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11 September 9,5 +1.2 +4.2 

12  Precipitation Average  
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16 July 77 -9,4 -18.6 
17 August 80 -14,8 +34.2 
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23 season at the field location and the deviations from these values <luring the trial years. 
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l 

2 

3 31 Abstract 
4 

5 
32 The objective of this study was to evaluate the effect of wheeling with two different wheel loads 

7 33 (1.7 Mg,  2.8 Mg) and  contrasting  wheeling  intensities ( l x,  l0x) on the hearing  capacity  of  a 
8 

9 34 Stagnosol   derived   from  silty  alluvial   deposits.  Soil  strength  was  assessed   by  laboratory 
10 

11 35 measurements  of the  precompression  stress  in  topsoil  (20  cm) and  subsoil  (40 and  60  cm) 

12 36 samples. Stress propagation,  as well as elastic and  plastic  deformation  <luring  wheeling were 

14 37 measured in the field with combined stress state (SST) and displacement transducers (DTS). 
15 

16 38 We also present results from soil physical analyses (bulk dens it y, air capacity, saturated 
17 

18 39 hydraulic  conductivity)   and   barley   yields  from   the  first  two  years  after  the compaction. 

19 40 Although  the wheel  loads  used  were comparatively  small, typical for the machinery  used  in 

20 

21 41 Norway, the results show that both increased wheel load and wheeling intensity had negative 
22 

23 42 effects on soil physical parameters especially in the topsoil but with similar tendencies also in 
24 43 the  subsoil. Stress propagation etected down to 60 cm depth (SST). The first wheeling 

26 44 was most harmful, but all wheelin ed to accumulative plastic soil deformation (DTS). Under 
27 

28 45 the workable conditions in this trial, increased wheeling with a small machine was more 
29 

30 46 harmful to soil structure than a single wheeling with a heavier machine. However, the yields in 

31 47 the first two years after the compaction did not show any negative effect of the compaction. 
32 
33 

34 48 Keywords 

35 
36 49 Soil compaction, precompression stress, stress propagation, saturated hydraulic conductivity, 
37 

38 50 wheeling intensi ty, yield 
39 
40 

51 *til l.se ehusen @nibio.no 
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42 

43 

44 

45 

46 53 Introduction 
47 
48 

49 54 Increasing  production  costs  lead  to growing  economic  pressure  on Norwegian  farms.  In the 

50 55 attempt  to  enhance  productivity  and  achieve  more  economical   crop  production,  there  is a 
51 

52 56 growing demand for tractive- and machine power (Lebe rt, Boken et al. 2007) even on smaller 
53 

54 57 farms (Soane, Dickson et al. 1982, Flowers and Lal 1998). In Norway  this is of special concern 

55 58 because  climate  change  with  higher  rainfall  <luring  the season  and  at harvesting (Hanssen- 

57 59 Bauer , Førland et al. 2015), leads to an increasing risk for soil compaction if heavy machinery 
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59 60 is used under unfavourable conditions. Especially harvesting is a proble m, as farmers are often 
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confronted with the decision whether to harvest cereals at the earliest possible date , when the 

soil may be still wet and at risk for severe soil compaction, or to postpone harvest until the soil 

has dried enough to reduce the risk of compaction but incurring the risk of reduced cereal 

quality (Sogn and Hauge 1976) and protein content (Sander, Allaway et al. 1987). 

Harvesting and associated transport lead to high wheeling intensity and high risk of severe soil 

compaction. Efficient management of field traffic has a huge potential to reduce the number of  

passes and thereby the risk of soil degradation  (Duttmann,  Brunotte  et  al.  2013).  In  Norway, 

there is a national aim toraise cereal production by 20% by  2030 (Vagstad,  Abrahamsen  et  al. 

2013, Matdepartement 2016) and there is increasing focus on improving cereal yields. Soil 

compaction impairs root growth and reduces water and nutrient uptake, which causes yield and 

quality decline and can even induce increased den itrificatio n,  erosion  and  nutrient  leaching 

(Unger and Kaspar 1994, Lipiec 2012), even several years after  compaction  (Håkansson  and 

Reeder 1994). Soil compaction due to traffic on  agricultural  land  is therefore  assumed  to  be one 

of the main causes of soil physical degradation (Flowers and Lal  1998,  Pagliai,  Marsili  et  al. 

2003) and yield stagnation also in the Scandinavian countries (Petersen, Haastrup et al. 20l 0). 

Avoiding additional soil compaction is therefore  of  high  priority.  Special  attention  should  be 

paid to subsoil compaction due to the use of  heavy  machinery  under  high  soil  moisture 

conditions.  While  damage  by compaction  in er soil horizon may be alleviated  after four 

to five years (Håkansson, Voorhees et al. 1987), due to biolo gic al, climatic and anthropogenic 

influences (Gysi, Ott et al. 1999), these effects may be limited in the subsoil and techniques to 

remediate compacted subsoil are scarce (Lebert, Boken et al. 2007).  Subsoil  compaction  is 

therefore be assumed to be permanent, persisting over a long  period  even  in  northern  climates 

with significant freeze and thaw (Saini 1978, Wolkowski 1990, Håkansson  and  Reeder  1994, 

Lipiec 2012, Riggert, Seehusen et  al.  2017)  and  shrinking  and  swelling  cycles  (Lamande, 

Berisso et al. 2012). 

The main object of this paper is to describe how typical Norwegian farm machinery (used for 

instance for harvesting) with different wheel loads (1.7 and 2.8 Mg) and contrasting wheeling 

frequency (l and l O passes) influences stress propagation and consequently induces further soil 

deformation. The use of such heavy machinery has rarely been investigated on silt soil under 

the conditions in southeastern Norway, where the climate is characterized by long, cold winters 

and relatively short growing seasons with variable rainfall. The methods used to determine the 

effects of compaction include (l) measurement of the precompression stress to determine soil 

strength, (2) a combined stress-state and displacement-stress transducer system to determine 

the major principal stresses and soil deformation in top- and subsoil that occur during wheeling. 
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In  addition ,  we  present  results  of  soil  physical   parameters  (BD,  AC,  Ksia )   to  verify  soil 

compaction. These findings are discussed in relation to the yields monitored for two years 

following the compaction treatment. 

 
 

Material and methods 

Field site 

The trial was located on a silt soil in Solør (Stagnosol, medium erosion ris k, poor natural 

drainage) near Kongsvinger (60.25°N, 12.08°E) in South East Norway (WRB 2006) (see Table 

l). 

The compaction treatments were performed in early summer 2015. The field was divided into 

two parts (Figure l). One part of the field was used for the compaction treatment (stress 

measurements and soil sampling) while the second part was compacted wheel by wheel (l0x) 

with different axle loads (1.7 Mg, 2.8 Mg) and was used for yield analyses in 2015 and 2016. 

Two strips 1.5  m  wide and  15 m l .5 m2
) on each treatment plot were harvested. The 

previous crop was spring  barley (20 l  al practices were relatively consistent during the 

study period. All plots were ploughed the autumn before the compaction (2014). The plots were 

also spring ploughed (25cm) in both 2015 (after the compaction) and 2016. Timing of seedin g, 

fertilizing and soil tillage depended on local climate conditions and the field was treated (e.g. 

seeding, plant protection) in the same way as the surrounding fields. Seeding (barley , hordeum 

vulgare L.) was done the 16th ofJune (2015) and 15th ofMay (2016). Herbicides and fungicides 

were used  both years. Harvesting  was done 22th October 4th of September (2016). 

 
Climate and soil water content at sampling 

The climatic conditions during the trial period were recorded by a nearby weather station  and 

the mean monthly air temperature and precipitation are compared in table  3 to the average 

values for the period 1961-1990. In 2015 it was slightly colder than average. The month (May) 

before our compaction treatment was wetter than average but both June and  July  were drier 

than average. There was little precipitation the days before the compaction treatment and none 

during it, resulting in workable condit ions, with higher soil moisture tension (upper soil layer - 

25kPa; subsoil -63kPa) than assumed field capacity (-l0kPa) while wheeling. 

The growing season in 2016 was both warmer and drier than in 2015 and average (Tab. 2). 

 
 

Machinery 
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In both cases single (lx) and multiple (l0x) passes were performed with the same tractor and 

trailer combination but with different payloads on the trailer. The equipment is typical for small 

and medium-sized farms in Norway and is commonly used for potato (Solanum tuberosum) 

transport at harvest. 

The lighter tractor/trailer combination had a total weight of 13 Mg, resulting in a wheel load of 

1.7 Mg for the trailer. The heavier tractor/trailer combination had a total weight of 17 Mg, 

resulting in a wheel load of 2.8 Mg for the trailer (tandem axles) (Figure 2). The chosen 

machinery weight may also be representative for a combine harvester. 

Tire inflation pressure (Table 3) was chosen according to factory recommendations. The 

machinery was weighed prior to the wheeling experiment on a portable scale and the contact 

area of the wheels was determined by marking the tyre-print with flour. The latter was 

photographed from above and the image was processed digitally (Gysi, Ott et al. 1999, Zin k, 

Fleige et al. 2010). To determine the average ground pressure, the total load was divided by the 

surface contact area (Table 3). 

Due to the trailer ' s constructi on, with tandem axles located towards the end of the trailer (Figure 

2), some of the trailer's weight was supported by the back axle of the tractor. Higher trailer 

weight therefore also increased  wheel load on the back axle of the tractor. Higher wheel load  

led to a higher contact area on the tractor than the trailer, which led to reduced average ground 

pressure  but increased  ground pressure on the tr ble 3). 

 
Soil measurements 

Stress-state and displacement stress transducer systems 

In order to determine the influence of various wheel Ioads and wheeling intensities on soil 

structure , stress propagation was measured with a stress-state-transducer system (SST) 

consisting of three sensor heads able to register six normal pressures at one point under the 

traffic tane. The arrangement of strain gauges on the aluminium sensor head of the SST (Kiel2) 

is based on the theory of six-directional stress measurements , which was developed by (Harris 

1960) and advanced by Grasle (1999). With this arrangement, the vertical stress impact is 

described by the major principal stress (cr1) and calculated using the SSTKIEL.exe program 

developed by Johnson (1994). Further details about stress theory and the mathematics behind 

the development and function of the transducer can be found in Nichols et al. (1987) and (Horn, 

Johnson et al. 1992). In addition the SST was connected to a displacement transducer system 

(DTS) (Wie rmann, Werner et al. 2000) which was located at 20 cm depth , thus measuring the 

amount of elastic and plastic displacement in vertical direction in the soil layer directly below 
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20 cm. The measuring system was installed in l  x l  m trenches with the sensors located at 20, 

40 and 60 cm depth parallel to the driving direction beneath the centre of the wheel rut. The 

distance between sensor head and profile wall was about 50 cm (Zink, Fleige et al. 2010). There 

were done two replications of the SST and DTS measurements.  Rut depth  was measured  with 

a ruler after every whee ling . 

 
Soil sampling and laboratory measurements 

Undisturbed soil samp les were taken in order to analyse the stress strain behaviour and to derive 

the precompression stress (Pc), saturated hydraulic conductivity (Ksat), pore size distribution 

(total pore va lu rne, TPV; air capacity, AC) and bulk density (DB) in known depths. Soil 

samples were obtained after first and tenth pass of the light and the heavy tractor-trailer 

combination. 

Soil precompression stress was derived from stress strain measurements carried out under 

confined conditions (undisturbed soil samples 236 cm3; n=8 per horizon) at field soil moisture 

content , using a pneumatic multistep oedometer (uniaxial confined compression test) and eight 

load steps (20, 40, 60, 80, 100, 150, 300 and 400 kPa) (Peth, Rostek et al. 2009). Bach step 

lasted for two hours to allow drainage of excess pore water. Pc values were determined 

graphically following the method of Casagran 6). Saturated soil samples (100 cm3
; n=l0 

per horizon) were used to determine saturated hydraulic conductivity based on the hood 

permeameter method described by Hartge (1993). Undisturbed soil samples (l 00 cm3 
; n=5 per 

horizon) obtained for analysis of pore size distribution were saturated, drained, using a suction 

table at-3 kPa to -50 kPa matric potential and pressure plate at 1.5 MPa (identical to -1500 kPa 

matric potential) and weighed at each step. Fina lly, the dry bulk density (BD) and air capacity 
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49 

at-3 kPa (AC) were derived. Disturbed samples (- 250 g) were tak 

analysis at each depth using the combined sieve and  pipette  m 

with texture following FAO (2006). 

Statistical analyses 

ain size distribution 

artge and Horn 2009) 
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Values of cr1, Pc, Ksat, AC and DB were analysed using the R statistical software package (2014); 

cr1, Pc, DB and AC were assumed to be normally distributed and homoscedastic, based on 

graphical residuai analysis. In contrast, Ksat values were not assumed to be normally distributed 

(skewed to the right), with nonparametric multiple contrast tests according to (Konietschke, 

Hothorn et al. 2012) thus applied instead. The data were also tested by applying analyses of 

variance (ANOVA), followed by a corresponding cell means mode! (Schaarschmidt and Vaas 

http://mc.manuscriptcentral.com/sagb
mailto:sagb-peerreview@journals.tandf.co.uk


URL: http://mc.manuscriptcentral.com/sagb Email: sagb-peerreview@journals.tandf.co.uk  

16 

35 

54 

Page 19 of 36 

 

 
l 

2 

3 195 
4 

5 196 
6 

7 197 
8 

9 198 
10 

199 
11 

12 200 
13 

14 201 

15 
202 

17 203 
18 

Acta Agriculturae Scandinavica, Section B - Plant Soil Science 

 
 
 
 

2009). The significance of the different tests was set at a a-leve) of 5 % and is indicated by 

upper case letters in the figures. 

Results: 

Stress- state- transducer measurement (SST) 

All wheeling caused noticeable major principal stress (cr1) down to 60 cm depth. Differences 

were found with respect to soil depth, the number of wheeling events and wheel load. Stresses 

were highest in the upper soil layer. The first wheeling caused the highest  stress at all depths 

but the decline with increasing number of wheelings was more marked in deeper soil depth than 

at 20 cm, where especially the 2.8 Mg treatment showed reactions even after the 10th wheeling. 
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led to higher stress than the smal ler one (1.7 Mg) (Figure 3). 
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Most of the measured soil deformation was found to be elastic , but especially the initial 

wheeling caused more pronounced plastic deformation in the vertical direct io n, diminishing 

with increasing number of wheel passes. (Figure 4). Each wheeling event led to additional 

plastic soil displacement. There were only small differences between the different wheel loads. 

Higher wheel load led to slightly increased cumulative plastic disp lace ment , approximately 35 

mm at 1.7 Mg wheel load and 36 mm at 2.8 Mg wheel loa d. Vertical soil displacement was 

seen as ruts on the soil surface. Higher wheel load caused deeper ruts. It was the first wheeling 

that caused the majority of rut depth in both cas 

Precompression stress (PC): 

Differences in Pc values, measured at field moisture content, were not significant but there was 

a tendency that the Pc in the upper soil layer increased with g intensity and wheel load 

(Figure 5). Multiple wheeling (l0x) with 1.7 Mg wheel lo ed to an increase in Pc compared 

to single wheeling (lx). In the case of 2.8 Mg wheel loa d, l0x wheeling caused an increase in 

Pc compared to single wheeling. Higher wheel load led to an increase compared to smaller 

wheel load (1.7 Mg) for single wheeling with the 1.7 Mg trailer. In the case of multiple 

wheeling , higher wheel load did not result in any increase in Pc. Pc can be classified as low 

(30-60 kPa), medium (60-90 kPa) and high (90-120 kPa) (Horn and Fleige 2003). According to 

this classification, all Pc values in the upper soil layer can be classified as low. 

There was a tendency that the differences were less pronounced in 40 cm depth. Multiple 

wheeling with 1.7 Mg led to a reduction compared to lx wheeling. l0x  wheeling with 2.8 Mg  

led to a slight increase compared to single wheeling. Single wheeling  with 2.8 Mg increased  

the Pc at this depth compared to multiple wheeling with 1.7 Mg. 
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At 60 cm depth , multiple wheeling caused a (both 1.7Mg and 2.8Mg) increase compared to 

single wheeling. Higher wheel load (2.8 Mg) led to an increase compared to smaller wheel load. 

Single wheeling with 2.8 Mg led to a slight increase compared to multiple wheeling with 1.7 

Mg. With the exception of multiple wheeling with l. 7 Mg (classified as low ), all Pc values in 

40 cm and 60 cm depth could be classified as medium (Figure 5). 

 

Effects on physical soil properties and functions 

 
 

Bulk density (BD) 
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bulk density (BD) varied (Figure 6). In the upper soil layer both an 

and in weight increased BD. Multiple wheeling with 1.7 Mg 
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increased BD more than the single wheeling with 2.8 Mg. At 40 cm depth both increasing wheel 

load (single wheeling 12%, multiple wheeling 29 %) and increasing wheeling intensity (1.7Mg 

+10 %, 2.8Mg + 27 %) led to an increase in BD (Figure 6). At 60 cm soil depth multiple 

wheeling led to a significant increase in BD compared to single wheeling. Also in this layer 

multiple wheeling with 1.7 Mg did increase DB more than single wheeling with 2.8 Mg.  

Air capacity (AC): 

Air capacity (AC), expressed as the amount of pores >50 µm, was influenced by both wheeling 

intensity and wheel load but few effects  were significant  (Figure 7). In the  upper soil  layer  

(20 cm), multiple wheeling significantly decreased AC compared to single wheeling with the 

same wheelload. Multiple wheeling with 1.7Mg caused a significantly greater reduction in AC 

than single wheeling with 2.8Mg. At 40 cm depth no significant effects between  treatments 

were found. In the subsoil (60 cm), multiple  wheeling with 1.7 a higher decrease in AC 

than single wheeling with this wheelload. 

Saturated hydraulic conductivity (Ksat) 

Results for the K sat values for the upper soil layer (20 cm) showed no significant effects (Figure 

8). At 40 cm depth wheeling with 2.8 Mg led to a significant decrease in K sat compared to 

wheeling with 1.7Mg In the subsoil (60 cm) multiple wheeling with 2.8 Mg significantly 

decreased K sat compared to the other treatments. 

 

 

 

 

 

 

Yields: 
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In 2015, yields on reference plot (Figure l) were 37 % lower than average barley yields on this 

farm (about 5.4 Mg/ ha), mostly due to late seeding (Table 4). That was a trend towards reduced 

yields on the compacted plots compared to the unloaded reference plot. Multiple wheeling with 

1.7 Mg wheel load caused approximately 31 % yield loss white multiple wheeling with 2.8 Mg 

caused 22 % yield loss. In 2016 the yields on the reference plot were slightly higher (+11 %) 

than on  the surrounding  area. Yields after  multiple  wheeling  were 11 % (1.7 Mg)  respective 

5 % (2.8 Mg) higher than on the reference plot. 

 

 
Discussion: 

The main aim of this study was to determine effect of wheeling with two different wheel loads 

of machinery representing typical Norwegian farm machinery on soil stability , stress 

propagation, as well as the soil parameters needed to verify soil compaction. 

Machinery: 

The machinery used in this trial was used on equal terms (e.g. tire equipm ent, inflation pressure) 

as done by farmers under practical conditions (Table 3).  Although  wheel  loads used  in this 

trial were not considered to be especially heavy, compared to machinery which may exceed 6.6 
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Mg wheel load also on Norwegian farms (Se 

al. 2014), the trailer had comparatively small 

Børresen et al. 2014, Seehusen, Riley et 

high inflation pressure which led to a 
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high average ground  pressure (Figure 2, Table 3). It may  be expected,  that the use of wider tires 

and/  or  reduced  inflation  pressure  would  have  increased  contact  area  and  thereby reduced 
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compaction of the upper soil layer (Raper 2005, Lamande 

 
 

(l) Precompression stress (Pc) 

Precompression stress is a measure for internal soil strength 

jønning 2011). 

 

 

 
is regarded as the stress limit 
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(threshold value) at which the soil deformation changes from elastic to plastic (Peth, Rostek et 

al. 2009). Data from this study show that increase in both wheel load and wheeling  intensity 

may lead to increase in the Pc values at both 20 and 60cm depth. According to the PC theory, 

with stresses that exceed Pc, plas tic, irreversible soil deformation may be expected (Wie rmann, 

Werner et al. 2000, Horn and Fleige 2009). This may effect important parameters such as air 

permeability and saturated hydraulic conductivity (Horn and Fleige 2003). Such stresses should 

therefore be avoided. 

 
(2) Stress propagation and soil deformation in top- and subsoil during wheeling 
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Our results from the SST measurements show that all wheeling led  to stresses in both topsoil 

and subsoil (Figure 3). The leve! of average major principal stress after wheeling with 2.8mg 

(55-361 kPa) measured in our trial (Table 4) is in agreement  with  findings by Zink, Fleige et  

al. (2010) who tested wheel loads of 3.3 Mg on a Luvisol (83 % silt). Their  results show  that 

the first pass caused highest stress in the soil but that every wheeling caused additional stress, 

which is also in agreement with earlier Norwegian studies on a clay soil (Seehusen , Riley et al. 

2014). A dependency of the stress entries (cr1) on the soil type is not yet clearly proven. Thus, 

Zink et al.(20 l 0) found no differences in the distribution of cr1 for different initial rates (boulder 

clay and loess) in their study. By comparing these locations, they determine a 40 % decrease in 

the stress entries from 20 cm to 40 cm soil depth and by 75 % from 20 cm to 60 cm analogously 

for both substrates. However , the variations of the stress entries at the boulder grave! locations 

is greater, which may be attributed to its highertextural heterogeneity. Similar conclusions were 

made by Ktihner (1997) and Pytka (2005), who conducted wheeling on sandy-loam. They did 

not find any significant differences in the stress propagation or the total stress input depending 

on soil type. Only an increased proportion of coarse fragments (> 0.2 cm) contributes  to 

different propagation of stress entries in the subsoil. Horn (1986) attributes the difference in 

stress in his investigations in southern  Germany  to the high amount  of coarse  fragments  (>  

35 %) more than to the composition of the soil texture. In any case, Pytka et al. (2006)  and  

Pytka (2010) showed a trend towards higher stress leveis on the loess soil <luring further stress 

measurements with machines than on sandy and loess soils. 

Results from the associated DTS measurement show that wheeling led to both elastic and plastic 

displacement in all cases (Figure 4). Plastic dis placement, caused by stresses that exceed the 

elastic displacement , is visible as ruts on the soil surface, and has important influences on pore 

structure and function (Peth, Rostek et al. 2009). It creates not only  a new soil structure  but  

also changes soil properties and mechanical stability (Peth and Horn 2006). It is therefore 

expected to cause irreversible and harmful and soil compaction (Peth, Rostek et al. 2009). Our 

results show that the first wheeling caused the highest amount of plastic deformation but that 

every wheeling caused plastic displacement with a cumulative effect (Figure 4). This reduction 

of soil displacement with increasing number of wheeling events, due to a more stable soil 

structure created by the progressive compaction of soil part icles, has been shown by other 

authors earlier (Zink 2009, Seehusen , Riley et al. 2014). 

 
Ruts 
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The results show that the trailer had, due to its smaller tyres and high inflation pressure, a higher 

average ground pressure than the tractor. Tyre deflection increases with wheel load 

(Holtkemeyer 2005, Noltin g, Brunotte et al. 2011) and in our study higher wheel load led to a 

higher contact area and thereby a reduced contact pressure for both tractor and trailer wheels 

(Table 3). Despite the partly higher contact area, the higher wheel  load  caused  deeper ruts, as  

is known from other studies (Botta, Tolon  Becerra et al. 2009). The results presented  in Figure 

4 show that the main rut formation happened after the first wheeling but that  additional 

wheeling contributed to rut formation. The extent of rut formation may be explained by the 

comparatively high average ground pressure (Table 3) and the loose soil structure in the upper 

soil layer of the research field due to ploughing the previous autumn. This loose structure , which 

can also be found after harvest of e.g. potato , is not optimal for wheeling and is prone to rut 

formation. Ruts are formed though the vertical and horizontal displacement of a soil associated 

with both soil compression and shearing (Horn, Vossbrink et al. 2007), which destroys the soil 

structure in the upper part of the soil and increases roIling resistance and fuel consumption, 

thereby decreasing the efficiency of fieldwork (Bygden, Eliasson  et al. 2004, Volk , Denker et 

al. 2011). Besides, ruts lead to an uneven soil surface which may lead to problems under 

fieldwork (e.g. seed ing and harvesting), increasing the need for intensive soil loosening 

(McGarry 2003) and limiting possibilities for fieldwork (Chamen, Alakukku et al. 2003). Rut 

formation should therefore be limited as much as possible by reducing wheeling on soft ground 

(e.g. new tilled soil) and by choosing wide tyres and low inflation pressure. 

Wheeling intensity 

Although not significant in all cases, the findings from this study high light the fact that multiple 

wheeling with a comparatively small wheel load may be more harmful  than single wheeling 

with a higher wheel load, especially in the upper soil layer. This has also been shown in earlier 

studies (Bakker and Davis 1995, Hamza and Anderson 2005, Seehusen 2014),  where  

differences in wheel load between machinery were greater than in this study. Different studies 

show that increasing wheeling intensity leads to smaller vertical stresses in the upper soil layer 

due to an increase in bulk density, elasticity and shear strength, but it may result in further 

deformation of deeper soil horizons (Horn, Domzal et al. 1995) also when using light machinery 

(Botta, Tolon Becerra et al. 2009). This is of great practical interest since, depending  on the  

size and form the field and working width of the machinery, the wheeled area (tracks)  may 

cover up to more than 60 % of the field area which may be wheeled up to four times (soil tillage, 

fertilizing, spraying, harvesting) during one season. Some parts of the field (headlands)  may 

even be wheeled up to 40 times (Stahl, Schmidt et al. 2001, Duttmann, Brunotte et al. 2013). 
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This is a conflict in Norway, where the short growing season is one of the most yield-limiting 

factors (Seehusen, Waalen et al. 2016). The return to field capacity is comparatively early and 

soils are often moist during harvesting in autumn. On the one hand, larger machinery may offer 

greater efficiency, which gives the opportunity to take advantage of workable conditions and to 

make the most of the short growing season (Riley 2016, Seehusen, Waalen et al. 2016). On the 

other hand, lighter machinery may be of advantage to avoid soil compaction if wheeling under 

moist conditions is unavoidable (Alakukku, Weisskopf et al. 2003, Holtkemeyer 2005). 

Reducing machinery weight on existing machinery, as done in this trial, could therefore be an 

option to adapt machinery to different conditions. 

(3) Soil parameters to verify soil compaction 

Compaction implies an increase in bulk density (Whalley, Dumitru et al. 1995). Although not 

significant in all cases, multiple wheeling increased BD in 20cm and 60cm depth. At 40 cm 

depth both higher wheel load and greater wheeling intensity increased BD. Since this field was 

ploughed for years before our trial, these comparatively high values in this layer may be a 

consequence of an earlier compaction of the plough layer, as earlier studies on this field indicate 

(Seehusen, Hofgaard et al. 2016). Studies show that all compaction leads to a change of pore 
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%), porous (25-40 %), moderately porous (10-25 %), compact (5-10 %) and very compact (<5 

%) (Pagliai and Vignozzi 2002, Pagliai, Vignozzi et al. 2004). Our results (Figure 7), indicate 

that AC was negatively affected by all wheel passes. In the upper layer the soil may be classified 

as "compact" after single wheeling (lx) and "very compact" after multiple wheeling (l 0x) 

irrespective of wheel load. In the deeper soil layers all wheeling (irrespective of number and 

weight) led to a reduction in macroporosity, classified as "very compact" with the exception of 

single wheeling with 1.7 mg at 60 cm depth (classified as "compact" 6 %). The suggested 

threshold value of 10 vol.% macroporosity in the upper soil layer (Riley 1988b, Lipiec 2012) 

as a limit for good plant growth, was not found with any of the treatments. 

Saturated hydraulic conductivity (Ksat) depends on pore size and pore continuity (Zink, Fleige 

et al.2011) and is considered to be of high indication value to describe damage to soil structure. 

Changes to this parameter may not only affect crop production directly but they may have a 

negative impact on the ecosystem itself (Horn and Fleige 2009). Results from this study show 

that all values after multiple wheeling were lower than the threshold value <l 0 cm d-1) (Lebert, 

Boken et al. 2007, Horn and Fleige 2009). This may reduce water infiltration, cause water 

ponding and increased erosion (Fleige and Horn 2000). Although rainfall intensity seldom 
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exceeds l cm h-1 (Manen, Benestad et al. 2011) these values could be limiting if it rains for 

several hours with high intensity. Climate change in Norway is predicted to cause both higher 

total precipitation but also more events of strong rain (Hanssen-Bauer, Førland et al. 2015), so 

the values we found may be even more problematic in the future. 

(4) Yield 

Several studies show that soil compaction may cause yield reduction (Czyz 2004) and result in 

severe yield loss (Lebe rt, Brunotte et al. 2004). Our data for the stress registered underneath the 

tractor tyres was up to 565 kPa (Figure 3). Swedish studies (Lofkvist 2005) showed that 

pressures above 200 kPa in the upper soil layer led to a reduction in barley rooting depth, 

reduced shoot and root dry weight and reduced leaf length. We would, according our findings, 

have expected severe yield loss due to soil compaction. However, the yield results of the first 

two years after the compaction did not fit these assumptions. Although  the yields for the year  

of the compaction (2015) were lower than on the nearby fields, this was mostly caused by 

delayed seeding due to compaction treatment and soil samp li ng. Despite ploughing after 

compactio n, before seeding, the yield results show an effect of compaction (Table 4). Yields in 

2016 were generally higher, mostly due to favourable weather conditions throughout the 

growing season (Table l). Yields on the compacted treatments showed no yield loss compared  

to the uncompacted  treatment.  There may be reasons for this finding. All plots were 

spring ploughed (25cm) in both 2015 and 2016 wh ch is commonly assumed being effective to 

loosen the (top-) soil (Appel 2012). Since it is mostly the topsoil compaction that is associated 

with yield loss (Håkansson and Reeder 1994), repeated ploughing may have been effective to 

alleviate a possible negative effect oftopsoil  compaction on owth. Studies described by 

Håkansson et al. (l 987) showed  that crop responses to c  action vary widely  between years, 

but are on average negat ive. Subsoil compaction is expected to be persis tent, lead to permanent 

yield loss and its effects are therefore of great interest (Håkansson and Reeder 1994). But since 

it is cause off "only" 3-4 % of the yield loss (Petersen, Haastrup et al. 2010), it may be difficult 

to detect in short term studies. Anyhow, yield, although economically impo rtant, is therefore 

not a precise indicator of the state of soil structure (Lebert, Brunotte et al. 2004, Lofkvist 2005) 

Conclusion: 

Results from this study show that also comparatively small wheel loads, especially in 

combination with a high average ground pressure, can cause recognizable compaction, also 

below the ploughed layer. It is not only the wheel load that is causal but also the number of 

wheelings. Under workable conditions , as in our experiment, the use of a smaller machinery for 

soil conservation is only meaningful if this does not lead to an increased wheeling frequency. 
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The reported yield data the first two years after the compaction show no yield decline. Studies 

over a longer period of time are necessary to reveal the influence of (sub-) soil compaction on 

yields. However, compaction may deteriorate important soil parameters  (e.g.  saturated 

hydraulic conductivity) which may have negative environmental impact and cause secondary 

effects such as tater drying , increased risk for soil compaction and shortened growth period.  

Soil compaction may therefore still be of ecological and economical concern. These effects are 

expected to be even more problematic in the light of climate change with more severe 

precipitation. New soil samples on this field will help to determine long time effect of soil 

compaction on soil structure. 
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