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Abstract

Epilepsy affects almost 1% of the global population and considerably impacts the

quality of life of those patients diagnosed with the disease. Ambulatory EEG monitoring

devices that can detect or predict seizures could play an important role for people with

intractable epilepsy. Many outstanding studies in detecting and forecasting epileptic

seizures using EEG have been developed over the past three decades. Despite this

success, their implementations as part of implantable or wearable devices are still

limited. To achieve high performance, many of these studies relied on handcraft feature

extraction. This approach is not generalizable and requires significant modifications for

each new patient. This issue greatly limits the applicability of such methods to hardware

implementation.

In this thesis, we propose a deep learning-based solution for generalized epileptic

seizure detection and forecasting that does not require handcraft feature extraction.

The method can be applied to any other patient without the need for manual feature

extraction. Secondly, we optimize seizure detection and forecasting systems to reduce

computational complexity and power consumption. The optimization is performed from

two aspects: algorithm and input signal. In the first aspect, we propose two approaches:

(1) automatic channel selection to reduce the number of necessary EEG electrodes;

(2) Integer-Net, an integer convolutional neural network, to reduce computational

complexity and required memory. In the second aspect, we investigate how sensitive

seizure detection algorithms are regarding EEG’s resolution. Another problem that we

would like to address is the lack of labeled EEG data for epilepsy. Today the process

of epileptic seizure identification and data labeling is done by neurologists, which is

expensive and time-consuming. We propose an unsupervised learning approach to make

use of unlabeled EEG data which is more accessible.
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Chapter 1

Introduction

In this research, we focus on how to effectively and reliably detect and more importantly

predict seizure onset based on electroencephalogram (EEG) patterns. Detection and

prediction of seizure are of crucial importance for patients who cannot be treated by

drugs or surgery. This chapter discusses the motivation, objectives, research questions,

overall structure of the thesis, and related publications.

1.1 Research motivation

Epileptic seizure affects nearly 1% of the global population, but only two thirds can

be treated by medicine, and approximately 7 − 8% can be cured by surgery (Litt and

Echauz, 2002) (see Fig. 1.1). Therefore, seizure onset detection and subsequent seizure

suppression become important for the patients that cannot be cured by either drug or

surgery. Early detection can allow early electrical stimulation to suppress the seizure

(Echauz et al., 2007). Precise seizure detection allows electrical stimulation to timely

interrupt the alteration of consciousness and subsequent convulsions. Seizure prediction

is useful to provide the patients with warning messages so they can take some precautions

for their safety. Moreover, seizure prediction can be used in combination with seizure

detection to improve the effectiveness of the electrical stimulation.
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Figure 1.1: The overall breakdown of the percentage of patients living with epilepsy
(Litt and Echauz, 2002).

1.2 Problem statements

Because of the unpredictability of epileptic seizure activities, epilepsy greatly decreases

the quality of life of those patients living with the disease (Kuhlmann, Lehnertz, et

al., 2018). The lack of effective treatment of drug-resistant or intractable epilepsy

creates an urgency for research to develop reliable and accurate seizure detection and

forecasting. Seizure detection has been studied since the 70s (Babb et al., 1974) and over

the past decades, a tremendous number of techniques on detecting and predicting seizure

have been proposed with promising performance. Seizure prediction or forecasting has

attracted growing attention as one of the most challenging predictive data analysis efforts

to improve the life of patients with intractable epilepsy.

Electroencephalogram (EEG) signals have been widely used for diagnosing and

monitoring of epileptic patients. Ambulatory EEG monitoring devices that can detect

or forecast seizures could benefit the patients with drug-resistant epilepsy in terms of

their safety and disease management. While many EEG-based seizure detection and

prediction algorithms have been proposed in the literature with high performance,

many of these studies relied on handcrafted feature extraction or tailored feature

extraction, which is performed for each patient independently. This approach, however,

is not generalizable and requires significant modifications for each new patient within

a new dataset. These issues greatly limit their hardware implementations as part of

implantable or wearable devices. In this thesis, we propose a deep learning-based
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solution for generalized epileptic seizure detection and prediction that does not require

handcrafted feature extraction.

Another problem that we would like to address is the lack of labeled EEG data for

epilepsy. Today the process of accurate epileptic seizure identification and data labeling

is done by neurologists. Most seizure forecasting algorithms use only labeled data for

training purposes. As the seizure data is labeled manually by neurologists, preparing

the labeled data is expensive and time-consuming. We propose an unsupervised learning

approach to make use of unlabeled EEG data which is more accessible. Specifically,

generative adversarial networks are trained with unlabeled EEG data to extract features

from EEG signals that can be used for a seizure prediction task.

1.3 Research questions

1. Is epileptic seizure forecasting possible? What can be done to forecast the

likelihood of incoming seizures effectively?

2. How can seizure detection/prediction algorithms be optimized towards reducing

computation complexity and power consumption?

3. Can a hardware implementation of a high-performance seizure forecasting system

operate in real-time with given low power constraints, e.g., wearable or portable

devices?

1.4 Thesis organization

This thesis is divided into nine chapters. The first chapter provides an introduction to

this thesis. From chapter 2 to 8, we try to address the research questions. Each chapter

has its own introduction and conclusion of its specific problem to be solved. The last

chapter summarizes the major contributions and concludes the thesis.

• In chapter 2, we first review the problems that patients with epilepsy encounter,

especially those with intractable or drug-resistant epilepsy, that make detecting

and forecasting epileptic seizure onset critical to improving their quality of life.

Subsequently, we summarize existing algorithms in the literature performing

seizure detection and forecasting, and their hardware implementation. We finally

discuss the vision that goes beyond the scope of this Ph.D. project.
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• Chapters 3 and 4 address the first research questions. In chapter 3, we propose

a generalized convolutional neural network-based algorithm to forecast epileptic

seizures across multiple epilepsy datasets effectively. In chapter 4, we propose an

unsupervised feature learning to make use of unlabelled EEG signals which are

more accessible.

1. Is epileptic seizure forecasting possible? What can be done to forecast the

likelihood of incoming seizures effectively?

• Chapters 5 to 7 address the second research question. The optimization for

computational complexity and power consumption reduction is performed from

two aspects: algorithm and input signal. In the first aspect, we propose two

approaches: (1) automatic channel selection to reduce the number of necessary

EEG electrodes (chapter 5), (2) Integer-Net, an integer convolutional neural

network, to reduce computational complexity and required memory to store the

algorithm (chapter 6). In the second aspect, we investigate how sensitive working

seizure detection algorithms are with regard to EEG’s resolution (chapter 7).

2. How can seizure detection/prediction algorithms be optimized towards

reducing computation complexity and power consumption?

• Chapter 8 addresses the last research question. In this chapter, we demonstrate

a low-power hardware implementation of a seizure forecasting system that can

operate in real-time.

3. Can a hardware implementation of high-performance seizure forecasting

system operate in real-time with given low power constraints, e.g., wearable

or portable devices?
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Chapter 2

Literature review

The content in this chapter has been adapted from the a journal paper published as:
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for electroceuticals in Epilepsy.” Trends in Pharmacological Sciences 40.10,
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2.1 What is epilepsy?

Epilepsy is a neurological disease characterized by recurrent and unpredictable abnormal

brain activities, called epileptic seizures (R. S. Fisher et al., 2017). Epilepsy can be

caused by stroke, traumatic brain injury and encephalitis (Kullmann et al., 2014).

There are many types of seizures (see Fig. 2.2) that affect different functions of the

brain including sensory processing, movement, consciousness, emotion, memory, and

behavior. Dependent on the mode of onset, seizures are classified as focal, generalized

and unknown. Focal onset seizure is when electrical activities are only within a limited

area of the brain while generalized onset seizure is when those activities originate at

some point then rapidly spread in both hemispheres (Falco-Walter et al., 2018). Focal

seizures are divided into aware and impaired awareness. A focal aware seizure means

that the person is conscious of self and the surrounding environment, even if immobile.

Otherwise, if the person loses awareness during any part of the seizure, it is classified as a

focal impaired awareness seizure. Generalized seizures can be further classified as motor

and non-motor (absence) seizures. Most common form of generalized motor seizure is

tonic-clonic (R. S. Fisher et al., 2017).

In Australia, the national health insurance implements a co-payment scheme that

represents 17% of the total cost of healthcare to reduce unnecessary services. As

a consequence, low-income patients are most affected (C. L. Peterson and Walker,

2018). Particularly, the lowest-income group diagnosed with weekly income before tax of

AUD250–500 spent 2.19% of their income on epilepsy. In New Sound Wales, Australia,

during the five-year period from 2012 to 2016, total epilepsy related hospital direct costs

were over AUD400 million (Mitchell et al., 2018).

Epilepsy affects nearly 1% of the global population, but only two thirds can be

treated by medicine, and approximately 7-8% can be cured by surgery (Litt and

Echauz, 2002). The point and lifetime prevalence of epilepsy is 6.4% and 7.6% per

1000 people, respectively (Fiest et al., 2017). In Australia, neurological conditions

were accounted for 6.8% of all disability-adjusted life years in 2011. Epilepsy was

responsible for 14.6% of the burden caused by the neurological conditions (see Fig. 2.1)

(Australian Institute of Health Welfare, 2016). The most burden to epilepsy patients

is that seizures can strike at any time, causing interruptions in their daily activities

and potentially put them in danger. Therefore, seizure onset detection, prediction,

and subsequent seizure suppression become important for the patients that cannot be

cured by either drug or surgery. Early detection can allow early electrical stimulation

to suppress the seizure (Echauz et al., 2007). Seizure prediction allows the patients to
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have time to take precautions if a seizure can be warned in minutes before its onset.

Patients diagnosed with epilepsy are firstly treated with appropriate epileptic drugs

depending on the seizure types, properties of available drugs and other characteristics

(Kwan and Brodie, 2000). Drug doses and combination of drugs are adjusted

considering the efficacy and side effects. The International League Against Epilepsy

(ILAE) defines drug-resistant epilepsy as “failure of adequate trials of two tolerated,

appropriately chosen and used antiepileptic drug schedules (whether as monotherapies

or in combination) to achieve sustained seizure freedom” (Kwan, Arzimanoglou, et al.,

2010). Patients with drug-resistant epilepsy will be evaluated if they are appropriate

candidate for surgical treatment (López González et al., 2015). Alternative treatments

for those who do not respond satisfactorily to antiepileptic drugs or are not suitable for

surgery are still in experimental stage (Kullmann et al., 2014).

In this chapter, we review the current drug-resistant epilepsy treatments, existing

algorithms, and hardware implementation for seizure detection and prediction, and

finally discuss the vision of this research.
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2.2 Treatment of drug-resistant epilepsy

Non-invasive brain stimulation techniques that have been comprehensively studied and

have therapeutic potential for epileptic patients are transcranial magnetic stimulation

(TMS) and transcranial direct current stimulation (tDCS). TMS was originally designed

to study human corticospinal motor conduction (Cattaneo, 2017). Single-pulse TMS

uses a capacitor storing the electrical charge to produce a current in a coil. The coil

is connected to a pulse generator, which is placed near the head, to deliver pulses at

very low frequency (below 1 Hz). The magnetic field passes relatively painlessly through

tissues of the head to generate a weak electrical current on the brain (Wassermann,

1998). Another form of TMS, repetitive TMS (rTMS) delivers repeated pulses with

high frequency at up to 100 Hz by using multiple capacitors. rTMS shows the capability

to modulate the excitability of cortical networks; hence, it has been considered as a

promising therapy for treating epilepsy. However, TMS is yet to demonstrate clear

evidence on the effectiveness in the treatment of seizures across a range of patients with

different forms of epilepsy and different age group (Carrette et al., 2016).

tDCS is based on observations that low amplitude direct current can modulate the

neuronal firing. Particularly, cathodal tDCS can reduce cortex excitability. Thus, it

may be used for the treatment of seizures (Auvichayapat et al., 2013). tDCS devices

are light-weight and can operate with a 9-V battery. tDCS devices are commercially

available at an affordable price in the market with multiple providers, such as The

Brain Stimulator1, Omni Stimulator2, tDCS Brain Care3. These products are claimed

to have a positive effect on depression reduction and concentration improvement. Recent

promising results on seizure reduction (Assenza et al., 2017) shows that it could also be

used for the treatment of drug-resistant epilepsy.

Deep Brain Stimulation (DBS) is a neurostimulation therapy, whereas electrodes

are implanted into subcortical regions and connected to an implanted pulse generator

(IPG) typically placed in the front of the chest (Gooneratne et al., 2016). A variety

of commercial DBS products are provided by Medtronic4, St. Jude Medical5, Boston

Scientific6. DBS has been used as a therapy for Parkinson’s disease and essential

tremor, where rhythmic shaking is a common feature. Typical stimulation for refractory

1https://thebrainstimulator.net/
2http://www.omnistimulator.com/
3http://tdcsbraincare.com.au//
4http://professional.medtronic.com/pt/neuro/dbs-md/prod/index.htm
5https://www.sjm.com/en/professionals/featured-products/neuromodulation/deep-brain-stimulation
6https://www.bostonscientific.com/en-EU/products/deep-brain-stimulation-systems.html
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epilepsy is operated at a frequency around 145 Hz, 90 µs pulse width, at voltages from

2 V increased to 5 V by 1 V each week, and cycle time of 1 min on and 5 min off

(Ben-Menachem, 2012).

The efficacy of DBS was studied in a clinical trial of stimulation of the anterior nuclei

of thalamus for epilepsy (SANTE) with 110 randomized participants with medically

refractory partial seizures (R. Fisher et al., 2010). The DBS implantation was done

with devices from Medtronic1. All participants underwent the same stimulation setting

at a voltage of 5 V, 90 µs pulse width, frequency of 145 Hz, 1 min on and 5 min

off. The median percent seizure reduction was 41% at 1 year and 69% at 5 years.

16% of patients were reported seizure-free for at least 6 months in 5 years follow-up

(Salanova et al., 2015). Another study on the efficacy of DBS in seizure treatment

was conducted with 15 patients having refractory epilepsy (Lehtimäki et al., 2016).

The locations of contacts were calculated from 3T MRI images obtained using scanner

MAGNETOM Trio 3T, Siemens Healthcare Sector, Germany. Stimulation parameters

were chosen at a frequency of 145 Hz, a pulse width of 90 µs, 1 min on and 5 min off,

and amplitude gradually increased to 5 V from 5–6 postoperative days to 2–3 weeks. As

a result, 10 out of total 15 patients with refractory epilepsy were eventually responsive

to ANT-DBS, whereas 4 of the 10 were initially not responsive but finally had seizure

reduction after changes in active contacts. Overall, DBS is a highly invasive procedure

that has some potentially dangerous side-effects.

Vagus nerve stimulation (VNS) is another approach of neurosurgical interventions

for epilepsy. VNS uses an electrode placed around the vagal nerve in the left side of

the neck and wired to a subcutaneous pulse generator. VNS is often set at 20–30 Hz,

250–500 µs pulse width, a current between 1.5 and 2.25 mA, and cycle time of 30 s on and

3–5 min off (Ben-Menachem, 2012). VNS has been used as an FDA-approved therapy for

refractory epilepsy (Clancy et al., 2014). Compared to DBS, VNS is less invasive and has

fewer, less significant side effects such as changes in voice and coughing. Interestingly,

patients with failed VNS seems to respond better to ANT-DBS (Gooneratne et al.,

2016). In a study of 65 consecutive patients with implanted VNS over 10 years, the

mean seizure reduction is 35.7% in six months and up to 75.5% after 10 years (Elliott

et al., 2011). VNS Therapy, produced by LivaNova7, is a commercial FDA-approved

device for drug-resistant epilepsy treatment. A non-invasive variant of VNS, namely

transcutaneous vagus nerve stimulation (tVNS), has been investigated on the efficacy of

seizure reduction. A randomized, double-blind trial with 67 patients was run with two

stimulation frequencies, 1 Hz and 25 Hz (Bauer et al., 2016). The tVNS device that was

7http://www.livanova.cyberonics.com/
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used in the study is the NEMOS made by Cerbomed GmbH8. The results show a seizure

reduction rate of 34.2% for patients in the 25 Hz group after 20 weeks of treatment.

In contrast to the aforementioned neurological therapies, where the stimuli are

applied periodically without regard to the seizure onset, electroencephalogram (EEG)

based neurostimulators monitor the brain’s status and perform stimulation only when

seizure-related patterns are detected (F. T. Sun and Morrell, 2014; Kassiri et al., 2016).

Therefore, they may have a better chance of achieving the best possible, patient-specific

outcome. EEG signals have been used extensively in the monitoring and diagnosis of

patients with neurological disorders. The RNS system, for instance, is an FDA-approved

implantable seizure treatment device produced by NeuroPace9. It hosts an implantable

neurostimulator wired to leads that could be implanted into the brain or placed on the

surface of the brain. The neurostimulator is capable of sensing the electrocorticographic

(ECoG) signal, detect seizures, and perform electrical stimulation. The ECoG signals are

recorded at a frequency of 250 Hz. The detection function is based on three detection

tools: line length detection, area detection, and bandpass detection. The line length

detection tool accumulates the differences between consecutive samples over a short-term

window divided by the number of samples of that window, then compares with that of a

long-term window. The area detection tool compares the average area under the curve

over a short-time window with that of a long-time window. The bandpass detection tool

first identifies half-waves by locating local minima and maxima points. The number of

half-waves that exceed programmable thresholds of amplitude and duration is compared

to a programmed threshold. Stimulation is typically initiated with a frequency of 200 Hz,

160 ms pulse width, 100 ms burst duration, and current from 1 mA up to 12 mA. The

RNS system was studied with 191 subjects over two years (F. T. Sun and Morrell, 2014).

The median seizure reduction is 44% at one year post-implant and 53% at two years

post-implant.

Another implantable system that can record EEG signals and perform electrical

stimulation, with regards to the detection and possible suppression of epileptic seizures,

was proposed in (Kassiri et al., 2016). This battery-less system can operate at a

maximum distance of 15 cm from an inductive powering link with a power transfer

efficiency of up to 40%. The system was validated in a 100-hour study of 4 Wistar rats

with temporal lobe epilepsy. Although the onset detection delay and the efficiency of

the stimulation were not mentioned, the sensitivity was reported in the range of 88–96%

and the selectivity of 89–97% (Kassiri et al., 2016).

8http://www.cerbomed.de
9http://www.neuropace.com
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Besides electrical/magnetic simulations, ketogenic diet is another alternative

treatments for drug-resistant epilepsy. A clinical trial with twenty-five children (median

age of 6.1 years; range of 2.3-13.2) showed a response (with ≤ 50% reduction in seizure

frequency) rate of 36%. The dietary ratio fat-to-carbonhydrate varied from 3:1 to 4.2:1

(Mackay et al., 2005). Another trial on twenty-nine adults and adolescents (mean age

of 32 years; range of 11-51) showed a similar response rate of 45%. However, due to

small sample sizes and lack of long-term study on adverse effects, further research on

ketogenic diet would be of benefit (Martin-McGill KJ and Cooper, 2018).

Gene therapy has been shown promising results on treating Parkinson’s disease

(Axelsen and Woldbye, 2018). For epilepsy, potential gene therapy approaches including

manipulating endogenous genes, targeting cohorts of genes and introducing engineered

proteins into the brain have been being investigated. Though there have been some

successful results from experimental models, clinical trials are not ready yet due to

concerns about safety, efficacy and human ethics (Kullmann et al., 2014).

There are other available solutions in the market sensing different important

factors that are shown to be relevant to a seizure incident. For example, Seizure

Sensor10 uses heart rate and breathing patterns to detect epileptic seizures. Nikki G’s

temperature control clothing11 monitors if the body temperature drops significantly

below a threshold. Commonly used devices such as smartwatches are also demonstrated

capabilities in detecting and logging seizure events. Smart mobile apps are also available

with capabilities for seizure detection, seizure logging system, and automated carer

alert12. While seizure detection is essential for 1) accurate seizure log keeping, 2) drug

effectiveness studies and 3) automated EEG data labeling, seizure prediction is the only

possible solution that delivers a meaningful quality-of-life improvement to patients living

with the chronic disease.

2.3 Seizure detection and prediction

EEG has been commonly used in brain-computer interface thanks to the convenient

real-time readings and high temporal resolution of EEG signals (H. Zhang et al., 2013).

In recent years, EEG has provided a promising possibility to detect and even predict an

epileptic seizure (Tieng et al., 2016; Fatichah et al., 2014; Parvez and Paul, 2015; Saab

10http://www.tunstallhealthcare.com.au
11https://www.nikkigs.com.au
12http://www.epdetect.com
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and Gotman, 2005; Osorio and Frei, 2009; Kuhlmann, Burkitt, et al., 2009). For seizure

detection, a combination of principal component analysis (PCA) and neural network

with fuzzy membership function can achieve an accuracy rate up to 97.64% (Fatichah

et al., 2014). The authors in (Tieng et al., 2016) combined wavelet de-noising with

adapted Continuous Wavelet Transform in their algorithm and were able to achieve a

sensitivity of 96.72% and a specificity of 94.69% with EEG data from mice. Another

remarkable method is to transform EEG signals into images so as to leverage image

processing techniques (Parvez and Paul, 2015). This approach was able to obtain

98.91% sensitivity and 94.35% specificity. (Zabihi et al., 2016) reconstructed EEG phase

spaces using time-delay embedding method and PoinCare section. The phase spaces were

then reduced by PCA before being fed to linear discriminant analysis (LDA) and Naive

Bayesian classifiers. This approach achieved 88.27% sensitivity and 93.21% specificity

in seizure detection.

The authors in (Shoeb, 2009) deployed eight filters spanning the frequency range of

0.5–24 Hz for each 2-second EEG epoch of all channels, then concatenated three epochs

to form a feature set to be fed to a support vector machine (SVM) classifier. This

approach was tested with the Boston Children’s Hospital (CHB)-MIT dataset and was

able to detect 96% of 163 test seizures with a mean detection delay of 4.6 seconds. In

another work, EEG signals were transformed into an image representation using 2-D

projection of the patient electrodes and the magnitude of 3 different frequency bands

spanning the range of 0–49 Hz of each 1-second block of EEG signal (Thodoroff et al.,

2016). The recurrent convolutional neural network took 30 consecutive blocks as inputs

to perform feature extraction and classification. The patient-specific detectors in this

method have comparable performance compared to the proposed method by (Shoeb,

2009).

Prominent feature extraction techniques consider characteristics in both frequency

and time domain. As an efficient tool for time-frequency-energy analysis, wavelet-based

filters were used to extract a ratio of seizure content of the short foreground in comparison

with the background (Saab and Gotman, 2005; Osorio and Frei, 2009). In another

work, Bayes’ formula was applied on extracted features to estimate the probability of

seizure in EEG signals(Saab and Gotman, 2005). This method achieved an impressively

short onset detection delay of 9.8 s with 76% sensitivity and 0.34/h false positive rate.

An extension of this method was done by combining extra features to find a superior

detector (Kuhlmann, Burkitt, et al., 2009). The extended method was able to achieve a

sensitivity of 81%, a false positive rate of 0.60/h, and a median detection delay of 16.9 s

on a dataset of 525 h of scalp EEG data.
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Detecting seizure using EEG signals has achieved high accuracy and low detection

delay, however, computational efficiency gains are needed if state-of-the-art methods are

to be implemented in implanted or wearable devices. One simple but non-trivial method

to alleviate the computational burden is to reduce the amount of input signals. This

can be done by leveraging bio-medical knowledge to manually select which channels

genuinely contribute to the seizure. However, it is hard and time-consuming to disclose

a set of channels that are significant for every patient. There have been several

attempts to perform this channel selection in an automatic fashsion (Duun-Henriksen

et al., 2012; Shih et al., 2009). Alternative to reducing the amount of input signals is

to reduce number of features extracted prior to classification (Minasyan et al., 2010;

Subasi and Ismail Gursoy, 2010). However, this approach is less preferable because the

feature selection has to be performed not only during training but also during run-time

classification for the latter. In this thesis, we pursue the former approach where we

propose a novel automatic channel selection engine to select the most relevant EEG

channels for seizure detection. The work is presented in Chapter 5. The computational

efficiency gains can be achieved by optimizing the detection algorithms themselves;

i.e., making the algorithms more hardware friendly. The most common approach is

to compress a pre-trained network by iteratively pruning connections and/or quantizing

trained weights (Han, Pool, et al., 2015; Han, Mao, et al., 2015). Another approach is to

design compact neural network by decomposing convolutional kernels into smaller ones

(Iandola et al., 2016; Szegedy et al., 2017). A novel method, which is pursued in this

work and is inspired by Rastegari et al. (2016), is to quantize weights during training

phase.

Along with continuous improvements in recording electroencephalogram (EEG)

signals, there has been an increasing number of EEG-based techniques for seizure

prediction. There have been some articles on seizure prediction using the Freiburg

Hospital dataset (University of Freiburg, 2003). For example, the dynamical similarity

index, effective correlation dimension, and increments of accumulated energy were used

as features (Maiwald et al., 2004). The dynamical similarity index yielded the highest

performance, with a sensitivity of 42% and a false prediction rate (FPR) less than 0.15/h.

The mean phase coherence and lag synchronization index of 32-s sliding EEG windows

were used as features for seizure prediction (Winterhalder et al., 2006). This approach

achieved a sensitivity of 60% and an FPR of 0.15/h. The approach was further improved

by the combined use of bivariate empirical mode decomposition, and Hilbert-based mean

phase coherence as additional features (Zheng et al., 2014). As a result, sensitivity was

increased beyond 70%, while FPR dropped below 0.15/h. A lightweight approach based

on the spike rate achieved 75.8% sensitivity and FPR of 0.09/h (S. Li et al., 2013). By
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use of the synchronization information, a method based on phase-match error of two

consecutive epochs and variation within each epoch resulted in 95.4% sensitivity and

FPR of 0.36/h (Parvez and Paul, 2017). Another synchrony-based approach used the

mean phase coherence between each pair of channels calculated over multiple window

lengths as an indicator of incoming seizure onset (Kuhlmann, D. Freestone, et al., 2010).

Frequency bands of the power spectrum of each channel were used as a feature

for seizure prediction (Park et al., 2011). These features were then fed to a support

vector machine (SVM) classifier to learn the differences between preictal and interictal

instances. This method was tested with the Freiburg Hospital dataset and achieved a

sensitivity of 98.3% and an FPR of 0.29/h. A similar approach with additional features

which are spectral power ratios between different frequency bands achieved sensitivity

exceeding 98% and FPR less than 0.05/h (Z. Zhang and Parhi, 2016). However, this

approach relied on tailoring features for each patient independently, hence offering

reduced generalization as a result. Differently from the two approaches described,

(Aarabi and He, 2014) applied a Bayesian inversion of power spectral density and then

applied a rule-based decision to perform the seizure prediction task. This approach was

tested with the Freiburg Hospital dataset, with a sensitivity of 87.07% and an FPR of

0.2/h. (Aarabi and He, 2017) recently extracted six univariate and bivariate features,

including correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity,

largest Lyapunov exponent, and nonlinear interdependence, and achieved a comparable

sensitivity of 86.7% and a lower FPR of 0.126/h. On the basis of the assumption that

future events depend on a number of previous events, a multiresolution N -gram on

amplitude patterns was used as features (Eftekhar et al., 2014). After optimization of

the feature set per patient, this method yielded a high sensitivity of 90.95% and a low

FPR of 0.06/h on the Freiburg Hospital dataset. Recently, the dynamics of EEG was

captured by use of 64 fuzzy rules to estimate the trajectory of each sliding EEG window

on a Poincaré plane (Sharif and Jafari, 2017). The principal component analysis was

used to reduce interrelated features before classification by an SVM. This work achieved

a sensitivity of more than 91% and an FPR below 0.08/h on the Freiburg Hospital

dataset.

Many of these studies relied on handcraft feature extraction and/or tailored feature

extraction to achieve a high sensitivity and a low false prediction rate. This approach,

however, is not generalizable, and requires significant modifications for each new patient.

Also, it is necessary to calibrate the seizure prediction because seizure characteristics may

change over time. Minimum feature engineering allows faster and more frequent updates

so that the patients can benefit the most from the seizure prediction algorithms. Recent
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works on seizure prediction are moving towards using deep learning approaches which

requires less feature engineering effort. These methods can take inputs as time-series

EEG signals (Hosseini et al., 2017; Abdelhameed and Bayoumi, 2018) or spectrograms

(Kiral-Kornek et al., 2018). Kiral-Kornek et al. (2018) generated spectrograms of each

30-second EEG segments and used a convolutional neural network to distinguish between

preictal and interictal segments. The method achieved a mean sensitivity of 69%

and a mean time in warning of 27% tested with a intracranial EEG dataset of ten

patients. Hosseini et al. (2017) trained stacked autoencoders (SAE) with time-series

EEG signals. The SAE’s features were then optimized with dimension reduction and

combined with engineered features from a priori knowledge before being classified by an

SVM. This approach was tested with two epilepsy patients and achieved a sensitivity

of 95% and FPR of 0.06/h. In another work, Abdelhameed and Bayoumi (2018) used a

deep convolutional autoencoder as an unsupervised feature extractor. The extracted

features were classified by a bidirectional long-short term memory (Bi-LSTM). The

method achieved a sensitivity of 94.6% and a FPR of 0.04/h tested with the CHB-MIT

dataset.

2.4 Hardware implementation of seizure detection

Though there have been many promising algorithms for seizure prediction, a low-power

or portable system that can perform seizure prediction has not been available yet.

Regarding seizure detection, an 8-channel scalp EEG system for continuous detecting

and recording seizure onset events was introduced in (Yoo et al., 2013). This system

hosts an SoC that integrates 8 analog frontend channels, a machine-learning processor for

seizure detection and a 64 KB SRAM. The machine-learning processor that implements

support vector machine (SVM) as a classifier was able to perform an on-chip training and

had comparable performance to MATLAB simulation when verifying with the CHB-MIT

EEG database. However, the performance of this machine-learning processor was 82.7%

in detection rate and 4.5% in false positive rate which is much lower than reported

in (Goldberger et al., 2000), where the database was first introduced, with detection rate

at 96% and 2 false detections per 24 hour period. The SoC was fabricated with 0.18 µm

1P6M CMOS process occupying 25 mm2 area. The complete system was validated with

an eye blink classification test and achieved an eye blink detection rate of 84.4% at

2.03 µJ/classification (Yoo et al., 2013).

An implantable system that can record EEG signals and perform electrical

stimulation with regards to detection and suppression of epileptic seizures was proposed
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in (Kassiri et al., 2016). This miniaturized system is composed of an inductive power

receiver coil, a wireless interface board, and a neurostimulator board. This battery-less

system can operate at a maximum distance of 15 cm from an inductive powering link

with a power transfer efficiency of up to 40%. The wireless interface board performs

power management and transmits signals recorded by the neurostimulator board to the

outside of the body. The neurostimulator board hosts a 24-channel neurostimulator SoC

that is responsible for neural signal recording, digital signal processing, and electrical

stimulation for seizure suppression. The system was validated in a 100-hour study of 4

Wistar rats with temporal lobe epilepsy. The system was able to monitor and detect

seizures in real-time and trigger electrical stimulation for seizure abortion. Although

the onset detection delay and the efficiency of the stimulation were not mentioned, the

sensitivity was reported in the range of 88–96% and the selectivity of 89–97% (Kassiri

et al., 2016).

Using a much simpler seizure detection algorithm, an implantable hardware

implementation for seizure detection in rats was proposed in (Raghunathan, Gupta,

Markandeya, et al., 2010). The detection algorithm is based on events defined in

relation to EEG signal amplitude during seizure period compared to baseline recordings.

Specifically, if the amplitude is Kamp larger than the baseline, the signal is marked as

an event. Inter-event intervals (IEIs) derived from marked events are less than or equal

to a programmable threshold IEIthresh are marked. The number of consecutive marked

IEIs is used to determine whether there is a seizure onset by comparing with another

threshold Nstage. This study was performed on 10 female long Evans rats and seizure

data from 6 of 10 were used in the analysis. The data was recorded at 1526 Hz from

a twisted-pair two-channel electrode through a data acquisition system connected to a

computer. The set of (Kamp, IEIthresh, Nstage) is optimized per subject. The algorithm

achieved a sensitivity of 95.3%, a selectivity of 88.9% and a mean detection delay of

8.5 seconds. The fully CMOS implementation of the algorithm has a power consumption

per channel of 350 nW from a 250 mV power supply based on simulation results on the

MIT 180 nm SOI process.

2.5 Discussions

Though seizure prediction is still challenging, seizure detection has achieved very high

performance. Given a high-performance seizure detector, we can use it as part of

a self-evaluation prediction system. The idea is that the seizure detector will keep

evaluating the seizure prediction over a long period without the need for human
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monitoring. The evaluation results can be used as feedback to improve (re-train) the

prediction algorithm. As depicted in Fig. 2.3, the system performs seizure detection and

seizure prediction in parallel. If a seizure is detected at time td, the system will check

whether it was predicted within the period [td−SPH−SOP ; td], where SPH and SOP

are the seizure prediction horizon and seizure occurrence period13. If yes, the prediction

is correct; otherwise, it is a false negative prediction. In another scenario, if a seizure is

predicted at time tp, the system will check whether it will be detected within the period

[tp; tp + SPH + SOP ]. If yes, the prediction is correct; otherwise, it is a false positive

prediction. Note that if there is a seizure and neither seizure detection nor prediction is

triggered, the system will not be able to evaluate. Therefore, high-performance seizure

detection is required for this system to work properly.

Seizure 
detection

Seizure 
prediction

Seizure 
detected?

Seizure 
predicted?

Check if predic�on 
alarm was triggered 

within [td -SPH-SOP; td]

Check if detection 
alarm will be triggered 

within [tp; tp +SPH+SOP]

Prediction 
alarm 

triggered?

Detection 
alarm 

triggered?

Y

True 
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Y

Y

Y

N
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Figure 2.3: A self-evaluation prediction system. High-performance seizure detection is
required for this system to work properly. td is the point of time when a seizure is
detected. tp is the point of time when an incoming seizure is predicted.
∗ The seizure occurrence period (SOP) is the interval where the seizure is expected to occur. The period between the
alarm and the beginning of the SOP is the seizure prediction horizon (SPH) (Truong, Nguyen, et al., 2018a)

13The seizure occurrence period (SOP) is the interval where the seizure is expected to occur. The
period between the alarm and the beginning of the SOP is the seizure prediction horizon (SPH)
(Truong, Nguyen, et al., 2018a).
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Chapter 3

Seizure prediction with

convolutional neural network

The content presented in this chapter is published as:

• Truong, N. D., A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, S. Ippolito,

and O. Kavehei (2018). “Convolutional neural networks for seizure prediction using

intracranial and scalp electroencephalogram.” Neural Networks 105, 104-111.

DOI:10.1016/j.neunet.2018.04.018.
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Seizure prediction has attracted growing attention as one of the most challenging

predictive data analysis efforts to improve the life of patients with drug-resistant epilepsy

and tonic seizures. Many outstanding studies have reported great results in providing

sensible indirect (warning systems) or direct (interactive neural stimulation) control

over refractory seizures, some of which achieved high performance. However, to achieve

high sensitivity and a low false prediction rate, many of these studies relied on handcraft

feature extraction and/or tailored feature extraction, which is performed for each patient

independently. This approach, however, is not generalizable and requires significant

modifications for each new patient within a new dataset. In this article, we apply

convolutional neural networks to different intracranial and scalp electroencephalogram

(EEG) datasets and propose a generalized retrospective and patient-specific seizure

prediction method. We use the short-time Fourier transform on 30-s EEG windows to

extract information in both the frequency domain and the time domain. The algorithm

automatically generates optimized features for each patient to best classify preictal and

interictal segments. The method can be applied to any other patient from any dataset

without the need for manual feature extraction. The proposed approach achieves a

sensitivity of 81.4%, 81.2%, and 75% and a false prediction rate of 0.06/h, 0.16/h,

and 0.21/h on the Freiburg Hospital intracranial EEG dataset, the Boston Children’s

Hospital-MIT scalp EEG dataset, and the American Epilepsy Society Seizure Prediction

Challenge dataset, respectively. Our prediction method is also statistically better than

an unspecific random predictor for most of the patients in all three datasets.

3.1 Introduction

Advances in data mining and machine learning in the past few decades have attracted

significantly more attention to the application of these techniques in detective and

predictive data analytics, especially in health care, medical practices, and biomedical

engineering (Kuhlmann, Grayden, Wendling, et al., 2015; D. R. Freestone, P. J. Karoly,

A. D. H. Peterson, et al., 2015; Xiao et al., 2017; Bou Assi et al., 2017; Kuhlmann,

Grayden, and Cook, 2017; D. R. Freestone, P. J. Karoly, and Cook, 2017; Sinha

et al., 2017). While the body of available proven knowledge lacks a convincing and

comprehensive understanding of the sources of epileptic seizures, some early studies

showed the possibility of predicting seemingly unpredictable seizures (Rogowski et

al., 1981; Salant et al., 1998). Along with continuous improvements in recording

electroencephalogram (EEG) signals, there has been an increasing number of EEG-based

techniques for seizure prediction (Szostak et al., 2017). There have been some articles on
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seizure prediction using the Freiburg Hospital dataset (University of Freiburg, 2003). For

example, the dynamical similarity index, effective correlation dimension, and increments

of accumulated energy were used as features (Maiwald et al., 2004). The dynamical

similarity index yielded the highest performance with a sensitivity of 42% and a false

prediction rate (FPR) less than 0.15/h. A lightweight approach based on spike rate

achieved a sensitivity of 75.8% and an FPR of 0.09/h (S. Li et al., 2013). By the

use of the synchronization information, a method based on phase-match error of two

consecutive epochs and variation within each epoch resulted in a sensitivity of 95.4%

and an FPR of 0.36/h (Parvez and Paul, 2017). The mean phase coherence and lag

synchronization index of 32-s sliding EEG windows could be used as features for seizure

prediction (Winterhalder et al., 2006). This approach achieved sensitivity of 60% and

FPR of 0.15/h. The approach was further improved by the combination of bivariate

empirical mode decomposition and Hilbert-based mean phase coherence as additional

features (Zheng et al., 2014). As a result, sensitivity was increased beyond 70%, while

FPR dropped below 0.15/h. Another synchrony-based approach used the mean phase

coherence between each pair of channels calculated over multiple window lengths as an

indicator of incoming seizure onset (Kuhlmann, D. Freestone, et al., 2010).

Feature engineering and support vector machine have been used effectively in the

seizure prediction task. Park et al. (2011) calculated frequency bands of the power

spectrum of each channel and used a support vector machine (SVM) classifier to

distinguish between preictal and interictal EEG segments. This method was tested

with the Freiburg Hospital dataset, and achieved a sensitivity of 98.3% and an FPR of

0.29/h. In a similar approach, Z. Zhang and Parhi (2016) added additional features

that were spectral power ratios between different frequency bands. The method

achieved a sensitivity and an FPR of (100%, 0.032/h) and (98.68%, 0.046/h) tested

with the CHB-MIT and the Freiburg Hospital datasets, respectively. However, this

approach relied on tailoring features for each patient independently, hence offering

limited generalization as a result. Differently from the two approaches described,

Aarabi and He (2014) applied a Bayesian inversion of power spectral density and then

applied a rule-based decision to perform the seizure prediction task. This approach

was tested with the Freiburg Hospital dataset, achieving a sensitivity of 87.07% and an

FPR of 0.2/h. Aarabi and He (2017) extracted six univariate and bivariate features,

including correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity,

largest Lyapunov exponent, and nonlinear interdependence, and achieved a comparable

sensitivity of 86.7% and a lower FPR of 0.126/h. On the basis of the assumption that

future events depend on a number of previous events, a multiresolution N -gram on

amplitude patterns was used as features (Eftekhar et al., 2014). After optimization
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of the feature set per patient, this method yielded a high sensitivity of 90.95% and a

low FPR of 0.06/h on the Freiburg Hospital dataset. Recently, the dynamics of EEG

was captured by use of 64 fuzzy rules to estimate the trajectory of each sliding EEG

window on a Poincaré plane (Sharif and Jafari, 2017). Principal component analysis was

used to reduce interrelated features before classification by an SVM. This work achieved

sensitivity of more than 91% and FPR below 0.08/h on the Freiburg Hospital dataset.

Patient-specific feature engineering techniques have been successful in seizure

prediction tasks by achieving perfect sensitivity (100%) and a very low false alarm rate:

0.05/h (Z. Zhang and Parhi, 2016) or 0/h (Mirowski et al., 2008). Such techniques,

however, use numerous pre-engineered features, selected manually, for each patient, and

require lots of resources (e.g., subject domain experts) and time. For example, Mirowski

et al. (2008) used six different feature extraction methods and three machine learning

algorithms. Z. Zhang and Parhi (2016) used 44 features and a set of 91 cost-sensitive

linear SVM classifiers to search for the optimal single features or feature combinations

that perform best for each patient. For both of these approaches, not only is the best

combination of features and classifiers not known for each patient, but an optimal feature

set and classifier may be suboptimal in the future because of the dynamic changes in

the brain.

Because of the drawbacks of feature engineering techniques, a generalized approach

for seizure prediction is highly beneficial. In this work, we use a convolutional neural

network (CNN) for seizure prediction. The main contributions of this work are as

follows: (1) we propose an efficient method to preprocess raw EEG data into a form

suitable for a CNN; (2) we propose a guideline to help the CNN perform well with

the seizure prediction task with minimum feature engineering; and (3) we provide

an algorithm that works well across multiple datasets; namely, the Freiburg Hospital

dataset (University of Freiburg, 2003), the Boston Children’s Hospital (CHB)-MIT

dataset (Shoeb, 2009), and the American Epilepsy Society Seizure Prediction Challenge

(Kaggle) dataset (Kaggle, 2014a). The third main contribution will also reveal factors

that describe (unrealistically) high performance of other seizure prediction methods.

This confounder is mitigated here by the consideration of numerous datasets.

3.2 Dataset

Three datasets were used in this work: the Freiburg Hospital dataset (University of

Freiburg, 2003), the CHB-MIT dataset (Shoeb, 2009), and the American Epilepsy
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Society Seizure Prediction Challenge (Kaggle) dataset (Kaggle, 2014a). The three

datasets are summarized in Table 3.1. The Freiburg Hospital dataset consists of

intracranial EEG (iEEG) recordings of 21 patients with intractable epilepsy. Because

of lack of availability of the dataset, we are able to use data from only 13 patients with

59 seizures and 311.4 interictal hours in total. A sampling rate of 256 Hz was used to

record iEEG signals. In this dataset, there are six recording channels from six selected

contacts, where three of them are from epileptogenic regions and the other three are

from the remote regions. For each patient, there is at least 50 min of preictal data and

24 h of interictal data.

Table 3.1: Summary of the three datasets used in this work.

Dataset
EEG
type

No. of
patients

No. of
channels

No. of
seizures

Interictal
hours

Freiburg Hospital Intracranial 13 patients 6 59 311.4
Boston Children’s Hospital–MIT Scalp 13 patients 22 64 209
American Epilepsy Society Seizure
Prediction Challenge (Kaggle)

Intracranial 5 dogs,
2 patients

16 48 627.7

The CHB-MIT dataset contains scalp EEG (sEEG) data from 23 pediatric patients

with 844 h of continuous sEEG recording and 163 seizures. The sEEG signals were

captured with the use of 22 electrodes at a sampling rate of 256 Hz (Shoeb, 2009).

We define interictal periods as being between at least 4 h before seizure onset and 4 h

after seizure ends. In this dataset, there are cases where multiple seizures occur close to

each other. For the seizure prediction task, we are interested in predicting the leading

seizures. Therefore for seizures that are less than 30 min from the previous seizure, we

consider them as only one seizure and use the onset of the leading seizure as the onset of

the combined seizure. Besides, we consider only patients with fewer than 10 seizures per

day for the prediction task because it is not very critical to perform the task for patients

having a seizure every 2 h on average. With these definitions and considerations, there

are 13 patients with sufficient data (at least three leading seizures and 3 h of interictal

recording) that consists of 64 leading seizures and 209 interictal hours in total.

The American Epilepsy Society Seizure Prediction Challenge dataset has iEEG data

from five dogs and two patients with 48 seizures and 627.7 h of interictal recording

(Kaggle, 2014a). Intracranial EEG (iEEG) canine data were recorded from 16 implanted

electrodes with a sampling rate of 400 Hz. Recorded iEEG data from the two patients

were from 15 depth electrodes (patient 1) and 24 subdural electrodes (patient 2) at a

sampling rate of 5 kHz. Preictal and interictal 10-min segments were extracted by the
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organizers. Specifically, for each lead seizure, six preictal segments were extracted from

66 min to 5 min before seizure onset with 10 s apart. Interictal segments were randomly

selected at least one week from any seizure.

3.3 Proposed method

3.3.1 Preprocessing

Since a two-dimensional CNN is used in this work, it is necessary to convert raw

EEG data into a matrix (i.e., image-like format). The conversion must be able to

keep the most important information from the EEG signals. Wavelet and Fourier

transforms are commonly used to convert time-series EEG signals into image shape

(Kaggle, 2014a; Khan et al., 2018). They are also used as an effective feature extraction

method for seizure detection and prediction. In this work, we use the short-time Fourier

transform (STFT) and apply log10 on the amplitudes to translate raw EEG signals into a

two-dimensional matrix composed of frequency and time axes. We use an EEG window

length of 30 s. Most of the EEG recordings were contaminated by power line noise at

50 Hz (see Fig. 3.1a) for the Freiburg Hospital dataset and 60 Hz for the CHB-MIT

dataset. In the frequency domain, it is convenient to effectively remove the power line

noise by excluding components in the frequency ranges of 47–53 Hz and 97–103 Hz for a

power line frequency of 50 Hz and components in the frequency ranges of 57–63 Hz and

117–123 Hz for a power line frequency of 60 Hz. The DC component (at 0 Hz) was also

removed. Fig. 3.1b shows the STFT of a 30-s window after removal of power line noise.

One challenge in many classification tasks is the imbalance of the dataset; that

is, more instances in one class than in others (Branco et al., 2016). Seizure

prediction also encounters this issue; for example, in the Freiburg Hospital dataset,

the interictal-to-preictal ratio per patient ranges from 9.5:1 to 15.9:1. To overcome this,

we generate more preictal segments by using an overlapped sampling technique during

the training phase. We adopt the idea of data augmentation in computer vision where

images are shifted and rotated by small amounts to generate more samples. This data

augmentation helps the deep learning models to be more robust with input variation. In

particular, we create extra preictal samples for training by sliding a 30-s window along

the time axis at every step S over preictal time-series EEG signals (see Fig. 3.2). S

is chosen per subject so that we have a similar number of samples per class (preictal

or interictal) in the training set. The chosen S value for each patient is provided in

Table 3.2.
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Figure 3.1: (a) Example spectrogram of a 30-s window. (b) Same window after removal
of power line noise.

3.3.2 Convolutional neural network

CNNs have been used extensively for computer vision and natural language processing

(Krizhevsky et al., 2012; Sainath et al., 2013). In this work, we use a CNN with three

convolution blocks as described in Fig. 3.3. Each convolution block consists of a batch

normalization, a convolution layer with a rectified linear unit activation function, and

a max-pooling layer. The batch normalization ensures the inputs to the convolution

layer have zero mean and unit variance. As we desire to capture the correlation across

channels, we design a three-dimension kernel so that one dimension covers all the

channels and the other two extract time and frequency information. Specifically, the

first convolution layer has sixteen n × 5 × 5 kernels, where n is the number of EEG

channels, with stride of 1×2×2. For the rest of the network, we keep it simple by using

typical configuration for convolutional layers. Particularly, the next two convolution

blocks have 32 and 64 convolution kernels, respectively, and both have a kernel size of

30



...

≈
≈

S

2S

3S
...

1 sec

TimeIctal time-series EEG signal

1 sec

Figure 3.2: Generate extra preictal segments to balance the training dataset by sliding
a 30-s window along the time axis at every step S over preictal signals. S is chosen per
subject so that there are a similar number of samples per class (preictal or interictal) in
the training set.

3×3, stride of 1×1, and max-pooling over a 2×2 region. Following the three convolution

blocks are two fully connected layers with sigmoid activation and output sizes of 256

and 2, respectively. The former fully connected layer uses a sigmoid activation function,

while the latter uses a soft-max activation function. Both of the fully connected layers

have a dropout rate of 0.5. Our model is implemented in Python 2.7 with the use of

Keras 2.0 with a Tensorflow 1.4.0 backend. The model was configured to run in parallel

on four NVIDIA K80 graphics cards.

Because of the limited available datasets, it is important to prevent the CNN from

overfitting the data. First, we keep the CNN architecture simple and shallow as described

above (Ba and Caruana, 2014). Second, we propose an approach to prevent overfitting

during the training of the neural network. A common practice is to randomly split 20%

of the training set for use as a validation set. After each training epoch, a loss and/or

accuracy is calculated with respect to the validation set to check if the network starts to

overfit the training set. This approach works well with datasets where time information

is not involved (e.g., images for the classification task). For seizure prediction, we need

to use samples from a period different from that of those during training to monitor

if the model starts to overfit the data. In this work, we select 25% of later samples

from preictal and interictal recordings in the training set for monitoring and the rest for

training (see Fig. 3.4).
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Table 3.2: The chosen S value for each patient.

(a) Freiburg Hospital

Subject S (seconds)

Pat1 2.7
Pat3 3.6
Pat5 3.6
Pat6 2.1
Pat13 1.5
Pat14 2.9
Pat15 2.7
Pat16 3.6
Pat17 3.6
Pat18 3.6
Pat19 2.7
Pat20 3.6
Pat21 3.6

(b) CHB-MIT

Subject S (seconds)

Pat1 7.5
Pat2 2.4
Pat3 4.5
Pat5 7.2
Pat9 1.3
Pat10 4.5
Pat13 7.2
Pat14 30
Pat18 3.6
Pat19 2
Pat20 5.1
Pat21 3
Pat23 7.5

3.3.3 Postprocessing

It is common to have isolated false positives during interictal periods. These isolated

false predictions can be effectively reduced by use of a discrete-time Kalman filter (Park

et al., 2011). In this work, we propose a simple method, called k-of-n, in which an

alarm is set only if at least k predictions among the last n predictions were positive.

Our experiments showed that k = 8 and n = 10 are good choices for the purpose of

efficient prediction. This means that if during the last 300 s at least 240 s led to a

positive prediction, then the alarm is set. Because of the postprocessing, the prediction

latency of the proposed method is 5 minutes which is reasonable given that the SOP is

30 minutes.

3.3.4 System evaluation

The seizure prediction horizon (SPH) and seizure occurrence period (SOP) need to be

defined before performance metrics such as sensitivity and FPR are estimated. In this

work, we follow the definitions of the SOP and SPH proposed by Maiwald et al. (2004)

(see Fig. 3.5). The SOP is the interval where the seizure is expected to occur. The period

between the alarm and the beginning of the SOP is the SPH. For a correct prediction, a

seizure onset must be after the SPH and within the SOP. Likewise, a false alarm occurs

when the prediction system returns a positive result but no seizure occurs during the
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Figure 3.3: Convolutional neural network architecture. This illustration is applied to
the Freiburg Hospital and Boston Children’s Hospital–MIT datasets. For the American
Epilepsy Society Seizure Prediction Challenge dataset, the feature sizes are different
because of the different recording sampling rate. Short-time Fourier transforms of 30-s
windows of raw EEG signals are input. There are three convolution blocks, named C1,
C2, and C3. Each block consists of a batch normalization, a convolution layer with a
rectified linear unit (ReLU) activation function, and a max-pooling layer. For simplicity,
max-pooling layers are not shown and are noted as MP . For C1, there are 16 n× 5× 5
kernels, where n is the number of EEG channels, with stride of 1×2×2. ReLU activation
is applied on convolution results before they are subsampled by a max-pooling over a
1×2×2 region. The same steps are applied in C2 and C3 except the convolution kernel
size is 3×3, stride is 1×1, and max-pooling size is 2×2. Blocks C2 and C3 have 32 and
64 convolution kernels, respectively. Features extracted by the three convolution blocks
are flattened and connected to two fully connected layers with output sizes of 256 and 2,
respectively. The former fully connected layer uses a sigmoid activation function, while
the latter uses a soft-max activation function. Both of the fully connected layers have a
dropout rate of 0.5.

SOP. When an alarm occurs, it will last until the end of the SOP. Sensitivity is defined

as the percentage of seizures correctly predicted divided by the total number of seizures.

The FPR is defined as the number of false alarms per hour.

Regarding clinical use, the SPH must be long enough to allow sufficient intervention

or precautions (SPH is also called intervention time; (Bou Assi et al., 2017)). In contrast,

the SOP should be not too long to reduce the patient’s anxiety. Inconsistency in defining

the SPH and SOP makes the benchmarking among methods difficult and confusing. Park

et al. (2011) reported using an SPH of 30 min, but from their explanation what they

were implicitly using was an SPH of 0 min and an SOP of 30 min (i.e., if an alarm occurs

at any point within 30 min before seizure onset, it is considered a successful prediction).
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Figure 3.4: Practice to prevent the convolutional neural network from overfitting the
data during training. Twenty-five percent of later samples (diagonal lines) from preictal
and interictal recordings in the training dataset are used for monitoring and the rest are
used for training.
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Figure 3.5: Definition of the seizure occurrence period (SOP) and the seizure prediction
horizon (SPH). For a correct prediction, a seizure onset must be after the SPH and
within the SOP.

Similarly, Z. Zhang and Parhi (2016) provided a different definition of the SPH: the

interval between the alarm and seizure onset.

The metrics used to test the proposed approach are sensitivity and FPR with an SPH

of 5 min and an SOP of 30 min. To have a robust evaluation, we follow a leave-one-out

cross-validation approach for each subject. If a subject has N seizures, (N − 1) seizures

will be used for training, and the remaining seizure will be used for validation. This

round is done N times, so all seizures will be used for validation exactly once. Interictal

segments are randomly split into N parts. (N − 1) parts are used for training and the

remaining part is used for validation. The (N−1) parts are further split into monitoring

and training sets to prevent overfitting as depicted in Fig. 3.4.

We also compare the prediction performance of our approach with that of an

unspecific random predictor. Given an FPR, the probability to raise an alarm in an

SOP can be approximated by Schelter et al. (2006)

P ≈ 1− e−FPR·SOP . (3.1)
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Therefore the probability of predicting at least m of M independent seizures by

chance is given by

p =
∑
i≥m

(
M

i

)
P i(1− P )M−i . (3.2)

We calculated p for each patient by using the FPR of that patient and the number

of seizures (m) predicted by our method. If p is less than 0.05, we can conclude that

our prediction method is significantly better than a random predictor at a significance

level of 0.05.

3.4 Results

In this section, we test our approach with three datasets: (1) the Freiburg Hospital

iEEG dataset, (2) the CHB-MIT sEEG dataset, and (3) the American Epilepsy Society

Seizure Prediction Challenge iEEG dataset. An SOP of 30 min and an SPH of 5 min

were used in our calculating all metrics in this work. Each fold of the leave-one-out

cross-validation was executed twice, and average results with standard deviations were

reported. Table 6.1 summarizes the seizure prediction results for the Freiburg Hospital

iEEG dataset. Prediction sensitivity is 81.4% (i.e., 48 of 59 seizures are successfully

predicted). The FPR is very low at 0.06/h. Our method achieves a similar sensitivity of

81.2% on the CHB-MIT sEEG dataset but with a higher FPR of 0.16/h (see Table 6.2).

This is reasonable since sEEG recordings tend to be noisier than sEEG onse. For the

American Epilepsy Society Seizure Prediction Challenge dataset, the overall sensitivity is

75% and FPR is 0.21/h (see Table 3.5). It is important to note that our approach works

comparably with both iEEG and sEEG recordings without any denoising techniques

except power line noise removal.

Table 3.6 demonstrates a benchmark of recent seizure prediction approaches and

this work. It is complicated to tell which approach is the best because each approach

was tested with one dataset that is limited in the amount of data. In other words,

one approach may perform well on one dataset and poorly on another. Therefore we

added an extra indicator on whether the same feature engineering or feature set is

applied across all patients to evaluate generalization of each method. From a clinical

perspective, it is desirable to have a long enough SPH to allow effective therapeutic

intervention and/or precautions. The SOP, however, should be short to minimize the

patient’s anxiety (Maiwald et al., 2004). Some studies that implicitly used zero SPH

disregarded clinical considerations, and hence could have overestimated the prediction
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Table 3.3: Seizure prediction results obtained with the Freiburg Hospital interictal EEG
dataset. The model was executed twice, and average results with standard deviations
were reported. The seizure occurrence period (SOP) was 30 min and the seizure
prediction horizon (SPH) was 5 min. The p value was calculated for the worst case
for each patient; that is, with minimum sensitivity and maximum false prediction rate
(FPR). Our seizure prediction approach achieves significantly better performance than
an unspecific random predictor for all patients except Pat14, where the convolutional
neural network results are only marginally better than the random predictor’s.

Patient
No. of

seizures
Interictal

hours
Sensitivity

(%)
FPR (/h) p

Pat1 4 23.9 100± 0.0 0.00± 0.00 < 0.001
Pat3 5 23.9 100± 0.0 0.00± 0.00 < 0.001
Pat4 5 23.9 100± 0.0 0.00± 0.00 < 0.001
Pat5 5 23.9 40± 0.0 0.13± 0.00 0.032
Pat6 3 23.8 100± 0.0 0.00± 0.00 < 0.001
Pat14 4 22.6 50± 0.0 0.27± 0.00 0.078
Pat15 4 23.7 100± 0.0 0.02± 0.02 < 0.001
Pat16 5 23.9 80± 0.0 0.17± 0.13 0.001
Pat17 5 24 80± 0.0 0.00± 0.00 < 0.001
Pat18 5 24.8 100± 0.0 0.00± 0.00 < 0.001
Pat19 4 24.3 50± 0.0 0.16± 0.00 0.033
Pat20 5 24.8 60± 0.0 0.04± 0.00 < 0.001
Pat21 5 23.9 100± 0.0 0.00± 0.00 < 0.001

Total 59 311.4 81.4± 0.0 0.06± 0.00

36



Table 3.4: Seizure prediction results obtained with the Boston Children’s Hospital–MIT
scalp EEG dataset. The model was executed twice, and average results with standard
deviations were reported. The seizure occurrence period (SOP) was 30 min and the
seizure prediction horizon (SPH) was 5 min. The p value was calculated for the worst
case for each patient; that is, with minimum sensitivity and maximum false prediction
rate (FPR). Our seizure prediction approach achieves significantly better performance
than an unspecific random predictor for all patients except Pat9, where the convolutional
neural network results are only marginally better than the random predictor’s.

Patient
No. of

seizures
Interictal

hours
Sensitivity

(%)
FPR (/h) p

Pat1 7 17 85.7± 0.0 0.24± 0.00 < 0.001
Pat2 3 22.9 33.3± 0.0 0.00± 0.00 < 0.001
Pat3 6 21.9 100± 0.0 0.18± 0.00 < 0.001
Pat5 5 13 80± 20 0.19± 0.03 0.010
Pat9 4 12.3 50± 0.0 0.12± 0.12 0.067
Pat10 6 11.1 33.3± 0.0 0.00± 0.00 0.025
Pat13 5 14 80± 0.0 0.14± 0.00 < 0.001
Pat14 5 5 80± 0.0 0.40± 0.00 0.004
Pat18 6 23 100± 0.0 0.28± 0.02 < 0.001
Pat19 3 24.9 100± 0.0 0.00± 0.00 < 0.001
Pat20 5 20 100± 0.0 0.25± 0.05 < 0.001
Pat21 4 20.9 100± 0.0 0.23± 0.09 < 0.001
Pat23 5 3 100± 0.0 0.33± 0.00 < 0.001

Total 64 209 81.2± 1.5 0.16± 0.00
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Table 3.5: Seizure prediction results obtained with the American Epilepsy Society
Seizure Prediction Challenge dataset. The model was executed twice, and average
results with standard deviations were reported. The seizure occurrence period (SOP)
was 30 min and the seizure prediction horizon (SPH) was 5 min. The p value was
calculated for the worst case for each participant; that is, with minimum sensitivity
and maximum false prediction rate (FPR). Our seizure prediction approach achieves
significantly better performance than an unspecific random predictor for four of five
dogs and for Pat1.

Participant
No. of

seizures
Interictal

hours
Sensitivity

(%)
FPR (/h) p

Dog1 4 80 50± 0.0 0.19± 0.02 0.053
Dog2 7 83.3 100± 0.0 0.04± 0.03 < 0.001
Dog3 12 240 58.3± 0.0 0.14± 0.09 < 0.001
Dog4 14 134 78.6± 0.0 0.48± 0.07 < 0.001
Dog5 5 75 80± 0.0 0.08± 0.01 < 0.001
Pat1 3 8.3 100± 0.0 0.42± 0.06 0.009
Pat2 3 7 66.7± 0.0 0.86± 0.00 0.693

Total 48 627.7 75± 0.0 0.21± 0.04

accuracy. The approach proposed by Park et al. (2011) achieved a very high sensitivity

of 98.3% and FPR of 0.29/h in testing with 18 patients from the Freiburg Hospital

dataset. Our method yields a lower sensitivity of 81.4% but a much better FPR of

0.06/h. It is nontrivial to note that the SPH was implicitly set to zero, which means

prediction at a time close to or at seizure onset can be counted as a successful prediction.

Likewise, research conducted by Z. Zhang and Parhi (2016) and Parvez and Paul (2017)

also implied the use of zero SPH, which will not be compared directly with our results.

Among the rest of the studies listed in Table 3.6, Eftekhar et al. (2014) reported a very

good prediction sensitivity of 90.95% and a low FPR of 0.06/h for an SOP of 20 min

and an SPH of 10 min. They fine-tuned the feature set for each patient to achieve the

maximum performance. This, however, leads to the need for adequate expertise and time

to perform the feature engineering for a new dataset. Sharif and Jafari (2017) applied

the same set of features to all patients and performed classification using an SVM.

This approach achieved a high sensitivity of 91.8–96.6% and a low FPR of 0.05–0.08 in

testing with the Freiburg Hospital iEEG dataset. However, no studies have reported the

successful use of a similar approach on sEEG signals.
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Table 3.6: Benchmarking of recent seizure prediction approaches and this work

Year Authors Dataset Feature Classifier
Same
FEa

No. of
seizures

Sensitivity
(%)

FPR
(/h)

SOP SPH

2004 (Maiwald
et al., 2004)

FB, 21 patients Dynamical
similarity index

Threshold
crossing

Yes 88 42 < 0.15 30 min 2 min

2006 (Winterhalder
et al., 2006)

FB, 21 patients Phase coherence,
lag synchronization

Threshold
crossing

No 88 60 0.15 30 min 10 min

2011 (Park et al.,
2011)

FB, 18 patients Univariate
spectral power

SVM Yes 80 98.3 0.29 30 min 0b

2013 (S. Li et al.,
2013)

FB, 21 patients Spike rate Threshold
crossing

Yes 87 72.7 0.11 50 min 10 s

2014 (Zheng et al.,
2014)

FB, 10 patients
Mean phase coherence

Threshold
crossing

No 50 > 70 < 0.15 30 min 10 min

2014 (Eftekhar
et al., 2014)

FB, 21 patients
Multiresolution N -gram

Threshold
crossing

No 87 90.95 0.06 20 min 10 min

2014 (Aarabi and
He, 2014)

FB, 21 patients Bayesian inversion of
power spectral density

Rule-based
decision

Yes 87 87.07 0.20 30 min 10 s

2016 (Z. Zhang
and Parhi,
2016)

FB, 18 patients Power spectral density
ratio

SVM No 80 100 0.03 50 min 0b

2016 (Z. Zhang
and Parhi,
2016)

MIT, 17 patients Power spectral density
ratio

SVM No 76 98.68 0.05 50 min 0b

2017 (Parvez and
Paul, 2017)

FB, 21 patients Phase-match error,
deviation, fluctuation

LS-SVM Yes 87 95.4 0.36 30 min 0b

2017 (Sharif and
Jafari, 2017)

FB, 19 patients Fuzzy rules on Poincaré
plane

SVM Yes 83 91.8–96.6 0.05–0.08 15min 2–42 min

2017 (Aarabi and
He, 2017)

FB, 10 patients Univariate and bivariate
features

Rule-based
decision

Yes 28 86.7 0.126 30 min 10 s

2017 (Khan et al.,
2018)

MIT, MSSM Wavelet transform CNN Yes 131 87.8 0.14 10 min 0b

2017 This work FB, 13 patients Short-time
Fourier transform

CNN Yes 59 81.4 0.06 30 min 5 min

2017 This work MIT, 13 patients Short-time
Fourier transform

CNN Yes 64 81.2 0.16 30 min 5 min

2017 This work Kagglec,
5 dogs, 2 patients

Short-time
Fourier transform

CNN Yes 48 75 0.21 30 min 5 min

CNN, convolutional neural network, FB, Freiburg Hospital intracranial EEG dataset; FE, feature engineering; FPR, false prediction rate; LS, least squares;
MIT, Massachusetts Institute of Technology scalp EEG dataset; MSSM, Mount Sinai Hospital dataset (intracranial EEG); SPH, seizure prediction horizon;
SOP, seizure occurrence period; SVM, support vector machine.
aSame FE across all patients. “No” means feature engineering is tailored for each patient.
bThe authors implicitly used zero SPH and disregarded clinical considerations, and hence the results could be overestimated.
cAmerican Epilepsy Society Seizure Prediction Challenge dataset (intracranial EEG).



3.5 Discussion

Information extracted from EEG signals in frequency and time (synchronization)

domains has been used widely to predict seizures. We proposed a novel way to exploit

both frequency and time aspects of EEG signals without handcrafted feature engineering.

The STFT of an EEG window has two dimensions; namely, the frequency and the time.

A two-dimensional convolution filter was slid throughout the STFT to collect the changes

in both the frequency and the time of EEG signals. The filter weights are automatically

adjusted during the training phase and the CNN acts like a feature extraction method

in an automatic fashion.

In the work proposed by Khan et al. (2018), continuous wavelet transform (CWT)

was used as a preprocessing step and the wavelet transform of raw EEG signals was

used as input to a CNN. In this section, we implement the same CWT and compare

it with the STFT in terms of seizure prediction performance. Following Khan et al.

(2018), we apply a set of ten scales from 20 to 29 and the Mexican-hat mother wavelet,

then downsample the time axis of the wavelet transform so that the final dimension is

n×10×128. Here we use the area under the receiver operating characteristic curve (AUC)

as a comparison criterion instead of sensitivity and FPR. The AUC is a threshold-free

metric, so it can be used to directly compare the performance of different methods. The

results are illustrated in Fig. 3.6. With the use of the Wilcoxon signed-rank test on the

three datasets with a significance level of 0.05, the STFT is significantly better than the

CWT, with p = 0.0135.

We used the oversampling technique to overcome the imbalance of the datasets.

Cost-sensitive learning has been used widely in the literature for the same purpose

(Branco et al., 2016). We applied cost-sensitive learning by changing the cost function

in a way that the misclassification cost of preictal samples is multiplied by the ratio

of interictal samples to preictal samples for each patient. We used STFT as the

preprocessing step for cost-sensitive learning. The results are illustrated in Fig. 3.6.

Although our oversampling technique does not result in a significant improvement as

compared with cost-sensitive learning when applied on the three datasets, we argue that

our oversampling technique is a more intuitive way to address the overfitting problem

caused by the imbalance of time-series datasets.

Tables 6.1 and 6.2 show that our prediction method is significantly superior to

an unspecific random predictor for all patients except Pat14 in the Freiburg Hospital

dataset and Pat9 in the CHB-MIT dataset. It is worth remembering that the Freiburg

Hospital dataset consists of iEEG recordings and the CHB-MIT dataset consists of
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Figure 3.6: Comparison among our method, the preprocessing step using the continuous
wavelet transform (CWT) (Khan et al., 2018), and cost-sensitive learning. AUC, area
under the receiver operating characteristic curve; CHB, Boston Children’s Hospital.

sEEG recordings. In other words, our method works well with both types of EEG

signals. Regarding the American Epilepsy Society Seizure Prediction Challenge dataset,

our method results in significantly better performance than a random predictor for four

of five dogs (see Table 3.5) and for Pat1. Note that the results above are collected by

a retrospective analysis where the data is clean and all disruptions during recording

are effectively removed. One may expect a degradation in performance when testing a

prospective seizure prediction because of potential issues during EEG recording.

As seizure characteristics may change over time, calibration of the seizure prediction

algorithm is necessary. Minimum feature engineering has a great advantage in that

it does not require an expert to carefully extract and select the optimum features for

the prediction task. Hence it allows faster and more frequent updates so that patients

are able to benefit the most from the seizure prediction algorithm. Also, minimum

feature engineering allows seizure prediction to be available to more patients. Since the

feature extraction task is undertaken by the CNN, neurophysiologists and clinical staff

can spend more time in monitoring and recording EEG signals for diagnostic purposes

and/or training data collection.

Our method can be further improved by non-EEG data such as information on

the time when seizures occur. Epileptic seizures have been shown to have biases in
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Figure 3.7: Number of seizures versus time of day across patients for the Boston
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lower peaks occur around 4 p.m. and 2 a.m.

distribution over time at various intervals that can be as long as 1 year or as short as

1 h (Griffiths and Fox, 1938). Importantly, Griffiths and Fox (1938) showed that there

were more incidences of seizure around sunrise, noon, and midnight in their dataset of

101 patients with 39, 929 seizures. However, this pattern is patient specific. Adopting

the same observation, P. J. Karoly et al. (2017) leveraged this pattern to significantly

improve their seizure forecasting system. Unfortunately, the three datasets investigated

in this article are not large enough to assess if the time of day information is useful

because the maximum recording period per patient was 3 days. Nevertheless, it is still

worth seeing how incidences of seizure are distributed over the day across patients in

the CHB-MIT dataset, the only dataset from which we can access the time of seizure

occurrence. On the basis of the CHB-MIT data, the greatest incidence occurs in the

early morning, and there two lower peaks around 4 p.m. and 2 a.m. (see Fig. 3.7).

3.6 Conclusion

Seizure prediction capability has been studied and improved over the last four decades.

A perfect prediction is not yet available, but with current prediction performance, it

appears possible to provide patients with a warning so they can take some precautions

for their safety. We proposed a novel approach of using CNNs with minimum feature

engineering. The proposed approach showed its good generalization in working well
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with both iEEG and sEEG data. This gives more patients the opportunity to possess a

seizure prediction device that can help them have a more manageable life.
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Many outstanding studies have reported promising results in seizure forecasting,

one of the most challenging predictive data analysis problems. This is mainly because

electroencephalogram (EEG) bio-signal intensity is very small, in µV range, and there

are significant sensing difficulties given physiological and non-physiological artifacts.

Today the process of accurate epileptic seizure identification and data labeling is done by

neurologists. The current unpredictability of epileptic seizure activities together with the

lack of reliable treatment for patients living with drug-resistant forms of epilepsy creates

an urgency for research into accurate, sensitive and patient-specific seizure forecasting.

Most seizure forecasting algorithms use only labeled data for training purposes. As the

seizure data is labeled manually by neurologists, preparing the labeled data is expensive

and time-consuming, making the best use of the data critical. In this article, we propose

an approach that can make use of not only labeled EEG signals but also the unlabeled

ones which are more accessible. We use the short-time Fourier transform on 28-s EEG

windows as a pre-processing step. A generative adversarial network (GAN) is trained

in an unsupervised manner where information of seizure onset is disregarded. The

trained Discriminator of the GAN is then used as a feature extractor. Features generated

by the feature extractor are classified by two fully-connected layers (can be replaced

by any classifier) for the labeled EEG signals. This semi-supervised patient-specific

seizure forecasting method achieves an out-of-sample testing area under the operating

characteristic curve (AUC) of 77.68%, 75.47% and 65.05% for the CHB-MIT scalp EEG

dataset, the Freiburg Hospital intracranial EEG dataset and the EPILEPSIAE dataset,

respectively. Unsupervised training without the need for labeling is important because

not only it can be performed in real-time during EEG signal recording, but also it does

not require feature engineering effort for each patient. To the best of our knowledge,

this is the first application of GAN to seizure forecasting.

4.1 Introduction

Epilepsy affects almost 1% of the global population and considerably impacts the quality

of life of those patients diagnosed with the disease (Kuhlmann, Lehnertz, et al., 2018;

R. S. Fisher et al., 2017; Kuhlmann, P. Karoly, et al., 2018). Over the past two decades,

a tremendous number of techniques on predicting seizure has been proposed with

promising performance. An early approach based on similarity, correlation, and energy

of EEG signals achieved a modest sensitivity of 42% and a false prediction rate (FPR)

less than 0.15/h tested with the Freiburg Hospital dataset (Maiwald et al., 2004). The

performance improved with the use phase coherence and synchronization information
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in EEG signals, resulting in sensitivity 60% and FPR of 0.15/h in (Winterhalder et al.,

2006) and 95.4% and FPR of 0.36/h in (Parvez and Paul, 2017). A similar approach

with additional features by combining bivariate empirical mode decomposition and

Hilbert-based mean phase coherence improved sensitivity to over 70% and FPR to below

0.15/h (Zheng et al., 2014). Different from the methods above, Aarabi and He (2014)

used Bayesian inversion of power spectral density and then applied a rule-based decision.

Their method achieved a sensitivity of 87.07% and FPR of 0.2/h on the Freiburg Hospital

dataset.

Advances in machine learning have enabled major improvements in computer vision,

language processing and medical applications (Kuhlmann, P. Karoly, et al., 2018).

Support vector machine (SVM) with frequency bands of the spectral energy as inputs

further boosted the performance to 98.3% and FPR of 0.29/h (Park et al., 2011) and 98%

and FPR less than 0.05/h (Z. Zhang and Parhi, 2016) tested with the Freiburg Hospital

dataset. In another work, features of EEG signals were estimated on a Poincaré plane

using 64 fuzzy rules (Sharif and Jafari, 2017). The features were processed with principal

component analysis (PCA) to reduce dimension before being classified by an SVM. This

approach achieved a high sensitivity of more than 91% and an FPR below 0.08/h on

the Freiburg Hospital dataset. In our recent work (Truong, Nguyen, et al., 2018a), we

showed that convolutional neural networks (CNNs) can be used as an effective seizure

prediction method.

Note that all high-performance seizure forecasting algorithms were fully supervised;

i.e., only labeled data were used for training. However, labeling seizure data is performed

manually by neurologists and is an expensive and time-consuming task. There has

been an increasing need to make use of unlabelled data with unsupervised feature

learning such as clustering, Gaussian mixture models, Hidden Markov Models and

autoencoders (Smart and Chen, 2015; Wen and Z. Zhang, 2018). Most of these

unsupervised learning techniques have been applied to seizure detection and achieved

high sensitivity and specificity (Bizopoulos et al., 2013; Supratak et al., 2014; Smart and

Chen, 2015). However, there are few works successfully applying unsupervised learning

in the seizure forecasting context. Hosseini et al. (2017) trained unsupervised stacked

autoencoders (SAE) then optimized the SAE’s features with principal component

analysis, independent component analysis, and differential search algorithm. These

features were combined with engineered features from a priori knowledge before being

classified by an SVM. This approach achieved a sensitivity of 95% and FPR of 0.06/h

tested with a dataset of two epilepsy patients developed and released by the University of

Pennsylvania and the Mayo Clinic. In another work, a deep convolutional autoencoder
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was used as an unsupervised feature extractor (Abdelhameed and Bayoumi, 2018). The

extracted features were fed to a bidirectional long-short term memory (Bi-LSTM) to

perform the seizure prediction task. This method was tested with the CHB-MIT dataset

with a sensitivity of 94.6% and an FPR of 0.04/h.

In this work, we exploit a deep convolutional generative adversarial network (GAN)

(Radford et al., 2015) as an unsupervised technique to extract features from unlabeled

EEG signals that can be used for seizure forecasting task. The extracted features can be

classified by any classifier (a neural network with two fully-connected layers in this work).

The structure of this article is as follows. We first introduce the datasets being used

in this work. Next, we describe how EEG signals are pre-processed. Then we provide

details on GAN and how it can be used as a feature extractor for seizure forecasting.

Lastly, we evaluate our approach and discuss the results on three datasets. A preliminary

version of this work has been reported by Truong, Zhou, et al. (2019). The contribution

of this work includes:

• Confirming unsupervised feature learning using GAN for seizure forecasting is

generalizable across multiple epilepsy EEG datasets,

• Bridging the gap between supervised and semi-supervised approaches,

• Linking patient-specific characteristics to seizure forecasting performance.

4.2 Dataset

Table 4.1 summarizes the three datasets being used in this work: the CHB-MIT dataset

(Shoeb, 2009), the Freiburg Hospital dataset (University of Freiburg, 2003), and the

EPILEPSIAE dataset (Klatt et al., 2012). The CHB-MIT dataset contains scalp EEG

(sEEG) data of 23 pediatric patients with 844 hours of continuous sEEG recording and

163 seizures. Scalp EEG signals were captured using 22 electrodes at a sampling rate

of 256 Hz (Shoeb, 2009). We define interictal periods that are at least 4 h away before

seizure onset and after the seizure ends. In this dataset, there are cases that multiple

seizures occur close to each other. For the seizure forecasting task, we are interested in

predicting the leading seizures. Therefore, for seizures that are less than 30 min away

from the previous one, we consider them as only one seizure and use the onset of leading

seizure as the onset of the combined seizure. Besides, we only consider patients with less

than 10 seizures a day for the prediction task because it is not very critical to perform
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the task for patients having a seizure every 2 hours on average. With the above definition

and consideration, there are 13 patients with sufficient data (at least 3 leading seizures

and 3 interictal hours) that is consisted of 64 leading seizures and 209 interictal hours

in total.

The Freiburg Hospital dataset consists of intracranial EEG (iEEG) recordings of 21

patients with intractable epilepsy. Due to the lack of availability of the dataset, we are

only able to use data from 13 patients with 59 seizures and 311.4 interictal hours. A

sampling rate of 256 Hz was used to record iEEG signals. In this dataset, there are 6

recording channels from 6 selected contacts where three of them are from epileptogenic

regions, and the other three are from the remote regions. For each patient, there are at

least 50 min preictal data and 24 h of interictal. More details about Freiburg dataset

can be found in (Maiwald et al., 2004).

EPILEPSIAE is the largest epilepsy database that contains EEG data from 275

patients (Klatt et al., 2012). In this work, we analyze scalp EEG of 30 patients with 261

leading seizures and 2881.4 interictal hours in total. The time-series EEG signals were

recorded at a sampling rate of 256 Hz and from 19 electrodes. Seizure onset information

obtained by two methods, namely EEG based and video analysis, is provided. In our

study, we use seizure onset information using EEG based technique where the onsets were

determined by visual inspection of EEG signals performed by an experienced clinician

(Klatt et al., 2012).

Table 4.1: Summary of the three datasets used in this work.

Dataset
EEG
type

No. of
patients

No. of
channels

No. of
seizures∗

Interictal
hours

Freiburg intracranial 13 6 59 311.4
CHB-MIT scalp 13 22 64 209
EPILEPSIAE scalp 30 19 261 2881.4

∗ We are considering leading seizures only. Seizures that are less than 30 min away from the previous one are considered
as one seizure only, and the onset of leading seizure is used as the onset of the combined seizure.

4.3 Proposed Method

4.3.1 Pre-processing

Since we will use a Generative Neural Network (GAN) architecture with three

de-convolution layers, dimensions of GAN’s input must be divisible by 23, except the
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number of channels. Specific to the CHB-MIT dataset, some patients have less than 22

channels of recording EEG due to changes in electrodes. Particularly, Pat13 and Pat17

have only 17 available channels; Pat4, Pat9 have 20, 21 channels, respectively. Since we

are interested in whether GAN can be effectively trained with non-patient specific data,

all patients must have the same number of channels so that data from all patients can

be combined. We follow the approach proposed by Truong, Kuhlmann, et al. (2017) to

select 16 channels for each patient in CHB-MIT dataset. With regards to CHB-MIT and

Freiburg datasets, we use Short-Time Fourier Transform (STFT) to translate 28 seconds

of time-series EEG signal into a two-dimensional matrix comprised of frequency and time

axes. For the STFT, we use cosine window of 1-second length and 50% overlap. Most

of EEG recordings were contaminated by power line noise at 60 Hz (see Fig. 4.1a) for

CHB-MIT dataset and 50 Hz for Freiburg dataset. The power line noise can be removed

by excluding components at the frequency range of 47–53 Hz and 97–103 Hz if the power

frequency is 50 Hz and components at the frequency range of 57–63 Hz and 117–123 Hz

for the power line frequency of 60 Hz. The DC component (at 0 Hz) was also removed.

Fig. 4.1b shows the STFT of a 28-s window after removing power line noise. We also

trim components at the last two frequencies 127–128 Hz to have the final dimension of

each pre-processed 28 s be (number-of-channels × X × Y ) = (n × 56 × 112), where X

and Y are time and frequency dimensions, respectively. n is 16, 6, 19 for the CHB-MIT

dataset, the Freiburg Hosiptal dataset and the EPIELEPSIA dataset, respectively.
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Figure 4.1: (a) Example spectrogram of a 28-second window. (b) Spectrogram of the
same window after removing power line noise.

4.3.2 Adversarial Neural Network

In this work, we use a Deep Convolutional Generative Adversarial Network (DCGAN)

(Radford et al., 2015) as depicted in Fig. 4.2 as an unsupervised feature extraction

technique. Note that here we explain for the CHB-MIT dataset. The same explanation

is applied to the other two datasets with the change in input dimension as mentioned in
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Figure 4.2: The Generator takes a random sample of 100 data points from a uniform
distribution U(−1, 1) as input. The input is fully-connected with a hidden layer with the
output size of 6272 which is then reshaped to 64× 7× 14. The hidden layer is followed
by three de-convolution layers with filter size 5× 5, stride 2× 2. The numbers of filters
of the three de-convolution layers are 32, 16 and n, respectively. The Discriminator
consists of three convolution layers with filter size 5 × 5, stride 2 × 2. The numbers of
filters of the three convolution layers are 16, 32 and 64, respectively.

Section 4.3.1. The Generator takes a 100 dimensional sample from a uniform distribution

U(−1, 1) as input. The input is fully-connected with a hidden layer with the output size

of 6272 which is then reshaped to 64 × 7 × 14. The hidden layer is followed by three

de-convolution layers with filter size 5×5, stride 2×2. The number of filters of the three

de-convolution layers are 32, 16 and n, respectively. Outputs of the Generator have the

same dimension with STFT of 28 seconds EEG signals. The Discriminator, on the other

hand, is configured to discriminate the generated EEG signals from the original ones.

The Discriminator consists of three convolution layers with filter size 5× 5, stride 2× 2.

Note that the choice of convolution filter size in both convolution and de-convolution

layers is based on the CNN architecture reported by Truong, Nguyen, et al. (2018a)

that was shown to be effective in predicting seizures. The number of filters of the three

convolution layers are 16, 32 and 64, respectively. During training, the Generator tries to

generate signals that are apparently similar to the original ones while the Discriminator

is optimized to detect those generated signals. As a result, the Discriminator learns how

to extract unique features in the original EEG signals by adjusting its parameters in

the three convolution layers. This training process is unsupervised because we do not

provide labels (preictal or interictal) to the network.
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The Discriminator’s loss, Dloss, and the Generator’s loss, Gloss, are defined as

(Goodfellow et al., 2014):

Dloss =
1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

, (4.1)

Gloss =
1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

, (4.2)

where m is the batch size (64), x is the original STFT of EEG signals, z is sampled from

the distribution U(−1, 1).

The idea of training a generative adversarial network is that the Discriminator (D)

and Generator (G) compete with each other until they finally reach an equilibrium

(Goodfellow et al., 2014). However, when we first started training the DCGAN, we

observed that the Discriminator converged too fast. When the Discriminator converges

too fast, the term D
(
G
(
z(i)
))

gets very close to 0 causing Gloss very close to 0. Hence,

the gradient of Gloss is almost 0. This prevents the Generator from learning how

to generate high quality STFT samples that are not distinguishable from real STFT

samples. As a result, the classification between generated STFT samples and original

ones becomes a trivial task. To overcome this, we update the Generator twice instead of

once every mini-batch as suggested by S.-H. Sun (2017) and configure an early-stopping
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monitor to keep track of loss values of the Discriminator and Generator (defined in Eqs.

4.1 and 4.2 (Goodfellow et al., 2014)). The monitor stops the DCGAN training if Dloss

keeps being larger than Gloss over k consecutive training batches. In this work, we used

k = 20, batch size of 64, and Adam optimizer for gradient-based learning with a learning

rate of 1e−4, β1 = 0.5, β2 = 0.999, and ε = 1e−8. The effect of updating the Generator

twice can be verified by visualizing the loss values. In Fig. 4.4, we plot the Discriminator

and the Generator’s loss values in two scenarios: update the Generator (1) once, and

(2) twice every mini-batch using data of Patient 1 from the CHB-MIT dataset. One can

observe that the Generator’s loss (Gloss) is lower and has less variation in scenario (2)

which means the generated STFT samples better resemble the original ones. A better

Generator, in turn, helps to improve the discriminant performance of the Discriminator.

The Generator and the Discriminator reach their equilibrium after around 2000 steps

where the early-stopping monitor stops the training. Note that the early-stopping was

turned off when collecting loss values to produce Fig. 4.4.
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Figure 4.4: The Discriminator’s and the Generator’s loss values in two scenarios: update
the Generator (1) once (a-b) and (2) twice (c-d) every mini-batch using data of Patient
1 from the CHB-MIT dataset.

We investigate the system performance in three scenarios: (1) GAN is trained

with data of all patients combined (from the same dataset), (2) GAN is trained in

a patient-specific fashion, and (3) GAN is trained in a patient-specific fashion with

improvement. In scenario (3), similar to the dataset balancing technique proposed by

Truong, Nguyen, et al. (2018a), we generate extra samples from existing ones. As a

result, the training set in scenario (3) is ten times larger compared to the one in scenario
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(2). Our model training is performed on an NVIDIA P100 graphic card using Tensorflow

1.4.0 framework.

4.3.3 Seizure forecasting with features extracted by DCGAN

We use the trained convolution layers in the DCGAN’s Discriminator as a feature

extractor (see Fig. 4.3). Specifically, we feed STFT of 28-second EEG signals into

the Discriminator and collect the flatten features at its last convolution layer’s output

(64 × 7 × 14). Those features can now be used with any classifier to perform the

seizure forecasting task. In this work, we use a simple neural network consisting of

two fully-connected layers with output sizes of 256 and 2, respectively. The former layer

uses a sigmoid activation function while the latter uses soft-max activation function.

Both of the two layers have a drop-out rate of 0.5. The training of this two-layer neural

network is patient-specific. We also apply a practice proposed by Truong, Nguyen, et al.

(2018a) to prevent over-fitting during the training of the neural network. In particular,

we perform dataset balancing and then choose 25% later preictal and interictal samples

from the training set to monitor if over-fitting occurs and use the rest to train the

network.

Alarm

SPH SOP

!
Seizure onset

Time

Figure 4.5: Definition of seizure occurrence period (SOP) and seizure prediction horizon
(SPH). For a correct prediction, a seizure onset must be after the SPH and within the
SOP.

4.3.4 System evaluation

Seizure prediction horizon (SPH) and seizure occurrence period (SOP) need to be defined

before estimating the system’s performance. In this work, we follow the definition of

SOP and SPH that was proposed by Maiwald et al. (2004) (see Fig. 4.5). SOP is the

interval where the seizure is expected to occur. The period between the alarm and the

beginning of SOP is called SPH. For a correct prediction, a seizure onset must be after
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the SPH and within the SOP. Likewise, a false alarm rises when the prediction system

returns a positive but there is no seizure occurring during SOP. When an alarm rises, it

will last until the end of the SOP. Regarding clinical use, SPH must be long enough to

allow sufficient intervention or precautions. In contrast, SOP should be not too long to

reduce the patient’s anxiety.

We use the area under the receiver operating characteristics curve (AUC) with SPH

of 5 min and SOP of 30 min. To have a robust evaluation, we follow a leave-one-out

cross-validation approach for each subject. If a subject has N seizures, (N − 1) seizures

will be used for the supervised training and the withheld seizure for validation. This

round is repeated N times so all seizures will be used for validation exactly one time.

Interictal segments are randomly split into N parts. (N − 1) parts are used for training

and the rest for validation. The (N − 1) parts are further split into monitoring and

training sets to prevent over-fitting (Truong, Nguyen, et al., 2018a).

We compare our semi-supervised learning models with a fully-supervised approach

using CNN reported in our previous work (Truong, Nguyen, et al., 2018a). We also

compare the forecasting performance with a random predictor. Specifically, we use the

single-tailed Hanley-McNeil AUC test (Hanley and McNeil, 1983) to compare our AUC

scores with the chance level (AUC= 0.5). The AUC values used for the Hanley-McNeil

AUC test are calculated from all seizure forecasting scores during the leave-one-out

cross-validation for each patient.

4.4 Results

In this section, we test our approach with three datasets: the CHB-MIT sEEG

dataset, the Freiburg Hospital iEEG dataset, and the EPILEPSIAE sEEG dataset.

SOP = 30 min and SPH = 5 min were used in calculating all metrics in this work.

Each fold of leave-one-out cross-validation was executed twice, and average results with

standard deviations were reported. Fig. 4.6 summarizes seizure forecasting results with

SOP of 30 min and SPH of 5 min. Results in detail are provided in Tables A1-A3.

Compared to the fully supervised CNN, GAN-NN introduces ∼ 6%, ∼ 12% and

∼ 6.6% loss in AUC for the CHB-MIT sEEG dataset, the Freiburg Hospital iEEG

dataset, and the EPILEPSIAE sEEG dataset, respectively. When GAN is trained

per patient (GAN-PS-NN), the average AUC drops further to 72.63%, 60.91% and

63.6% for the three datasets. This can be explained by the limited amount of data

from each patient. By applying 10× up-sampling (GAN-PS-USPL-NN), the average
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Figure 4.6: Seizure forecasting performance for the CHB-MIT dataset, the Freiburg
Hospital dataset, and the EPILEPSIAE dataset. Four methods are evaluated: (1) CNN:
convolutional neural network (Truong, Nguyen, et al., 2018a) (global means: 83.89 ±
1.28%, 88.86±1.87%, 71.65±2.44%), (2) GAN-NN: unsupervised feature extraction using
generative adversarial network (GAN) and classification performed by a two-layer neural
network (global means: 77.68± 2.85%, 75.35± 3.62%, 65.05± 2.78%), (3) GAN-PS-NN:
similar to (2) but GAN is done patient-specific (global means: 72.63 ± 3.80%, 60.91 ±
1.62%, 63.60± 3.16%), (4) GAN-PS-USPL-NN: similar to (3) but 10× over-sampling of
samples is performed when training GAN (global means: 75.66± 3.15%, 74.33± 2.54%,
65.76± 2.33%)

.
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AUC is boosted to 75.66% and 74.33% for the CHB-MIT dataset and the Freiburg

Hospital dataset, respectively, which are 1–2% lower than those of GAN-NN. Regarding

the EPILEPSIAE dataset, up-sampling technique improves overall AUC by 2% higher

compared to patient-specific GAN without up-sampling (GAN-PS-NN) and 0.7% higher

compared to non-patient-specific GAN (GAN-CNN). Fig. A1 demonstrates the overall

seizure performance across different models and datasets. Tables A1-A3 show that our

seizure forecasting method is significantly better than the chance level for most of the

patients at a significance level of 0.05. The supervised and semi-supervised learning

methods (namely CNN, and GAN-PS-USPL-NN) outperform the random predictor for

most of the patients. The percentages of patients with forecasting performance above the

chance level for the two methods are (92.30%, 84.61%), (100%, 84.61%), and (86.67%,

86.67%) for the CHB-MIT dataset, the Freiburg Hospital dataset, and the EPILEPSIAE

dataset, respectively.

4.5 Discussion

We have shown that feature extraction for seizure forecasting can be performed in an

unsupervised way. Though the overall AUC degraded by ∼ 6–12% across the three

datasets, our unsupervised feature extraction can help to minimize the EEG labeling

task that is costly and time-consuming. Specifically, unlabeled EEG signals are used

to train the GAN. The trained GAN plays like a feature extractor. Extracted features

from labeled EEG data (that can be much smaller than unlabeled one) can be fed to

any classifier (two fully-connected layers in our work) for the seizure forecasting task.

There is still a gap in seizure forecasting performance between fully-supervised (CNN)

and semi-supervised approaches. We argue that this is because the size of training data

for GAN is not big enough. This argument is supported by the results of over-sampling

data for training GAN. We have shown that over-sampling the inputs during training

GAN helps to fill the gap for some patients and boost the seizure forecasting performance

in overall. It is reasonable to argue that with more EEG data, the prediction accuracy

can be improved. The advantage of using unsupervised feature extraction is that we

can train the feature extractor (GAN) while recording EEG data, i.e., online training,

without inducing extra efforts from clinicians.

Previous works using autoencoder-based unsupervised feature extraction (Hosseini

et al., 2017; Abdelhameed and Bayoumi, 2018) achieved sensitivity higher than 94%

and FPR lower than 0.06/h, which, however, cannot be directly compared with the
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performance of our method. The work proposed by Hosseini et al. (2017) not only

utilized the unsupervised feature extraction by stacked autoencoders but also engineered

features from a priori knowledge. Therefore, it is not clear how much the extracted

features from the stacked autoencoders contribute to the final performance. Also, the

method was tested with only two patients with intracranial EEG signals. The other

work proposed by Abdelhameed and Bayoumi (2018) defined preictal period right next

to ictal period which means seizure prediction period (SPH) is zero. However, from

a clinical perspective, SPH needs to be long enough to allow sufficient intervention

(Truong, Nguyen, et al., 2018a).

In the field of computer vision, GAN can help to reduce the amount of labeled

data without compromising the classification performance (Kingma et al., 2014).

Unfortunately, with the current sizes of the datasets available to us, we could not

replicate a similar claim for seizure forecasting using GAN as an unsupervised feature

extractor.

Another aspect that we believe it is important is that how patient-specific

characteristics, such as seizure types (R. S. Fisher et al., 2017; Espay et al., 2018),

age, and gender, affects seizure forecasting performance testing with the EPILEPSIAE

dataset. In this dataset, seizures are categorized into focal aware (simple partial),

focal impaired awareness (complex partial), focal to bilateral tonic-clonic (secondarily

generalized tonic-clonic) and unclassified. The age of the patients is ranging from 13

to 67. In terms of seizure type, focal aware seizures have the least variation in seizure

forecasting. This observation could be helpful for clinical trial consideration; e.g., focus

on patients with focal aware seizures first. Regarding the gender, seizure forecasting is

better for female patients overall, with an exception that there is one female who has a

very low AUC score (below 35%). It is most interesting to observe that patients with

age in the range of 10 to 30 have considerably higher AUC scores and less variation

compared to other groups. In fact, if we exclude the patient with a very low AUC score

which is an outlier from group 10 to 30, it can be seen that seizures of young patients

(30 and below) can be predicted with the highest accuracy. The reason behind this

observation is not clear and is not in the scope of this article.

4.6 Conclusion

Seizure forecasting capability has been studied and improved over the last four decades.

A perfect prediction is yet available but with current prediction performance, it is useful
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Figure 4.7: Seizure forecasting performance (AUC) across different patient-specific
characteristics for the EPILEPSIAE dataset: (a) - Seizure type, (b) - Gender, (c) -
Age. Refer to Table A4 for the patients’ details. Dots indicate outliers. Data points
in red (∗) are from the same patient. FA: focal aware, FIA: focal impaired awareness,
FBTC: focal to bilateral tonic-clonic, UC: unclassified.

to provide the patients with warning messages so they can take some precautions for

their safety. We have shown that feature extraction for seizure forecasting can be done

using unsupervised deep learning or GAN particularly. Using semi-supervised seizure

forecasting approach, 61.53% of the patients in the CHB-MIT dataset, 53.84% in the

Freiburg Hospital dataset and 13.33% in the EPILEPSIAE dataset have very good

seizure forecasting performance (with AUC above 80%).
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Table A1: Seizure forecasting performance for the CHB-MIT dataset. p-values are
from the single-tailed Hanley-McNeil AUC test to compare our seizure forecasting
performance with the chance level (AUC= 0.5). Patients with p-values not being
highlighted in gray color have seizure forecasting performance significantly better than
the chance level with the significance level of 0.05.

Patient CNN p-value GAN-NN p-value GAN-PS-NN p-value
GAN-PS-
USPL-NN

p-value

Pat1 92.48± 2.73 < 0.001 98.09± 0.48 < 0.001 99.52± 0.29 < 0.001 99.13± 0.68 < 0.001
Pat2 37.50± 3.85 1 44.47± 13.8 < 0.001 28.52± 15.4 1 17.34± 2.39 1
Pat3 96.66± 0.88 < 0.001 86.79± 0.51 < 0.001 92.43± 3.01 < 0.001 90.91± 5.66 < 0.001
Pat5 87.80± 1.09 < 0.001 79.62± 3.56 < 0.001 48.83± 1.47 0.400 82.90± 2.99 < 0.001
Pat9 74.41± 1.12 < 0.001 65.87± 4.18 < 0.001 57.99± 1.01 < 0.001 54.00± 9.17 < 0.001
Pat10 55.59± 3.39 < 0.001 43.17± 3.26 0.088 52.38± 3.67 0.028 59.63± 5.09 < 0.001
Pat13 97.21± 0.50 < 0.001 97.42± 0.23 < 0.001 98.04± 0.44 < 0.001 97.35± 0.25 < 0.001
Pat14 67.16± 0.88 < 0.001 49.22± 0.08 0.566 52.28± 1.31 0.302 52.34± 0.55 0.395
Pat18 93.29± 0.13 < 0.001 69.54± 5.24 < 0.001 63.27± 9.56 < 0.001 65.44± 3.47 < 0.001
Pat19 99.48± 0.37 < 0.001 94.53± 3.82 < 0.001 85.93± 10.3 < 0.001 96.36± 2.75 < 0.001
Pat20 98.67± 1.12 < 0.001 99.21± 0.08 < 0.001 90.70± 0.01 < 0.001 95.43± 1.22 < 0.001
Pat21 90.47± 0.50 < 0.001 84.38± 1.53 < 0.001 78.71± 0.36 < 0.001 80.17± 0.53 < 0.001
Pat23 99.90± 0.02 < 0.001 97.55± 0.23 < 0.001 95.59± 2.46 < 0.001 92.60± 6.26 < 0.001

Average 83.89± 1.28 77.68± 2.85 72.63± 3.80 75.66± 3.15

Table A2: Seizure forecasting performance for the Freiburg Hospital dataset. p-values
are from the single-tailed Hanley-McNeil AUC test to compare our seizure forecasting
performance with the chance level (AUC= 0.5). Patients with p-values not being
highlighted in gray color have seizure forecasting performance significantly better than
the chance level with the significance level of 0.05.

Patient CNN p-value GAN-NN p-value GAN-PS-NN p-value
GAN-PS-
USPL-NN

p-value

Pat1 100± 0.00 < 0.001 91.43± 3.75 < 0.001 94.02± 0.51 < 0.001 92.78± 5.05 < 0.001
Pat3 99.59± 0.00 < 0.001 97.44± 0.90 < 0.001 52.89± 0.53 0.306 95.13± 2.91 < 0.001
Pat4 99.93± 0.01 < 0.001 99.92± 0.01 < 0.001 99.88± 0.05 < 0.001 99.88± 0.04 < 0.001
Pat5 66.58± 17.4 < 0.001 61.04± 3.28 1 38.60± 2.97 1 58.28± 0.95 < 0.001
Pat6 100± 0.00 < 0.001 52.58± 6.26 < 0.001 71.51± 0.66 < 0.001 71.27± 0.64 < 0.001
Pat14 83.28± 1.02 < 0.001 67.01± 0.87 0.015 49.86± 0.65 0.044 54.60± 4.51 < 0.001
Pat15 99.95± 0.02 < 0.001 68.50± 1.93 < 0.001 52.88± 0.35 0.052 80.18± 7.01 < 0.001
Pat16 86.81± 1.53 < 0.001 67.01± 12.0 < 0.001 53.44± 1.36 1 51.17± 1.55 < 0.001
Pat17 94.92± 2.36 < 0.001 89.44± 1.01 < 0.001 49.49± 0.37 < 0.001 82.91± 1.70 < 0.001
Pat18 97.69± 0.00 < 0.001 87.99± 0.30 < 0.001 76.90± 10.3 < 0.001 96.25± 0.55 < 0.001
Pat19 50.97± 1.19 < 0.001 51.35± 4.19 0.991 49.77± 1.08 0.088 50.93± 2.12 0.345
Pat20 77.02± 0.55 < 0.001 65.24± 11.2 < 0.001 51.11± 1.27 0.677 51.91± 2.80 0.157
Pat21 98.40± 0.25 < 0.001 80.56± 1.26 < 0.001 51.51± 0.95 0.379 80.94± 3.16 < 0.001

Average 88.86± 1.87 75.35± 3.62 60.91± 1.62 74.33± 2.54

60



Table A3: Seizure forecasting performance for the EPILEPSIAE dataset. p-values
are from the single-tailed Hanley-McNeil AUC test to compare our seizure forecasting
performance with the chance level (AUC= 0.5). Patients with p-values not being
highlighted in gray color have seizure forecasting performance significantly better than
the chance level with the significance level of 0.05.

Patient CNN p-value GAN-NN p-value GAN-PS-NN p-value
GAN-PS-
USPL-NN

p-value

Pat1 56.66± 1.70 < 0.001 49.49± 5.57 0.228 40.40± 4.06 1 42.34± 2.91 1
Pat2 65.63± 5.12 < 0.001 60.05± 1.11 < 0.001 61.96± 1.91 < 0.001 60.24± 0.57 < 0.001
Pat3 81.03± 1.75 < 0.001 74.35± 4.65 < 0.001 63.39± 3.17 < 0.001 72.62± 3.04 < 0.001
Pat4 87.07± 0.80 < 0.001 82.23± 3.95 < 0.001 82.14± 1.48 < 0.001 84.76± 1.05 < 0.001
Pat5 51.64± 1.70 0.259 51.04± 1.75 0.279 55.98± 3.83 < 0.001 53.48± 2.76 < 0.001
Pat6 49.60± 2.57 0.975 54.16± 1.16 0.577 52.62± 1.77 1 51.59± 3.28 1
Pat7 62.56± 3.04 < 0.001 62.96± 2.64 < 0.001 51.62± 7.44 < 0.001 57.33± 3.16 < 0.001
Pat8 72.76± 1.29 < 0.001 76.61± 0.79 < 0.001 74.57± 1.33 < 0.001 74.24± 2.07 < 0.001
Pat9 65.12± 2.91 < 0.001 45.55± 4.91 1 42.07± 7.06 1 51.46± 2.96 0.014
Pat10 66.02± 1.99 < 0.001 59.70± 5.26 0.002 52.25± 2.57 0.687 53.50± 0.44 0.001
Pat11 91.58± 0.80 < 0.001 86.41± 1.73 < 0.001 86.87± 1.00 < 0.001 90.15± 0.30 < 0.001
Pat12 84.27± 1.87 < 0.001 89.94± 0.82 < 0.001 89.13± 0.48 < 0.001 91.61± 2.99 < 0.001
Pat13 83.21± 0.94 < 0.001 70.12± 5.24 < 0.001 66.67± 3.41 < 0.001 73.35± 3.58 < 0.001
Pat14 76.00± 1.60 < 0.001 71.86± 4.68 < 0.001 71.26± 6.33 < 0.001 76.23± 2.36 < 0.001
Pat15 78.47± 1.00 < 0.001 65.76± 1.38 < 0.001 63.16± 1.33 < 0.001 65.14± 2.34 < 0.001
Pat16 33.69± 4.73 1 34.67± 4.91 1 33.28± 5.09 1 34.64± 5.34 1
Pat17 71.22± 4.83 < 0.001 68.53± 0.22 < 0.001 67.37± 0.96 < 0.001 68.23± 0.55 < 0.001
Pat18 42.91± 3.12 1 52.35± 2.58 0.999 55.22± 2.98 0.030 50.20± 1.53 1
Pat19 92.19± 1.13 < 0.001 69.66± 9.44 < 0.001 66.74± 9.68 < 0.001 82.17± 0.94 < 0.001
Pat20 78.01± 1.83 < 0.001 68.28± 2.08 < 0.001 72.39± 1.55 < 0.001 68.76± 2.48 < 0.001
Pat21 66.62± 0.76 < 0.001 73.15± 0.49 < 0.001 73.17± 0.46 < 0.001 72.98± 0.39 < 0.001
Pat22 72.81± 2.77 < 0.001 65.93± 5.55 < 0.001 62.20± 5.49 < 0.001 67.14± 4.47 < 0.001
Pat23 79.20± 3.20 < 0.001 46.65± 3.18 1 50.04± 8.54 < 0.001 57.56± 7.74 < 0.001
Pat24 79.52± 0.59 < 0.001 64.73± 0.74 < 0.001 65.09± 0.33 < 0.001 63.55± 1.08 < 0.001
Pat25 86.71± 5.11 < 0.001 64.97± 0.88 < 0.001 65.76± 0.83 < 0.001 64.68± 0.39 < 0.001
Pat26 76.91± 4.31 < 0.001 68.87± 1.08 < 0.001 67.66± 2.42 < 0.001 70.58± 3.69 < 0.001
Pat27 54.36± 7.39 < 0.001 70.26± 1.19 < 0.001 73.16± 0.97 < 0.001 71.60± 1.58 < 0.001
Pat28 66.76± 2.45 < 0.001 67.51± 1.43 < 0.001 66.95± 2.04 < 0.001 67.99± 0.35 < 0.001
Pat29 91.22± 0.70 < 0.001 63.93± 3.24 < 0.001 63.19± 5.57 < 0.001 62.38± 4.61 < 0.001
Pat30 85.67± 1.21 < 0.001 71.72± 0.75 < 0.001 71.66± 0.66 < 0.001 72.28± 0.86 < 0.001

Average 71.65± 2.44 65.05± 2.78 63.60± 3.16 65.76± 2.33
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Table A4: The EPILEPSIAE scalp EEG dataset.

Patient Gender Age
No. of
seizures

No. of leading
seizures∗

Interictal
hours

Pat1 male 36 11 11 68.9
Pat2 female 46 8 8 114.9
Pat3 male 41 8 8 96.3
Pat4 female 67 5 5 126
Pat5 female 52 8 8 204.1
Pat6 male 65 8 7 92.2
Pat7 male 36 5 5 75.7
Pat8 male 26 22 11 65.6
Pat9 male 47 6 6 51.1
Pat10 male 44 11 11 60.7
Pat11 male 48 14 14 57.8
Pat12 male 28 9 9 94.1
Pat13 male 46 8 8 101.3
Pat14 female 62 6 6 115.7
Pat15 female 41 5 5 82.8
Pat16 female 15 6 6 51.1
Pat17 female 17 9 9 82.4
Pat18 male 47 7 6 133
Pat19 male 32 22 21 75.4
Pat20 male 47 7 7 115.3
Pat21 female 31 8 8 106.6
Pat22 male 38 7 7 88.2
Pat23 male 50 9 9 179.6
Pat24 female 54 10 10 36.2
Pat25 male 42 8 8 109.8
Pat26 male 13 9 9 97.1
Pat27 male 58 9 8 99.9
Pat28 female 35 9 9 95.2
Pat29 male 50 10 10 111.9
Pat30 female 16 12 12 92.5

∗ We are considering leading seizures only. Seizures that are less than 30 min away from the previous one are considered
as one seizure only and the onset of leading seizure is used as the onset of the combined seizure.
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Figure A1: Receiver operating characteristics (ROC) curves of seizure forecasting
performance testing for different patients of the three datasets: (a) - the CHB-MIT
sEEG dataset, (b) - the Freiburg Hospital iEEG dataset, and (c) - the EPILEPSIAE
sEEG dataset. Each line corresponds to one patient. Above the green dash line:
good performance; above the blue dash line: very good performance (adapted from
(Kuhlmann, Lehnertz, et al., 2018)).
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Chapter 5

Automatic channel selection for

seizure detection

The content presented in this chapter is published as:

• Truong, N. D., L. Kuhlmann, M. R. Bonyadi, J. Yang, A. Faulks, and

O. Kavehei (2017). “Supervised learning in automatic channel selection for

epileptic seizure detection.” Expert Systems with Applications 86, 199-207.

DOI:10.1016/j.eswa.2017.05.055.
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Detecting seizure using brain neuroactivations recorded by intracranial

electroencephalogram (iEEG) has been widely used for monitoring, diagnosing,

and closed-loop therapy of epileptic patients, however, computational efficiency

gains are needed if state-of-the-art methods are to be implemented in implanted

devices. We present a novel method for automatic seizure detection based on iEEG

data that outperforms current state-of-the-art seizure detection methods in terms of

computational efficiency while maintaining the accuracy. The proposed algorithm

incorporates an automatic channel selection (ACS) engine as a pre-processing stage to

the seizure detection procedure. The ACS engine consists of supervised classifiers which

aim to find iEEG channels which contribute the most to a seizure. Seizure detection

stage involves feature extraction and classification. Feature extraction is performed

in both frequency and time domains where spectral power and correlation between

channel pairs are calculated. Random Forest is used in classification of interictal, ictal

and early ictal periods of iEEG signals. Seizure detection in this work is retrospective

and patient-specific. iEEG data is accessed via Kaggle, provided by International

Epilepsy Electro-physiology Portal. The dataset includes a training set of 6.5 hours

of interictal data and 41 min in ictal data and a test set of 9.14 hours. Compared

to the state-of-the-art on the same dataset, we achieve 2 times faster in run-time

seizure detection. The proposed model is able to detect a seizure onset at 89.40%

sensitivity and 89.24% specificity with a mean detection delay of 2.63 s for the test set.

The area under the ROC curve (AUC) is 96.94%, that is comparable to the current

state-of-the-art with AUC of 96.29%.

5.1 Introduction

Epileptic seizure affects nearly 1% of global population but only two thirds can be treated

by medicine and approximately 7−8% can be cured by surgery (Litt and Echauz, 2002).

Therefore, seizure onset detection and subsequent seizure suppression becomes important

for the patients that cannot be cured by neither drug nor surgery. Early detection can

allow early electrical stimulation to suppress the seizure (Echauz et al., 2007). In this

work, we focus on how to effectively and reliably detect seizure onset based on iEEG

patterns. Note that cause and treatment of epilepsy is beyond the scope of this work.

EEG has been commonly used in brain-computer interface thanks to the convenient

real-time readings and high temporal resolution of EEG signals (Zeng and Song, 2015;

H. Zhang et al., 2013). In recent years, EEG has provided a promising possibility to

detect and even predict an epileptic seizure (Tieng et al., 2016; Fatichah et al., 2014;
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Parvez and Paul, 2015; Saab and Gotman, 2005; Osorio and Frei, 2009; Kuhlmann,

Burkitt, et al., 2009). For seizure detection, Fatichah et al. (2014) used a combination of

principle component analysis (PCA) and neural network with fuzzy membership function

that can achieve accuracy rate up to 97.64%. In another work, wavelet de-noising was

combined with adapted Continuous Wavelet Transform as feature extraction achieving

a sensitivity of 96.72% and a specificity of 94.69% with EEG data from mice (Tieng

et al., 2016). Another remarkable method is to transform EEG signals into images so

as to leverage image processing techniques (Parvez and Paul, 2015). This approach

was able to obtain 98.91% sensitivity and 94.35% specificity. In another approach,

EEG phase spaces were constructed using time-delay embedding method and PoinCare

section (Zabihi et al., 2016). The phase spaces were then reduced by PCA before being

fed to linear discriminant analysis (LDA) and Naive Bayesian classifiers. This approach

achieved 88.27% sensitivity and 93.21% specificity in seizure detection.

Shoeb (2009) deployed 8 filters spanning the frequency range of 0.5–24 Hz for each

2-s EEG epoch of all channels, then concatenated 3 epochs to form a feature set to be fed

to a SVM classifier. This approach was tested with the CHB-MIT EEG dataset and was

able to detect 96% of 163 test seizures with a mean detection delay of 4.6 seconds. Using

the same CHB-MIT dataset, EEG signal was transformed into an image representation

using 2-D projection of the patient electrodes and the magnitude of 3 different frequency

bands spanning the range of 0–49 Hz of each 1 s block of EEG signal (Thodoroff et

al., 2016). The recurrent convolutional neural network took 30 consecutive blocks as

inputs to perform feature extraction and classification. The patient-specific detectors

in this method have comparable performance compared to the proposed method by

Shoeb (2009). The downside of the work proposed by Thodoroff et al. (2016) is that the

detection delay is at least 30 seconds which is not preferable.

Table 5.1: Summary of existing EEG-based seizure detection methods

Ref. EEG type
No. of
patients

No. of
seizures

Data duration Patient
-specific

Split data
for training

Testing
sensitivity

FDR∗
Mean

detection delayictal interictal

(Saab and Gotman, 2005) scalp 44 195 1012 h† No 64% 76% 0.34/h 9.8s
(Kuhlmann, Burkitt, et al., 2009) scalp 21 88 525 h† No 70% 81% 0.60/h 16.9s
(G. Wang et al., 2016) scalp 10 44 72 min 121 h Yes 80% 91.44% 99.34% n/a
(Zabihi et al., 2016) scalp 24 161 2.55 h 169 h Yes 25% 88.27% 93.21% n/a
(Fatichah et al., 2014) intracranial‡ n/a n/a 39.3 min 2.62 h n/a 90% 94.55% 98.41% n/a
(Hills, 2014) intracranial 12 48 41 min 6.5 h Yes 50% 91.33% 94.02% 3.17s
(Parvez and Paul, 2015) intracranial 21 87 58 h 490 h n/a 80% 100% 97% n/a

∗ False detection rate (FDR) or specificity.
† Duration of ictal and interictal were not provided separately.
‡ Intracranial EEG for seizure class and both intracranial and extracranial for non-seizure class.

Prominent feature extraction techniques consider characteristics in both frequency

and time domain. As an efficient tool for time-frequency-energy analysis, wavelet-based
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filters were used to extract a ratio of seizure content of the short foreground in comparison

with the background (Saab and Gotman, 2005; Osorio and Frei, 2009). Saab and Gotman

(2005) applied Bayes’ formula on extracted features to estimate the probability of seizure

in EEG signals. This method achieved an onset detection delay of 9.8 s with 76%

sensitivity and 0.34/h false positive rate. The method was then extended by combining

extra features to find a superior detector (Kuhlmann, Burkitt, et al., 2009). Their

method was able to achieve a sensitivity of 81%, a false positive rate of 0.60/h, and a

median detection delay of 16.9 s on a dataset of 525 h of scalp EEG data.

EEG signals can be recorded using many channels. Large number of

channels yields higher computational complexity as it requires more data to be

analyzed. This can also deteriorate the diversity of iEEG data, hence degrade the

performance of seizure detection, because some channels may capture irrelevant

information (Guyon and Elisseeff, 2003). One can leverage bio-medical knowledge

to manually select which channels genuinely contribute to the seizure. However,

it is hard, if not impossible, to disclose a set of channels that are significant

for all subjects. It is required to use the expertise to analyze every subject

(or group of subjects) to proclaim a list of significant channels with regards to

each subject (or group of subjects) which is manifestly a time-consuming task.

There have been attempts to reduce the number of channels to be analyzed

(Duun-Henriksen et al., 2012; Shih et al., 2009) or reduce number of features extracted

prior to classification (Minasyan et al., 2010; Subasi and Ismail Gursoy, 2010).

Duun-Henriksen et al. (2012) proposed an automated channel selection based on

variance of EEG signal amplitude where channels with largest variance would be

chosen. The detection performance using 3 channels selected by their algorithm was

similar to using 3 channels selected by a clinical neurophysiologist. In another work,

a greedy backward elimination algorithm was used to find the subset of features that

results in lowest false positive rate (Shih et al., 2009). Seven features are extracted per

each channel. The algorithm starts with all features and gradually removes the least

influential ones by doing cross-validation on all subset of features. The authors were

able to reduce the number of channels from 18 to 4.6 with an improvement in FPR

(0.35 to 0.19/h) but degradation in sensitivity (from 99% to 97%) and detection delay

(from 7.8 to 11.2 s). This approach, however, is less favorable when the number of

channels per subject is too high because the number of subsets increases exponentially.

In another work, feature selection was performed using mutual information between

individual features and output where features with less mutual information are

discarded (Minasyan et al., 2010). It is worth noting that this feature selection has

to be performed not only during training but also during run-time classification. In
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other words, this approach induces extra processing time and makes it less suitable for

portable device implementation. Subasi and Ismail Gursoy (2010) applied PCA, ICA,

LDA for feature dimension reduction and used SVM classifier to distinguish between

seizure and non-seizure segments. They tested with an 80 min subset of University

Hospital of Bonn’s dataset. They showed LDA achieved the best performance while

PCA obtained the worst. However, their approaches also induce extra processing

time during both training and run-time classification, similar to the work proposed by

Minasyan et al. (2010).

The current state-of-the-art seizure detection method proposed by Hills (2014) for

the dataset considered here is implemented and extended in this work. The dataset

is derived from a Kaggle seizure detection competition in which Hills (2014) scored

AUC of 96.29% and announced as the winner. Description of the dataset is provided

in Section 5.2. In this work, we significantly enhanced computational efficiency of Hill’s

method by employing an automatic channel selection algorithm. This enabled us to

process data as accurately with reduced number of channels. Table 5.1 summarizes

the existing EEG-based seizure detection methods in recent years. We have made the

research’s source code publicly available on GitHub via https://goo.gl/Bc89mJ.

The remainder of this work is organized as follows. In Section 5.3, after describing

the dataset, we propose automatic channel selection engine that helps to reduce the

number of channels to be processed. This section also presents spatio-temporal feature

extraction and Random Forest classifier used for seizure detection. Section 5.4 evaluates

the performance of the proposed model with comparison against the state-of-the-art

method on the same dataset. Section 5.5 concludes the achievement of the work.

5.2 Dataset

Dataset being analyzed in this work is obtained from Kaggle (2014b). Intracranial EEG

signals were recorded from 4 dogs and 8 patients with epileptic seizures. Recordings

were sampled at 400 Hz from 16 electrodes for dogs, and sampled at 500 Hz or 5 kHz

from varying number of electrodes (ranging from 16 to 72) for humans. The data was

pre-organized into 1 s iEEG epochs annotated as ictal for seizure states or interictal for

seizure-free states. Interictal data was captured not less than one hour before or after a

seizure onset and randomly chosen from the recorded data. Each ictal segment also came

with the time in seconds between the seizure onset and first data point of the segment.

The training dataset is consisted of 41 min of ictal data and 6.5 hours of interictal data.
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Summary of the training dataset is presented in Table 5.2. Note that early ictal state

in this work is the ictal state occurring within the first 15 s from the seizure onset. The

proposed method was tested with a hidden dataset provided by Kaggle. This dataset

consists of 9.14 hours of unlabeled iEEG data (Kaggle, 2014b).

Table 5.2: Summary of the dataset

Subject
No. of

electrodes
Ictal data
length (s)

Interictal
data

length (s)

Unlabeled
data

length (s)

Train/Test
ratio

Dog–1 16 178 418 3181 0.19
Dog–2 16 172 1148 2997 0.44
Dog–3 16 480 4760 4450 1.18
Dog–4 16 257 2790 3013 1.01
Patient–1 68 70 104 2050 0.08
Patient–2 16 151 2990 3894 0.81
Patient–3 55 327 714 1281 0.81
Patient–4 72 20 190 543 0.39
Patient–5 64 135 2610 2986 0.92
Patient–6 30 225 2772 2997 1
Patient–7 36 282 3239 3601 0.98
Patient–8 16 180 1710 1922 0.98

Total 2477 23445 32915 0.79

5.3 Proposed method

The intracranial EEG data was recorded on multiple subjects with varying number of

channels and sampling rates. We propose an automatic channel selection engine to filter

out channels which are less relevant to seizure. The engine accepts raw iEEG data, their

corresponding labels, and the number of channels to be selected, M , and determines

indexes of channels that are most relevant for seizure detection. Indexes of these M

channels are stored on hard-disk so the engine only needs to be executed one time at

the beginning for each subject. Feature extraction was performed in both frequency

and time domain on the selected channels. Information extracted in frequency and time

domains was concatenated and fed to a Random Forest classifier. Fig. 5.1 presents

flowchart of the proposed method.
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Figure 5.1: Flowchart of the proposed method. Raw iEEG data from all N channels
is fed to ACS to find M channels which contribute the most to a seizure. The ACS
engine is executed one time only for each subject at the beginning and indexes of the
M channels are stored on hard-disk. Feature extraction in both frequency and time
domains is done on the M channels. Extracted features are fed to a classifier using
Random Forest algorithm to discriminate interictal, ictal and early ictal epochs.

5.3.1 Automatic channels selection

We propose a novel approach for automatic channels selection (ACS) as follows. The

approach is designed to be run offline in order to select channels for future online analysis.

The labeled data is first transformed to obtain frequency information. Specifically, FFT

is applied onto the raw iEEG data on all N channels. FFT values are then sliced to

extract data in 1-Hz bins in the range of 1–47 Hz. log10 is then applied to the magnitudes.

The transformed data is a N× 47 matrix where 47 is the number of 1-Hz bins in the

range of 1–47 Hz. If the channels correlation is involved in ACS stage, it will be confusing

to identify which channels are the most important based on the importance level of the

correlation between each pair of channels. Therefore, the correlation among channels

is disregarded in this stage. Each individual channel becomes a feature to be fed to

classifiers. One or a set of classifiers determine the importance level of each feature or

channel. There are several options of classifiers using different ensemble algorithms such

as Gradient Boosting, AdaBoost and Random Forest. If multiple classifiers are used,

the final importance level of each channel is the sum of importance values obtained

from all classifiers. The measure of feature importance in this work is implemented

using scikit-learn ensemble library (Scikit-learn, 2014). The importance of a feature is
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estimated by how often that feature is used in split points of each individual decision

tree of the ensemble classifier (Scikit-learn, 2014). It is important to note that only train

dataset was involved in the ACS stage.

The output of the channel selection algorithm is a set of M channels sorted based

on the level of their contribution to the detection of a seizure. In this work, we selected

the value of M through some experiments aiming at maximising the final AUC score.

Particularly, we gradually drop channels with lowest rank and check the cross-validation

performance using the rest of channels. It is important to differentiate our approach

to the one proposed by Shih et al. (2009) that we are able to rank the channels prior

to channel reduction. This helps us to know which channel should be dropped at each

round, instead of extensively dropping one by one channel and comparing performance

for all cases to decide which channel should be dropped. We also use coarse to fine

approach to accelerate this selection. Typically, we start the selection by dropping 20%

of channels with lowest rank until the performance decreases. Then we start next round

with the number of channels present just before the aforementioned performance drops.

5.3.2 Feature extraction

Feature extraction in frequency domain

The iEEG signals from M selected channels are transformed by FFT. The transformed

data then is filtered to discard high frequency noise and low frequency artifacts.

Frequency range of 1–47 Hz was shown to achieve the best performance for the dataset

(Hills, 2014). Eigenvalues have been used as an effective technique to discriminate ictal

epochs in (Z. Zhang and Parhi, 2016; Hills, 2014; Sardouie et al., 2015). In order

to compute eigenvalues, spectral power is primarily normalized over each 1-s window

(zero mean and standard deviation of one) along each channel before estimating cross

spectral matrix (Hills, 2014). Contrary to the Hills feature extraction, we did not use

cross spectral coefficients as a feature because our empirical observation shows that such

feature could worsen detection accuracy. Sample recordings and corresponding power

spectrum for ictal and interictal segments of Patient–1 are illustrated in Figs. 5.2 and

5.3.

The feature set in frequency domain consists of:

– Spectral power in 1 Hz bins in range of 1–47 Hz by applying log10 to the magnitude

of FFT transformation, and
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– Eigenvalues, sorted in descending order, of cross spectral matrix on all selected

channels of the above spectral power.
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Figure 5.2: Sample 1 s iEEG recordings. (a, b and c) interictal; (d, e and f) ictal at
early state (within 15 s from seizure onset); (g, h and i): ictal after early state. iEEG
signals presented in one column, (e.g. a, d and g) are recorded from the same channel.

Feature extraction in time domain

Raw iEEG signals are firstly re-sampled to 400 Hz. Similarly to frequency domain,

filtered iEEG data is normalized over each 1-s window to zero mean and unity standard

deviation along each channel prior to computing covariance matrix and its eigenvalues.

As illustrated in Fig. 5.4, iEEG data from 16 selected channels of Patient–1 have a very

low correlation to each others in interictal states. The correlation slightly increases when

seizure is at early state and becomes remarkable beyond the early state.

The feature set in time domain consists of:

– Coefficients in upper triangle of correlation matrix of iEEG signals from selected

channels, and

– Eigenvalues of the correlation matrix above, sorted in descending order.
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Figure 5.3: Sample 1 s iEEG recordings power spectrum. (a, b and c) interictal; (d, e
and f) ictal at early state; (g, h and i): ictal after early state. iEEG signals presented
in one column, (e.g. a, d and g) are recorded from the same channel. Subplots in this
figure are one-by-one associated with subplots in Fig. 5.2.

(a) (b) (c)

Figure 5.4: Covariance matrix: a) interictal; b) ictal at early state; c) ictal. Correlation
between channels is very low in interictal period. The channels are more correlated after
the seizure onset and highly correlated in ictal state.

5.3.3 Classifier

Random Forest algorithm was first proposed by Breiman (2001). The algorithm uses

a large set of decision trees to acquire an average results. Random Forest has been

shown with good performance on dataset with high dimensional datasets in biology and

medical fields (Scornet, 2016; Huynh et al., 2016; Cabezas et al., 2016). This work will

not go in deep about its mathematical properties as they can be found in (Breiman,

2001; Scornet, 2016) but rather on fine-tuning the parameters to achieve the highest

performance with the given feature sets.

Random Forest classifier in this work is implemented using scikit-learn library
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(Scikit-learn, 2014). Parameters of the classifier are reused from the approach proposed

by Hills (2014) with 3000 decision trees. The classifier analyses each 1 s iEEG epoch

and categorizes them into 3 classes as outputs: early ictal (ictal within 15 s from the

onset), ictal, and interictal. Regarding sensitivity, specificity, F1-score and detection

delay evaluation, the Random Forest classifier is adjusted from three-class classifier to

binary classifier which detects whether a 1 s iEEG signal is ictal or interictal.

5.3.4 System evaluation

Here our method is compared with a visual inspection based focal channel selection

(channels where seizures first appear) method and the variance-based method

(Duun-Henriksen et al., 2012). We skip the method introduced by Shih et al. (2009)

because we have high number of channels, the greedy backward elimination method

becomes impractical. For patient–4 with 72 channels, for example, we need to evaluate

a factorial of 72 subsets in the worst case. Though we can stop the search when the

performance of subsets starts to drop, the number of cases to be analyzed is still huge.

Metrics used to test the proposed approach are area under the receiver operating

characteristic curve (AUC), sensitivity, specificity, F1-score and onset detection delay.

To have a robust evaluation, we follow a leave-one-out cross-validation approach for

each subject. If a subject has N seizures, (N − 1) seizures will be used for training and

the withheld seizure for validation. This round is repeated N times so all seizures will

be used for validation exactly one time. Interictal segments are randomly split into N
parts. (N − 1) parts are used for training and the rest for validation. The metrics to be

reported are the average of all rounds. The cross-validation will be based on the labeled

iEEG dataset of 7.2 hours. We will also test the system after being trained by 7.2 hours

of labeled iEEG data with the hidden dataset consisting of 9.14 hours of unlabeled iEEG

data provided by Kaggle.

The dataset used in this work is from a competition to detect whether a given 1 s

iEEG segment represents a seizure and whether that segment is within the first 15 s

(early) of its respective seizure. The overall AUC is the average of the two AUC scores

of the two detections (Kaggle, 2014b), and is given by

AUC =
1

2
(AUCS + AUCE), (5.1)

where,

– AUCS is AUC for two classes: ictal (including early seizure) and interictal, and
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– AUCE is AUC for two classes: early seizure and non-early-seizure (including ictal

states after 15 s from onset and interictal states).

Sensitivity, specificity and F1-score are commonly used in evaluating a seizure

detection system and are given by

Sensitivity (or Recall) =
TP

TP + FN
(5.2)

Specificity =
TN

TN + FP
(5.3)

Precision =
TP

TP + FP
(5.4)

F1-score = 2× Precision× Recall

Precision + Recall
, (5.5)

where,

– TP is the total number of 1 s ictal segments are correctly classified as ictal, and

– TN is the total number of 1 s interictal segments are correctly classified as

interictal, and

– FP is the total number of 1 s interictal segments are wrongly classified as ictal,

and

– FN is the total number of 1 s ictal segments are wrongly classified as interictal.

5.4 Results

Using same setup proposed by Duun-Henriksen et al. (2012), 3 channels are selected for

each method. Fig. 5.5 illustrates the iEEG signal from seizure onset for a seizure of

Dog–1. For this subject, selected channels using focal, variance-based, and our methods

are (9, 10, 13), (3, 8, 9), and (4, 10, 12) respectively. A completed set of channels selected

using the three methods is presented in Table A1. To benchmark the efficiency of the

three methods, we calculated AUC through leave-one-out cross-validation as shown in

Fig. 5.6 and more details in Table 5.3. As seen from Fig. 5.6, our method is better

than the other two. Here we use a two-tailed signed rank test at a significance level
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of 0.05 to compare the three methods. Since there are multiple comparisons, the

significance level should be adjusted to be 0.05/3 = 0.01667 using Bonferroni correction.

A two-tailed signed rank test on AUC scores of focal channel method and our method has

p-value of 0.373 which indicates that the two methods has no statistical difference at the

adjusted significance level of 0.01667. However, the same test between variance-based

method and our method shows a significant result at p-value of 0.0076. This result

confirms our channel selection method superior to the variance-based method proposed

by Duun-Henriksen et al. (2012).

Figure 5.5: iEEG recording of a seizure since its onset from Dog–1. Selected channels
using focal, variance-based, and our methods are (9, 10, 13),(3, 8, 9). and (4, 10, 12)
respectively.

We now compare the efficacy of the proposed method with the current state-of-the-art

method proposed by Hills (2014) on the same dataset. The algorithm was implemented

in Python 2.7 in Ubuntu 14.04 LTS. Random Forest classifier was implemented using

scikit-learn library (Scikit-learn, 2014). FFT was performed with numpy library. All

simulations were performed on a workstation with CPU Xeon (4 cores enabled) and

16 GB of RAM. Using our approach, average number of channels can be reduced from

35.1 to 10.3. Consequently, training time and test time are improved by 39.2% and 49.7%

respectively (see Table 5.4). With 49.7% reduction in test time, our seizure detection

system is 2 times faster at run-time than Hills approach. Therefore, the automatic
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Figure 5.6: Channel selection method comparison on overall AUC scores. The dots
are for outliers. Focal: focal channel method; Variance: variance-based method; ACS:
automatic channel selection (our method).

channel selection is promising for real-time seizure detection application.

Table A2 describes the comparison between the state-of-the-art and proposed method

on AUC, sensitivity, specificity, F1-score and onset detection delay for the modified

leave-one-out cross-validation applied to the training set. Regarding sensitivity and

specificity evaluation, the Random Forest classifier is adjusted from three-class classifier

to binary classifier which detects whether a 1 s iEEG signal is ictal or interictal. The

classifier’s outputs range from 0 to 1 indicating how likely the input signal is ictal. The

threshold of the classifier’s output used to separate whether a 1 s iEEG segment is ictal

or interictal was determined per subject. The value of threshold was selected to achieve

the balance between sensitivity and specificity (ie., the higher threshold value yields

the higher specificity but the lower sensitivity and vice versa). Moreover, the threshold

selection must result in similar specificity scores across the methods to have a meaningful

sensitivity and mean detection delay comparisons. As seen from Table A2, our proposed

method achieved better score on all metrics though not significant. However, the

proposed method yields a considerable improvement in mean onset detection delay.

Onset detection delay indicates the time in seconds after that the classifier can detect

a seizure onset. Delay is 1 s if the first 1 s ictal iEEG segment at seizure onset can be

correctly detected. Since iEEG signals are divided into 1 s epochs, the minimum onset

detection delay could be achieved is 1 s. Our work has a mean detection delay of 3.31 s
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Table 5.3: Comparison among three channel selection methods.

Focal channel Variance-based Proposed method

Subject AUCE (%) AUCS (%) AUC (%) AUCE (%) AUCS (%) AUC (%) AUCE (%) AUCS (%) AUC (%)

Dog-1 95.02 98.46 96.74 95.03 98.47 96.75 94.79 98.44 96.62
Dog-2 92.32 95.20 93.76 91.31 96.74 94.03 94.35 96.30 95.32
Dog-3 95.72 98.92 97.32 92.05 98.02 95.03 95.90 98.88 97.39
Dog-4 98.76 91.11 94.94 98.49 89.15 93.82 98.79 94.62 96.71
Patient-1 94.29 96.46 95.38 71.72 89.77 80.75 82.03 93.49 87.76
Patient-2 99.22 98.75 98.98 99.20 99.04 99.12 99.17 98.72 98.95
Patient-3 88.62 92.75 90.68 87.89 92.25 90.07 87.61 94.68 91.15
Patient-4 97.05 97.05 97.05 94.82 94.82 94.82 100 100 100
Patient-5 76.69 88.31 82.50 65.86 77.16 71.51 69.73 83.83 76.78
Patient-6 97.33 99.51 98.42 74.48 87.75 81.11 97.56 99.61 98.58
Patient-7 79.22 79.41 79.32 71.13 76.75 73.94 89.21 94.24 91.72
Patient-8 81.29 97.99 89.64 27.37 84.76 56.07 80.06 97.71 88.88

Average 91.29 94.49 92.89 80.78 90.39 85.59 90.77 95.88 93.32

which is comparable with that of Hills method. Fig. 5.7 demonstrates the advantages

of the proposed method in terms of processing time, number of channels to be analyzed

and detection delay.

We also test our method with the unlabeled dataset from the Kaggle competition.

Labels for this dataset is not publicly available. The Kaggle competition organizers

provided us the labels so we are able to evaluate the performance metrics per subject.

Table A3 describes the seizure detection performance on the unlabeled dataset. It is

non-trivial to note that all the thresholds were kept the same as they were during

the cross-validation. A two-tailed signed rank test on the AUC between Hills and

our methods result in a p-value of 0.6599 which means the difference is not significant

at p-value < 0.05. F1-scores of the two methods are comparable. Our method has

sensitivity of 89.40%, specificity of 89.24% and mean detection delay of 2.63 s. Since our

proposed method has better specificity but worse sensitivity, comparison on detection

delay may not be meaningful here. However, both methods achieve a good mean

detection delay at less than 3 seconds. Finally, the overall AUC score across all subject

of our method is 96.94%, slightly higher than that of Hills method at 96.29%.

5.5 Discussions

We presented a seizure detection method based on a novel approach for automatic iEEG

channel selection that provides comparable performance to the state-of-the-art method

for the dataset considered. Although this leads to an extra overhead computing time
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Table 5.4: Comparison between state-of-the-art and proposed method on computational
efficiency.

(Hills, 2014) Proposed method

Subject
No. of

electrodes
M

Training
data (min)

Test data
(min)

Training†

(s)
Test�

(s)
ACS∗

(s)
Training†

(s)
Test�

(s)
Training time
improvement

Test time
improvement

Dog–1 16 9 9.9 53 24.9 18 6.3 22.8 13.5 8.43% 25.00%
Dog–2 16 10 22 50 66 15.3 15.4 56.1 11.8 15.00% 22.88%
Dog–3 16 8 87.3 74.2 365.5 22.6 78.1 245 14.7 32.97% 34.96%
Dog–4 16 13 50.8 50.2 159.8 16.7 37.7 135.7 14.9 15.08% 10.78%
Patient–1 68 16 2.9 34.2 19 54.9 4.9 14.5 16.3 23.68% 70.31%
Patient–2 16 11 52.4 64.9 138.4 41.8 39.7 97 25.5 29.91% 39.00%
Patient–3 55 8 17.4 21.4 120.2 49.5 32.4 53 13.7 55.91% 72.32%
Patient–4 72 4 3.5 9.1 23.5 32.1 7.9 12.1 8.7 48.51% 72.9%
Patient–5 64 16 45.8 49.8 652.1 136.3 119.7 197 35.5 69.79% 73.95%
Patient–6 30 8 50 50 202.7 57.9 57.5 73.4 20.8 63.79% 64.08%
Patient–7 36 13 58.7 60 523.8 87.2 119.8 223.6 30 57.31% 65.6%
Patient–8 16 8 31.5 32 82.5 21.9 23.1 51.2 12.2 37.94% 44.29%

Average 35.1 10.3 38.19% 49.67%

∗ Automatic channel selection (ACS) time.
† Training time includes time for feature extraction and classifier training.
� Test time includes time for feature extraction and classification.

in the beginning, the impact overall processing time is negligible because the channel

selection need only be computed offline for each subject, before any future online seizure

detection would be performed. One may argue that different channels may provide better

performance over time; hence, channel selection is necessary over time. For the current

dataset which was linked to a Kaggle seizure detection competition and downloaded from

Kaggle (2014b), the precise information about the times of the inter-seizure and seizure

windows is not available. Therefore, investigating channel selection over time is not

possible with this dataset. In our approach, data collected in real-time implementation

would be transferred from a seizure control implant for off-line processing to update

approximately every 1–6 months the optimal seizure detection channel for use during

real-time implementation. The advantages of the automatic channel selection, on

the other hand, are remarkable. Firstly, redundant and unrelated iEEG signals are

eliminated which helps to improve efficacy of seizure detection system. Secondly, since

the amount of data to processed is reduced, the processing time is also reduced. Gain in

computational complexity becomes visible and significant for subjects with large number

of channels. For instance, by reducing number of channels to be analyzed from 64 to 16

for Patient–5 (see Table 5.4, classification time can be improved by 74%. Depending on

the practical use, more speed can be achieved at the cost of performance.

Our channel selection method showed significantly better performance compared

to the variance-based method proposed by Duun-Henriksen et al. (2012). Although

the focal channel method has comparable performance with our method, it is more

80



demanding to select focal channels for subjects with large number of channels. We

can use our channel selection method to automatically select channels whereas selecting

focal channels requires visual inspection by a neurophysiologist. In the scenario where

we continuously collect data and re-select the best channels every 1–6 months, an offline

automated approach may be more cost/time effective with regards to person hours and

neurophysiologist time. In other words, there are more offline computation hours but

more importantly less time spent by clinical staff labeling data so they can pay more

attention to the other needs of their patients. Moreover, our method has an important

advantage over approaches proposed by Minasyan et al. (2010) and Subasi and Ismail

Gursoy (2010) since our automatic channel selection only runs during training phase,

not in run-time classification.

Figure 5.7: Comparison between the method reported by Hills (2014) and the proposed
method in terms of detection delay, number of processed channels and processing time.

Spectral power, correlation matrix and its eigenvalues on iEEG channels in both

frequency and time domains have been shown as important features in seizure detection

using iEEG recordings. The proposed subject-specific approach has a mean seizure

onset detection delay of 2.63 s that is critical, for example, for an electrical stimulator

to suppress the seizure on time.
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5.6 Conclusion

Detection of seizure, especially at its early state, is crucial for patients who cannot be

treated by drugs or surgery. Precise seizure detection allows electrical stimulation to

timely interrupt the alteration of consciousness and subsequent convulsions. Although

high performing seizure detectors are available, translating state-of-the-art seizure

detection methods into battery-saving hardware implementations in implantable seizure

control devices requires greater gains in computational efficiency. This work proposed

automatic channels selection engine as a mechanism to adequately determine most

informative iEEG recordings prior to feature extraction. The engine gave rise to

significant computational efficiency improvements on subjects having large number of

recording channels. The overall results of the proposed method were comparable with

that of the state-of-the-art while it save 49.4% of the processing time and reduced the

average number of channels requiring analysis by 71%, both critical factors for real-world

applications.
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Table A1: Channels selected using the three channel selection methods.

Focal channel Variance-based Our method

Dog–1 (9, 10, 13) (3, 8, 9) (4, 10, 12)
Dog–2 (1, 5, 13) (1, 2, 5) (1, 9, 12)
Dog–3 (8, 13, 14) (1, 4, 9) (7, 13, 14)
Dog–4 (1, 5, 13) (2, 7, 9) (7, 8, 15)
Patient–1 (11, 13, 14) (1, 27, 44) (19, 27, 30)
Patient–2 (1, 2, 3) (1, 2, 3) (1, 2, 3)
Patient–3 (5, 9, 14) (5, 9, 11) (5, 6, 26)
Patient–4 (7, 10, 15) (26, 31, 47) (37, 45, 66)
Patient–5 (5, 9, 12) (10, 12, 49) (9, 18, 25)
Patient–6 (2, 8, 15) (2, 9, 18) (15, 23, 24)
Patient–7 (8, 11, 15) (7, 8, 28) (26, 28, 36)
Patient–8 (3, 10, 11) (2, 3, 4) (3, 10, 11)

Table A2: Comparison between state-of-the-art and proposed method on AUC,
sensitivity (SEN), specificity (SPE) and F1-score for binary classification of seizure and
non-seizure states for the modified leave-one-out cross-validation of the training set.
Threshold values were chosen to achieve best SEN-SPE balance and similar specificity
scores between the two methods. This helps the sensitivity and mean detection delay
comparisons meaningful.

(Hills, 2014) Proposed method

Subject
AUCE

(%)
AUCS

(%)
AUC
(%)

SEN
(%)

SPE
(%)

F1
(%)

Delay
(s)

Thres.
AUCE

(%)
AUCS

(%)
AUC
(%)

SEN
(%)

SPE
(%)

F1
(%)

Delay
(s)

Thres.

Dog–1 98.53 99.69 99.11 96.79 99.29 97.49 1.60 0.30 97.79 99.43 98.77 96.79 98.81 96.96 1.60 0.29
Dog–2 97.47 99.66 98.57 87.68 99.30 91.00 2.00 0.28 99.58 99.58 98.58 90.86 98.87 91.41 1.00 0.26
Dog–3 97.76 99.58 98.67 95.21 98.17 89.20 2.08 0.28 96.71 99.25 98.08 92.08 98.34 88.16 3.08 0.35
Dog–4 99.86 97.15 98.51 57.06 99.28 69.49 1.00 0.26 99.70 97.34 98.56 69.54 98.03 73.11 1.00 0.20
Patient–1 90.94 98.13 94.54 91.03 96.15 92.27 4.50 0.41 95.06 98.32 97.27 92.31 97.12 93.64 4.00 0.59
Patient–2 99.37 99.50 99.43 94.72 99.00 88.14 1.33 0.26 99.34 99.40 99.42 94.72 99.03 88.49 1.33 0.26
Patient–3 88.50 95.34 91.92 78.00 92.44 74.87 6.00 0.37 88.25 93.61 90.25 76.21 92.16 73.42 7.57 0.45
Patient–4 100 100 100 100 100 100 1.00 0.21 99.63 99.63 100 95.00 97.89 88.31 1.00 0.50
Patient–5 84.20 88.82 86.51 58.52 99.08 56.88 18.00 0.23 87.72 91.19 90.45 62.96 99.20 62.16 5.00 0.22
Patient–6 98.73 99.82 99.27 97.35 98.48 90.11 2.25 0.22 98.66 99.79 99.28 96.89 99.49 95.39 2.25 0.36
Patient–7 87.33 90.10 88.72 66.63 99.35 65.49 7.33 0.14 92.31 94.61 93.20 66.63 99.69 66.64 7.33 0.27
Patient–8 81.46 97.82 89.64 92.78 97.13 84.36 4.50 0.22 78.78 98.03 88.52 94.44 97.54 86.74 4.50 0.26

Average 93.68 97.14 95.41 84.65 98.14 83.27 4.30 94.46 97.52 96.03 85.70 98.01 83.70 3.31
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Table A3: Comparison between state-of-the-art and proposed method on AUC,
sensitivity (SEN), specificity (SPE) and F1-score for binary classification of seizure and
non-seizure states for the unlabeled dataset. The threshold values were kept the same
as being used during cross-validation. The total AUC is the AUC estimated across all
the subjects.

(Hills, 2014) Proposed method

Subject
AUCE

(%)
AUCS

(%)
AUC
(%)

SEN
(%)

SPE
(%)

F1
(%)

Delay
(s)

Thres.
AUCE

(%)
AUCS

(%)
AUC
(%)

SEN
(%)

SPE
(%)

F1
(%)

Delay
(s)

Thres.

Dog–1 98.80 99.63 99.22 93.08 99.47 91.64 2.75 0.30 97.70 99.12 98.41 92.45 99.57 92.16 2.75 0.29
Dog–2 97.65 96.86 97.26 100 32.27 13.63 1.00 0.28 92.98 95.45 94.22 97.37 40.67 14.89 1.50 0.26
Dog–3 94.51 98.47 96.49 93.50 97.43 85.19 1.70 0.28 92.62 97.69 95.16 89.75 97.56 83.68 1.70 0.35
Dog–4 99.79 99.61 99.70 100 67.07 20.82 1.00 0.26 99.76 98.92 99.34 100 65.75 20.18 1.00 0.20
Patient–1 98.15 99.32 98.74 98.70 98.46 91.22 1.14 0.41 97.07 99.80 98.44 92.02 99.52 93.17 1.57 0.59
Patient–2 98.93 99.73 99.33 96.51 99.07 91.32 1.50 0.26 98.98 99.72 99.35 96.07 99.05 90.91 1.50 0.26
Patient–3 73.37 95.01 84.19 90.62 88.29 61.21 2.50 0.37 85.39 96.14 90.77 85.16 95.58 75.69 3.00 0.45
Patient–4 67.50 67.50 67.50 48.00 80.73 28.40 1.00 0.21 61.84 61.84 61.84 52 84.38 33.99 1.00 0.50
Patient–5 88.10 95.75 91.93 86.90 98.33 80.89 6.50 0.23 80.60 93.71 87.16 88.10 90.92 51.75 6.00 0.22
Patient–6 98.10 99.86 98.98 93.18 99.39 92.76 1.00 0.22 98.50 99.90 99.20 88.18 99.93 93.27 3.00 0.36
Patient–7 99.83 99.99 99.91 100 98.89 95.24 1.00 0.14 99.81 99.98 99.90 98.89 99.72 98.21 1.00 0.27
Patient–8 86.48 98.15 92.32 92.78 97.93 87.21 7.50 0.22 86.59 98.08 92.34 92.78 98.22 88.36 7.50 0.26

Average 91.77 95.82 93.80 91.11 88.11 69.96 2.38 90.99 95.03 93.01 89.40 89.24 69.69 2.63

Total 96.29 96.94
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Chapter 6

Hardware-friendly deep learning for

seizure detection

The content presented in this chapter is published as:

• Truong, N. D., A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, S. Ippolito,

and O. Kavehei (2018). “Integer Convolutional Neural Network for Seizure

Detection.” IEEE Journal on Emerging and Selected Topics in Circuits and

Systems 8.4, 849-857. DOI:10.1109/JETCAS.2018.2842761.
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Outstanding seizure detection algorithms have been developed over the past three

decades. Despite this success, their implementations as part of implantable or wearable

devices are still limited. These works are mainly based on heavily handcrafted feature

extraction, which is computationally expensive and is shown to be dataset specific.

These issues greatly limit the applicability of such methods to hardware implementation,

including in-silicon implementations such as application specific integrated circuits

(ASIC). In this work, we propose an integer convolutional neural network (CNN)

implementation, Integer-Net, as a memory-efficient unified hardware-friendly CNN

framework. The performance of Integer-Net is evaluated with multiple time-series

datasets consisting of intracranial and scalp electroencephalogram (EEG) signals.

Integer-Net shows a consistent seizure detection performance across three datasets:

Freiburg Hospital intracranial EEG (iEEG) dataset, Children’s Hospital of Boston-MIT

scalp EEG (sEEG) dataset, and UPenn and Mayo Clinic’s seizure detection dataset. Our

experimental results show that a 4-bit Integer-Net leads to only 2% drop of accuracy

compared to a 32-bit real-value resolution CNN model, while offering more than 7 times

improvement in memory efficiency. We discuss the structure of the integer convolution

to improve computational gain and reduce inference time that are crucial for real-time

application.

6.1 Introduction

Epileptic seizure affects nearly 1% of the world’s population but about two thirds can

be treated by drugs and another 7–8% can be cured by surgery (Litt and Echauz,

2002). Therefore, epileptic seizure detection and subsequent system for warning and/or

suppressing seizure become critical for the patients with refractory epilepsy. Over

the past two decades many EEG based seizure detection techniques and hardware

implementations have been proposed.

Most of low-power seizure detectors are based on simple methods including

voltage-level threshold, line length (Raghunathan, Gupta, Ward, et al., 2009; Patel

et al., 2009; Salam et al., 2011). Higher accuracy seizure detection methods employ

time-frequency domain analysis that implies higher computational cost. Wavelet-based

filters were utilized as a powerful tool to extract features in both frequency and time

domains as well as an effective de-noising technique (Saab and Gotman, 2005; Kuhlmann,

Burkitt, et al., 2009; Tieng et al., 2016). Another effective method to extract features

from EEG signals in both frequency and time domains concurrently is Short-Time

Fourier Transform (Samiee et al., 2015). With less computational complexity, Fast
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Fourier Transform (FFT) has been shown as an effective feature engineering in many

studies. However, to achieve high seizure detection performance, FFT is usually used

with Support Vector Machine that is highly computational (Hills, 2014; Parvez and Paul,

2015; Verma et al., 2010). Though these methods have outstanding performance, i.e.,

sensitivity and specificity of 95% or above (Hills, 2014; Parvez and Paul, 2015; Tieng

et al., 2016), they have limitations on implantable or portable hardware implementation

because of high computation.

Deep learning and its most popular architecture, convolutional neural network, have

been shown as an outstanding method for solving different tasks in computer vision

and language processing (Krizhevsky et al., 2012; Sainath et al., 2013). Recently, a

recurrent convolutional neural network with spectral magnitude and spatial information

of electrodes as inputs can achieve performance at state-of-the-art level for seizure

detection (Thodoroff et al., 2016). Particularly, the authors projected the magnitude

of 3 frequency bands spanning the range of 0–49 Hz of each 1 s EEG window onto

electrodes map. Their work reached 95–100% sensitivity range with patient-specific

model and false positive rate less than 0.3/hour. Regarding cross patient seizure

detection, the method achieved 85% sensitivity and false positive rate of 0.8/hour. In

this work, we propose a convolutional neural network (CNN) structure that can perform

well the seizure detection task based on both intracranial and scalp EEG but we put

more focus on the applicability of CNN on a low-power device. One limitation that

makes implementation of convolutional neural networks (or neural networks in general)

difficult is the excessively large number of parameters, which is partially responsible for

computational complexity of these algorithms. Existing techniques for reducing weight

storage (memory) and computational complexity have been discussed intensively. The

most common approach is to compress a pre-trained network by iteratively pruning

connections and/or quantizing trained weights (Han, Pool, et al., 2015; Han, Mao, et

al., 2015). Another approach is to design compact neural network by decomposing

convolutional kernels into smaller ones (Iandola et al., 2016; Szegedy et al., 2017). A

novel method, which is pursued in this work and is inspired by Rastegari et al. (2016),

is to quantize weights during training phase. Our contributions in this work include:

• Introducing Integer-Net1, a CNN-based model with integer inputs and weights,

and

• Proposing a CNN structure for seizure detection working well across multiple

electroencephalogram (EEG) datasets, and evaluating performance of the

1Integer-Net on GitHub source code: https://git.io/vbbuI
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Integer-Net using the aforementioned datasets.

6.2 Dataset

In this work, we would like to determine if electrical brain activity either corresponds

to epileptic seizure (ictal) activity or interictal data (the data between seizures) using

three datasets: Freiburg Hospital (University of Freiburg, 2003), CHB-MIT (Shoeb,

2009) and UPenn and Mayo Clinic seizure detection (Kaggle, 2014b) datasets. The

Freiburg dataset consists of intracranial EEG (iEEG) recordings at 256 Hz sampling

rate from 21 patients with intractable epilepsy (University of Freiburg, 2003). Due to

lack of availability of whole dataset, we were only able to use data from 13 patients

with 59 seiures and 311.4 interictal hours in total. In this dataset, iEEG data is from

6 selected electrodes where three of them are from epileptogenic regions and the other

three are from other remote regions. For each patient, there are 3 to 5 seizures and

24 hours of interictal (Maiwald et al., 2004).

CHB-MIT dataset contains scalp EEG (sEEG) data of 23 pediatric patients at the

Children’s Hospital, Boston. The dataset consists of 844 hours of continuous sEEG

recording and 163 seizures (Shoeb, 2009). Scalp EEG signals were captured using 22

electrodes for most patients and at sampling rate of 256 Hz (Shoeb, 2009). We define

interictal periods that are at least 4 hours away before seizure onset and after seizure

ending. In addition, patient 12 was excluded from this work because we were unable to

read EEG recordings of this patient.

UPenn and Mayo Clinic’s seizure detection (Kaggle) dataset has iEEG data of 4

canines and 8 patients with epileptic seizures (Kaggle, 2014b). iEEG signals were

recorded from 16 electrodes at 400 Hz for dogs, and from varying number of electrodes

(from 16 to 72) for patients. This dataset consists of 48 seizures and 6.5 hours of interictal

data. The data was pre-organized into 1 s epochs (S. N. Baldassano et al., 2017). We

apply the same 1 s windowing to the other two datasets for consistency. Our models

will be also tested with a test dataset consisting of 9.14 hours of unlabeled iEEG signals

provided by Kaggle.
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6.3 Proposed method

6.3.1 Pre-processing

We use Fast Fourier Transform (FFT) to translate each 1 s window of raw EEG signal

into frequency domain. Most of EEG recording signals were contaminated by power line

noise at 50 Hz for Freiburg dataset and 60 Hz for CHB-MIT dataset. In the frequency

domain, it is convenient to effectively filter out the power line noise by excluding

frequency bands of 47–53 Hz and 97–103 Hz for 50 Hz noise and frequency bands of

57–63 Hz and 117–123 Hz for 60 Hz noise. The DC component (0 Hz) was also removed

for all three datasets.

Imbalanced number of instances in each class introduces a challenge in many

classification tasks (Branco et al., 2016). As this issue presents also in seizure detection

(e.g. in UPenn and Mayo Clinic’s dataset, interictal to ictal ratio per subject is 10 : 1

on average), we generate extra ictal segments by using overlapping technique during

training phase. In particular, we slide a 1 s window along time axis at every step, S,

over ictal time-series EEG signals (see Fig. 6.1). S is chosen per each subject so that we

have similar number of samples per each class (ictal or interictal) in training set.

...

≈
≈

S

2S

3S

...

1 sec

TimeIctal time-series EEG signal

1 sec

Figure 6.1: Generate extra ictal segments to balance the training dataset by sliding a 1 s
window along time axis at every step S over ictal signals. S is chosen per each subject
so that there are similar number of samples per each class (ictal or interictal) in training
set.

6.3.2 Integer-Net: An integer convolutional neural network

In this section, we present an alternative implementation of convolutional neural network

(CNN) that is more hardware-friendly. In the recent years, CNN has shown its

90



outstanding capability in recognizing patterns and extracting features in computer vision

and language processing (Krizhevsky et al., 2012; Sainath et al., 2013). A typical CNN

network consists of convolution layers followed by fully-connected layers (LeCun et al.,

1990). A convolution layer has a set of filters, often called as kernels, each of which is

convolved with input to generate a set of feature maps (output). A non-linear activation

function is often introduced at the end of each convolution layer. A fully-connected

layer is a regular neural network’s layer where each neuron is connected to all outputs

of previous layer. Since CNN is involved with high computational complexity that

limits its applicability on low-power hardware, there has been an increasing need for

more hardware-friendly implementations of CNN. In general, hardware-friendly CNN

structures (Courbariaux et al., 2015; Rastegari et al., 2016) aim at reducing the

computational complexity and increasing memory efficiency, while maintaining the

performance of the algorithm. Our Integer-Net is inspired by XNOR-Net, (Rastegari

et al., 2016), and provides an additional flexibility to adjust accuracy with a cost of

efficiency. Integer-Net supports integer value inputs and weights that are quantized

during the training phase. Number of bits representing an integer is configurable.

Integer inputs and weights are used in forward pass to speed up inference time. Real

value weights are retained during training for gradient calculation and weight update.

In other words, Integer-Net will not benefit the training phase. The Integer-Net is

implemented in Python 2.7 with use of Tensorflow 1.4.0 and trained on an NVIDIA

K80 graphics card. It is worth noting that, beyond training and in the inference phase

(forward propagation), only integer weights are involved in computation and all the real

value weights for training can be safely removed.

The idea behind the Integer-Net is to approximate convolution and matrix

multiplication of floating matrices by performing those operations with integer values.

Operation of an Integer-Net is described in Algorithm 1. Suppose we need to ”integerize”

input I and weights W into n-bit integers for a matrix multiplication, i.e. dot product,

I · W where I, W ∈ R2.

I i = Integerize(I) = round

(
I

max (|I|)
× 2n

)
, (6.1)

W i = Integerize(W ) = round

(
W

max (|W |)
× 2n

)
, (6.2)

where max (|I|) and max (|M |) are the maximum magnitude of input I and weights W ,

respectively.
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Matrix multiplication, I ·W , can now be approximated as

I ·W ≈ αIαW I
i ·W i , (6.3)

where αI and αW are floating-point scalars calculated by

αI =
max (|I|)

2n
, (6.4)

αW =
max (|W |)

2n
. (6.5)

Using these approximations, we integerize inputs and weights. Outputs of the

fully-connected layer, OFC , can also be approximated by

OFC = Activation
(
αWαII

i ·W i
)
. (6.6)

We conduct similar steps for convolution layers except that scale coefficients, AIc,

of input have to be calculated according to the regions where convolution filters are

applied. In the other words, input scale coefficients of convolution layers are matrices,

where each element corresponds to a position of the filter being applied on the input.

This can be done by convolving the input with a matrix of ones, M , with same size of

convolution filter (as also used in (Ding, 2017)) divided it by 2n, as shown below

AIc =
max |I| ∗M

2n
. (6.7)

Subsequently, output of a convolution layer, OCONV , can be approximated by integer

inputs and weights as

OCONV = Activation
(
αWAIc ◦

(
I i ∗W i

))
, (6.8)

where ◦ is the Hadamard product and ∗ is the convolution operator.

The Integer-Net is fundamentally different from a quantized neural network in the

training phase. In case of the quantized neural network, the cost function is calculated

with the use of real value weights. Once the training is done, the weights are quantized

to lower precision. The quantized weights, therefore, lack connections with the cost

function that leads to a re-training step to boost the accuracy after quantization (Joulin

et al., 2016). Regarding the Integer-Net, the cost function being minimized during
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Algorithm 1 Integer-Net training

Require: Mini-batch of inputs I, cost function C, current real-value weight W and
layer output O.

1: for each layer l do
2: if convolution layer then
3: if l == 1 then . First layer
4: AIc ← max |I|∗M

2n

5: I i ← Integerize(I)
6: else
7: AIc ← max |Ol−1|∗M

2n

8: I il−1 ← Integerize(Ol−1)
9: end if

10: for each kernel k do
11: αW ← max |Wlk|

2n

12: W i
lk ← Integerize(Wlk)

13: end for
14: else if fully-connected layer then
15: αW ← max |Wl|

2n

16: αI ← max |Ok−1|
2n

17: W i ← Integerize(W )
18: I i ← Integerize(I)
19: end if
20: end for
21: Forward propagation with (αK , αI , AIc,W

i, I i) using Eq. (6.6) and (6.8) to calculate
cost function C.

22: Compute gradients w.r.t. real value weights: ∂C
∂W

.
23: Update real value weights.
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training is calculated using integer weights (see Algorithm 1, line 21), that ensures the

integer weights result in the optimum cost value. In other words, there is no need for a

re-training step with the Integer-Net.

6.3.3 Integet-Net for seizure detection

We use a CNN with three convolution blocks as depicted in Fig. 6.2. Each convolution

block consists of a batch normalization, a convolution layer with a rectified linear

unit (ReLU) activation function, and a max pooling layer. The batch normalization

ensures that the inputs to convolution layer have zero mean and unit variance. The first

convolution layer has sixteen n×5 kernels, where n is the number of EEG channels, used

with stride 1× 2. The next two convolution blocks have 32 and 64 convolution kernels,

respectively. The convolution blocks have kernel size of 1×3, stride 1×1 and max pooling

over 1× 2 region. Following the three convolution blocks are two fully-connected layers

with sigmoid activation function and output sizes of 256 and 2, respectively. Drop-out

layers are placed before the two fully-connected layers with dropping rate of 0.5.

Over-fitting is one of the most important challenges during training mainly due to

the limited available datasets. To avoid over-fitting, we (1) keep the CNN architecture

simple and shallow as described above, and (2) propose a practice to prevent over-fitting

during training. A common practice is to randomly split 20% of the training set to

be used as the validation set. After each training epoch, a loss and/or accuracy are

calculated with respects to the validation set to check if the network starts to over-fit

the training set. This practice works well with datasets where chronological ordering is

not important, e.g. image classification tasks. For time-series such as seizure detection,

however, we need to use samples from a different time period than those during training

to monitor if the model starts to over-fit. In this work, we select 25% later samples from

ictal and interictal sets for validation and the rest for training (see Fig. 6.3).

6.3.4 System evaluation

Area under the receiver operating characteristic curve (AUC) is used as criterion

for comparing these models. Because AUC is a threshold-free metric, it is more

convenient to use AUC for benchmarking with many models and multiple datasets than

to use sensitivity and specificity. To have a robust evaluation, we use leave-one-out

cross-validation, as illustrated by Truong, Kuhlmann, et al. (2017), and repeat it 5

times. If a subject has N seizures, one reported leave-one-out cross-validation AUC
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Figure 6.2: Convolutional neural network architecture. This illustration is applied
for Freiburg and CHB-MIT datasets. For UPenn and Mayo Clinic’s seizure detection
dataset, feature sizes are different due to different recording sampling rate. Input are
FFT transforms of 1 s windows of raw EEG signals. There are three convolution blocks
naming C1, C2 and C3. Each block consists of a batch normalization, a convolution
layer with ReLU activation function, and a max pooling layer. For the sake of simplicity,
max pooling layers are not shown and are noted as MP. For C1, sixteen n × 5 kernels,
where n is number of EEG channels, are used with 1 × 2 stride. ReLU activation is
applied on convolution results before being sub-sampled by a max pooling layer over
1 × 2 region. The same steps are applied in C2 and C3 except convolution kernel size
of 1 × 3, stride 1 × 1 and max pooling over 1 × 2 region. Blocks C2 and C3 have 32
and 64 convolution kernels, respectively. Features extracted by the three convolution
blocks are flatten and connected to 2 fully-connected layers with output sizes of 256 and
2, respectively. The former fully-connected layer uses sigmoid activation function while
the latter uses soft-max activation function. Drop-out layers are placed before each of
the two fully-connected layers with dropping rate of 0.5.

score is the average of N×5 values. Regarding the UPenn and Mayo Clinic’s dataset, we

also report the test results on the unlabeled dataset from Kaggle competition. Labels

for this dataset, which is not publicly available, were provided by the competition

organizers. The winning algorithm proposed by Hills (Hills, 2014) is also implemented

for comparison. All the models were trained with the labeled dataset before being tested

with the unlabeled one. Similar to the leave-one-out cross-validation, this test process

was repeated 5 times and average results were reported.
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Figure 6.3: Validation approach during training to prevent the convolutional neural
network from over-fitting. 25% later samples (diagonal lines) from preictal and interictal
sets are used for validation and the rest for training.

6.4 Results

We evaluate seizure detection performance on the three datasets with different models

including: full precision (32-bit floating-point) CNN, binary weights (BW) CNN

(Courbariaux et al., 2015), XNOR-Net (Rastegari et al., 2016), and the Integer-Net

with 2- to 5-bit in use. For the BW and XNOR-Net models, the structure proposed by

Ding (2017) was used.

Table 6.1: Seizure detection leave-one-out cross-validation results on Freiburg iEEG
dataset.

Patient Full BW XNOR Int-2 Int-3 Int-4 Int-5

Pat1 99.9 99.4 94.9 93.3 95.4 99.2 99.6
Pat3 99.6 98.4 88.5 97.6 97.5 98.3 98.4
Pat4 100 99.9 100 99.8 100 100 100
Pat5 91.3 87.9 71.9 55.3 70.7 85.2 87.1
Pat6 88.5 82.3 75.7 66.7 80.6 86.0 87.4
Pat14 81.9 77.1 76.0 78.2 76.0 78.0 76.3
Pat15 92.6 89.1 66.2 85.6 89.7 93.5 93.5
Pat16 91.7 82.8 65.3 87.2 87.1 89.3 87.6
Pat17 99.9 99.7 97.9 99.4 99.5 99.8 99.9
Pat18 97.7 96.5 94.3 94.6 94.0 97.1 98.4
Pat19 94.8 85.8 66.5 73.6 79.2 85.0 93.3
Pat20 98.9 96.9 87.7 95.9 96.4 98.2 98.7
Pat21 94.2 93.0 87.2 92.7 93.3 93.0 91.8

Average 94.7 91.4 82.5 86.1 89.2 92.5 93.2

Regarding leave-one-out cross-validation, our proposed full precision CNN

architecture works well across the three datasets with AUC ranging from 92.6% to

96.1% (see Fig. 6.4). Results in details are illustrated in Tables 6.1, 6.2, and 6.4.

It is worth reminding that CHB-MIT dataset is scalp EEG (sEEG) while the other
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two are intracranial EEG (iEEG). In other words, our CNN is generalized for seizure

detection based on both scalp and intracranial EEG signals. This is important since

it has been shown that only a few intracranial spikes associate with scalp ones (Tao

et al., 2005), hence features for sEEG could be different from those for iEEG. Regarding

hardware-friendly models, XNOR-Net delivers the worst performance. Integer-Net

models perform better with larger number of bits in use. Specifically, Integer-Net with

2-bit in use (Int-2 in Fig. 6.4) has better AUC as compared to XNOR-Net which can

be reasonably considered as 1-bit Integer-Net. AUC gets higher with Int-3, Int-4 and

Int-5 for all three datasets. Because BW model has been tested with popular datasets

(MNIST, CIFAR-10, SVHN) and achieved state-of-the-art performance (Courbariaux

et al., 2015), we are interested in its performance for seizure detection task compared

to Integer-Net. With 4-bit, Integer-Net surpasses BW model in seizure detection task

across all three datasets with p-value of 0.0005 in Wilcoxon signed rank test.

Table 6.2: Seizure detection leave-one-out cross-validation results on CHB-MIT sEEG
dataset.

Patient Full BW XNOR Int-2 Int-3 Int-4 Int-5

Pat1 99.5 99.4 80.2 98.2 99.3 99.7 99.7
Pat2 95.2 93.9 84.3 91.7 95.3 97.0 97.8
Pat3 99.4 96.1 92.6 87.7 96.7 96.6 97.8
Pat4 92.2 82.8 76.6 72.6 80.6 85.9 83.2
Pat5 99.9 99.4 92.2 97.5 99.6 99.8 99.8
Pat6 98.7 95.8 82.0 81.1 96.3 97.0 96.8
Pat7 90.8 95.4 90.2 90.0 96.1 96.2 96.3
Pat8 82.0 76.5 68.6 86.3 82.8 84.2 85.0
Pat9 99.5 98.1 88.5 93.7 98.4 98.4 98.5
Pat10 98.6 98.2 84.7 95.6 99.1 99.3 99.2
Pat11 99.4 97.3 77.7 97.8 99.3 99.5 99.6
Pat13 98.7 94.9 83.3 91.4 95.8 97.3 96.7
Pat14 97.5 97.1 91.4 87.2 96.4 97.5 97.7
Pat15 96.4 94.5 62.8 88.6 94.9 95.3 94.8
Pat16 85.7 75.0 61.9 54.9 62.5 75.0 81.2
Pat17 94.7 92.0 93.5 89.1 92.0 93.1 94.8
Pat18 96.3 91.2 76.3 87.2 93.6 98.0 96.9
Pat19 98.6 97.2 94.3 95.0 97.9 98.4 98.3
Pat20 98.3 94.4 84.7 89.7 92.8 96.4 97.8
Pat21 97.6 85.7 73.8 90.3 96.0 97.0 97.7
Pat22 94.3 94.7 87.0 93.2 97.7 95.7 97.0
Pat23 100 99.5 94.8 98.7 99.6 99.8 99.9

Average 96.1 93.1 82.8 89.0 93.8 95.3 95.8
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Figure 6.4: AUC scores of different seizure detection CNN models: full precision (32-bit
floating-point), binary weights only (BW), XNOR-Net, and Integer-Net with 2- to 5-bit.
Dots in the figure are outliers. Integer-Net with 2-bit (Int-2) has better AUC than
XNOR-Net. Integer-Net with higher number of bits in use (Int-3, Int-4, Int-5) results
in higher AUC.
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Table 6.3: Seizure detection leave-one-out cross-validation results on UPenn and Mayo
Clinic iEEG dataset.

Subj. (Hills,
2014)

Full BW XNOR Int-2 Int-3 Int-4 Int-5

Dog1 99.7 99.0 97.6 97.0 92.8 93.4 97.7 97.8
Dog2 99.7 99.9 99.3 92.7 94.7 96.4 99.6 99.7
Dog3 99.6 99.4 97.9 91.7 93.3 97.4 98.4 98.9
Dog4 97.2 97.9 86.2 55.9 62.2 69.8 80.5 78.9
Pat1 98.1 52.5 63.0 62.0 65.7 69.3 77.2 57.8
Pat2 99.5 98.3 96.7 83.1 75.9 92.5 95.4 95.5
Pat3 95.3 98.7 64.1 52.6 59.4 74.4 82.1 80.5
Pat4 100 99.9 64.0 56.6 44.1 48.1 57.5 52.6
Pat5 88.8 92.6 75.1 73.8 69.9 72.5 76.4 78.1
Pat6 99.8 100 99.4 64.0 94.9 98.5 99.7 99.9
Pat7 90.1 75.9 71.2 62.8 64.8 69.8 69.9 76.2
Pat8 97.8 96.8 85.8 70.3 66.7 75.4 78.2 84.5

Avg. 97.1 92.6 83.4 71.9 73.7 79.8 84.4 83.4

Table 6.4: Seizure detection test results on UPenn and Mayo Clinic iEEG unlabeled
dataset.

Subj. (Hills,
2014)

Full BW XNOR Int-2 Int-3 Int-4 Int-5

Dog1 98.8 97.2 96.5 95.7 94.5 95 96.9 95.7
Dog2 97.7 95.9 86.8 85.7 79 84.4 89.5 88.6
Dog3 94.5 98 97.6 93.3 96.1 97.5 97.9 98.1
Dog4 99.8 77.9 93.9 68.7 75.2 61.6 63.5 79.5
Pat1 98.2 99 94.8 86.1 78.2 77.1 87.7 87.6
Pat2 98.9 97.7 96.9 85.1 82.9 94.6 96.3 96.9
Pat3 73.4 64.2 79.5 53.8 71.3 78.2 80.8 81.3
Pat4 67.5 64.1 55.5 48.6 49.4 48.6 48.2 46.6
Pat5 88.1 84.1 92.6 78 86.2 90.6 93.3 94
Pat6 98.1 96.5 97.9 66.5 85.8 87.3 94.6 95.9
Pat7 99.8 99.8 96.5 87.6 94.2 97.2 92.6 94.2
Pat8 86.5 98.4 93.8 69.5 72.3 73 80 82.4

Avg. 91.8 89.4 90.2 76.6 80.4 82.1 85.1 86.7
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With respect to the unlabeled UPenn and Mayo Clinic dataset, the full precision

CNN model drops by 3% in AUC, from 92.6% cross-validation AUC to 89.4% test AUC

for the unlabeled dataset. The winning model (Hills, 2014) drops even more by more

than 5%, from 97.1% to 91.8% which is only 6.7% better than the Int-4 model. More

interestingly, all hardware-friendly models have increase in test AUC compared to the

leave-one-out cross-validation results. This implies that low precision calculation could

possibly help generalization of seizure detection models.

Table 6.5: Reduction rate of weight size achieved with 4-bit Integer-Net.

Layer
Freiburg dataset

Input shape 6×114
CHB-MIT dataset

Input shape 22×114
UPenn & Mayo dataset

Input shape 16×201

# params Out shape # params Out shape # params Out shape

BatchNorm∗ 6×4 22×4 16×4
Conv1 6×5×16 1×55×16 22×5×16 1×55×16 16×5×16 1×99×16
MaxPool 0 1×27×16 0 1×27×16 0 1×49×16
BatchNorm∗ 16×4 16×4
Conv2 16×3×32 1×13×32 16×3×32 1×13×32 16×3×32 1×24×32
MaxPool 0 1×6×32 0 1×6×32 0 1×12×32
BatchNorm∗ 32×4 32×4
Conv3 32×3×64 1×4×64 32×3×64 1×4×64 32×3×64 1×10×64
MaxPool 0 1×2×64 0 1×2×64 0 1×5×64
FC1 128×128 128 128×128 128 320×128 128
FC2 128×2 2 128×2 2 128×2 2

Full weight size 97.7 KB 103.0 KB 198.9 KB
Int-4 weight size 13.4 KB 14.3 KB 26.2 KB

Reduction rate 7.3x 7.2x 7.6x

∗ Parameters in batch normalization layers are not integerized.

6.5 Discussion

It is shown that 4-bit Integer-Net gives the best balance between performance and

computational efficiency. Comparing a 4-bit Integer-Net with a full 32-bit real-value

resolution model, AUC scores only drop less than 2% for the two datasets Freiburg

Hospital and CHB-MIT. There is more performance degradation with UPenn and

Mayo Clinic’s dataset with roughly 8% drop in AUC. Compared to the state-of-the-art

algorithm (Hills, 2014), the 4-bit Integer-Net shows less 6.7% in test AUC on the

unlabeled UPenn and Mayo Clinic dataset. Note that although the state-of-the-art

algorithm results in the highest score, it is involved with much more complex feature

engineering and therefore inefficient for an implantable or portable device. Among
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all models, XNOR has the least computational cost. However, its performance is

substantially worst than other models on all three datasets. Note that in BW model,

only weights are binarized, inputs are still stored as 32-bit floating-point values. Also,

the 4-bit Integer-Net has been shown to be superior to BW model based on the Wilcoxon

signed rank test.

Table 6.6: Energy consumption for various operations in 45nm 0.9V process (Horowitz,
2014).

Operation Multiplication Addition

8-bit integer 0.2 pJ 0.03 pJ
32-bit floating point 3.7 pJ 0.9 pJ

The first advantage of Integer-Net is the smaller size of weights. By reducing

number of bits from 32 to 4, raw reduction rate of weight size is 8 times more or

less. However, since batch normalization parameters and scale coefficients are still real

values, the actual reduction rate is 7.2–7.6 times (see Table 6.5). More importantly,

benefit of Integer-Net mostly comes from computational gain during inference mode. In

Integer-Net, not only weights but also inputs to each convolution and fully-connected

layer are binarized. In other words, all convolution and matrix multiplication operations

are performed with integer numbers. Achieving appropriate level of accuracy has been

the focus in this work and discussing details of power and computational gain is not

discussed in this work. But with the use of much less number of bits and the use of

integers instead of floating-point values, we argue that the computational gain could be

significant. As a reference, 8-bit integer implementation can gain 30 and 18 times for

addition and multiplication, respectively, compared to those of 32-bit floating point

implementation in 45nm 0.9V process (see Table 6.6). On that basis, we estimate

energy consumption per one classification task with the use of Integer-Net and 32-bit

floating point implementations. Our proposed Integer-Net enables a 10x reduction in

energy consumption compared to the conventional implementation (see Fig.6.5). The

Integer-Net implementation consumes 34–90 µJ for each classification.

We can further achieve computational gain by reducing the number of EEG channels

to be analyzed. This can be done manually by leveraging bio-medical expertise to

select which channels genuinely indicate seizure onset. However, this is time-consuming

and impractical if many patients are involved. Many attempts for channel reduction

tasks in an automatic fashion have been introduced. In our previous work (Truong,

Kuhlmann, et al., 2017), we proposed an automatic channel selection (ACS) engine that
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Figure 6.5: Integer-Net implementation can reduce more than ten times in energy
consumption.

was shown to be superior for the channel selection task. The ACS engine is composed

of supervised classifiers in order to determine EEG channels that contribute the most to

a seizure. Inputs to these classifiers are FFT transforms of 1 s windows of the raw EEG

signals on all channels. The classifiers determine the importance level of each channel

based on how often that feature is used to distinguish ictal windows from interictal

ones (Truong, Kuhlmann, et al., 2017). In this work, we apply the ACS engine to

gain more computational efficiency without compromising detection accuracy (Truong,

Kuhlmann, et al., 2017). We select patients (Pat1, Pat3, Pat4, Pat5, Pat6 and Pat7)

with large number of electrodes (from 30 to 72, 54 on average) from UPenn and Mayo

Clinic (Kaggle) dataset (S. N. Baldassano et al., 2017) and use ACS engine to pick

up top 16 electrodes. The reason of choosing 16 is merely because majority of subject

in UPenn and Mayo Clinic dataset has 16 electrodes. We found that CNN and its

hardware-friendly versions work well with ACS. As seen in Fig. 6.6, by using less than

one third of EEG channels on average, all models, except Int-2, achieve improvement in

seizure detection performance. Since the approximate operations of Integer-Net rely on

dynamic range of input signals, there is potential performance degradation when testing

with a prospective system. Particularly, the dynamic range of signals used for training

the network may differ from the dynamic range when testing in real-time.
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Figure 6.6: AUC scores of different seizure detection CNN models with the use of
automatic channel selection for channel reduction on a subset of patients with large
number of electrodes (30 to 72). Dots in the figure are outliers. All models, except
Int-2, has improvement in seizure detection using less than 1/3 of channels on average.

6.6 Conclusion

Seizure detection is crucial for patients with intractable epilepsy. A seizure detection

system needs to be not only precise but also reasonably computationally simple to be

most useful as an implantable or portable device. This work proposed a generalized

convolutional neural network architecture that can effectively detect seizure using either

scalp or intracranial EEG and its Integer-Net version. With Integer-Net, weight storage

can be reduced by 7–8 times. More importantly, convolution and matrix multiplication

operations performed with integers greatly help to reduce computational cost and

inference time that is critical for real-time application. Integer-Net is promising for an

energy-efficient seizure detection device with high accuracy. Such device could enable a

close-loop seizure detection system that can detect, give warning and potentially suppress

seizures.
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Chapter 7

Low precision EEG signals for

seizure detection
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Electroencephalogram (EEG) recording has been widely used for diagnosing and

monitoring of epileptic patients. Ambulatory and reliable EEG monitoring devices that

can detect or predict seizures could play an important role for patients safety, the disease

management and clinical outcome for people living with pharmacoresistant epilepsy

or epilepsy monitoring units. While many EEG-based seizure detection algorithms

have been proposed in the literature, their real-time and high accuracy hardware

implementations are constrained by power consumption, size of the system and its

real-time performance. Many commercial non-research EEG monitoring systems samples

multiple electrodes at a relatively high rate and transmit the data either via a wire

or wirelessly to an external signal processing unit. In this work, we studied how a

reduced sampling precision in data conversion impacts the performance of our machine

learning signal processing in seizure detection. To answer this question, we reduce the

number of bits in an analog-to-digital converter (ADC) used in an EEG recorder. The

outcome shows that the reduction of ADC precision down to 6-bit does not significantly

reduce seizure detection performance. As an indication of the performance, we achieved

an area under the curve (AUC) more than 92% and 96% with convolutional neural

network and more than 93% and 97% with engineered feature-based approach testing

on the Freiburg Hospital and the Boston Children’s Hospital-MIT seizure datasets,

respectively. A possible reduction in ADC precision not only contributes to energy

consumption reduction, but also offers an improved computational efficacy regarding

memory requirement and circuit area.

7.1 Introduction

Nearly 1% of the global population has been diagnosed with epilepsy, and almost

one-third of the patients have intractable epilepsy. Ambulatory systems that can detect

or even forecast epileptic seizure play an important role for those patients (Echauz et al.,

2007). Electroencephalogram (EEG) has been shown as critical information to enable

seizure detection and prediction. Automatic seizure detection has been demonstrated

to be viable by using EEG signals (Kuhlmann, Burkitt, et al., 2009; Tieng et al., 2016;

Wen and Z. Zhang, 2018). Though seizure prediction is still challenging, it has been

proved to be possible at least for certain groups of patients (Kuhlmann, Lehnertz, et al.,

2018; Kuhlmann, P. Karoly, et al., 2018; Truong, Nguyen, et al., 2018a).

Regarding seizure detection, Parvez and Paul (2015) applied 2D-discrete cosine

transformation (DCT) and extracted statistical features from the DCT coefficients as

inputs for a least square support vector machine (LS-SVM) to perform seizure detection.
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Their approach achieved sensitivity and specificity more than 96% on the Freiburg

Hospital dataset. In another work, the power spectrum and the correlation between

channel pairs in both frequency and time domain were used as inputs for a random

forest classifier to distinguish ictal and interictal EEG signals (Truong, Kuhlmann, et al.,

2017). The method achieved an area under the operating characteristics curve (AUC) of

96.94% using the Kaggle seizure detection competition dataset (Kaggle, 2014b). Wavelet

transform was shown to be effective to extract useful features for seizure detection. A

seizure detection method that used wavelet-based directed transfer function as feature

extraction and support vector machine (SVM) as a classifier achieved a sensitivity of

95.8% and specificity of 99.5% on a private dataset consisting of 87.5 hours of EEG

recordings and 44 seizure occurrences (D. Wang et al., 2018).

Recently, deep learning has been being used widely in epileptic seizure detection.

Hossain et al. (2019) applied a convolutional neural network (CNN) on 2-second input

window segments of time-series EEG signals from the Boston Children’s Hospital-MIT

(CHB-MIT) dataset. Their patient-specific method achieved a sensitivity of 90% and

specificity of 91.65%. A similar approach with CNN that was tested with a private

dataset consisting of 1124.3 hours EEG recording time and 97 seizures obtained a

sensitivity of 74% across patients (Emami et al., 2019). A combination of convolutional

neural network and recurrent neural network that was used as a seizure detector obtained

sensitivity in the range of 95–100% on the CHB-MIT dataset (Thodoroff et al., 2016).

In another work, an autoencoder-based multi-view learning model used a multi-view

autoencoder to learn features in a unsupervised manner, and a channel-aware seizure

detection module to steer the model to the most relevant EEG channels (Yuan et

al., 2019). This subject-independent seizure detection method achieved an F1-score

of 85.34% using 5-fold cross-validation on the CHB-MIT dataset.

Note that the aforementioned methods are based on EEG signals with at least 16-bit

resolution. The resolution of EEG signals is determined by an analog-to-digital converter

(ADC) that is used by EEG recorders to digitize the signals. Typically, EEG recorders

are equipped with a 16-bit ADC (University of Freiburg, 2003; Goldberger et al., 2000).

In this work, we study how sensitive working seizure detection algorithms are with

regards to the EEG’s resolution or the number of ADC bits. The seizure detection

algorithms will be studied in this work are (1) CNN-based (Truong, Nguyen, et al.,

2018b), and (2) classical engineered feature-based (Truong, Kuhlmann, et al., 2017).
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Figure 7.1: Seizure detection performance using convolutional neural network.

7.2 Dataset

In this work, we evaluate the impact of ADC precision on seizure detection using two

datasets: the Freiburg Hospital dataset (University of Freiburg, 2003) and the Boston

Children’s Hospital (CHB)-MIT dataset (Goldberger et al., 2000). The Freiburg Hospital

dataset consists of intracranial EEG (iEEG) recordings at 256 Hz sampling rate from

21 patients with intractable epilepsy (University of Freiburg, 2003). Due to the lack

of availability of the dataset, we were only able to use data from 13 patients with 59

seizures and 311.4 interictal hours in total. In this dataset, iEEG signals are extracted

from 6 selected electrodes where three of them are from epileptogenic regions, and the

rest are from remote regions. Data of each patient contains 3 to 5 seizures and 24 hours

of interictal (Maiwald et al., 2004). The CHB-MIT dataset contains scalp EEG (sEEG)

recordings of 23 pediatric patients with 844 hours of continuous sEEG recording and

163 seizures in total (Shoeb, 2009). Scalp EEG signals are recorded at a sampling

rate of 256 Hz from 22 non-invasive electrodes. Different from Truong, Nguyen, et al.

(2018b), we define any signals that are at before seizure onset and after seizure ending
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as interictal. Also, patient 12 was excluded as we were unable to load EEG signals for

this patient.

7.3 Method

We use a convolutional neural network (CNN) (Truong, Nguyen, et al., 2018b) and a

classical engineered feature-based approach (Truong and Kavehei, 2019) to evaluate the

impact of ADC bit reduction on seizure detection performance. Specifically, CNN takes

the Fast Fourier Transform (FFT) of 1-second time-series EEG windows as inputs. Only

FFT amplitudes are considered, and all the phase information is disregarded. Moreover,

components in the frequency ranges of 47–53 Hz and 97–103 Hz are removed for the

Freiburg Hospital dataset. The similar step is applied for the CHBMIT dataset with

components in the frequency ranges of 57–63 Hz and 117–123 Hz. The DC component

was also removed. The CNN structure is comprised of three convolutional blocks, each

of which contains a batch normalization, a convolutional layer, and a max-pooling layer

with stride of (1 × 2). The three convolution layers have number of kernels of 16, 32

and 64, kernel sizes of (n × 5), (1 × 3) and (1 × 3), where n is the number of EEG

channels, strides of (1× 2), (1× 3) and (1× 3), respectively. Two fully-connected layers

follow the convolutional blocks with sigmoid activation function and a drop out rate of

0.5 (Truong, Nguyen, et al., 2018b).

Regarding the engineered feature-based method, the features are extracted in both

frequency and time domains. In the frequency domain, the features consist of spectral

power in 1-Hz bins in the range of 1–47-Hz, eigenvalues of a cross-spectral matrix on

all channels. In the time domain, the features are coefficients in the upper triangle and

eigenvalues of the correlation matrix of EEG signals on all channels. The feature set

is classified by a random forest classifier with 3000 decision trees (Truong, Kuhlmann,

et al., 2017).

To simulate the ADC bit reduction, from the recorded EEG signals, we convert the

16-bit ADC readings into n-bit values using (7.1).

readingsn-bit =
(
readings16-bit >> 16

)
<< n, (7.1)

where readings16-bit are the 16-bit integer outputs from ADC, << and >> are left shift

and right shift operators, respectively.
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Original and converted readings are then applied with the CNN above for the seizure

detection task. In this work, we use the area under the receiver operating characteristic

curve (AUC) as a threshold-free metric for benchmarking models using different numbers

of ADC bits. To have a robust evaluation, we use leave-one-seizure-out cross-validation,

as illustrated by Truong, Kuhlmann, et al. (2017), and repeat the whole cross-validation

4 times. Mean values and standard deviations of AUC for each patient are reported.
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Figure 7.2: Seizure detection performance using feature engineering and random forest
classifier.

7.4 Results

The seizure detection performance of the CNN-based and the engineered feature-based

approaches under different numbers of ADC bits is illustrated in Figs. 7.1 and 7.2, more

details can be found in Tables 7.1–7.4. Regarding the CNN-based seizure detection

algorithm, ADC bit reduction from 16 to 6 does not have a high impact on seizure

detection performance. Particularly, for the Freiburg Hospital dataset, the average AUC
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for 16- and 8-bit ADC is around 93.9%, and decreases to 92.5% 6-bit ADC. However, the

4-bit ADC does cause the AUC to degrade greatly to 81.4%. It is worth noting that six

out of thirteen patients still have AUC higher than 90% in this case. Similar observations

are applied to the CHB-MIT dataset. In particular, the average AUC remains above

96% when the number of ADC bits is reduced to 6, comparable with that using the

original 16-bit ADC.

Table 7.1: Seizure detection performance (AUC in %) for the Freiburg Hospital dataset
with convolutional neural network. Mean values and standard deviations of AUC for
each patient over the course of four runs of leave-one-seizure-out cross-validation are
reported.

Patient 4-bit ADC 6-bit ADC 8-bit ADC 16-bit ADC

Pat1 90.3± 2.0 96.9± 0.4 99.4± 0.3 99.9± 0.0
Pat3 90.2± 0.5 95.4± 0.9 98.2± 0.2 99.3± 0.3
Pat4 100± 0.0 100± 0.0 99.9± 0.2 100± 0.0
Pat5 71.9± 1.6 85.3± 1.7 89.9± 0.6 90.6± 1.4
Pat6 68.4± 1.8 84.0± 2.1 89.1± 1.6 87.5± 2.0
Pat14 74.2± 0.7 93.2± 0.8 86.3± 0.9 80.3± 0.8
Pat15 87.0± 0.6 86.9± 0.8 86.8± 0.6 92.0± 0.2
Pat16 76.2± 0.7 85.3± 0.4 85.9± 0.2 90.6± 0.9
Pat17 92.5± 0.6 98.6± 0.4 99.7± 0.2 99.9± 0.1
Pat18 93.7± 1.1 98.5± 0.1 98.0± 0.4 98.2± 0.4
Pat19 73.0± 4.0 91.9± 3.9 93.2± 1.3 93.8± 1.0
Pat20 90.6± 0.9 98.1± 0.5 97.8± 0.9 98.4± 0.1
Pat21 49.6± 1.2 88.0± 0.3 96.7± 0.6 90.4± 2.2

Average 81.4± 1.2 92.5± 0.9 93.9± 0.6 93.9± 0.7

Similarly, with the engineered feature-based method, seizure detection performance

slightly drops when using 6-bit ADC compared with 16-bit ADC. Specifically, the average

AUC decreases from 94.2% and 98.8% with 16-bit ADC to 93.3% and 97.7% with 6-bit

ADC for the Freiburg Hospital dataset and the CHB-MIT dataset, respectively. The

4-bit does cause a considerable degradation in the average AUC by approximately 7%

and 12% for the two datasets, although more than 50% of the patients still have AUC

higher than 90%.

7.5 Discussion

As we use FFT transform of the time-series EEG signals as input to the CNN and

power spectrum in the engineered feature-based method, we are interested in studying
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Table 7.2: Seizure detection performance (AUC in %) for the CHB-MIT dataset with
convolutional neural network. Mean values and standard deviations of AUC for each
patient over the course of four runs of leave-one-seizure-out cross-validation are reported.

Patient 4-bit ADC 6-bit ADC 8-bit ADC 16-bit ADC

Pat1 95.6± 0.4 98.6± 0.6 99.1± 0.1 98.9± 0.5
Pat2 89.8± 1.5 97.1± 0.1 95.3± 1.6 88.5± 6.6
Pat3 97.1± 0.5 99.1± 0.3 99.6± 0.0 99.7± 0.0
Pat4 70.8± 0.1 95.9± 0.6 95.2± 1.3 95.7± 0.7
Pat5 95.3± 0.5 99.2± 0.1 99.5± 0.3 99.4± 0.2
Pat6 81.1± 0.7 97.2± 0.4 98.8± 0.1 99.0± 0.2
Pat7 91.9± 1.2 95.3± 0.9 94.9± 1.2 95.3± 0.6
Pat8 88.6± 0.6 96.2± 0.3 96.0± 0.2 95.7± 0.3
Pat9 98.8± 0.1 98.4± 0.3 98.4± 0.2 98.5± 0.3
Pat10 97.3± 0.2 98.3± 0.2 98.6± 0.2 98.3± 0.2
Pat11 78.2± 1.7 99.1± 0.3 98.8± 0.1 98.8± 0.2
Pat13 66.3± 0.7 92.3± 0.5 91.3± 1.3 89.1± 1.4
Pat14 66.8± 1.6 91.5± 0.8 95.0± 0.5 96.4± 0.4
Pat15 51.5± 0.3 93.8± 0.2 95.8± 0.3 95.4± 0.6
Pat16 58.1± 2.9 91.1± 0.4 93.3± 0.5 91.8± 0.9
Pat17 72.3± 0.8 94.2± 0.6 86.0± 2.5 82.9± 1.4
Pat18 64.5± 1.5 89.9± 0.4 91.4± 1.6 91.4± 1.7
Pat19 90.7± 1.2 96.2± 0.9 98.3± 0.4 97.2± 0.6
Pat20 81.3± 1.5 96.4± 0.4 95.9± 0.8 97.4± 1.1
Pat21 63.1± 1.7 96.1± 0.3 98.4± 0.4 98.5± 0.6
Pat22 90.9± 0.5 99.0± 0.3 98.2± 0.5 97.4± 0.3
Pat23 94.5± 0.3 99.5± 0.0 99.6± 0.1 99.7± 0.1

Average 81.1± 0.9 96.1± 0.4 96.2± 0.6 95.7± 0.9
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Table 7.3: Seizure detection performance (AUC in %for the Freiburg Hospital dataset
with engineered feature-based approach. Mean values and standard deviations of AUC
for each patient over the course of four runs of leave-one-seizure-out cross-validation are
reported.

Patient 4-bit ADC 6-bit ADC 8-bit ADC 16-bit ADC

Pat1 84.4 95.9 97.9 98.1
Pat3 93.3 97.2 98.1 98.3
Pat4 100 100 100 100
Pat5 78.6 93 91.6 93.6
Pat6 88.0 95.5 94.8 95.7
Pat14 82.4 88.8 85.5 84.8
Pat15 92.4 93.2 95.2 95.2
Pat16 80.5 88.1 91.8 93.0
Pat17 95.7 98.2 99.3 99.6
Pat18 92.8 94.1 95.4 96.1
Pat19 94.8 97.5 98.5 98.3
Pat20 90.8 97.0 97.1 97.0
Pat21 58.6 75.4 74.9 75.8

Average 87.1 93.4 93.9 94.3

The engineered feature-based approach had virtually no variation (< 0.05%) in AUC among different runs.

how the reduction in the number of ADC bits affects the input’s “features”. Fig. 7.3

depicts the power spectrum of a 1-second EEG with the use of different numbers of

ADC bits. Reducing the number of ADC bits causes less distinguishable levels of signals

captured in the EEG recording (i.e., low resolution). One may expect information at

high frequencies is lost because the signals become more “pixelated” with less number

of bits used in ADC. In the extreme case where only 4 bits are in use (see Fig. 7.3.e),

all components above 20 Hz are depressed to zero.

Figs. 7.1 and 7.2 show that some patients have high seizure detection performance

with only 4-bit ADC while the performance of others drops considerably. We select one

patient with high performance and another patient with low performance of each dataset

and analyze the impact of ADC bit reduction on the power spectrum of EEG signals

during ictal and interictal periods. Particularly, we plot the power spectrum with DC

removed of two thousand random 1-second segments for each case (see Figs. 7.4 and

7.5). For both datasets, the difference in the power spectrum of the high and low

performers can be clearly observed at 4-bit ADC. Specifically, ictal and interictal groups

can be visually distinguished for the patients with high seizure detection performance,

but they look similar for the patients with low performance. Some patients have better

performance with less number of bits, e.g., Patient 14 in the Freiburg Hospital dataset.
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Table 7.4: Seizure detection performance (AUC in %) for the CHB-MIT dataset with
engineered feature-based approach. Mean values and standard deviations of AUC for
each patient over the course of four runs of leave-one-seizure-out cross-validation are
reported.

Patient 4-bit ADC 6-bit ADC 8-bit ADC 16-bit ADC

Pat1 98.1 99.7 100 100
Pat2 97.7 99.7 99.8 99.8
Pat3 98.2 99.7 99.9 99.9
Pat4 76.6 97.0 98.7 98.7
Pat5 98.5 99.8 99.8 99.8
Pat6 76.9 96.2 97.4 97.8
Pat7 97.1 98.5 98.5 98.5
Pat8 91.4 96.1 97.3 98.1
Pat9 99.5 99.0 99.4 99.5
Pat10 98.8 99.1 99.4 99.4
Pat11 91.1 99.6 99.7 99.7
Pat13 77.9 97.0 97.9 98.4
Pat14 65.1 95.9 97.6 97.9
Pat15 55.0 96.7 98.6 98.4
Pat16 72.3 95.5 97.5 97.6
Pat17 87.1 98.7 99.0 99.2
Pat18 82.6 91.7 93.9 94.7
Pat19 94.6 99.0 99.3 99.5
Pat20 85.9 97.3 98.6 98.5
Pat21 69.9 95.2 98.9 99.3
Pat22 96.9 99.9 99.7 99.7
Pat23 96.8 99.9 99.9 99.9

Average 86.7 97.8 98.7 98.8

The engineered feature-based approach had virtually no variation (< 0.05%) in AUC among different runs.
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Figure 7.3: Waveform and power spectrum of a 1-second EEG segment from one channel
using different numbers of ADC bits.

116



This can be explained that the less number of bit acts like a regularization technique

that helps the model generalize better.
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Figure 7.4: Power spectrum with DC removed of two thousand random 1-second EEG
segments for patients with high (Patient 18) and low (Patient 21) seizure detection
performance using different numbers of ADC bits during ictal (red) and interictal (blue)
periods from the Freiburg Hospital dataset in three cases: (a) 16-bit ADC, (b) 8-bit
ADC, and (c) 4-bit ADC.

We have shown that only a 6-bit (rather than 16-bit) ADC is sufficient for seizure

detection. The low precision EEG signals with 6-bit ADC can be used for different seizure

detection methods, namely convolutional neural network and engineered feature-based

in this work. Therefore, ADC bit reduction can be applied directly to existing

seizure detection system without compromising the performance. In terms of power

consumption, minimum theoretical power consumption for an ADC can be reduced

more than 10× for every ADC bit reduction (Kenington and Astier, 2000). The most

significant consequence of this conclusion lies within the hardware design. The lack of

high precision capability has been the weakest point of the most effective and efficient

unconventional analog to digital conversion techniques, not to mention that even in its

conventional forms, the circuitry that is used in the design of a 6-bit ADC would be

way more straightforward than that of a 16-bit ADC. Hence we argue that our finding

opens up a number of unexplored avenues in using unconventional, power-efficient and

low-precision ADCs and therefore rethink the way we design EEG signal monitoring

circuitry when it is combined with specific signal processing approaches. A fewer number

of bits will also improve computational efficacy since fewer resources are required. This
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Figure 7.5: Power spectrum with DC removed of two thousand random 1-second EEG
segments for patients with high (Patient 10) and low (Patient 21) seizure detection
performance using different numbers of ADC bits during ictal (red) and interictal (blue)
periods from the CHBMIT dataset in three cases: (a) 16-bit ADC, (b) 8-bit ADC, and
(c) 4-bit ADC.

is important for a portable ambulatory seizure detection system that requires a long

battery life as desired.

7.6 Conclusion

Reliable seizure detection plays a critical role in ambulatory epileptic seizure monitoring

devices. We have shown that high seizure detection performance is achievable with

considerably lower ADC precision. A 6-bit ADC, in particular, demonstrates AUCs

of above 92% and 96% with a convolutional neural network and above 93% and 97%

with an engineered feature-based approach for the Freiburg Hospital and the CHB-MIT

seizure datasets. This enables an opportunity to not only reduce power reduction

and complexity of circuits behind each electrode but also to envision a possibility for

the future development of a different circuit architecture to better help patients with

refractory forms of epilepsy.
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Chapter 8

Seizure prediction on portable

hardware

8.1 Introduction

Advances in deep machine learning in recent years have attracted significantly more

attention to the application of these techniques in detective and predictive data analytics

especially in health care, medical practices, and biomedical engineering (D. R. Freestone,

P. J. Karoly, and Cook, 2017). While the body of available proven knowledge lacks

a convincing and comprehensive understanding of sources of epileptic seizures, some

early works showed the possibility of predicting, seemingly unpredictable, seizures

(Rogowski et al., 1981; Salant et al., 1998). Along with continuous improvements in

recording electroencephalogram (EEG) signals, there has been an increasing number

of EEG-based techniques for seizure prediction (Szostak et al., 2017). In this work, we

investigate a deep learning-based seizure prediction system from perspective of hardware

implementation. We use an off-the-shelf deep learning accelerator, Intel Movidius Neural

Computing Stick, as a proof of concept for a promising portable seizure prediction device.

8.2 Dataset

The Boston Children’s Hospital (CHB)-MIT dataset contains scalp EEG (sEEG) data

of 23 pediatric patients with 844 h of continuous sEEG recording and 163 seizures.

Scalp EEG signals were captured using 22 electrodes at sampling rate of 256 Hz (Shoeb,

120



2009). We define interictal periods that are at least 4 h away before seizure onset and

after seizure ending. In this dataset, there are cases that multiple seizures occur close to

each other. For the seizure prediction task, we are interested in predicting the leading

seizures. Therefore, for seizures that are less than 30 min away from the previous one,

we consider them as only one seizure and use the onset of leading seizure as the onset

of the combined seizure. Besides, we only consider patients with less than 10 seizures a

day for the prediction task because it is not very critical to perform the task for patients

having a seizure every 2 h on average. With the above definition and consideration,

there are 13 patients with sufficient data (at least 3 leading seizures and 3 interictal

hours).

Table 8.1: Summary of the CHB-MIT dataset.

Patient No. of seizures Interictal hours

Pat1 7 17
Pat2 3 22.9
Pat3 6 21.9
Pat5 5 13
Pat9 4 12.3
Pat10 6 11.1
Pat13 5 14
Pat14 5 5
Pat18 6 23
Pat19 3 24.9
Pat20 5 20
Pat21 4 20.9
Pat23 5 3

Total 64 209

8.3 Proposed method

8.3.1 System overview

The seizure prediction system consists of a Raspberry Pi 3 and an Intel Movidius Neural

Computing Stick (see Fig. 8.1). Time-series EEG signals are sent from a recorder to the

Raspberry board where they are pre-processed to be compatible with a CNN loaded in

the Neural Computing Stick. Specifically, we use Short-Time Fourier Transform (STFT)
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to translate raw EEG signal into a two-dimensional matrix comprised of frequency

and time axes. We use EEG window length of 28 s. Most of EEG recordings were

contaminated by power line noise at 60 Hz. In frequency domain, it is convenient to

effectively remove the power line noise by excluding components at the frequency range

of 57–63 Hz and 117–123 Hz for power line frequency of 60 Hz. The DC component

(at 0 Hz) was also removed. Though most patients have 22 EEG channels, others have

less due to disruptions during recording. We, therefore, reduce the number of analyzed

channels to 16 by applying technique proposed by Truong, Kuhlmann, et al. (2017) so

that input shapes will be the same for all patients. After pre-processing step, input

shape is n× 56× 112, where n = 16 is the number of analyzed EEG channels.

EEG recorder

• Send EEG time-
series data

Raspberry Pi

• Pre-process EEG
• Send input
• Display output 

from Movidius

Movidius

• Perform 
inference

(  )*

(a)

100 mm

60 m
m

35 m
m

(b)

Figure 8.1: (a) Block diagram: The seizure prediction system consists of a Raspberry
Pi 3 and a Movidius Neural Computing Stick (NCS). Time-series EEG signals are sent
from a recorder to the Raspberry board where they are pre-processed to be compatible
with a CNN loaded in the NCS. (b) Full system dimension. The NCS can sit on top of
Raspberry Pi 3.

8.3.2 Adversarial neural network

In this work, we use a generative adversarial network (GAN) (Goodfellow et al., 2014)

with three convolution layers as depicted in Fig. 8.2 as an unsupervised feature extraction
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Figure 8.2: (a) The Generator takes a random sample of 100 data points from a uniform
distribution U(−1, 1) as input. The input is fully-connected with a hidden layer with the
output size of 6272 which is then reshaped to 64× 7× 14. The hidden layer is followed
by three de-convolution layers with filter size 5 × 5, stride 2 × 2. Numbers of filters
of the three de-convolution layers are 32, 16 and n, respectively. The Discriminator
consists of three convolution layers with filter size 5× 5, stride 2× 2. Numbers of filters
of the three convolution layers are 16, 32 and 64, respectively. (b) Seizure forecasting
with features extracted by DCGAN’s Discriminator. Features extracted by the three
convolution blocks of the Discriminator are flattened and connected to a neural network
consisting of 2 fully-connected layers with the output sizes 256 and 2, respectively.
The former fully-connected layer uses sigmoid activation function while the latter uses
soft-max activation function.
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technique. After training the GAN, we add two fully-connected layers with sigmoid

activation and output sizes of 256 and 2, respectively, after the trained convolution

layers in GAN’s Discriminator to form a convolutional neural network (CNN) for seizure

forecasting task. The former fully-connected layer uses sigmoid activation function while

the latter uses soft-max activation function. Both of the two fully-connected layers have

drop-out rate of 0.5. We then train the CNN as normal except all trained convolution

layers are kept unchanged. Our model training is performed on an NVIDIA K80 graphic

card using Tensorflow 1.4.0 framework. Subsequently, the trained CNN is transferred to

the Neural Computing Stick for inference stage.

8.4 Results

Seizure prediction horizon (SPH) and seizure occurrence period (SOP) need to be defined

before estimating performance metrics. In this work, we follow the definition of SOP

and SPH that was proposed by Maiwald et al. (2004). SOP is the interval where the

seizure is expected to occur. The time period between the alarm and beginning of SOP

is called SPH. For a correct prediction, a seizure onset must be after the SPH and within

the SOP. Likewise, a false alarm rises when the prediction system returns a positive but

there is no seizure occurring during SOP. When an alarm rises, it will last until the

end of the SOP. Regarding clinical use, SPH must be long enough to allow sufficient

intervention or precautions. In contrast, SOP should be not too long to reduce the

patient’s anxiety.

Metrics used to test the proposed approach is the area under the operating

characteristic curve (AUC) with SPH of 5 min and SOP of 30 min. We use last one (for

patients with less than 6 seizures) or two (for others) seizures of each patient as the test

set and the rest for training. Interictal data is split according to number of seizures in

the test set. Seizure prediction performance of CNN that is implemented on the K80

and the Neural Computing Stick (NCS) is shown in Fig. 8.3. Most of the patients have

AUC score higher than 50% (random chance), 5 of them have high AUC, 95-100% for

K80 implementation. NCS implementation has slightly lower AUC score for all patients

except Pat2 and Pat10.
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Figure 8.3: Seizure prediction AUC per patient. Prediction is within 35-5 minutes prior
to seizure onset. Some patients do not have enough data.

8.5 Discussion

Since the K80 uses 32-bit floating-point number while the Neural Computing Stick (NCS)

uses only 16-bit floating-point, it is expected to have some performance degradation. The

NCS performs slightly worse than K80 with 3.7% lower on average in AUC score. This

degradation is acceptable considering that the total power consumption of the seizure

prediction system is only 2 Watts and the total cost is under USD 100. Importantly, it

takes only 1.27 seconds for the system to process and classify a 28-second EEG segment.

In other words, the system can perform a real-time seizure prediction. Furthermore, our

current prototype is using a Raspberry Pi 3 and an Intel Movidius NCS, but it can be

as small as the Google Voice Kit (Google, 2019) (see Fig. 8.4).

Table 8.2: Processing time for one 28-second EEG time-series data.

Task Processing time

Movidius initiation 0.94 second
Pre-processing 0.31 second
Inference 0.02 second

Total 1.27 seconds
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Figure 8.4: Google Voice Kit: A Voice Bonnet board that has the same Myriad 2
processor as in NCS is placed on top of a Raspberry Pi Zero.

8.6 Conclusion

We have shown that feature extraction for seizure prediction can be done using

unsupervised deep learning or GAN particularly. Seizure prediction can be implemented

efficiently on low-power hardware. Though our working prototype that uses off-the-shelf

components does not provide impressive power consumption, it is reasonable to argue

that power consumption can be greatly reduced with customized devices.
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Chapter 9

Concluding Remarks

9.1 Thesis contribution

In this thesis, we have addressed several problems with epileptic seizure detection

and forecasting. Regarding seizure detection, we significantly enhanced computational

efficiency by employing an automatic channel selection engine as a mechanism to

adequately determine most informative electroencephalogram (EEG) recordings prior

to feature extraction. The engine gave rise to significant computational efficiency

improvements on subjects having large number of recording channels. The overall results

of the proposed method were comparable with that of the state-of-the-art while it saved

49.4% of the processing time and reduced the average number of channels requiring

analysis by 71%, both critical factors for real-world applications.

Regarding seizure forecasting, we have proposed an efficient method to preprocess

raw EEG data into a form suitable for a convolutional neural network (CNN), a guideline

to help the CNN perform well with the seizure prediction task with minimum feature

engineering and an algorithm that works well across multiple datasets; namely, the

Freiburg Hospital dataset University of Freiburg, 2003, the Boston Children’s Hospital

(CHB)-MIT dataset Shoeb, 2009, the American Epilepsy Society Seizure Prediction

Challenge (Kaggle) dataset Kaggle, 2014a, and the EPILEPSIA data Klatt et al., 2012.

A perfect prediction is not yet available, but with current prediction performance it

appears possible to provide patients with a warning so they can take some precautions

for their safety. This gives more patients the opportunity to possess a seizure prediction

device that can help them have a more manageable life.

In another aspect of seizure forecasting, we proposed unsupervised feature learning
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using generative adversarial network (GAN) for seizure forecasting that is generalizable

across multiple epilepsy EEG datasets. Today the process of accurate epileptic seizure

identification and data labeling is done by neurologists, which is expensive and time

consuming. With unsupervised learning, we can make use of unlabelled data which is

more accessible. We have shown that feature extraction for seizure forecasting can be

done using unsupervised deep learning or GAN, particularly.

Relating to computational complexity and power consumption reduction, besides

the automatic channel selection engine which is mentioned above, we have proposed

Integer-Net, an integer convolutional neural network, to reduce computational

complexity and required memory to store the algorithm. With Integer-Net, weight

storage can be reduced by 7–8 times. More importantly, convolution and matrix

multiplication operations performed with integers greatly help to reduce computational

cost and inference time that is critical for real-time application. Integer-Net is promising

for an energy-efficient seizure detection device with high accuracy. Importantly, we have

also shown that high seizure detection performance is achievable with considerably lower

precision EEG inputs, i.e., lower number of bits used by analog-to-digital converter

(ADC) when recording EEG signals. A 6-bit ADC, in particular, demonstrates the area

under the receiver operating characteristic curve (AUC) of above 92% and 96% with a

convolutional neural network and above 93% and 97% with an engineered feature-based

approach for the Freiburg Hospital and the CHB-MIT seizure datasets. This enables

an opportunity to not only reduce power reduction and complexity of circuits behind

each electrode but also to envision a possibility for the future development of a different

circuit architecture to better help patients with refractory forms of epilepsy.

9.2 Future research directions

While we have shown seizure prediction is possible and it works well for a subset of

patients tested with recorded EEG signals, we have yet to explain why some patients

have substantially lower seizure forecasting performance than others. It is necessary

to figure out what kind of (high-level) features appears in EEG signals of one group

of patients but not others. Visualization of learned features at different layers of the

convolutional neural network or other networks could be of great help.

Though we have attempted to identify groups of patients could potentially achieve

high performance with seizure prediction to help with the clinical trial consideration,

e.g., focus on patients who likely have high seizure prediction performance first. There
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is a need of large database with data from many patients to have a meaningful statistics.

The team at the University of Sydney has established a collaboration with the Royal

Prince Alfred Hospital and will have access to a dataset of 500 patients. Hopefully, with

the new dataset, our team will have more insights into seizure forecasting and be able

to identify which groups of patients may benefit the most from seizure forecasting.
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Lehtimäki, K. et al. (2016). “Outcome based definition of the anterior thalamic deep

brain stimulation target in refractory epilepsy”. Brain Stimulation 9.2, 268–275. doi:

10.1016/j.brs.2015.09.014.

Li, S. et al. (2013). “Seizure prediction using spike rate of intracranial EEG”. IEEE

Transactions on Neural Systems and Rehabilitation Engineering 21.6, 880–886. doi:

10.1109/TNSRE.2013.2282153.

Litt, B. and J. Echauz (2002). “Prediction of epileptic seizures”. The Lancet Neurology

1.1, 22–30. doi: 10.1016/S1474-4422(02)00003-0.
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