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 Abstract: Background: Together with the Alzheimer’s disease, Parkinson’s disease is consid-

ered as one of the two serious known neurodegenerative diseases. Physicians find it hard to 

predict whether a given patient has already developed or is expected to develop the Parkin-

son’s disease in the future. To overcome this difficulty, it is possible to develop a computing 

model, which analyzes the data related to a given patient and predicts with acceptable accuracy 

when he/she is anticipated to develop the Parkinson’s disease.  

Objectives: This paper contributes an attractive prediction framework based on some machine 

learning approaches for distinguishing people with Parkinsonism from healthy individuals.  

Methods: Several fuzzy classifiers such as Inductive Fuzzy Classifier, Fuzzy Rough Classifier 

and two types of neuro-fuzzy classifiers have been employed.  

Results: The fuzzy classifiers utilized in this study have been tested using the “Parkinson 

Speech Dataset with Multiple Types of Sound Recordings Data Set” of 40 subjects available 

on the UCI repository.  

Conclusion: The results achieved show that FURIA, MLP- Bagging - SGD, genfis2 and scg1 

performed the best among the fuzzy rough, WEKA, adaptive neuro-fuzzy and neuro-fuzzy 

classifiers, respectively. The worst performance belongs to nearest neighborhood, IBK, genfis3 

and scg3 among the formerly mentioned classifiers. The results reported in this paper are better 

in comparison to the results reported in Sakar et al., where the same dataset was used, with uti-

lization of different classifiers. This demonstrates the applicability and effectiveness of the 

fuzzy classifiers used in this study as compared to the non-fuzzy classifiers used by Sakar et al. 
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1. INTRODUCTION 

 Parkinson’s Disease (PD) is one of the central nervous 
system’s neurodegenerative-disease. It is considered to be 
the second prevalent neurological disease after the Alz-
heimer’s disease. It is anticipated that there are about 10 mil-
lion individuals worldwide who suffer from the symptoms of 
PD [1, 2]. PD may lead to a full or a partial loss in some vital 
functions, behavior, motor reflexes, mental processing, and 
speech [1]. PD is usually caused by a decrease which occurs 
in the dopamine levels in the brain [3]. James Parkinson, 
after whom the disease was named, suggests that the first 
symptom of PD is a slight sense of weakness with a tenden-
cy to trembling in a specific body part, commonly one of the 
hands or arms [4]. The progress of PD is extremely slow, and 
it is hard for a patient to recollect the precise period of the 
disease commencement. Afterwards, a PD victim confronts 
deterioration of speech, i.e., difficulty in articulating sound, 
reduced volume and pitch range. During the disease progres- 
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sion, the symptoms start to develop and engage sleeping 
ability along with increasing the risk of insanity.  

 Despite the existence of a significant number of medical 
treatments for decreasing the difficulties caused by PD, there 
is no known cure yet [5, 6]. Besides, PD diagnosis is gener-
ally performed using invasive methods which convolute the 
procedure of diagnosis and treatment [7]. Thus, there is an 
increasing necessity to develop a noninvasive diagnosis sys-
tem. The side effects considered by studies carried on PD 
diagnosis include shaking or firmness occurred in some parts 
of the body, poor balance, gradualness in movements and 
specifically problems related to victim’s voice [8-11]. The 
most important rationale in the popularity gained by speech 
test utilization in PD diagnosis is self-use easiness of tele-
diagnosis and telemonitoring systems and the associated cost 
reduction [6, 12]. Additionally, the mentioned systems cause 
a decrease in the inconvenience and the costs occurring when 
the PD patients visit the medical centers. They empower the 
early analysis of the malady, and lessen the workload of 
medical staff [6, 12-14]. PWP (People With Parkinsonism) 
experience effects of discourse ruinations like hypophonia 
(lessens volume), dysphonia (inadequate utilization of the 
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voice), dysarthia (trouble with verbalization of sounds or 
syllables), and monotone (diminished pitch gauge). 

 The target of the research described in this paper is to use 
speech test data for diagnosing PWP (people with Parkinson-
ism) and differentiating them from healthy people. To 
achieve this, we employed a variety of machine learning 
techniques which utilize fuzziness as part of their engines.  
The dataset used in this study was contributed by Sakar et al. 
[1]. It is publicly available and has been downloaded from 
the UCI Machine Learning Repository. In total, the dataset is 
composed of 40 test subjects, which are distributed into two 
groups. The first group consists of 6 females and 14 males 
who are diagnosed with PD, and the second group consists of 
10 females and 10 males who are healthy people. The test 
subjects were checked by the Neurology Department in Cer-
rahpasa School of Medicine at Istanbul University in Turkey. 
The machine learning-based techniques used in this paper 
are fuzzy rough classification, inductive fuzzy classification, 
neuro fuzzy classification, adaptive neuro fuzzy classifica-
tion and some classical classification algorithms. They are 
available as part of WEKA software. The results have been 
validated by employing MSE (mean square error), sensitivi-
ty, accuracy, Matthews Correlation Coefficient, and specific-
ity metrics. 

 The rest of this paper is organized as follows. Section 2 
covers the related work. Section 3 describes the problem 
tackled in this paper. The fuzzy based classifiers used in this 
study are described in Section 4. The test results are reported 
and analyzed in Section 5. The comparative analysis is pre-
sented in Section 6. Section 7 is conclusion. 

2. THE LITERATURE REVIEW 

 The target of the research conducted in this paper is to 
distinguish PWP from healthy individuals based on the fea-
tures extracted from speech tests taken from PWP and 
healthy individuals. For this purpose, we employed three 
fuzzy classification methods for PD diagnosis. Thus, to bet-
ter understand the methodology described in this paper, we 
review in this section PD together with its diagnosis and the 
utilized fuzzy classification methods. 

2.1. Parkinson’s Disease and its Diagnosis 

 According to Chakraborty et al. [15] “Parkinsonism is 
one of the prominent neurological disorders of old age and 
its prevalence is rising as the geriatric population is on the 
rise”. As it is the case with every disease, early and exquisite 
detection of PD might be extremely useful in proficient 
treatment and inability restriction of casualties. To satisfy 
this goal, several researchers have focused on diagnosis 
methods and tests for PD.  

 Sakar et al. [1] produced the dataset utilized in this study. 
Their dataset is related to real patients who were diagnosed 
and checked in Istanbul, Turkey. They shared their dataset 
by adding it to the publicly available UCI Dataset Reposito-
ry. They analyzed their data using some of the known classi-
cal classification algorithms to distinguish PWP from 
healthy test subjects. They used Leave One Subject Out 
(LOSO) and Summarized Leave One Out (SLOO) in the 
validation process. The classification results showed that 

sustained vowels carry more PD- discriminative information. 
Fortunately, their results are not better than our results re-
ported in this paper which we determined by employing 
some fuzzy classification techniques. 

 Shahsavari et al. [2] studied PD by employing machine 
learning techniques, and in particular hybrid particle swarm 
optimization method. Some researchers investigated the 
possibility of monitoring PD patients remotely, e.g., [6, 8- 
10, 16, 17]. For instance, researchers used a set of wearable 
sensors to assess and classify the tremor activity in PD [9, 
12].  Sama et al. [17] used a waist-worn sensor to analyze 
gait and to estimate bradykinesia severity in PD. Parisi et al. 
[18] developed a technique for handling and evaluating gait 
in PD patients. Other researchers also applied machine 
learning techniques, including a variety of classification 
algorithms, e.g., [10, 11, 15, 16, 19-23]. 

 The study conducted by Murdoch et al. [19] presented 
various impacts of PD in discourse and correspondence. Ef- 
fects of various levels of PD on muscles of voice and signal 
generation were analyzed by Fox et al. [24]. Many research-
ers have focused on utilizing voice and speech features for 
PD diagnosis. Indeed, voice disorders form the main empha-
size of neurologists and researchers in case of PD diagnosis. 
As mentioned before, PD gradually affects the voice and 
speech signals producing muscles and weakens them during 
different levels of PD severity. Periodic vibrations in the 
voice are used to measure voice disorders while utilizing 
acoustic devices. Clinical voice disorder diagnosis systems 
can be emphasized by utilizing some sound properties, in-
cluding turbulent, complex nonlinear aperiodicity, non-
Gaussian irregularity of sound and aeroacoustics [12]. Little 
et al. [6] analyzed the phase of sickness by measuring dys-
phonia caused by PD. The dataset they considered included 
31 subjects of whom 23 were diagnosed with PD. In the 
speech test, they recorded sustained vowel “a” phonation. 
Then, the disease grade was identified by telemonitoring 
using dysphonia measures adopted from phonations. Tsanas 
et al. [16] predicted the tendency of PD progression by 
means of speech data utilization. They evaluated 6000 sam-
ples of 42 PWP using signal processing algorithms for fea-
ture extraction. They identified helpful features. Regression 
and classification techniques were utilized for voice features 
projection to a unified PD rating scale. In another study, 
Tsanas et al. [13] selected dysphonia measure subsets by 
means of a Support Vector Machine (SVM) classifier.  

2.2. Fuzzy Data Mining Methods 

 Several studies have used fuzzy classification or cluster-
ing for data analysis because most real-world data encapsu-
late indisputable amounts of inexactness and ambiguity. 
Chakraborty et al. [15] utilized fuzzy c-mean clustering and 
subtractive clustering methods for PD detection. According 
to the reported results, their detection accuracy is about 96-
97% with reasonable efficiency. Additionally, it was found 
that the accuracy of FIS based on Fuzzy C-Means (FCM) is 
higher comparable to the other methods. An efficient and 
effective PD diagnosis method is presented in [25]. The 
method described in [25] is a fuzzy k-nearest neighbor ap-
proach. PD progression is assessed using a fuzzy inference 
system and artificial neural networks which are based on the 
adaptive networks described in [20]. Parisi et al. [18] used 
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artificial neural networks and adaptive neuro fuzzy classifier 
for PD recognition from sustained phonation tests. They de-
veloped a fuzzy expert system for PD diagnosis from speech 
tests. Gürüler [21] diagnosed PD using an artificial neural 
network that has a complex value with k-means clustering 
feature weighting. 

 To the best of our knowledge, the dataset used in our 
paper was only utilized by Sakar et al. [1] for PD diagnosis 
based merely on classical classification techniques. For the 
study described in this paper, we have applied various other 
classification methods which combine fuzziness in the process 
and hence produced more interesting results related to PD 
diagnosis. 

3. MATERIALS AND METHODS 

3.1. The Dataset 

 Our target in this study is to distinguish PWP from 
healthy people using fuzzy classifiers based methods. The 
dataset used here has been adopted from [1]. It consists of 
speech test of 40 persons, 20 of whom are PWP (6 females, 
14 males), and the rest 20 are healthy people (10 females, 10 
males). Tests were taken in the Neurology Department in 
Cerrahpasa School of Medicine at Istanbul University. Pa-
tients are mainly people who suffered from PD for a period 
from 0 to 6 years. The age of PWP patients who were in-
cluded in the tests varied between 43 and 77 years with an 
average of 64.86 and a standard deviation of 8.97, while the 
age of healthy people ranges between 45 and 83 years, with 
an average of 62.55 and a standard deviation of 10.79. Twen-
ty-six voice samples were recorded from all the subjects. 
These voices include words, short sentences, sustained vow-
els and numbers. As a result of this test, a set of exercises of 
speeches were prepared. The considered samples opted for a 
more powerful sound of people with parkinsonism [22]. 
Samples were selected by a group of neurologists.  

 As mentioned in [1], the frequency range of recording 
devices is 50Hz- 13kHz, and their model is Trust MC- 1500. 
For taking voice samples, the device frequency was set to 96 
kHz, 30 dB and it was placed 10 cm away from the subjects. 
Recordings were carried while subjects were reading or re-
peating the prepared texts. The subjects were asked to count 
from 1 to 10, read 4 rhymed sentences, read 9 words and say 
‘a’, ‘o’, ‘u’ letters. According to [1], 26 features were extract-
ed from these voice tests. These features have been distin-
guished into different categories of parameters: (1) frequency 
parameters, including various types of jitter, (2) pulse parame-
ters, including features related to the number of pulses and 
periods existing in voice signals, (3) amplitude parameters, 
including different shimmer versions, (4) voicing parame-
ters, (5) pitch parameters, and (6) harmonicity parameters.  

3.2. FUZZY LOGIC 

 The fuzzy set theory introduced by Lotfi Zadeh in 1963 
is an effective mechanism for managing imprecision in prob-
lems which deal with decision making, including instability 
and ambiguity of real-world applications [23]. Actually, 
fuzzy inference can be defined as the procedure of projecting 
a specific input to an output dataset by means of the fuzzy 
set theory where knowledge is codified by unequivocal lin-

guistic rules utilization which is understandable by people 
who do not have technical proficiency. 

 The main characteristic which differentiates fuzzy logic 
from Boolean logic is that fuzzy logic assumes a degree for a 
fact to be true or false, while according to Boolean logic 
each fact is either completely true or completely false. In 
other words, there is a smooth transition from completely 
true to completely false. In real life scenarios, most of the 
cases cannot be classified to belong to one of the two ex-
tremes. They have a degree of membership in each of the 
given sets. This degree ranges from 0 to 1, inclusive.  

 As depicted in Fig. (1), the primary segments of fuzzy 
logic are: (1) Fuzzification which is the process of translating 
crisp inputs into fuzzy values, (2) Rule base reasoning which 
is the process of applying a fuzzy reasoning mechanism to 
get a fuzzy yield by fuzzy rule utilization, and (3) Defuzzifi-
cation which is the process of translating the latter output 
into a crisp value. 

 
Fig. (1). Modified diagram of a Mamdani-FRBS (Fuzzy Rule Based 

System) [26]. 

 The objective of fuzzification is the projection of system 
input values to the interval [0, 1]. This projection is realized 
by defining membership functions which produce member-
ship degrees for the inputs. Rule-based reasoning is the pro-
cess of projecting fuzzy membership degrees of fuzzy inputs 
in order to classify the output by utilizing if-then rules, 
which are presented as logical expressions, i.e., if p then q. 
Here p is the antecedent and q is the consequent of the rule 
[27]. Defuzzification produces a single system output by 
applying a defuzzification formula on a fuzzy output. 

3.3. Fuzzification 

 The main purpose of fuzzification is selecting a member-

ship function for transforming numerical valued inputs into 

corresponding membership values. Every input value may 

have one membership value corresponding to each linguistic 

set. The input is always characterized as a crisp value which 

is restricted by cosmos of the input variable and the output is 

a fuzzy membership degree in the appropriate linguistic set(s). 

Membership function �� of a fuzzy set B is defined as: 

��: � � [0, 1], where � is the universal set. Here, �� may be 

triangular, trapezoidal, Gaussian function, etc. 

3.4. Rule-Based Reasoning 

 According to a study [28] “fuzzy sets are an aid in 
providing symbolic knowledge information in a more human 
understandable or natural form. They can hold uncertainty at 
various levels”. The steps of the fuzzy rule-based system 
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manipulation are: (1) proper if-then fuzzy rules derivation, 
(2) dividing the universe into parts, and (3) deciding on 
membership functions for the mapping. Linguistic rules are a 
form of fuzzy rules generated by experts [17]. The connec-
tion between antecedents and consequents in the rules is ac-
complished by If-Then rules which are generated using lin-
guistic variables. An antecedent can be defined as a fuzzy 
clause which has a certain degree of membership in the in-
terval [0,1]. It is possible for a fuzzy rule to have more than 
one component in the antecedent connected using “and”/“or” 
operators, where all parts are considered at the same time 
and transformed into a single number. The same is true for 
the consequent. Several parts of the rule consequent are 
gathered into a single output of a fuzzy set [29]. 

 An adaptive Neuro Fuzzy Inference System (ANFIS) can 
be expressed as a combination of neural networks and fuzzy 
logic principles. Advantages offered by ANFIS are: (1) 
smoothness, which is a property of the fuzzy principle, and 
(2) adaptability which comes from the neural networks train-
ing structure [30]. 

3.5. Defuzzification 

 Defuzzification is a process in which a quantifiable result 
in crisp logic is produced for a given fuzzy set and the corre-
sponding membership degrees. Max-membership, mean-
max, centroid method, center of largest area, and center of 
sums are some defuzzification approaches. 

4. THE DEVELOPED APPROACH 

 As mentioned previously, the objective of this study is to 
distinguish PWP from healthy individuals using a variety of 
fuzzy classification methods. For further evaluation, the clas-
sification methods available in WEKA have been utilized. 
The techniques employed in this study are described next in 
this section. 

4.1. Neuro-Fuzzy Classification 

 This method relies on the neuro-fuzzy classifier intro-
duced by Jang [31], i.e., the scaled conjugate gradient meth-
od (SCG), where adaptive networks are employed for solv-
ing a classification problem. In this method, system parame-
ters, including membership functions, are specified for each 
feature. Parametrized t-norms which are used for combining 
conjunctive conditions are calibrated using the backpropaga-
tion method. Parameter optimization and rule weights used in 
this study are different from the ones used by Sakar et al. [31]. 
The adaption of rule weights is done using a number of rule 
samples. The main objective of utilizing the suggested algo-
rithm is determining optimal values for nonlinear parameters. 
The reason for SGD utilization is that it is faster in comparison 
to some second order derivative based and steepest descent 
methods. It is appropriate for large scale problems [32]. 

 The SCG method is categorized under supervised learn-
ing methods for feedforward neural networks. This method 
belongs to the category of conjugate gradient approaches. 
Conjugate gradient methods (CGMs) are known as a type of 
second order approaches which help in minimizing the goal 
function of diverse variables based on a valid theoretical 
foundation. Second order methods are named so because 

they utilize the second derivatives of the goal function, while 
the first order methods use first derivates. Utilizing second 
order derivative methods may have some pros and cons. 
They are advantageous in finding a better way to a minimum 
in comparison to that of first order derivative techniques. 
Furthermore, they usually run at a higher computational cost. 
The logic here is similar to that of standard backpropagation, 
i.e., CGMs try to approach the minimum at each iteration. 
The difference between backpropagation and CGMs comes 
from the direction of movement. In backpropagation, the 
direction is down the gradient of the error function, while in 
CGMs the direction is towards a vector which is conjugate to 
the movement direction of the former steps. As a result of 
this movement strategy, minimization at any step is not un-
done by the operations of a subsequent step. 

 Let p = exp (
���

�
) be a vector from space T= T.deg; and 

assume that E is the error function to be minimized. The dif-

ferences between SCG and CGMs are listed below: 

• In each iteration k, �� is computed using CGM. Here, �� 

is defined as a new direction which is the conjugate to the 

direction of the previous step, N represents the sum of the 

number of weights and the number of biases constituting 

the network. The step size in this direction is determined 

by ���� = �� +��.���. Here, parameter �� is a function of 

��. Parameter �� is the Hessian matrix of the error func-

tion. SCG uses a simple approximation method to calcu-

late the term ��(��), which is an essential factor in the 

computation of ��: ��.  
 

• As Hessian is not always positive definite, which prevents 

the algorithm from achieving good performance, SCG uses 

a scalar �� which is supposed to regulate the indefinite-

ness of Hessian. It is a kind of Levenberg-Marquardt 

method and is done by setting �� as follows: 

�� = ��(��). �� � 
��� �������� �������

��
,  0�� �� � 1 

and regulating �� at each iteration. This last point can be 

considered as the main contribution of SCG to the neural 

learning and optimization theory. SCG has been proved to 

be faster than the standard backpropagation and other 

CGMs.  

 Here, fuzzy rules are initialized using the k-means algo-
rithm and fuzzy set descriptions are derived by the Gaussian 
membership function.  

 In addition to the first method presented above, another 
version of SCG based classifier is described. Here, the Least 
squares estimation approaches are utilized. They are used for 
estimating the gradient without utilization of all the training 
samples. In the third variation, linguistic hedges are adapted 
by the SCG algorithm. They are applied to the sets of rules 
which are fuzzified. In this manner, using power values em-
phasizes some particular features and damps. Linguistic 
hedge utilization increases the recognition rates. 

4.2. Adaptive Neuro-Fuzzy Classification Method 

 The proposed method has been coded using the fuzzy 
logic toolbox available in MATLAB. The first step involves 
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creating the fuzzy inference system using three different meth-
ods: (1) subtractive clustering, (2) fuzzy c-means clustering, 
and (3) grid partitioning. Then, the generated system is trained 
by the Adaptive Neuro Fuzzy Inference System (ANFIS).  

 Each data point is considered as a potential center for a 
cluster in a subtractive clustering approach. The likelihood of 
each data point being the cluster center is calculated accord-
ing to the density of the neighboring data points. The steps of 
the algorithm are described next: 

• Data points with the highest possibility to be considered 
as the center of the first cluster are selected. 

• Subsequently, the data cluster and the location of its center 
is determined by removing the neighbors of the first cluster 
center. These neighbors are determined by the radii value. 

• The process is repeated until no data points are out of the 
cluster center radii. 

 GENFIS2 function is part of the fuzzy inference system 
toolbox in MATLAB. The mentioned function generates a 
Sugeno type fuzzy inference system. The calculations are 
done based on the subtractive clustering method. The first 
step is determining rules and antecedent membership func-
tion numbers using the subclust function. Then, consequent 
equations of each rule are estimated by least squares method. 
The mentioned function yields a fuzzy inference system 
structure which contains a set of fuzzy rules for covering the 
feature space. 

 Mostly, a grid partitioning method is used in designing a 

fuzzy controller. In general, the only variables involved in 

this process are state variables which are fed to the controller 

as input values. As a strategy, for each input, a small number 

of membership functions is required by the partitioning op-

eration. This method faces some problems when the number 

of inputs is relatively large. For example, in a fuzzy model 

which has 10 inputs and two membership functions, each 

input would result in ��� fuzzy if-then rules, which is prohib-

itively large. This problem is referred to as the curse of di-
mensionality. 

 In MATLAB, genfis1 is used to create a single-output 

Sugeno-type fuzzy inference system based on grid partition-

ing.  

Fuzzy C- Means (FCM) is a data clustering method in 

which the dataset under study is grouped into n clusters. Data 

points in the dataset belong to every cluster with a certain 

degree ranging from 0 to 1, inclusive. For instance, a specific 

data point which is close to the center of a cluster will have a 

high degree of membership in the cluster and another data 

point which is at a distance far from the cluster center will 

have a lower degree of membership in the cluster.  

 In MATLAB, genfis3 creates a fuzzy inference system 
using fuzzy c-means clustering by extracting a set of rules 

which can model the behavior of the data. 

4.3. Inductive Fuzzy Classification 

 Inductive Fuzzy Classification with Normalized Likeli-
hood Ratios (IFCNLR) was first suggested by Kaufmann in 
2009 [33]. As mentioned in [34], the method has been 
implemented to WEKA; it can be found under the supervised 
attribute filters. 

 According to [33] “IFC is introduced as inducing mem-
bership functions to fuzzy classes and assigning individuals 
to those classes”. Any function capable of mapping crisp 
valued input into output data in the range 0 and 1, inclusive, 
can be considered as a membership function. Inductive fuzzy 
classification can be described as the procedure of assigning 
individuals to fuzzy sets, and inductive inference is the basis 
of generated membership functions for these fuzzy sets. The 
process for multivariate inductive fuzzy class induction is 
shown in Fig. (1). Modified Diagram of a Mamdani-FRBS (Fuzzy 

Rule Based System) [26]. 

 Fig. (2). The proposed procedure starts with data prepara-
tion. Next, univariate membership functions should be in-
duced for the attributes. Univariate membership functions 
can be induced in two ways: namely supervised and unsu-
pervised induction. In this study, the first method is utilized. 
In this method, induction is done based on a target variable. 
It is required to normalize the differences and ratios when 
trying to obtain the membership functions for inductive 
fuzzy classes for a variable according to the distribution of a 
second variable. For instance, a membership degree to an 
inductive fuzzy class can be represented as a normalized 
likelihood ratio. 

 IFC-NLR is based on the transformation of the inductive 

support of the target class membership into a membership 

function with a specific property, i.e., the membership de-

gree of I in class y' increases as the likelihood of i� y goes 

higher compared to i � y. For instance, the calculation of the 

membership degree of a given attribute X in predictive class 

y' is done using the normalized likelihood ratio function. The 

calculated membership degree (x) should be in the domain of 

X, i.e., x�� dom (X). The derivation of the normalized likeli-

hood ratio function is done based on the probability of the 

target class membership. In fact, the relation between all 

values in dom (X) and their likelihood ratios in a normalized 

form constitutes the resulting membership function. 

 According to the principle of likelihood for a pair of in-

compatible hypotheses �� and ��, evidence E supports �� 

over ��, if and only if p(E| ��) � p( E| ��). The likelihood 

ratio (LR) measures the strength of evidence for �� over 

������: 

LR (�� �� ��� | E):= 
� �� ���

� �� ��
 

Fig. (2). Procedure of inducing multivariate inductive fuzzy class [33]. 
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 The epistemological problem of induction can be solved 

by utilizing the likelihood ratio. In this case, the likelihood 

ratios are used as the measures of support for inductive in-

ferences. If the data contains fuzziness, the likelihood can be 

calculated as: 

L (�� |��) = p (��|��) = 
�
������

����
���

�
��
����

���

 

 In the likelihood principle stated above, the index of the 
degree of support for the conclusion of �� � �� is the ratio 
between the two probabilities, while the evidence of (��) = �� 
is given. The transformation of the likelihood ratios into a 
fuzzy set membership function necessitates a normalization 
in the range [0, 1]. Fortunately, for each ratio defined as R = 
A/B, a normalization of the form N = A/ (A+B) exists and it 
has the following properties: 

• An R value close to 0 results in an N value near 0. 

• An R value equal to 1 results in an N value equal to 0.5. 

• A large R value results in an N value close to 1. 

 The NLR function is derived by applying the previously 
mentioned normalization to the calculated likelihood ratios. 
Accordingly, the membership degree of an attribute like x in 
the target class prediction y' can be expressed by utilizing the 
corresponding NLR given below: 

���: = NLR (y| x) = 
� �� ��

� �� � ��������
 

 Once univariate membership functions are induced, at-
tribute values should be transformed into univariate target 
membership degrees. Classification is done by aggregating 
fuzzified attributes into a multivariate fuzzy classification 
and the last step is the evaluation of the predictive perfor-
mance of the resulting model. 

 The idea in this procedure is to build up a fuzzy classifi-

cation which gradually positions an inductive membership 

individual i in target class y. The multivariate model���� is 

utilized by the mentioned fuzzy classification to accomplish 

the procedure of allocating individuals with an inductive 

membership degree in the predictive inductive fuzzy class ��. 

The inductive support for class membership in target class y 

depends on the inductive degree of ���(i) of an individual in 

��. The increase in ���(i) results in an increase in the inductive 

support for class membership in the mentioned target class.  

4.4. Fuzzy Rough Classification 

4.4.1. Rough Set Theory 

 Rough Set Theory (RST) [35] makes it possible to accu-

rately adopt knowledge from a domain. Furthermore, RST 

provides a tool that can keep up data content while decreas-

ing the amount of information included. Indiscernibility may 

be expressed as the most critical point in rough set theory. 

Let (U, A) represent a data system in which U is a non-

discharge set of limited objects (cosmos), and let A be a non-

exhaust limited arrangement of attributes with the end goal 

that a: U � �� for each � � A. �� is the set of qualities that 

attribute a may take. With any B � A, there is a related pro-

portionality connection���: 

��= {(x, y) � �� | � a � B, a(x) = a(y)} 

 According to the definition given above, for any (x,y) � 

��, x and y are said to be indiscernible by attributes from B. 

The representation of B- discernibility relation can be illus-

trated as �����. Assuming that A� U, the development of B-

upper and B-lower approximations for A makes it possible to 

use the information in B for approximations about A: 

�� �A = {x � U| ���� � A} 

�� �A = {x�� U| ���� � A� �} 

 A rough set can be described as a tuple �� � ���� � � .  

 A decision system (X, � �{d}) can be defined as a spe-

cial kind of information system used in the context of classi-

fication, where d (d���) is an assigned attribute called the 

decision attribute. Decision classes of the decision attribute 

are defined as its equivalence classes �����. For B � �, the 

region which includes objects in X, where B values allow the 

prediction of the decision classes unambiguously, is included 

in the B- positive region denoted by ����: 

����= �� � ����� ����  

 In fact, whenever x � ���� holds, it can be claimed that 

at any point a given object (which has the same values as x 

for the attributes included in B) belongs to the same decision 

class as x. The following formula is used to measure the pre-

dictive ability of the attributes included in B: 

�� = 
������

���
 

 In case that �� = 1, (X, � �{d}) is called consistent. A 

decision reduct for a subset B of � occurs when it satisfies 

the equation ����=����. This equation means that the de-

cision-making power of � is preserved by B and no further 

reduction is possible. The further reduction is the existence 

of a proper subset �� of B such that ������=����. B is 

called a decision superreduct if the latter constraint (which 

states that it is essential for B) to be minimal is lifted. 

4.4.2. Fuzzy Sets Theory 

 The fuzzy sets theory [36] makes it possible for objects 

to belong to a single set or multiple sets with a given degree. 

Remember that a fuzzy set X can be defined with values 

transformed into membership degrees in the interval [0,1] 

and the fuzzy relation in X is defined as a fuzzy set in X � 

X. The R- foreset of y is the fuzzy set denoted by ��. It is 

defined as below for all y in X: 

��(x) = R(x, y)    ���� � � 

 In case R is a reflexive and symmetric fuzzy relation, we 

have: 

R(x, x) = 1 

R(x, y) = R(y, x) 

 Which hold for all x and y in X. For this condition, a 

fuzzy tolerance relation is defined by R. Given a fuzzy toler-

ance relation R, the fuzzy tolerance class of y is denoted by 

��; for fuzzy sets A and B in X, A� B � ( ��� � ��(A(x) � 

B(x)). For a finite X, |A| is defined below: 
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|A| = � ����  

 The role of fuzzy logic connectives in the development of 

the fuzzy rough set theory is inevitable. Thus, we review 

here some vital definitions. A triangular norm (t-norm for 

short) Ί is defined as an increasing, commutative and associ-

ative ������ � [0,1] mapping which satisfies the relation Ί(1, 

x) = x, for all x in [0,1].  

 In this paper, �� and �� are used. These are defined as 

follows: ��(x, y) = min(x, y) and ��(x, y) = max (0, x+ y- 1) 

(Lukasiewicz t-norm), for x, y � [0, 1]. On the other hand, an 

implicator is described as any transformation in the form 

������ � [0,1]- which maps Ί and satisfies Ί(0, 0)= 1, Ί(1, x) 

= x, for all x � [0,1]. Additionally, Ί must be decreasing in 

its first, and increasing in its second component.  

4.4.3. Theory of the Fuzzy- Rough Sets 

 The procedure illustrated above can be effective when the 
considered datasets contain discrete values. In case the da-
taset includes real valued attributes, a discretization opera-
tion is required hereafter. Modelling the approximate equali-
ty among objects with continuous attribute values by utiliz-
ing fuzzy relation R in U is a more natural and adaptable 
approach. Here, U is defined as a 0-1 projection that assigns 
object’s degree of similarity to them. 

5. NUMERICAL RESULTS AND ANALYSIS 

 To test the effectiveness and applicability of the proposed 
framework for distinguishing PWP from healthy people, we 
utilized a dataset of speech tests taken from 40 subjects [1]. 
The dataset consists of a total of 1040 instances and 26 fea-
tures.  

5.1. Data Preprocessing 

 Before applying the fuzzy classification algorithms de-
scribed in Section 5, the data was cleaned from outliers and 
extreme values using WEKA. Interquartile Range unsuper-
vised filter was applied to the dataset. The raw dataset con-
tained 189 outliers and 62 extreme values in addition to some 
outliers which were removed using the remove with values 
filter. This process decreased the number of instances to 817.  

5.2. WEKA Classification Results and Analysis 

 The classification process was conducted using WEKA. 
Three types of model validations have been considered: (1) 
the k-fold cross validation technique with k=10, (2) leave- 
one- out (LOO) cross validation, and (3) validation by divid-
ing the dataset into a 70 to 30 percent training and test da-
tasets. The metrics used for evaluating the performance of 
the classifiers are accuracy, sensitivity, specificity, and Mat-
thew’s Correlation Coefficient (MCC).  

 The model validation methods used in this paper are de-
scribed next.   

• In 10-fold cross validation, the dataset is randomly di-
vided into 10 parts and each time one of the parts is left 
as the test set while the other nine parts are used together 
as the training set. 

• Leave- one- out cross validation requires that the number 
of folds is equal to the number of instances (817 here). In 
this method, data is divided into n random parts. Each 
time, the model is trained by a combination of n-1 parts 
forming the training set and the model is tested using one 
part as the test set. 

• In the third method, the model is trained with 70% of the 
dataset and tested using the left 30%. 

 We used four evaluators to assess the performance of the 
classification models employed in this study. These evalua-
tion methods are described next based on prediction versus 
the actual observation regarding whether instances belong to 
a given class C or not. An instance which is predicted and 
observed in class C is classified as a True Positive (TP) case. 
An instance which is not predicted but observed in class C is 
classified as a False Positive (FP) case. An instance which is 
predicted but not observed in class C is classified as a False 
Negative (FN) case. An instance which is neither predicted 
nor observed in class C is classified as a True Negative (TN) 
case. 

• Accuracy is defined as the rate of the instances correctly 

classified, 
�����

�������������
 

• Sensitivity (alternatively called true positive rate, recall, 

or probability of detection) measures the ratio 
��

�������
  

• Specificity (alternatively called true negative rate) is 

computed as 
��

�������
 

• The correlation coefficient between the predicted and the 

observed binary classifications is known as Matthew’s 

Correlation Coefficient (MCC). Values for MCC are in 

the interval [-1,+1]. As for any correlation coefficient, 

+1 means perfect prediction, 0 represents random predic-

tion and -1 indicates total disagreement between the ob-

served and the predicted cases. 

 MCC = 
�����������

����������������������������
 

 Six classifiers have been utilized from WEKA 3.8 to dif-
ferentiate PWP from healthy case in the given dataset. The 
obtained results are presented in this section. Table 1 reports 
result from the third validation method.  

 As reported in Table 1, nearly 3 out of the 6 classifiers 
performed efficiently and classified the data with 100% accu-
racy. The MCC value for MLP, SGD and Bagging is 1; this 
indicated perfect prediction. IBK reported the worst perfor-
mance by classifying only 84% of the data correctly. It has 
been applied with its default parameter in WEKA, i.e., k=1. 

 Classifier results for 10-fold cross validation are present-
ed in Table 2, where it can be obviously seen that nearly 3 
out of 6 classifiers performed efficiently and classified the 
data with 100% accuracy. Again, IBK reported the worst 
performance by classifying only 87% of the data correctly. 
Classification results from LOO cross-validation are present-
ed in Table 3. Also, here nearly 3 out of the 6 classifiers per-
formed efficiently and classified the data with 100% accura-
cy. Again, IBK reported the worst performance by classify-
ing only 87% of the data correctly.  
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Table 1. WEKA classification results. 

- Accuracy Sensitivity Specificity MCC 

MultiLayer Perceptron 1.00 1.00 1.00 1.00 

SGD 1.00 1.00 1.00 1.00 

SMO 0.92 0.85 1.00 0.85 

Voted Perceptron 0.87 0.80 0.96 0.76 

IBK 0.84 0.85 0.82 0.67 

Bagging 1.00 1.00 1.00 1.00 

 

Table 2. WEKA classification with 10-fold cross validation. 

- Accuracy Sensitivity Specificity MCC 

MultiLayer Perceptron 1.00 1.00 1.00 1.00 

SGD 1.00 1.00 1.00 1.00 

SMO 0.92 0.85 1.00 0.85 

Voted Perceptron 0.88 0.83 0.94 0.77 

IBK 0.87 0.88 0.86 0.74 

Bagging 1.00 1.00 1.00 1.00 

 

Table 3. WEKA classification with LOO cross validation. 

- Accuracy Sensitivity Specificity MCC 

MultiLayer Perceptron 1.00 1.00 1.00 1.00 

SGD 1.00 1.00 1.00 1.00 

SMO 0.92 0.85 1.00 0.85 

Voted Perceptron 0.89 0.82 0.96 0.78 

IBK 0.87 0.89 0.85 0.74 

Bagging 1.00 1.00 1.00 1.00 

 

5.2.1. Fuzzy Rough Results Analysis 

 Fuzzy rough classification was done using the fuzzy filter 
for classification in WEKA. Model validation and perfor-
mance evaluation were conducted with the same methods 
and metrics. The results are presented in this section. The 
methods used under this category are summarized below: 

• Discernibility Classifier 

• FLR (Fuzzy Lattice Reasoning) 

• FURIA (Fuzzy Unordered Rule Induction Algorithm) 

• Fuzzy NN (Fuzzy Rough k nearest neighborhood) 

• Ownership Nearest Neighborhood 

• Fuzzy Rough NN 

• NN 

• OWANN (Ordering Weighted Averaging Nearest 
Neighbor) 

• QSBA (Quantified Subsethood Based Approach) 

• Quick Rules 

• VQ NN (Vector Quantization K- nearest Neighborhood) 

• VQ Rules (Vector Quantization Rules) 

 Fuzzy rough classification results for the third method 
are presented next in this section where it can be obviously 
seen that nearly 2 out of the 12 classifiers performed effi-
ciently and classified the data with 100% accuracy. The 
QSBA classifier reported the worst performance by classify-
ing only 65% of the data correctly. The best classifier under 
this validation method is FURIA. Table 4 reports Fuzzy rough 
classification results. The 10-fold cross-validated results 
from the fuzzy rough classifiers are presented in Table 5. 
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 It can be easily seen from Table 5 that FURIA and FLR 
reported 100% accuracy. QSBA showed the worst perfor-
mance by reporting 68% accuracy. Considering the 10-fold 
cross-validation results, the best classifier is FURIA. Finally, 
the results from the LOO validation model are presented in 
Table 6. Same as reported by the previous two validation 
methods, FURIA again outperformed the other classifiers 
and the worst classifier is QSBA. 

5.2.2. Adaptive Neuro Fuzzy Classification (ANFC) Results 
Analysis 

 Adaptive neuro fuzzy classification was applied using 
MATLAB 2014b. The data used here is an ordered data 
which was shuffled to avoid feeding ordered class values to 

the classifier. The first step in adaptive neuro fuzzy classifi-
cation is generating a fuzzy inference system. MATLAB 
fuzzy logic toolbox has three types of ‘GENFIS’ functions 
which generate fuzzy inference systems. Genfis1 is used to 
generate fuzzy inference systems using grid partitioning on 
data. The fuzzy membership function used here is ‘PIMF’, 
and three membership functions have been generated. This 
function generates a huge number of rules which are not all 
necessary. Thus, applying genfis1 to the dataset with high 
dimensionality results in memory problems. To overcome 
this, attribute selection has been used to reduce the number 
of attributes in the dataset. Dataset dimensionality was re-
duced to three using the cfsSubsetEvaluation method in 
WEKA.  

Table 4. Fuzzy rough classification results. 

- Accuracy Sensitivity Specificity MCC 

Discernibility Classifier 0.88 0.84 0.93 0.72 

FLR 1.00 1.00 0.99 0.98 

FURIA 1.00 1.00 1.00 1.00 

FuzzyNN 0.79 0.71 0.88 0.53 

Fuzzy Ownership NN 0.86 0.83 0.88 0.65 

FuzzyRough NN 0.77 0.77 0.77 0.44 

NN 0.86 0.83 0.89 0.66 

OWANN 0.87 0.85 0.89 0.68 

QSBA 0.65 0.81 0.45 0.17 

QuickRules 0.93 0.92 0.95 0.82 

VQNN 0.86 0.83 0.89 0.66 

VQRules 0.93 0.89 0.97 0.85 

 

Table 5. Fuzzy rough classification with 10-fold cross validation. 

- Accuracy Sensitivity Specificity MCC 

Discernibility Classifier 0.89 0.86 0.92 0.73 

FLR 1.00 1.00 0.99 0.98 

FURIA 1.00 1.00 1.00 1.00 

FuzzyNN 0.82 0.80 0.85 0.56 

Fuzzy Ownership NN 0.85 0.84 0.86 0.62 

FuzzyRough NN 0.83 0.84 0.81 0.55 

NN 0.88 0.87 0.89 0.68 

OWANN 0.88 0.86 0.89 0.68 

QSBA 0.68 0.79 0.57 0.23 

QuickRules 0.94 0.92 0.96 0.85 

VQNN 0.88 0.87 0.89 0.68 

VQRules 0.94 0.92 0.95 0.83 
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 Table 6. Fuzzy rough classification with LOO cross validation. 

- Accuracy Sensitivity Specificity MCC 

Discernibility Classifier 0.90 0.87 0.94 0.76 

FLR 1.00 1.00 0.99 0.98 

FURIA 1.00 1.00 1.00 1.00 

FuzzyNN 0.83 0.80 0.86 0.58 

Fuzzy Ownership NN 0.86 0.84 0.88 0.65 

FuzzyRough NN 0.83 0.84 0.83 0.56 

NN 0.89 0.88 0.90 0.71 

OWANN 0.88 0.87 0.90 0.70 

QSBA 0.69 0.80 0.57 0.24 

QuickRules 0.94 0.92 0.95 0.83 

VQNN 0.89 0.88 0.90 0.71 

VQRules 0.93 0.93 0.92 0.95 

 

Table 7. Results for ANFC using genfis2 and genfis3. 

- Accuracy Sensitivity Specificity MCC 

genfs2 0.97 0.98 0.96 0.90 

genfis3 0.85 0.96 0.76 0.53 

 

Table 8. ANFC results with reduced dimension. 

- Accuracy Sensitivity Specificity MCC 

genfis1 1.00 1.00 1.00 1.00 

genfis2 1.00 1.00 1.00 1.00 

genfis3 1.00 1.00 1.00 1.00 

  

 The second function used for fuzzy inference system 
generation is ‘Genfis2’. It utilizes subtractive clustering for 
fuzzy inference system generation. The membership function 
utilized here is ‘GAUSSMF’. The parameters needed for 
genfis2 are input and output matrices, and a vector specify-
ing the range of influence for the cluster centers in each data 
dimension, and an optional matrix specifying the mapping of 
data from the input and the output into a unit hyperbox. 

 The third function used for fuzzy inference system gener-
ation is ‘GENFIS3’. It generates the fuzzy inference system 
using a fuzzy c-means clustering method. 

 After a Fuzzy Inference System (FIS) is generated, an 
adaptive neuro-fuzzy inference system is used to train the 
model based on neural networks. In ANFIS, a hybrid learn-
ing algorithm is utilized to tune the parameters of a Sugeno 
type Fuzzy Inference System (FIS). A combination of back 
propagation gradient descent and least squares methods is 
utilized to model a training dataset. Furthermore, the model 
is validated by ANFIS using a checking dataset to test over-
fitting in the training data. 

 To use k-fold cross-validation in MATLAB, the dataset 
was partitioned using the ‘CVPARTITION’ command which 
divides the input data into k equal partitions. The same vali-
dation methods were utilized, and the classifiers were evalu-
ated based on the previously mentioned evaluators. The re-
sults from these three classifiers are presented next. 

 As it is obvious from the results reported in Table 7, the 
model with genfis2 outperformed the model with genfis3. 
The accuracy of the first model is 97%, while the second 
model classified 85% of the data correctly. To compare the 
performance of genfis1 with the other two classifiers, all of 
the three classifiers were run with the selected three features. 
The results are presented in Table 8. All the three models 
have classified the data with 100% accuracy. The cross vali-
dated model results are presented in Table 9. It can be easily 
seen from the reported in Table 9 that genfis2 outperformed 
genfis1. The former method reported 96% accuracy while 
the latter method reported 100% accuracy. In Table 10, the 
worst performance belongs to genfis3. All the evaluation 
metrics for genfis3 are lower their counterparts for the other 
two classifiers. Results of the LOO cross-validation method 
are presented in Tables 11 and 12. All of the classifiers re-
ported 100% accuracy under the LOO cross validation. 
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Table 9. ANFC results with 10- fold cross validation. 

- Accuracy Sensitivity Specificity MCC 

genfs1 0.96 1.00 0.93 0.86 

genfis2 1.00 1.00 1.00 1.00 

  

Table 10. ANFC results with 10- fold cross validation and reduced dimension. 

- Accuracy Sensitivity Specificity MCC 

genfis1 1.00 1.00 1.00 1.00 

genfis2 1.00 1.00 1.00 1.00 

genfis3 0.95 1.00 0.91 0.81 

 

Table 11. ANFC results with LOO cross validation. 

 Accuracy Sensitivity Specificity MCC 

genfs2 1.00 1.00 1.00 1.00 

genfis3 1.00 1.00 1.00 1.00 

 

Table 12. ANFC results with LOO cross validation and reduced dimension. 

 Accuracy Sensitivity Specificity MCC 

genfis1 1.00 1.00 1.00 1.00 

genfis2 1.00 1.00 1.00 1.00 

genfis3 1.00 1.00 1.00 1.00 

 

Fig. (3). Membership functions for scg1.
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Fig. (4). Performance evaluation against RMSE for scg1.

 

 

Fig. (5). Membership functions for scg2. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

Fig. (6). Performance evaluation against RMSE for scg2. 
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Fig. (7). Membership functions for scg3.

 

Fig. (8). Performance evaluation against RMSE for scg3.

 

5.2.3. SCG-NFC Method Results Analysis 

 As mentioned previously, three methods of scg- nfc have 

been applied to the dataset utilized in this study. The results 

are presented next in this section. The model evaluation has 

been done based on the accuracy measure and the model was 

validated by dividing the dataset based on a 0.7 to 0.3 ratio 
for the training and testing, respectively. 

 The results have been produced by considering 75 
clus- ters using k-means clustering for each of scg1 and 
scg2, and 3 clusters for scg3. The number of clusters and 
epochs have been chosen based on a trial and error meth-
od. The member- ship functions (Figs. 3, 5, 7) and the 
performance evaluation against RMSE for each scg meth-
od (Figs. 4, 6, 8) are presented next in Table 13. The re-
ported results clearly show that the worst classifier is the 
third one based on the accuracy measure. 

5.2.4. IFC- NLR Results Analysis 

 The crisp input data was transformed into membership 
degrees using the IFC filter. The inductive fuzzy inference 
filter is a supervised filter available in WEKA. Here, the 

inductive support is indicated by the membership degrees, 
and it is used for drawing the conclusion that the record be-
longs to the target class. To perform the operations men-
tioned above, the first step is the induction of the member-
ship functions from the data. One optional decision is the 
possibility to display the induced membership functions. The 
next step is utilizing these induced functions to fuzzify the 
original attributes. In data mining, the IFC filter is used in 
two major ways, including prediction and visualization. Both 
prediction and visualization are based on the concepts of 
membership function induction and inductive attribute fuzzi-
fication. 

 The membership functions for three of the attributes are 
illustrated in (Figs. 9, 10 and 11). 

 Four fields are used to illustrate the numerical analytical 
variables (Fig. 11). Normalized likelihood ratios (NLRs) and 
the corresponding quantiles and average quantile values are 
shown as a table in the first field. In the second field, NLRs 
and their corresponding AVQs are displayed as a histogram. 
Membership functions for the analytical variables are
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Table 13. Results from scg-nfc classifier. 

- Accuracy 

scg1 1.00 

scg2 0.9959 

scg3 0.7633 

 

 

 

Fig. (9). Inductive membership function for jitter_local. 

 

 

 

Fig. (10). Inductive membership function for number of pulses.
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Fig. (11). Inductive membership function for shimmer aq5. 

 
 

 

Fig. (12). Steps for the generation of an inductive membership function for an individual such as i [33]. 

 

illustrated using the third field. The membership function of 
the analytical variables is represented in the last field as SQL 
syntax which can be used for the fuzzy classification of the 
variables.  

 The nominal analytical variables are illustrated in a re-
duced form consisting of three fields. The first field includes 
a table representing normalized likelihood ratio and the 
quantile, and the average value of the quantile corresponding 
to NLR. The second field illustrates a histogram composed 
of the normalized likelihood ratios that correspond to the 
nominal values. The SQL syntax form of the membership 

functions is presented in the last field. An additional tab is 
used to display the membership functions of all the analytic 
variables in the SQL syntax.  

 Making a multivariate inductive model for the target 
membership class is the basic idea of the inductive fuzzy 
classification method [33]. The proposed approach uses 
probability based IFC to forecast a univariate inductive fuzz-
ification of analytic attributes before a multivariate conglom-
eration. This way, non-direct relationship between analytic 
attributes and the target membership can be demonstrated by 
a proper membership function. The steps presented in Fig. 
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(12) are connected with a specific end goal to determine an 
inductive membership degree of individual i in the forecast 
y' for class y: 

• Step 1: The unprocessed data includes sharp valued at-
tributes. 

• Step 2: IFC-NLR is used to calculate an inductive defi-
nition for the membership function of attribute values in 
the predictive fuzzy class ���.  

• Step 3: The membership functions derived in step B are 
utilized to fuzzify the attribute values. This step is a su-
pervised univariate fuzzification of attribute values; it is 
called inductive attribute fuzzification.  

• Step 4: In the next step, the dataset contains fuzzified 
attribute values in the range [0,1] and indicates class 
memberships’ inductive support. 

• Step 5: The fuzzified analytic variables are congregated 
at a membership degree for individuals in the predictive 
class. It can be a straightforward disjunction or conjunc-
tion, a statistical model, or a set of fuzzy rules inferred 
by supervised machine learning methods, such as linear 
or logistic regression. 

• Step 6: As a result of a multivariate aggregation, a mul-
tivariate membership function is generated. Outputs of 
the function generated are inductive membership de-
grees of individuals like i in a class like y. These outputs 
represent prediction resulted from these operations. 

 According to the suggestions of the previous research-
ers, the preprocessing step enhances the forecast exactness 
in case of using inductive fuzzy classification methods on 
analytical data. The performance of the existing data min-
ing techniques can be improved by transforming the attrib-
utes used in data mining into inductive membership degrees 
in the so-called target class. The main idea in inductive 
fuzzy classification is a multivariate model of a target  
variable with a blend of attributes which are inductively 
fuzzified. 

 In this method, target class values are changed to numeric 
values. Thus, using regression for predictions of target class 
assignments is possible. 

 The model validation has been conducted by following 
the same validations applied for the previous classifiers. 
Classifier performance has been assessed using Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and 
average correlation coefficient of predicted classes and actu-
al classes (CE). The results are presented next in this section. 

 As it is observed in Table 14, 8 out of 10 classifiers have 
classified the whole data correctly. The worst performance 
has been reported by RBFNetwork with an average correla-
tion coefficient of 0.32. 

 Results of the 10-fold cross validation method are report-
ed in Table 15. Here, the best results were obtained from the 
same 8 best classifiers reported in Table 14. Again, the worst 
performance belongs to RBFNetwork which has an average 
correlation coefficient of 0.57, though this is an improved 
value due to cross-validation. The results of the LOO cross 
validation method are presented in Table 16. The same top 8 
classifiers reported in the previous two cases have the best 
performance here as well, and the worst classifier in this case 
is again the RBFNetwork method which has a correlation 
coefficient of 0.56. 

6. MODEL VALIDATION AND COMPARATIVE 
ANALYSIS 

 To further investigate the classification methods suggest-
ed in this research, their results were compared with the re-
sults reported in [1]. This is a fair comparison because we 
used the same dataset produced by Sakar et al. [1]. They 
used two classifiers, namely, (1) K-NN classifier with k set 
to 4 different values 1,3,5 and 7, and the Euclidean distance 
metric, and (2) SVM with radial and linear basis function. 
The performance has been evaluated based on accuracy, sen-
sitivity, specificity and MCC. Model validation is done using 
LOSO. The results from [1] are presented in Tables 17 and 
18. 

 
Table 14. Results from IFC-NLR. 

- MAE RMSE CE 

IsotonicRegression 0.00 0.00 1.00 

LinearRegression 0.00 0.00 1.00 

LogisticForIFC 0.00 0.00 1.00 

AdditiveRegression 0.00 0.00 1.00 

SimpleLinearRegression 0.00 0.00 1.00 

LeastMedSq 0.46 0.68 0.00 

SMOReg 0.00 0.00 1.00 

RegressionByDiscretization 0.00 0.00 1.00 

RBFNetwork 0.43 0.47 0.32 

MultiLayerPerceptron 0.00 0.00 1.00 
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Table 15. Results from 10- fold cross validated IFC-NLR. 

- MAE RMSE CE 

IsotonicRegression 0.00 0.00 1.00 

LinearRegression 0.00 0.00 1.00 

LogisticForIFC 0.00 0.00 1.00 

AdditiveRegression 0.00 0.00 1.00 

SimpleLinearRegression 0.00 0.00 1.00 

LeastMedSq 0.48 0.69 0.00 

SMOReg 0.00 0.00 1.00 

RegressionByDiscretization 0.00 0.00 1.00 

RBFNetwork 0.34 0.41 0.57 

MultiLayerPerceptron 0.00 0.00 1.00 

 

Table 16. Results from LOO cross validated IFC-NLR.  

- MAE RMSE CE 

IsotonicRegression 0.00 0.00 1.00 

LinearRegression 0.00 0.00 1.00 

LogisticForIFC 0.00 0.00 1.00 

AdditiveRegression 0.00 0.00 1.00 

SimpleLinearRegression 0.00 0.00 1.00 

LeastMedSq 0.48 0.69 0.00 

SMOReg 0.00 0.00 1.00 

RegressionByDiscretization 0.00 0.00 1.00 

RBFNetwork 0.41 0.33 0.56 

MultiLayerPerceptron 0.00 0.00 1.00 

 

Table 17. K-NN results from [1]. 

K Accuracy Sensitivity Specificity MCC 

1 0.5337 0.4962 0.5712 0.0007 

3 0.5404 0.5327 0.5481 0.0008 

5 0.5442 0.5365 0.5519 0.0008 

7 0.5394 0.5404 0.5385 0.0008 

 

Table 18. SVM results from [1]. 

Kernel Accuracy Sensitivity Specificity MCC 

Linear 0.525 0.525 0.525 0.0006 

RBF 0.55 0.6 0.5 0.1005 



Fuzzy Classification Methods Based Diagnosis of Parkinson’s Disease Current Aging Science, 2019, Vol. 12, No. 2    117 

Table 19. Fuzzy rough nn results. 

k Accuracy Sensitivity Specificity MCC 

1 0.7616 0.3548 0.4068 0.450407 

3 0.7616 0.3548 0.4068 0.450407 

5 0.7616 0.3548 0.4068 0.450407 

7 0.7616 0.3548 0.4068 0.450407 

 
6.1. Fuzzy Rough Results 

 The results from the fuzzy rough classification methods 
are presented next. We have mainly applied these classifiers: 
fuzzy rough NN, FLR, FURIA and OWANN. The LOSO 
validation method has been used for all these classifiers. 

 For this classifier, parameter k was set to 1, 3, 5 and 7; 
the obtained results are presented in Table 19. 

 As it is obvious from Table 19, the results of the fuzzy 
rough NN outperformed those of k-NN and SVM reported in 
Table 17 and Table 18, respectively. The accuracy measure 
for this method did not vary for different values of parameter 
k; it is equal to 76.16%, which is higher than the same meas-
ure for k-NN and SVM presented in [1]. The MCC measures 
also outperforms the results presented in [1]. This shows the 
effectiveness and robustness of the classifiers applied in this 
paper. Finally, the results from the fuzzy lattice reasoning 
methods’ application are presented below: 

 As it is obvious from the results reported in Table 20, 
FLR has an accuracy of 99.33%, which is better than those 
reported by k-NN and SVM. MCC measures also outperform 
the results reported in [1]. 

 The results of FURIA are reported in Table 21 where it is 
obvious that this algorithm outperforms the ones presented in 
[1] in terms of accuracy and MCC measures. The high value 

of MCC indicates the effectiveness and robustness of this 
classifier. 

 The result of OWANN is reported in Table 22, where the 
values of k were taken as 1, 3, 5 and 7. The results from 
OWANN are presented in [1]. The best performance has 
been achieved for k= 7 with 81.07% accuracy. 

6.2. Adaptive Neuro Fuzzy Classifier Results 

 The adaptive neuro-fuzzy classification method was im-
plemented by employing subclustering and FCM methods; 
and the LOSO validation was utilized.  

 The subclustering method was performed using the 
genfis2 function in MATLAB. The radius parameter was set 
to 0.8 and the model was trained for 20 times. The results are 
presented in Table 23. 

 The accuracy of the adaptive neuro fuzzy classifier with 
subclustering is 97.21%; this is higher than the results re-
ported in [1]. The MCC value is 0.8487, which confirms the 
effectiveness and sustainability of the method utilized in this 
paper.   

 In this method, a Sugeno type FIS is constructed using 3 
rules and membership functions. The model was trained for 
20 epochs and the results are reported in Table 24. The re-
sults from genfis3 outperform those reported in [1]. 

 
Table 20. FLR results. 

- Accuracy Sensitivity Specificity MCC 

FLR 0.9933 0.4981 0.0048 1 

 
Table 21. FURIA results. 

- Accuracy Sensitivity Specificity MCC 

FURIA 1 0.5 0.5 1 

 
Table 22. OWANN results. 

k Accuracy Sensitivity Specificity MCC 

1 0.7654 0.3414 0.4241 0.450407 

3 0.7848 0.3376 0.4472 0.521715 

5 0.7886 0.3405 0.4482 0.521715 

7 0.8107 0.3664 0.4443 0.550123 
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Table 23. Genfis2 results. 

- Accuracy Sensitivity Specificity MCC 

genfis2 0.9721 1 0.9286 0.8487 

 

Table 24. Genfis3 results. 

- Accuracy Sensitivity Specificity MCC 

genfis3 0.8337 1 0.7647 0.4042 

 

Table 25. Results from PCA. 

- Accuracy Sensitivity Specificity MCC 

genfis1 0.5683 0.5833 0.5714 0.0475 

genfis2 0.6279 0.6429 0.6667 0.2374 

genfis3 0.5577 0.5833 0.5714 0.0475 

 

Table 26. Results from CFS subset evaluation. 

- Accuracy Sensitivity Specificity MCC 

genfis1 0.9942 1 1 1 

genfis2 0.975 1 0.9286 0.8487 

genfis3 0.8442 1 0.7647 0.4042 
  
 For further investigation, the adaptive neuro fuzzy clas-
sification method was applied to the dataset after attribute 
selection. The attribute selection methods used in this re-
search are PCA and CFS subset evaluation. To force the 
CFS subset evaluation method to choose 3 attributes, we 
set variance to 0.6. The results are given in Table 25 and 
Table 26. A triangular membership function with 2 func-
tions per input has been utilized in genfis1. The model has 
been trained for 40 times in PCA and 10 times in CFS sub-
set evaluation. Parameters for the other functions are the 
same as before. 

 The results reported in Table 26 clearly demonstrate how 
the two attribute-selection methods outperformance the 
methods described in [1]. Comparing the two attribute-
selection methods, the CFS subset evaluation results are bet-
ter than the PCA results. 

CONCLUSION 

 This paper described fuzzy classification based ap-
proaches to distinguish PWP from healthy people. The study 
concentrated on analyzing a Parkinson speech dataset with 
multiple types of sound recordings gathered from 40 test 
subjects. From the results reported in this paper, it can be 
concluded that the fuzzy rough nearest neighborhood algo-
rithm showed worst performance compared to the other clas-
sifiers. However, we compared the performances of the clas-
sifiers used in this paper to the performance of the classifiers 

used in [1]. In general, the classifiers described in this paper 
outperformed those considered in [1]. As WEKA classifiers 
are concerned, MultiLayerPerceptron, Bagging and SGD 
reported 100% accuracy. The worst classifier was IBK with 
an accuracy measure of 0.87 for 10-fold and LOO cross vali-
dated models, and 0.84 for the model validated by data parti-
tion. Comparing the Fuzzy rough classifiers, the best per-
formance belongs to FURIA with accuracy value equal to 1. 
The worst classifier in this category is QSBA with the accu-
racy of 0.68 for 10-fold cross validated model, 0.69 for LOO 
cross validated model, and 0.65 for the model which was 
validated by dataset partitioning. The best adaptive neuro 
fuzzy classifier is the one generated by genfis2, and the 
worst is the classifier generated using genfis3. Concerning 
the scg classifiers, scg1 classified the data in a completely 
correct manner and scg3 showed the least accuracy, namely 
0.7633. The inductive fuzzy classification results showed 
that the best classifiers are the regression methods as offered 
in [33]. The worst classifier in this category was RBFNet-
work.  
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