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Resumen.
Este artículo introduce una generalización de funciones

migrativas por extensión de la condición de la operación

producto aplicada en las variables. Más específicamente,

en lugar de exigir multiplicar la variable x por un núme-

ro real α, en este trabajo se trabaja este número α con las

variables de acuerdo a una t-norma. Se denomina a esta

generalización función t-migrativa con respecto a tal t-

norma. Luego se analizan las propiedades principales de

funciones t-migrativas en funciones t-overlap y se intro-

ducen algunos métodos de construcción de este tipo de

funciones.

Palabras clave: función migrativa, función overlap,

normas triangulares.

Abstract
This paper introduces a generalization of migrative fun-

ctions by extending the conditions of the product opera-

tion applied in the variables. More specifically, instead of

requiring to multiply the variable x by a real number α,

in this work we operate this α number with the variables

according to a t-norm. We call such generalization as a

t-migrative function with respect to such t-norm. Then

we analyze the main properties of t-migrative t-overlap

functions and introduce some construction methods.

Keywords: migrative function, overlap function, t-

norm.

Resumo
Este artigo apresenta uma generalização das funções mi-
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gratórias estendendo as condições da operação do pro-

duto aplicada nas variv́eis. Mais especificamente, em vez

de exigir a multiplicação da variv́el x por um número

real α, neste trabalho operamos isso α número com as

variáveis de acordo com a norma t. Chamamos essa ge-

neralização de uma função t-migrative em relação a essa

norma t. Em seguida se analiza as principais proprieda-

des das funções t-sobreposição migratórias e introduzi-

mos alguns métodos de construoção.

Palavras-chaves: função migratória, função de sobre-

posição, norma t .

Introduction
The notion of migrative function was introduced in [33].

Our goal here is to generalize the notion of migrative

functions by relaxing one of the conditions, in particu-

lar, instead of demanding the variables of the function

to be multiplied with a real number α. In this work, we

replaced the multiplication by a t-norm. We allow it so-

me kind of threshold, defined in terms of a t-norm T . We

call such generalization as a t-migrative function with

respect to T after this study we apply the migrativity to

t-overlap functions. We notice that, this simple genera-

lization allows us to state several interesting properties,

which may allow for application in fuzzy rule-based sys-

tem in order to discard bad rules when computing the

compatibility degree. Section 1 presents some prelimi-

nary concepts. In Sect. 2, besides studying the main pro-

perties, we also propose some construction methods.

1. Preliminares

1.1. Triangular Norms

One of the basic concepts of the fuzzy theory study

is about triangular norms or t-norms. In this work, these

functions will also be used very frequently, the definition

of a t-norm is anunciated below.

Definition 1 (See [30]) A triangular norm or t-norm is

an aggregation function

T : [0, 1]2 → [0, 1] that follows the next.properties:

(i) T (x, 1) = x for all x ∈ [0, 1],

(ii) T (x, y) ≤ T (z, u) if x ≤ z and y ≤ u,

(iii) T (x, y) = T (y, x) for all x, y ∈ [0, 1],

(iv) T (T (x, y), z) = T (x, T (y, z)) for all x, y, z ∈
[0, 1].

Below are some examples of t-norms, which are widely

known

Example 1 The function T : [0, 1]2 → [0, 1], defined by

T (x, y) = m��n{x, y} is a t-norm.

Definition 2 It says that a t−norm is strict, if it is strictly

increasing for its two variables, that is to say if x1 < x2

and y 6= 0 then T (x1, y) < T (x2, y).

Definition 3 It It says that a t − norm is positive, if it is

true that T (x, y) = 0 iff xy = 0.

1.2. Migrativity

The concept of α-migrativity was introduced by Du-

rante et al. in [33] a bivariate operation’s class having

a property previously presented by Mesiar and Novak in

28, as Fodor and Rudas acknowledge in 32.

Definition 4 (See [33]) Let α ∈ [0, 1] be fixed. A bivaria-

te operation

G : [0, 1]2 → [0, 1] is α-migrative if G(αx, y) = G(x, αy),

for all x, y ∈ [0, 1].

It is easy to see this definition is that all function G :

[0, 1]2 → [0, 1] is 1-migrative, as G(x, y) = G(1.x, y) =

G(x, 1.y). This definition is referred a predetermined α.

The concept of α-migrativity has been generalized from

the next form,

Definition 5 (See [34]) A function G : [0, 1]2 → [0, 1] is

called migrative if and only if G(αx, y) = G(x, αy) for all

x, y ∈ [0, 1] and for all α ∈ [0, 1].

Example 2 The function h : [0, 1]2 :→ [0, 1], defined by

h(x, y) = xy, is migrative.

Example 3 La function G : [0, 1]2 → [0, 1], defined by

G(x, y) = x+y
2
, shows that

G(1.x, y) =
1.x+ y

2

=
x+ 1.y

2
= G(x, 1.y)

thus G is a 1-migrative function, but if you take α = 1
2
,

it shows that G( 1
2
x, y) 6= G(x, 1

2
y). This is easy to see, in

particular if it is done x = 1 and y = 1
2
.

The following is a reminder of one of the main migrative

functions’ characterizations.

Lemma 1 (See [1]) A function
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G : [0, 1]2 → [0, 1]

is migrative if and only if G(x, y) = G(1, xy), for all

x, y ∈ [0, 1].

By the lemma [5], you get the following corollary, in

which a characterization of bivariate migrative function

is seen as a function of a variable.

Corollary 1 (See [1]) A function G : [0, 1]2 → [0, 1] is

migrative if and only if exists a function g : [0, 1] → [0, 1]

such that G(x, y) = g(xy) for all x, y ∈ [0, 1].

1.3. Overlap and T-Overlap Functions

The definition of overlap function is stated as well as

some of its properties. This type of functions constitute

one of the most important pillars in this work.

Definition 6 (See [1]) A function GS : [0, 1]2 → [0, 1] is

an overlap function, if it follows the next conditions:

(Gs1) Gs is symmetrical,

(Gs2) Gs(x, y) = 0 if and only if xy = 0,

(Gs3) Gs(x, y) = 1 if and only if xy = 1,

(Gs4) Gs is not decreasing,

(Gs5) Gs is continuous.

Example 4 An example of overlap function is the product

function h(x, y) = xy, with x, y ∈ [0, 1].

Example 5 The function G(x, y) = sin(π
2
xy) is a overlap

function.

Example 6 Other example of overlap function is

G(x, y) = tan(π
4
xy) .

A generalization of the overlap function concept, is ob-

tained changing the condition (Gs2) given in 1. This

property needs that, given by an overlap function GS ,

GS(x, y) = 0 ⇔ xy = 0. In this generalization, the pro-

duct operation is replaced by a t-norm

T : [0, 1]2 → [0, 1].

Definition 7 Let T : [0, 1]2 → [0, 1] be a t-norm. A fun-

ction GT : [0, 1]2 → [0, 1] it says be a t-overlap function

with respect to T, it holds the following conditions:

(GT 1) GT (x, y) = GT (y, x),

(GT 2) GT (x, y) = 0⇔ T (x, y) = 0,

(GT 3) GT (x, y) = 1⇔ x = y = 1,

(GT 4) GT is increasing,

(GT 5) GT is continuous.

2. T-Migrativity

In this section a generalization of the migrativity

concept is made where the multiplication operation is

replaced by a t-norm.

Definition 8 It is said that a two-dimensional G function

is t-migrative with respect to the a t-norm T if for all

α ∈ [0, 1] is fulfilled that G(x, T (α, y)) = G(T (x, α), y)

for all x, y ∈ [0, 1].

As in the traditional definition, a migrativity property is

given for the particular case in which α = 0.

Proposition 1 A function G : [0, 1] → [0, 1] is 0-t-

migrative if and only if G(x, 0) = G(0, y)

Proof 1 If G is 0-t-migrative then G(x, 0) =

G(x, T (0, y)) = G(T (x, 0), y) = G(0, y) If G(x, 0) =

G(0, y) then as for all t-norm T (0, x) = 0 then

G(x, T (0, y)) = G(T (x, 0), y).

The following theorem broadly generalizes theorem 1

Theorem 1 A function G : [0, 1]2 → [0, 1] is t-migrative

respecting to t-norma T if and only if exists a function

g : [0, 1]→ [0, 1] such that G(x, y) = g(T (x, y)).

Proof 2 Let G(x, y) = g(T (x, y)), then

G(x, T (y, z)) = g(T (x, T (y, z))) = g(T (T (x, y), z)) =

G(T (x, y), z).

If G is t-migrative respecting to t-norm T , then

G(x, y) = G(T (x, 1), y) = G(1, T (x, y))

for all x, y ∈ [0, 1], if G(x, y) = G(u, v) then

G(1, T (x, y)) = G(1, T (u, v)) when T (x, y) = T (u, v)

thus g is well defined

The next corollary is a generalization of corollary 1

Corollary 2 G is t-migrative respecting to t-norm T if and

only if

G(x, y) = G(1, T (x, y))

The following corollary shows an obvious consequence

that can be obtained from t-migrativity.
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Corollary 3 If G is t-migrative respecting to t-norm T

then G is symetrical.

Proof 3 G(x, y) = G(1, T (x, y)) = G(1, T (y, x)) =

G(y, x).

Below there is a list of some of the of t-migrative fun-

ctions properties.

Theorem 2 Let G : [0, 1]2 → [0, 1] be a t-migrative fun-

ction, then:

1. G is no decreasing if and only if g is no decreasing.

2. G is strictly increasing in [0, 1]2 if and only if g and

T are strictly increasing.

3. G(1, 1) = 1 if and only if g(1) = 1.

4. G(0, 0) if and only if g(0).

5. G is continuous if and only if g and T are conti-

nuous.

Proof 4 1. Suppose that G is a no decreasing fun-

ction. Let x, y ∈ [0, 1] such that x ≤ y, then

G(x, 1) ≤ G(y, 1) thus g(T (x, 1)) ≤ g(T (y, 1))

then g(x) ≤ g(y). If it is assumed that g is a no de-

creasing function and x, y ∈ [0, 1] such that x ≤ y

then for all z ∈ [0, 1] is true that T (x, z) ≤ T (y, z),

therefore g(T (x, z)) ≤ g(T (y, z)) thus G(x, z) ≤
G(y, z).

2. Analogous.

3. G(1, 1)⇔ g(T (1, 1)) = 1⇔ g(1) = 1

4. G(0, 0)⇔ g(T (0, 0)) = 0⇔ g(0) = 0

5. G is continuous if and only if g and T are conti-

nuous.

One of the most important aspects of this work is the ge-

neralization of the migratives of overlap functions. One

of the results of this generalization is shown.

Theorem 3 If GT is a t-overlap function respect to the

continuous t-norm T , then

G(x, y) = GT (1, T (x, y))

is a t-overlap t-migrative function respecting to T.

Proof 5 1. Evidently G is Symmetrical.

2. G(x, y) = 0 ⇔ GT (1, T (x, y)) = 0 ⇔ T (x, y) =

0.

3. G(x, y) = 1 ⇔ GT (1, T (x, y)) = 1 ⇔ T (x, y) =

1⇔ x = y = 1.

4. G is continuous.

5. G is no decreasing.

G(T (x, y), z) = GT (1, T (T (x, y), z)) =

GT (1, T (x, T (y, z))) = G(x, T (y, z)).

The following theorem shows that the convex sum of

t-overlap t-migrative functions with respect to a conti-

nuous t-norm are also t-overlap t-migrative function.

Theorem 4 If αi ≥ 0∀i = 1, 2, . . . , n,
∑n
i=1 αi = 1, Gi

are overlap functions and T is a t-norm continuous, then

G(x, y) =
∑n
i=1 αiGi(1, T (x, y))

is t-overlap t-migrative function respecting to T .

Proof 6 1. G is symmetrical.

2. G(x, y) = 0 ⇔
∑n
i=1 αiGi(1, T (x, y)) = 0 ⇔

αiGi(1, T (x, y)) = 0. Given that
∑n
i=1 αi = 1 and

αi ≥ 0∀i = 1, 2, . . . , n then exist αk 6= 0 thus if

αkGk(1, T (x, y)) = 0 then Gk(1, T (x, y)) = 0 ⇒
T (x, y) = 0. If T (x, y) = 0. then Gi(1, T (x, y)) =

0 for all i = 1, 2, . . . , n thus G(x, y) = 0.

3. G(x, y) = 1 ⇔
∑n
i=1 αiGi(1, T (x, y)) =

1 ⇔
∑n
i=1 αiGi(1, T (x, y)) =

∑n
i=1 αi thus∑n

i=1 αi(1 − Gi(1, T (x, y))) = 0 then αi(1 −
Gi(1, T (x, y))) = 0 for all i = 1, 2, . . . , n since

αi ≥ 0∀i = 1, 2, . . . , n, and
∑n
i=1 αi = 1, then

exist αk 6= 0 thus if αk(1 − Gk(1, T (x, y))) = 0

then 1 − Gk(1, T (x, y)) = 0 ⇒ Gk(1, T (x, y)) =

1⇒ T (x, y) = 1⇒ x = y = 1.

4. G is continuous.

5. G is no decreasing.

Theorem 5 If T1 and T2 are continuous andGT is a over-

lap function, then

G(x, y) = GT (T1(x, y), T2(x, y))

is a t-overlap t-migrative function respecting to T1 or T2.

Proof 7 1. G is symmetrical.

2. G(x, y) = 0 ⇔ GT (T1(x, y), T2(x, y)) = 0 ⇔
T1(x, y) = 0 ∨ T2(x, y) = 0.

3. G(x, y) = 1 ⇔ GT (T1(x, y), T2(x, y)) = 1 ⇔
T1(x, y) = 1 ∧ T2(x, y) = 1⇔ x = y = 1.

4. G is continuous.

5. G is no decreasing.
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Corollary 4 If G is the previous theorem and T1 = T2

then G is t-migrative.

Proof 8 G(x, T (y, z)) = GT (T1(x, T (y, z)), T2(x, T (y, z))) =

GT (T1(T (x, y), z), T2(T (x, y), z)) = G(T (x, y), z).

Corollary 5 If T is a t-norm and a strong negation n,

then

G(x, y) = T (x,y)
T (x,y)+nT (x,y)

is a t-overlap t-migrative function respecting to T .

Theorem 6 If GT is a overlap function and T is a conti-

nuous t-norm, then

G(x, y) = 2G(1,T (x,y)) − 1

is a t-overlap t-migrative function.

Proof 9 1. G is symmetrical.

2. G(x, y) = 0 ⇔ 2G(1,T (x,y)) − 1 = 0 ⇔
2G(1,T (x,y)) = 1 ⇔ G(1, T (x, y)) = 0 ⇔
T (x, y) = 0.

3. G(x, y) = 1 ⇔ 2G(1,T (x,y)) − 1 = 1 ⇔
2G(1,T (x,y)) = 2 ⇔ G(1, T (x, y)) = 1 ⇔
T (x, y) = 1⇔ x = y = 1.

4. G is no decreasing.

5. G is continuous.

Theorem 7 Let M be continuous, increasing such that

M(x) = 0 ⇔ x = 0 and M(x) = 1 ⇔ x = 1. If GT
es a overlap function and T is a continuous t-norm, then

G(x, y) = M(GT (1, T (x, y)))

is a t-overlap t-migrative function.

Theorem 8 Let M be a n-dimensional function, non de-

creasing, continuous such that M(x1, . . . , xn) = 0 ⇔
xi = 0 for some i ∈ 1, . . . , n y M(x1, . . . , xn) = 1 ⇔
xi = 1 for some i ∈ 1, . . . , n. Then

G(x, y) = M(G1, . . . , Gn)(1, T (x, y))

is a t-overlap t-migrative function if Gi is an overlap fun-

ction for all i ∈ 1, . . . , n and continuous t-norm T .

Proof 10 1. G is symmetrical

2. G(x, y) = 0 ⇔ M(G1, . . . , Gn)(1, T (x, y)) =

0 ⇔ M(G1(1, T (x, y)), . . . , Gn(1, T (x, y))) =

0 ⇔ ∃k ∈ 1, . . . , n such that Gk(1, T (x, y)) =

0⇔ T (x, y) = 0.

3. G(x, y) = 1 ⇔ M(G1, . . . , Gn)(1, T (x, y)) =

1 ⇔ M(G1(1, T (x, y)), . . . , Gn(1, T (x, y))) =

1 ⇔ ∃k ∈ 1, . . . , n such that Gk(1, T (x, y)) =

1⇔ T (x, y) = 1⇔ x = y = 1.

4. G is non decreasing.

5. G is continuous.

Theorem 9 Let M be a n-dimensional function, conti-

nuous such that M(x1, . . . , xn) = 0 ⇔ xi = 0 for some

i ∈ 1, . . . , n y M(x1, . . . , xn) = 1 ⇔ xi = 1 for some

i ∈ 1, . . . , n. Then

G(x, y) = M(G1(1, T1(x, y)), . . . , Gn(1, Tn(x, y)))

is a t-overlap function respecting to some t-norm Tk where

Ti are continuous t-norms and Gi are overlap functions.

Theorem 10 A function GS : [0, 1]2 → [0, 1] is an

overlap t-migrative function if and only if GS(x, y) =

g(T (x, y)) for all x, y ∈ [0, 1] holds for some non-

decreasing function g : [0, 1]→ [0, 1] such that g(0) = 0 y

g(1) = 1.

Proof 11 Let GS be an overlap t-migrative function, then

exists a non decreasing g function such that GS(x, y) =

g(T (x, y)). Now g(0) = g(T (0, 0)) = GS(0, 0) = 0. be-

sides g(1) = g(T (1, 1)) = GS(1, 1) = 1 If GS(x, y) =

g(T (x, y)) then GS(x, T (y, z)) = GS(T (x, T (y, z))) =

g(T (T (x, y), z)) = GS(T (x, y), z).

Theorem 11 If T is a continuous t-norm and n is a strong

negation then G(x, y) = T (x,y)
T (x,y)+nT (x,y)

is a t-overlap t-

migrative function with respect to T .

Proof 12 By corollary it can be said that G is a t-

overlap function with respect to the t-norm T . On the

other hand, G(x, T (y, z)) = T (x,T (y,z))
T (x,T (y,z))+nT (x,T (y,z))

=
T (T (x,y),z)

T (T (x,y),z)+nT (T (x,y),z)
= G(T (T (x, y), z)).

Theorem 12 Let G1, . . . , Gn be t-migrative overlap fun-

ctions with respect to T . If ω1, . . . , ωn are not negative real

numbers such that
∑n
i=1 ωi = 1 then

G(x, y) =
∑n
i=1 ωiGi(x, y)

is a t-migrative overlap function with respect the t-norm T .

Proposition 2 If GT is a t-overlap function with respect

to t-norm T , then GT is t-migrative with respect to T .
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