease in the
luminescence quantum yield [51]. Nonetheless, core-type
QDs can provide enough luminescence intensity for effective
energy transfer and are still being used for energy transfer-
based applications. To overcome the limitation of core-type
QDs, a semiconductor shell structure is introduced to the QDs.
In core/shell-type QD structures, dangling bonds of the semi-
conductor shell material are used to confine or encapsulate the
QD [52]. As a result, better QD/shell interface and charge
transfer in between the layers are achieved, and improved
quantum yields warrant higher luminescence intensities.
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CdSe@ZnS is a typical core/shell QD structure that has
been employed in small molecule detection applications, such
as Pb2+ [41] and antigens [53]. Although the high quantum
yield makes QDs attractive for such platforms, the toxic nature
of these nanoparticles is the major challenge for biological
applications [54]. With their heavy metal composition, QDs
like CdSe and CdTe have been gradually abandoned. To ad-
dress this problem, for example, Zhang et al. [55] used
cadmium-free Mn2+-doped ZnS QDs as a donor for FRET-
based detection of different proteins, and they achieved a de-
tection limit of 5 ng/ml for biotin and streptavidin interaction.
In a similar approach, Arvand et al. [56] detected Edifenphos
fungicide with metal-free ZnS QDs.

Apart from the toxicity issue, QD-based FRET methods
suffer from background noise, due to their excitation energy
occurring in the spectral range of biological autofluorescence.
Duan et al. [57] solved this problem with an elegant FRET
design based on dual QD donors: red-emitting QDs (rQD) and
green-emitting QDs (gQD). In that study, rQDs were express-
ly chosen to avoid autofluorescence in the spectra. gQDs, on
the other hand, were used to balance the fluorescence intensity
against the rapid decrease in the fluorescence intensity of
rQDs. As a result, sufficient signal intensity was achievedwith
an improved signal-to-background ratio using a dual QD-
donor FRET system. For Prostate Specific Antigen (PSA)
detection at low concentrations, Fang et al. [53] presented a
signal amplification method using QDs-aptamer/GO FRET
system and DNase I enzyme. In this assay, the QD-aptamer
molecules adsorbed onto a GO sheet through π-interactions
and were released, due to the sensitive binding of PSA with

the QD-aptamer hybrid. This release was followed by break-
ing off the oligonucleotide structure of the aptamer byDNase I
addition. Hence, the QDs and PSA molecules were liberated,
and PSA can again bind to a new QD-aptamer hybrid in a new
cycle. Consequently, the fluorescence signal related to QDs
was amplified, and PSA quantification sensitivity in human
serum was significantly improved. In another assay [58], a
paper-based heterogeneous method was proposed for detec-
tion of the Epithelial Cell AdhesionMolecule (EpCAM) by an
aptamer-functionalized QDs on a modified cellulose paper.
The aptamer was hybridized with Cy3-labeled complementa-
ry DNA (cDNA). In close proximity to the QD surface, FRET
emission of Cy3 dye occurred; however, competitive binding
of the target biomarker to the aptamer was followed by a
decrease in the FRET efficiency, due to the displacement of
the cDNA. This solid-phase assay improved the LoD com-
pared to the solution-phase FRET variant. Aflatoxins, on the
other hand, are the most common group of toxins that lead to
food product contamination and are secondary metabolites
produced by Aspergillus species [12]. Because aflatoxin B1
is known to be highly toxic, Sabet et al. [59] developed a
FRET-based biosensor for rapid aflatoxin B1 detection, by
using QDs as the energy donor and AuNPs as the energy
acceptor molecule. The absorption spectrum of the QDs over-
lapped well with the emission spectrum of the AuNPs.
Without aflatoxin B1, the aptamer–QDs conjugate was
brought near the AuNPs, due to the interaction of aptamers
with AuNPs leading to quenched emission on QDs fluores-
cence. In the presence of Aflatoxin B1, the aptamer breaks the
interaction with AuNPs, thus, restoring fluorescence. The
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method resulted in a dynamic range between 10 and 400 nM,
with a detection limit of 3.4 nM. Equally important that the
same linear range was obtained in rice and peanut samples,
indicating high robustness of the developed nanoprobe. In
Table 1, selected examples from the recent literature are sum-
marized for QD and aptamer-based FRET assays.

Although QDs are commonly utilized as the donor species
in FRET pairs, they can also be used as acceptors, due to their
high absorption coefficients and characteristic absorption
spectra [13]. This concept was applied first by Hildebrandt
et al. using lanthanide complexes as donors [60], and shortly
afterward by So et al., who used bioluminescent donor mole-
cules along with QDs as the acceptor [61]. Many other assays
have been developed with QDs as the acceptor molecules and
different donor molecules, such as lanthanide complexes,
upconver t ing nanopar t ic les , QDs, dyes , or b io /
chemiluminescent molecules that are extensively reviewed
elsewhere [13]. In many of these FRET assays, DNA, or

RNA hybridization strategy are used for biological recogni-
tion [1, 62–66]. Only a single study was performed with
aptamer modified QD as acceptors. Doughan et al. demon-
strated a distinct thrombin aptamer-based sandwich assay with
immobilized NYF4:Yb

3+, Tm3+/β-NaYF4 core/shell UCNPs
as the donor and CdSxSe1-x/ZnS core/shell QDs as the accep-
tor nanoparticles [67]. In this FRET-based system, UV and
blue emissions of Tm-doped UCNPs around 340–370 nm
and 440–490 nm bands were used; the donor emission and
energy transfer of these excited states led to emission from
donor QDs at wavelength of 614 nm, as both aptamers were
bound on the thrombin analyte leading to thrombin detection
at concentrations as low as 0.1 μM.

In retrospect, QDs stand out as almost ideal FRET donor,
due to their high quantum yields, broad excitation profiles,
and considerably sharp emission profiles. Although photoex-
citation across their band gap enables the excitation of multi-
ple QDs with a spectrum of different emissions, it severely

Table 1 Aptamer-based FRET assays utilizing QDs as donor/acceptor molecules. Respective aptamer sequences and the calculated limit of detection
(LoD) values were also presented

Signal Donor Acceptor Target Aptamer LoD Ref.

On QDs AuNPs Bisphenol A CCGGTGGGTGGTCAGGTGGGATAGCGTTCCGCGTATGG
CCCAGCGCATCACGGGTTCGCACCA

1.86 ng/mL [68]

– QDs AuNPs Mercury (II) TTTTTTTTTT 2.5 pM [69]

Off QDs Cy3 dye EpCAM AGCGTCGAATACCACTACAGTTTGGCTCTGGGGGATGT
GGAGGGGGGTATGGGTGGGAGT CTAATGGAGCTCGT
GGTCAG

250 pM [58]

On QDs AuNPs Aflatoxin B1 GTTGGGCACGTGTTGTCTCTCTGTGTCTCGTGCCCTTC
GCTAGGCCC

20 pg/mL [70]

– QDs GO Aflatoxin B1
(toxin)

ATATCTTTTCCTACTCATCTTTGAATAACTACCGGGCA
TTACTTTCTGGCCTCCCTGCCTCCTAAATCACCAAT
TAATTCGCGGCCCCCCG

0.004 mg/mL [12]

Off QDs AuNPs PSA ATTAAAGCTCGCCATCAAATAGC 1 Pg/mL [71]

On QDs MoS2 Ochratoxin A
(toxin)

CCTGGGAGGGAGGGAGGGATCGGGTGTGGGTGGCGTAA
AGGGAG-CATCGGACACCCGATCCC

1.0 ng/mL [72]

On QDs Hemin/G-quadruplex
DNase

Lysozyme ATCAGGGCTAAAGAGTGCAGAGTTACTTAG 2.6 nM [73]

On QDs AuNPs Aflatoxin B1
(toxin)

GTTGGGCACGTGTTGTCTCTCTGTGTCTCGTGCCCTTC
GCTAGGCCCACA

3.4 nM [59]

On QDs GO PSA
(biomarker)

TTTTTAATTAAAGCTCGCCATCAAATAGCTTT 0.05 fg/mL [53]

On QDs GO Aflatoxin B1
(mycotoxin)

TCGTCCATGTGTTGGGCACGTGTTGTCTCTCTGTGTCT
CGTGCCCTTCGCTAGGCCCACACGATGCGTAG

1.0 nM [74]

Off QDs Aptamer-modified
Cy5.5

Acetamiprid CTGAC ACCATATTAT GAAGA 0.02 mM [75]

Off QDs CNPs Vibrio
parahaemolyt-
icus

ATAGGAGTCACGACGACCAGAATCTAAAAATGGGCAAA
GAAACAGTGACTCGTTGAGATACTTATGTGCGTCTA
CCTCTTGACTAAT

25 cfu/mL [57]

Off QDs CNPs Salmonella
typhimurium
(pathogen)

ATAGGAGTCACGACGACCAGAAAGTAATGCCCGGTAGT
TATTCAAAGATGAGTAGGAAAAGATATGTGCGTCTA
CCTCTTGACTAAT

35 cfu/mL [57]

– QDs AuNPs 17β-Estradiol GCTTCCAGCTTATTGAATTACACGCAGAGGGTAGCGGC
TCTGCGCATTCAATTGCTGCGCGCTGAAGCGCGGAAGC

0,057 ng/mL [76]

On UCNP QDs Thrombin AGTCCGTGGTAGGGCAGGTTGGGGTGACT 0.1 μM [67]
GGTTGGTGTGGTTGG
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limits their multiplex potential as active (emissive) FRET ac-
ceptors. Broad excitation profiles lead to unwanted excitation
of QD acceptors when they were intended for accepting the
excited states of donor species. In this context, QD donors are
paired with active acceptors that have narrow excitation pro-
files, such as fluorophores. On the other hand, FRET pairs for
QD donors and plasmonic nanostructure-based passive (non-
emissive) acceptors have seen considerable attention, due to
complimentary excitation/absorption profiles. However, these
studies were stayed restricted to the spherical gold nanoparti-
cles. The plethora of plasmonic nanostructures that can absorb
specific portions of the visible to NIR should be explored to
exploit the size-tunable QD donors with high quantum yield.

Upconverting Nanoparticles (UCNPs)

UCNPs are attractive FRET donors, due to their relatively
long lifetime, better biocompatibility compared to heavy met-
al containing QDs [77], and low excitation energy in NIR.
UCNPs are lanthanide-doped nanomaterials that absorb two
or more low energy photons and emit a high-energy photon
through electronic transitions in the dopant structure [78].
Hence, depending on the dopant/host combination, UCNPs
can emit light from NIR to UV [79]. Since the electron relax-
ation time of UCNPs is in the μs time frame, UCNP-based
FRETsystems are often referred to as luminescence resonance
energy transfer (LRET) in the literature [80]. With the anti-
Stokes shift in their electronic structure, UCNPs can emit
high-energy luminescence in the near-field stimulated by
low-energy excitation, such as by those in the NIR. As a
result, UCNPs enhance the signal-to-background noise ratio
of these platforms by minimizing the luminescence from sur-
rounding molecules [42]. This property of UCNPs makes
them ideal candidates for detection of biological samples,
where the stimulus required to excite the donor must be out
of the absorption range of the surrounding environment. In
addition to the anti-Stokes shift, doping with rare-earth ions
also provides a long luminescence lifetime to UCNPs.

With regard to the lanthanide group components, outer
shell 5s2 5p6 electrons provides screening for the electrons
in partially or filled 4f orbitals. Accordingly, f-f transitions
become unlikely, which prolongs the luminescence lifetime
[81]. FRET rate is inversely proportional to donor lifetime
(Eq. 1), and long lifetimes are thus less favorable for high
FRET rates. Commonly used donors for FRET assays are
Yb3+ and Er3+ doped NaYF4 UCNPs, which have excitation
energy in the NIR region [82]. This property becomes very
important for cases, in which deep tissue signal detection is
needed. NIR excitation of UCNPs enables them to penetrate
deep tissue without harming biological samples, in contrast to
UV excitation. This unique advantage has made UCNPs ex-
cellent candidates for in vivo tumor-imaging, when coupled
with gold nanorods (AuNRs) [80].

UCNPs are also coupled with other well-known radiative
quenchers like GO and even organic dyes for a wide range of
applications; in which they are used to trace molecules such as
DNA [83], mRNA [84], antigens [45], virus [85], pesticides
[86], antibiotics [87] and bacteria [88]. Regarding PSA detec-
tion, Hao et al. [89] reported a self-assembled pyramid structure
of Au-UCNPs. The AuNPs quenched the luminescence of
UCNPs, and aptamer-functionalization resulted in PSA detec-
tion with attomolar sensitivity. The quenched fluorescence of
the UCNPs was recovered as the UCNPs were released from
the pyramid structure while binding to the target through the
coupled aptamers. For ultra-sensitive detection of Alphafeto
protein (AFP), a self-assembled Au-Au-UCNP nanoprobe
was designed using conjugated oligonucleotides [90]. Binding
of AFPwith anAFP-specific aptamer conjugated to the UCNPs
led to blockage of resonant energy transfer from the UCNPs to
AuNPs. Increasing concentration of AFP resulted in the recov-
ery of UCNP fluorescence intensity, and the detection limit was
again found in attomolar range (0.059 aM). This approach
stands out among others, due to the broad linear range and
lowest LoD achieved. In another example, a different strategy
was reported for the detection of CEA utilizing NaYF4: Yb

3+,
Er3+ UCNPs, and AuNPs as the energy donor and acceptor
molecules, respectively [45]. UCNPs have excellent prospects
as candidate energy donors for FRET-based biosensors. AuNPs
as well-organized quenchers with broad absorption spectrum
were selected as the energy acceptors of UCNPs. The low limit
of detection related to this analysis was around 0.02 ng/mL.
This biosensor was applicable for CEA protein detection be-
cause of features including great selectivity and reproducibility.

In the detection study of E. coliATCC 873 by Jin et al. [42],
AuNPs were coupled with the target-selective aptamer and
UCNPs were functionalized with the cDNA molecules. The
authors obtained the quenching of the UCNP luminescence
through the attraction between the aptamer and the complemen-
tary sequence. However, in the presence of the E. coli ATCC
873, the aptamer-AuNPs desorbed and became bound to the
target, which resulted in the recovery of initial green fluorescent
signals, as shown in Fig. 4 [42]. Desorption occurred via the
affinity of the aptamer and the high mobility of the FRET
probe, compared to the larger analytes. The aptamer used for
Hg2+ ion detection, on the other hand, folds into the hairpin
structure in the presence of the target ion, as mentioned previ-
ously. The reason that the aptamer adopts the hairpin structure is
the stable bond that occurs in between thymine residues and
Hg2+ is even more stable than the adenine-thymine bound [98].
Likewise, Liu et al. [92] used aptamer-modified UCNPs as
donors and AuNPs as the acceptors for Hg2+selective FRET-
based UCNP approach. In this study, the Hg2+ selective
aptamer sequence was 5′ NH2-C6-CTACAGTTTCACCT
TTTCCCCCGTTTTGGTGTTT- 3′, and the complementary
ssDNA was 5′ SH-C6-GAAACTGTAG-3′. Not surprisingly,
the selective aptamer contained multiple thymine residues,
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whereas the complementary strand had none to allow hairpin
formation. A couple of examples, in which the aptamer modi-
fied UCNPs were used as the donor molecules in FRETassays,
are summarized in Table 2.

Even though UCNPs inherently offer extremely sharp
emission peaks for biosensing applications, their quantum ef-
ficiencies are significantly lower (below 2%) than QDs and
fluorophores. Because anti-Stokes type emission from
UCNPs depends on the time-dependent population of excited
Yb+3 state, rate-limited successive excitation of excited Yb+3,
and the internal energy transfer between Yb+3 to the emission
ion (e.g., Er+3, Tm+3), the rate limited UCNP emission even-
tually results in excitation power density-dependent quantum
yield profile. Thus, the use of high-power excitation lasers
with a wavelength of ca. 980 nm (2F7/2→

2F5/2 transition of
Yb+3) is widespread in UCNP based FRET assays.
Unfortunately, an excitation wavelength of 980 nm also coin-
cides with a broader vibrational absorption of water (av1 +

bv2, 970 nm, 10310 cm−1) [99]. The vibrational absorption
of water leads to rapid elevation of temperature in the assay
and jeopardizes the efficacy and reliability of the UCNP
FRET assays. In order to remedy this, Nd+3 is utilized as an
alternative sensitizer instead of Yb+3 and effectively switched
the preferred excitation wavelength to 800 nm. However, the
low quantum yield remains a prominent issue.

Graphene Quantum Dots (GQDs) and Carbon Dots
(CDs)

Carbon-based photoluminescence materials, like GQDs and
CDs, are alternatives to QDs that usually contains heavy
metals. GQDs, which are graphene flakes smaller than
20 nm [100], serve as donors in FRET studies due to their
good solubility, ease of synthesis [101] and modification ca-
pabilities [102]. Moreover, GQDs display quantum confine-
ment effects as a result of their small and tunable size, which

a

b

c

d

AuNP UCNP Aptamer cDNA E.coli 8739

980 nm

Condensa�on 
Reac�on

Au-S
Reac�on

SH

COOH

COOH

NH2

Fig. 4 Schematic illustration of UCNP-based FRET aptasensor for bac-
teria detection; (a) NH2-labeled cDNA of the aptamer is coupled to
COOH-labeled UCNPs by condensation reaction; (b) Conjugation be-
tween thiolated aptamers and AuNPs through deprotonation; (c)

Formation of FRET pair (UCNPs-cDNA and AuNPs-aptamer) through
complementary bases; d) Recovery of the green fluorescent signal in the
presence of target bacteria. Adapted from [42]
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allows tailoring their excitation energy spectrum, specifically
between 300 and 470 nm [103]. Using GQDs as donor mol-
ecules in FRET systems enables excitation of the system be-
yond the excitation range of the acceptor, resulting in en-
hanced luminescence signals [104]. The most significant
drawback of GQDs is their low luminescence quantum yield
that is around 28% [105].

With the aim of EpCAM detection, a “turn-on” fluorescence
biosensor based on the use of GQDs andmolybdenum disulfide
(MoS2) nanosheets was proposed by Shi et al. [106]. In their
work, PEGylated GQDs were labeled with the EpCAM-
specific aptamer adsorbed on MoS2 surface via Van der Waals
forces. Following FRET between GQD and MoS2 in the pres-
ence of EpCAM, the interaction between the aptamer and
EpCAM protein led to the detachment of the GQD-labeled
EpCAM aptamer from MoS2 nanosheets. The LoD for this
detection method was in the picomolar range.

Small molecule toxins that aptamers have been selected for
their detection can be divided into three groups: mycotoxins,
cyanotoxins, and toxins from dinoflagellates [107].
Ochratoxin (OTA), for example, is a prevalent mycotoxin that
is a continual impurity of foods such as coffee. It has
immunotoxic and carcinogenic effects in humans and animals
[108, 109]. In grains, an acceptable level for OTA has been set
by commissions; hence, it is crucial to provide one efficient
method for detection of OTA. In a recently published report
[110], biosensors for OTA based on FRET mechanism from

nanoceria to GQDwere shown to have a low detection limit in
the picomolar range. FRET between nanoceria and GQDs
took place efficiently because the emission spectrum of the
nanoceria partially covered the absorption spectrum of GQDs.

CDs, on the other hand, are carbon particles with diameters
smaller than 10 nm. They have all the advantages of GQDs,
like resistance to photo-bleaching, and spectral tunability of
emission spectrum arising from the quantum confinement ef-
fect [111, 112]. Moreover, they have low toxicity, even lower
than the heavy metal-free semiconductor QDs [113].
However, poor repeatability of synthesis leads to batch-to-
batch variation in size, structure, emission wavelength and
quantum yield. With these significant drawbacks, carbon-
based nanomaterials are poor donor candidates for FRET-
based detection assays [114].

In one example [115], quantitative detection of Adenosine
(AD) was achieved through aptamer-modified CDs-based
FRET assay where FRET occurred between nano-graphite
(acceptor) and aptamer modified CDs (energy donor). In the
existence of AD, FRETwas blocked by the interaction between
AD and its aptamer. Fluorescence of the aptamer-modified CDs
was recovered through dissociation of CDs-aptamer from the
nano-graphite surface. As several methods using CDs as lumi-
nescent probes operate in the turn-off mode, they are less sen-
sitive to strong matrix effects. On the other hand, CDs FRET
nanoprobes can also function on the turn-on principle [115,
116]. In Table 3, several examples are summarized where the

Table 2 Aptamer-based FRET methods utilizing UCNPs as the donor molecules. Respective aptamer sequences and the calculated LoD values are
presented

Signal Donor Acceptor Target Aptamer LoD Ref.

On UCNPs Au-NPs CEA ATACCAGCTTATTCAATT 0.02 ng/mL [45]

On UCNPs SYBR
Green I

Oxytetracycline GGAATTCGCTAGCACGTTGACGCTGGTGCCCGGTTGTGGTGCGA
GTGTTGTGTGGATCCGAGCTCCACGTG

0.054 ng/mL [91]

On UCNP AuNPs Mercury CTACAGTTTCACCTTTTCCCCCGTTTTGGTGTTT 60 nM [92]

Off-On UCNPs GO CEA ATACCAGCTTATTCAATT 10.7 pg/mL [93]

Off UCNPs AuNPs E. coli ATCC
873

GCAATGGTACGGTACTTCCCCATGAGTGTTGTGAAATGTT
GGGACACTAGGTGGCATAGAGCCGCAAAAGTGCACGCT
ACTTTGCTAA

5–106 cfu/mL [42]

On UCNPs BHQ1 Microcystin-LR GGCGCCAAACAGGACCACCATGACAATTACCCATACCACCTCAT
TATGCCCCATCTCCGC

0.1–50 ng/mL [94]
BHQ3

On UCNPs BHQ1 Okadaic acid GGTCACCAACAACAGGGAGCGCTACGCGAAGGGTCAATGTGA
CGTCATGCGGATGTGTGG

0.1–50 ng/mL [94]
BHQ3

– UCNPs AuNPs PAT GGCCCGCCAACCCGCATCATCTACACTGATATTTTACCTT 0.003 ng/mL [95]

On UCNPs AuNRs S. typhimurium GCAATGGTACGGTACTTCCTCGGC ACGTTTCAGTAGCGCTCGCT
GGTCATCCCACAGCTACGTCAAAAGTGCACGCTACTTTGCTAA

11 cfu/mL [88]

On UCNPs AuNPs Acetamiprid CTGACACCATATTATGAAGA 3.2 nM [77]

Off UCNPs Palladium CEA ATACCAGCTTATTCAATT 1.7 pg/mL [96]
nanoparticle

– UCNPs AuNPs AFP GGCAGGAAGACAAACAGGACCGGGTTGTGTGGGGTTTTAAGAGC
GTCGCCTGTGTGTGGTCTGTGGTGCTGT

0.059 aM [90]

On UCNPs AuNPs PSA TTTTTAATTAAAGCTCGCCATCAAATAGCTTT 0.032 aM [89]

On UCNPs AuNRs Ochratoxin A GATCGGGTGTGGGTGGCGTAAAGG GAGCATCGGACA 27 Pg/mL [97]

563 Page 10 of 22 Microchim Acta (2019) 186: 563



analytes are mostly small molecules (such as disease bio-
markers, antibiotics, and heavy metals) and the calculated
LoDs var. from picomolar sensitivity to micromolar range.

Metal-Organic Frameworks (MOFs)

MOF structure consists of an organic 3D network cage
surrounding a metal atom, which allows the generation
of versatile structures by changing metal cores or caging
organic network for various applications. This unique
structure of MOFs gives rise to a high level of func-
tionality, noticeable thermal and mechanical stability,
large pore sizes due to metal composition organic
linkers (or metal clusters, chains, or layers), and sub-
stantial surface area [124]. MOFs have been extensively
used in applications, such as catalysis, drug delivery
[125], and small molecule detection [126]. It is worth
mentioning that the variable chemical composition of
MOFs leads to the toxicologically acceptable formula-
tions. Depending on the selected metal, MOFs can func-
tion as either donor or acceptor, and the subject is still
a contentious one in the community. With their mutable
roles and porous organic network, all MOFs provide a
high density of surface area that enables target modifi-
cation and adsorption. MOFs like Cd-MOF [109] and
Tb-MOF [127] are examples of donors, while Cu-
MOFs have served as acceptors [43] in FRET-based
assays.

Graphene, Graphene Oxide (GO) and Reduced
Graphene Oxide (rGO)

Graphene, GO, and rGO are accepted as universal quenchers,
and they have been used as acceptor surfaces in many energy
transfer-based applications [128]. Highly efficient photoin-
duced electron transfer ability of graphenematerials due to their
unique large conjugated structure provides a broad absorption
spectrum [14], which makes possible to couple graphene ma-
terials with various energy donors such as Au NCCDs [111],
QDs [129] and UCNPs [84]. FRET-based detection systems
mostly work in liquid phases like buffers, human serum, or
whole blood [130]. With their ease of synthesis and good water
solubilities, graphene materials are very suitable for quick one-
pot applications [56] and paper-based biosensing through inkjet
printing [131]. They readily adsorb single-stranded (ss) nucleic
acids like mRNA and ssDNA through their π-interactions,
whereas double chained nucleic acids are avoided [87]. This
particular property of graphene has been tested by Alonso-
Cristobal et al. [132] to define the sufficient concentration of
acceptor molecules in order to quench the emission of the donor
for UCNP-based DNA detection FRET assay.

Adsorption can also be achieved directly by chemical in-
teractions between aptamers and the FRET probes; moreover,
its strength can be adjusted to favor the desorption in the
presence of the analyte. This situation was demonstrated by
Furukawa et al. [133], where the authors employed an aptamer
selective to PSA and compared the detection limit when the
aptamer was coupled with graphene and GO. Aptamers make

Table 3 FRET assays utilizing CDs and GQDs as the donor molecules, respective aptamer sequences, and the calculated LOD values

Signal Donor Acceptor Target Aptamer LoD Ref.

On GQDs Graphene oxide Lead (II) GGGTGGGTGGGTGGGT 0.6 nM [117]

On GQDs MoS2 EpCAM CACTACAGAGGTTGCGTCTGTCCCACGTTGTC
ATGGGGGGTTGGCCTG

450 pM [106]

Off CDs AuNPs-PAMAM CA 15–3 tumor marker GAAGTGAATATGACAGATCACAACT 0.9 μU/mL [113]
Dendrimer/aptamer

Off CDs Graphene oxide ATP ACCTGGGGGAGTATTGCGGAG GAAGGT 80 pM [111]

On CDs Nano-graphite Adenosine ACCTGGGGGAGTATTGCGGAGGAAGGT 0.63 nM [115]

Off CDs Cobalt
oxyhydroxide
nanosheets

Methamphetamine ACGGTTGCAAGTGGGACTCTGGTAGG
CTGGGTTAATTTGG

1 nM [118]

On CDs AuNPs Adenosine AGAGAACCTGGGGGAGTATTGCGGAG
GAAGGT

4.2 nM [119]

On CDs AuNPs ATP ACCTGGGGGAGTATTGCGGAGGAAGGT 8.5 nM [120]

On CDs Nano-graphite Dopamine GTCTCTGTGTGCGCCAGAGAACACTG
GGGCAGATATGGGCCAGCACAGAA
TGAGGCC

0.055 nM [121]

On CDs AuNPs AFB1 AAAAAAGTTGGGCACGTGTTGTCTCT
CTGTGTCTCGTGCCCTTCGCTAGGCCCACA

5 pg/mL [122]

On CDs AuNPs Hg2+ TTCTTTGTTCCCCTTCTTTGTT 0.7 pM [11]
AACAAAGAACCCCCCCCCC

On-Off-On CDs MoS2 Kanamycin (Antibiotic) TGGGGGTTGAGGCTAAGCCGA 1.1 μM [123]
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π-stacking through their organic nitrogenous bases with both
graphene and GO, whereas they additionally bound with GO
through the hydrogen bonding that located at both backbones
of aptamer and terminus hydrogens of the nitrogen bases.
Hence, the desorption of aptamers from GO is more compli-
cated than graphene, which leads to having a higher limit of
detection when the same aptamer is coupled with GO.

Although several graphene-based materials show similar
properties in a structural manner, they still have chemical
and physical differences resulting from the synthesis method-
ology. GO is commonly synthesized by Hummers’ method,
which contains chemical oxidation of graphite molecules.
Consequently, GO flakes bear oxygen-containing groups like
hydroxyl and carboxyl, unlike pristine graphene. The pres-
ence of hydroxyl groups on the surface provides an additional
site that enables the adsorption of affinity molecules without
the help of π-interactions [134]. Signal-on detection of small
molecules with FRET principle is only possible with the struc-
tural change of the aptamer since the mobility of the target is
higher than the aptamer, desorption can only happen due to a
structural configuration change. Detection of ATP can be an
excellent example of a small biological molecule with
aptamers and GO. As recently reported by Cheng et al.
[111], ATP selective aptamer folds through its organic nitrog-
enous groups and creates a globular chain structure in the
presence of ATP. As a result of that, side groups can contribute
to hydrogen bonding, and π-interactions on aptamer gets
blocked and release the aptamers from the GO surface, which
was used as the acceptor molecule in the report.

Mass spectrometry stands out among the other conventional
methods for detection of small chemical molecules. In stark
contrast, using this technology correctly requires large equip-
ment along with a high degree of training at a cost. Although
the aptamer-based assays may not provide that are as accurate
results as mass spectrometry, they can still be used with little
training for on-site measurements. Food and drinking water are
firmly checked to prevent their contamination by hazardous
substances or microorganisms. In order to improve this routine
control, detection of contaminants and their removal is of great
importance. Following this, one of the most popular targets for
aptamer detection is Bisphenol A (BPA), which is used in the
production processes of food-storage components and plastics.
It is now regarded as an environmental pollutant which is haz-
ardous to human and animal health and has been reported to be
toxic [135, 136]. For selective detection of Bisphenol A, a
method was designed by Zhu and his co-workers [137] based
on GO and an anti-BPA aptamer. GO was used to quench
fluorescently labeled ssDNA probes in its free form but not
the folded form after target binding. BPA can be coupled with
anti-BPA aptamer and alter its structure to prevent the aptamer
from adsorbing onto the surface of GO. LoD found out to be
0.05 ng/mL, and the developed method was strongly applicable
to actual water samples as represented in Fig. 5 [137].

Heavy metal ions are another area of application that FRET
can be used since ions are small and exist in trace amounts in
most of the subjects. As demonstrated byQian et al. [117], GO
flakes quenched the signal from the aptamer-labeled QDs in
the absence of Pb2+. When ions were introduced into the sam-
ple, the aptamers immediately formed a G-quadruplex confor-
mation and surrounded Pb2+ ions. Aromatic nucleobases in
the G-quadruplex structure that provided the π-stacking with
GO was blocked by phosphate groups which weakened the
interaction of donor and acceptor and generated the final sig-
nal. Since shielded π-stacks achieved desorption, acceptor
material must be carefully chosen as sp2-hybridised material
to obtain accuracy and high sensitivity.

Despite their large surface area and unique physicochemi-
cal properties, graphene materials have a significant drawback
of low recovery of the incident fluorescence signal, which
indicates the low desorption of the fluorescent materials
caused by relatively strongπ-interactions and hydrogen bonds
in case of GO and rGO. rGO, on the other hand, has structural
damages or defects on the surface as a result of the chemical
reduction of GO flakes. These defects on rGO act as electron
traps that improve the adsorption of the molecules to the sur-
face. However, due to the reduction step in the synthesis of
rGO, the number of oxyl-groups decreases, which cause a
weaker adsorption capability to the material, as compared to
the other graphene species [138]. Zhou et al. [139] stated in
their FRET study for Carcino-embryonic antigen (CEA) de-
tection that fluorescence quenching efficiency was extremely
strong even in aptamer free QDs and jeopardizing the detec-
tion of the intended analyte. To keep the FRET as a versatile
detection technique, fluorescence recovery issues need to be
solved, and more sophisticated techniques should be devel-
oped for challenging applications like miRNA detection in
living cells where aptamers are used to construct 3D structures
with nanomaterials such as a molecular beacon,
nanopyramids, and nanotweezers. Recently, researchers have
utilized Transition Metal Dichalcogenides nanosheets (TMD-
NSs), such as MoS2, TiS2, TaS2, and WS2 as potential energy
acceptor molecules [140]. Unlike graphene materials, TMD-
NSs adsorb single-stranded nucleic acids on their surface via
weak Van der Waals interactions [141]. Hence, higher fluores-
cent signal recoveries are achieved as compared to the
graphene materials [123].

Yuan et al. [142] employedWS2 for DNA detection, Zhang
et al. [143] used MoS2, TiS2, and TaS2, and for FRET assays
and finally, Ge et al. [144] employed MoS2 for ATP detection
with a low LoD as compared to graphene material-based
FRET assays. In the report by Cui et al. [145], a magnetic
fluorescent biosensor based on GQDs, Fe3O4, and MoS2
nanosheets were designed for selective detection of circulating
tumor cells (CTCs). This “turn-on” biosensing magnetic fluo-
rescent nanocomposite (MFNs) consisted ofMoS2 nanosheets
as the fluorescence quencher and aptamer@Fe3O4@GQD
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assembly as the donor molecule. In comparison with other
one-step and two-step marker detection methods, MFNs were
capable of labeling the target CTCs within 15 min. Another
striking feature of MFNs is being able to capture CTCs due to
the existence of aptamers [145]. Gao et al. [146] proposed a
FRET-based assay using MoS2–aptamer nanosheets for
thrombin detection. In this assay, MoS2 and exonuclease co-
assisted signal amplification strategy were applied to enhance
the detection limit of thrombin up to femtomolar sensitivity.
As can be seen from Table 4, this type of FRET methods was
mostly designed in signal-on fashion, and the analytes varied
from large bacterium cells to small molecules like ATP and
Bisphenol A.

Two-dimensional materials provide a suitable acceptor
candidate for aptamer-based FRET assays in theory.
However, the strong affinity of these 2D acceptors also intro-
duce complications such as strong binding of aptamer species
on these surfaces and limited fluorescence/luminescence re-
covery. Especially, non-specific binding of analyte and detec-
tion probes on graphene and its derivatives emerges as a sig-
nificant concern. As an example, strong quenching efficiency
of graphene derivatives resulted in low fluorescence/
luminescence recovery rates even when non-functionalized
fluorescent species introduced into the solution [37, 139]. In
order to reach up to the full potential of 2Dmaterials, issues of
strong quenching efficiency of graphene derivatives and non-
specific interactions have to be addressed in the future.

Gold Nanoparticles (AuNPs)

Metal nanoparticles (MNPs) can exhibit an energy transfer
mechanism based on the non-radiative energy transfer be-
tween excited donor state and Fermi level of the metal surface.
This phenomenon is defined as nanometal/nano surface ener-
gy transfer (NSET) [158]. Although NSET also requires ener-
getic resonance (spectral overlap), energy is transferred from a

point-dipole to a surface in FRET (many point-dipoles on a
surface) instead of point-dipole to point-dipole. Therefore, the
rate of energy transfer is proportional to R−4, unlike R−6 in
FRET [3, 159]. This R−4 distance dependency can double
the effective interaction between donor and acceptor mole-
cules. NSET distance, RNSET

0 , is calculated as [160]:

RNSET
0 ¼ 0:225

c3ΦD

ω2
DωFk F

� �1
4

ð5Þ

where ΦD is the quantum yield of the donor, c is the speed
of light, ωD is the angular frequency of the donor, ωF is the
angular frequency of bulk gold, and kF is the Fermi vector for
bulk gold. The resulting quenching efficiency of nano-metal
surface energy transfer, ENSET, is shown as.

ENSET ¼ 1−
1

1þ RNSET
0
R

� �4 ð6Þ

where R is the distance of donor from the metal surface.
MNPs have been used as an energy acceptor for various

analytical applications ranging from virus detection [85] to
metal ion detection [92]. Due to their biocompatibility and
broad absorption spectrum, AuNPs are arguably the most uti-
lized material as acceptors in energy transfer-based biosen-
sors, and most studies use the term FRET instead of NSET
for describing the energy transfer. AuNPs exhibits localized
surface plasmon resonance (LSPR) behavior coinciding with
the visible spectrum. This phenomenon originates from the
collective oscillations of free electrons in the metal surface.

The limited surface of a single nanoparticle results in in-
sufficient decay of the surface-bound plasmons and leads to
well-defined modes of surface plasmons called localized sur-
face plasmon resonance. This phenomenon was employed to
trace GA for diabetes diagnosis by Ghosh et al. [39], as shown
in Fig. 6 [39]. In the study, CdSe/ZnS QD was chosen as the

NO BPA

BPA: FAM-ssDNA:

FAM

DNA+BPA+GO

DNA+GO

ACC ACG CTT· · ·ACC · · ·GAT AGG GTG G FAM

ACC ACG CTT…ACC …GAT AGG GTG G FAM

OHOHOH

OH OH

Fig. 5 Schematic demonstration
of GO-based FRET assays; (a)
cocaine detection by the label-free
fluorescent aptamer-based assay
using GO and isothermal circular
strand-displacement amplification
method [48]; (b) Bisphenol A
(BPA) detection using a FRET-
based aptasensor [137]
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donor and gold nanoclusters (AuNCs) with a 1.4 nm diameter
as the acceptor molecules. According to the results, the dis-
tance between the acceptor and donor molecule connected
with GA-specific aptamer was estimated to be 2 nm that
reached up to 8 nm in the presence of the target molecule,
GA. Consequently, the authors reported that the
photoluminescence intensity increased with the increased con-
centration of GA, and a LoD of around 1 nMwas achieved by
such a design [39]. Jiang et al. [47], on the other hand, devel-
oped an RNA aptamer and AuNPs-based hybrid FRET assay
for detection of Theophylline. Authors split the original the-
ophylline aptamer from the loop regions into half in order to
prevent nuclease degradation in serum. One part of the split
RNA aptamer was attached to a DNA spacer strand compos-
ing of complementary Adenine and Thymine residues. The
chimeric RNA/DNA structure was attached to the AuNPs

surface through PolyAdenine tail, and the other split half
was modified with Cy3 fluorescent molecule, as represented
in Fig. 7 [47]. Upon target binding, two structures came into
close proximity, causing the fluorescent quenching of Cy3 and
detection of Theophylline in nanomolar range with high se-
lectivity. Recently, Li et al. utilized Palladium nanoparticles
(PdNPs) despite the widespread use of AuNPs to detect alpha-
fetoprotein using 5-carboxyfluorescein (FAM) labeled
aptamers [161]. Although palladium nanoparticles does not
show a specific plasmon absorption coinciding with the emis-
sion spectrum of FAM, the non-resonance wide-spectrum ab-
sorption of PdNPs were proven to be sufficient for biosensing.

LSPR modes depend on the size, shape and the dielectric
properties of the surrounding medium [162]. Accordingly,
AuNRs are also widely used for plasmonic absorption; since
the position of their plasmonic resonance bands can easily be

Table 4 Recent FRET methods utilizing Graphene, GO and MoS2 as the FRET acceptors

Signal Acceptor Donor Target Aptamer LoD Ref.

On GO FAM labelled aptamer Bisphenol A CCGGTGGGTGGTCAGGTGGGATAGCG
TTCCGCGTATGGCCCAGCGCATCA
CGGGTTCGCACCA

0.05 ng/mL [137]

On MoS2 GQD CTCs CACTACAGAGGTTGCGTCTGTCCCACGTTGTC
ATGGGGGGTTGGCCTG

1.19 nM [145]

On Graphene and GO FAM labelled aptamer PSA TTTAATTAAAGCTCTCCATCAAATAGC >500 ng/mL [46]
On MoS2 FAM labelled aptamer Plasmodium lactose

dehydrogenase
GTTCGATTGGATTGTGCCGGAAGTGC

TGGCTCGAAC
550 pM [140]

On MoS2 FAM labelled aptamer Salmonella typhimurium ATAGGAGTCACGACGACCAGAAAGTA
ATGCCCGGTAGTTATTCAAAGATGAGTAGG
AAAAGATATGTGCGTCTACCTCTTGACTAAT

10 cfu/mL [141]

On MoS2 Chlorine e6 labelled
ATP aptamer

Intracellular ATP AACCTGGGGGAGTATTGCGGAGGAAGGT 5 μM to
3 mM

[147]

On MoS2 FAM labelled aptamer Thrombin AAAAGTCCGTG GTAGGGCAGGTTGG
GGTGACT

6 fM [146]

On MoS2 FAM labelled aptamer Arsenic ions GTAATACGACTCACTATAGGGAGATACCAGCT
TATTCAATTTTACAGAACAACCAACGTCGC
TCCGGGTACTTCTTCATCGAGATAGTAAGT
GCAATCT

18 nM [148]

On MoS2 Aptamer induced
multicolored
AuNCs

AFP GGCAGGAAGACAAACAAGCTTGGCGG
CGGGAAGGTGTTTAAATTCCCGGGTCTGCG
TGGTCTGTGGTGCTGT

0.16 ng/mL [149]

On MoS2 Multicolored AuNCs CEA ATACCAGCTTATTCAATT 0.21 ng/mL [149]
On MoS2 QDs Dopamine GTCTCTGTGTGCGCCAGAGAACACTG

GGGCAGATATGGGCCAGCA CAGAATGA
GGCCC

45 pM [150]

Off-On rGO FAM labelled aptamer Ricin ACACCCACCGCAGGCAGACGCAACGC
CTCCGGAGACTAGCC

>100 pM [151]

On GO AO Hg2+ TGCTATCCCATCGGGTTGGGCGGGATGGGAT 0.17 nM [152]
– GO ROX labeled aptamer AFB1 GTTGGGCACGTGTTGTCTCTCTGTGTCTCGTG

CCCTTCGCTAGGCCCACA
10.0 ng/mL [153]

Off-On GO FDNA aptamer β-lactamase CCAAACTCGGG 0.5 U/mL [154]
rGO FAM labelled aptamer Kanamycin GCGCGCCACGGGCGCGC 1 pM [155]

GCGCGGCGGCTACCCCACCGCGCGCG
GGCGGCTACCCCACCG

On GO QDs-aptamer Ara h1 TCGCACATTCCGCTTCTACCGGGGGGGTCGAG
CGAGTGAGCGAATCTGTGGGTGGGCCGTAA
GTCCGTGTGTGCGAA

56 ng/mL [156]

On-Off GO Aptamer labeled
Ag@SiO2

nanoparticles

Thrombin TACGGTTGGTGTGGTTGG 0.05 nM [157]
(Cy5-modified cDNAwas also used as energy donor)
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controlled by tuning the aspect ratio of nanorods in the spec-
tral range from 600 nm to 1300 nm [163]. AuNRs can absorb
NIR photons more effectively than the other 2D acceptor ma-
terials [164]. NIR absorption property of AuNRs is important
for applications like thrombin detection, where the back-
ground fluorescence might be strong and need to be avoided
[82].

Recently, Chen et al. [96] reported a NaYF4: Yb, Tm/
NaGdF4 core-shell UCNP donor/AuNRs acceptor based
NIR-to-NIR energy transfer biosensor for detecting a cancer
biomarker. In this study, the authors achieved a signal in NIR
(804 nm) with a LoD of 0.17 ng/ml. Recently, Xing et al.
[165] employed urchin-like AuNPs to achieve a NIR absorp-
tion in their sensor system for the detection of HER2 protein
biomarker. Similarly, Zhang et al. [166] reported a study of
using gold nanocrosses to obtain NIR absorption and used
them for intercellular ATP detection. A couple of NSET sys-
tems based on the use of AuNPs and aptamers were summa-
rized in Table 5.

Fluorescently-labeled aptamers can show some disadvan-
tages. For example, covalent coupling process may be time-
consuming, and it comes at a considerable cost. Equally im-
portant that there is a problem of interference between the
fluorophore and target binding ability of the aptamer. In order

to tackle these issues, biosensors based on label-free aptamers
have been developed. Among the assays related to “signal-on”
label-free aptamers, one FRET experiment was designed for
detection of S. typhimurium by using Rhodamine B (RB) and
AuNPs [24].Mixing of the target-specific aptamer and AuNPs
with the RB were followed by the fluorescence-quenching of
RB via FRET. Upon the addition of target, this bacterium
binds with its aptamer and loses the capability of AuNPs sta-
bilization; therefore, the salt causes the aggregation of AuNPs,
resulting in the fluorescence recovery related to the quenched
RB. The detection limit of 464 cfu/mL was achieved by this
method.

Gold nanostructures offer great potential as NSET accep-
tors due to their shape-dependent optical properties and ease
of chemical functionalization through thiol chemistry. Until
now, most of the studies were limited to the spherical gold
nanoparticles showing a plasmonic extinction wavelength
band between 520 and 550 nm. However, other Au nanostruc-
tures such as nano urchins, nanorods, nanocrosses also dra-
matically increase the repertoire of plasmonic FRET accep-
tors. Considering the NSET mechanism and its larger energy
transfer distances, the studies should evolve into the observa-
tion of the near-field response of these plasmonic structures to
engineering better FRET acceptors.
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Conclusion and Future Perspectives

FRET biosensors for clinical diagnosis, medical research,
food monitoring, and environmental control can largely profit
from sophisticated affinity probes with long shelf life and
structural flexibility as well as nanoparticles with enhanced
photophysical properties and biocompatible material compo-
sitions. The unique properties of nanomaterials and aptamers
have made them versatile tools for FRET platforms with com-
plementary benefits compared to organic dyes or antibodies.
Although QDs and AuNPs are arguably the most applied
nanoparticles for FRET biosensing, the repertoire of optoelec-
tronic nanomaterials has broadened, and low-cost GQDs, anti-
Stokes luminescent UCNPs, and graphene-based carbon

nanomaterials have become prominent FRET candidates.
Aptamers have witnessed dramatic attraction after the recent
expiration of SELEX patents, and it can be expected that their
use in FRET-biosensing, together with other small artificial
protein-based affinity probes [172, 173] will continue to com-
plement antibodies in the future. Combining the structural
simplicity and relatively small sizes of aptamers with the large
surfaces and versatile optical properties of nanomaterials
holds great potential to further improving FRET biosensors
toward lower LoDs, higher sensitivities, and multiplexing. We
anticipate that this triple nano biophotonic alliance (nanopar-
ticles, aptamers, and FRET) will continue to provide exciting
and useful high-fidelity biosensors for improved biological,
chemical, medical and environmental analysis.

AuNPs

Theophylline

FR1

Cy3 labeled FR2

Fig. 7 Detection of theophylline
in serum using self-assembled
RNA aptamer-based AuNPs
nanoprobe RNA aptamer was
split into two fragments as FR1
and FR2, which were used to bind
withAuNPs and capture the target
while maintaining the structure
stable in serum. Adapted
from [47]

Table 5 Some of the AuNPs and aptamer-based energy transfer methods reported so far in the literature

Signal Acceptor Donor Target Aptamer LoD Ref.

On AuNPs UCNPs E. coli ATCC
8739

GCAATGGTACGGTACTTCCCCATGAGTGTTGT
GAAATGTTGGGACACTAGGTGGCATAGAGC
CGCAAAAGTGCACGCTACTTTGCTAA-NH2

5–106 cfu/mL [42]

SH-TTAGCAAAGTAGCGTGCACTTTTG

On AuNPs QDs GA TGCGGTTGTAGTACTCGTGGCCG 1 nM [39]

On AuNPs CDs DNA GGGGGGCCAAGGCCCAGCCCTCACACA 15 fM [167]

On AuNPs QDs Chloramphenicol ACTTCAGTGAGTTGTCCCACGGTCGGCGAGTC
GGTGGTAG

3 pg/mL [168]

On Urchin-like AuNPs QDs HER2 protein AAAAAAGCAGCGGTGTGGGGGCAGCGGTGTGG
GGGCAGCGGTGTGGGG

1 ng/mL [165]

Off AuNPs AuNCs Staphylococcus
aureus

GCAATGGTACGGTACTTCCTCGGCACGTTCTC
AGTAGCGCTCGCTGGTCATCCCACAGCTAC
GTCAAAAGTGCACGCTACTTTGCTAA

10 cfu/mL [169]

On AuNRs QDs Norovirus GCGACGAATTAGCTTGTATGATGTCGTCGC 1.2 copy/mL [170]

On Au-Nano crosses GQDs ATP ACTCCCCCAGGT 0.27 mM [166]

On AuNPs Ag NCs Kanamycin TGGGGGTTGAGGCTAAGCCGA 1 nM [171]
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Abbreviations AD, Adenosine; AFP, Alphafeto protein; AuNPs, Gold
nanoparticles; AuNRs, Gold nanorods; AuNCs, Gold nanoclusters;
BHQ1, Black Hole Quencher 1; BHQ2, Black Hole Quencher 2;
cDNA, Complementary DNA; CDs, Carbon Dots ; CEA,
Carcinoembryonic antigen; CTC, Circulating tumor cells; EpCAM,
Epithelial cell adhesion molecule; FAM, 5′-carboxyfluorescein; FRET,
Förster resonance energy transfer; GA, Glycated albumin; GO,
Graphene oxide; GQDs, Graphene quantum dots; LRET, Luminescence
resonance energy transfer; LSPR, Localized surface plasmon resonance;
MFNs, Magnetic fluorescent nanocomposite; MNPs, Metal nanoparti-
cles; MOFs, Metal-organic frameworks; MoS2, Molybdenum disulfide;
NIR, Near-infrared Region; NSET, Nanosurface resonance energy trans-
fer; OTA, Ochratoxin; QD, Quantum dot; RB, Rhodamine B; rGO,
Reduced Graphene Oxide; rQD, Red-emitting QDs; gQDs, Green-emit-
ting QDs; SELEX, Systematic evolution of ligands by exponential en-
richment; ssDNA, Single-stranded DNA; TMD-NSs, Transition metal
dichalcogenides nanosheets; UCNP, Upconverting nanoparticles; UV,
Ultraviolet
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