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ABSTRACT

Mikko Lager: Audio Source Positioning Based on Angle of Arrival Measurements
Master of Science Thesis
Tampere University
Degree Programme in Science and Engineering
February 2020

Estimating position is done in various contexts from locating phones with GPS to locating boats
using hydrophones. In this thesis we study estimating audio source position based on angle of
arrival measurements. Multiple different filters can be used on measured angles of arrival to
deduce the position of the source. The filter to be used in this work was chosen to be the particle
filter. Even though particle filter is computationally more heavy than many other filters, modern
computers can simulate hundreds of particles in a short time without too much of an effort. We
introduce the reader to the use of particle filter in positioning, along with theoretical background
of it and positioning in a more general sense.

The data in this work is recorded in either an anechoic chamber or a room that has no special
equipment installed to enhance audio quality in it. The measurements are done with a mobile
device with four microphones. Audio source in the anechoic chamber is a loudspeaker playing
speech or a person speaking and walking randomly in the room. If the data contains noise, it
is played from loudspeakers in the same space as the source is located in. Another type of
data handled in this work is measured outside in a racing event where multiple cars passed the
measurement device as well as generated data with multiple sources.

The data is handled as a mixture between von Mises and uniform distribution. An important
parameter of von Mises distribution is a variable called κ, which tells the concentration of the
distribution. In this work we show and prove a way to estimate said variable with maximum likeli-
hood method. Additionally, we introduce the reader to mathematical background of particle filter
and positioning in more general sense. Results given by the particle filter depend on the chosen
value of κ along with chosen q-value, which tells the smoothness of the result, and measurement
model. Finally, we present and compare the results obtained by constant velocity and random
walk models with several different q-values.

Keywords: Particle filter, angle of arrival measurement, position estimation, von Mises distribution

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.



ii
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Paikan estimointia tehdään useassa eri yhteydessä puhelimen paikannuksesta GPS:n avul-
la aina laivojen paikannukseen hydrofoneja käyttämällä. Tässä diplomityössä tutkitaan audioläh-
teen paikannusta saapumiskulmamittausten avulla. Saapumiskulmamittauksiin voidaan käyttää
useita erilaisia suodattimia audiolähteen paikan selvittämiseksi. Tähän työhön käytettäväksi suo-
dattimeksi valittiin partikkelisuodatin. Vaikka partikkelisuodatin vaatiikiin enemmän laskentatehoa
kuin monet muista suodattimista, nykykoneet voivat vaivattomasti simuloida satoja partikkeleita
lyhyessä ajassa. Lukija tutustutetaan partikkelisuodattimen käyttöön paikannuksessa, sekä ky-
seisen suodattimen ja paikannuksen teoriaan yleisemmällä tasolla.

Työssä käytettävä data on äänitetty joko kaiuttomassa kammiossa tai huoneessa, jota ei ole
varustettu erilaisilla äänenlaatua parantavilla ominaisuuksilla. Kaikki mittaukset on tehty mobiili-
laitteella, jossa on neljä mikrofonia. Audiolähde kaiuttomassa tilassa on kaiutin, josta soitetaan
puhetta ja huoneessa ihminen, joka puhuu ja kävelee satunnaisesti ympäri huonetta. Mikäli da-
tassa on kohinaa, se on soitettu samassa tilassa olevista kaiuttimista. Tämän datan lisäksi työssä
käsitellään dataa, joka on mitattu autokisassa, jossa mittauslaitteen ohi ajoi usea auto peräjäl-
keen, sekä generoitua dataa joka sisältää useamman äänilähteen.

Mitattua dataa käsitellään von Mises jakauman ja tasajakauman välisenä yhdistettynä jakau-
mana. Tärkeä osa von Mises jakaumaa on parametri κ, joka kertoo jakauman keskittämisen.
Tässä työssä näytetään ja todistetaan tapa approksimoida tätä parametria käyttämällä suurim-
man uskottavuuden menetelmää. Lisäksi lukijalle tulee tutuksi partikkelisuodattimen sekä paikan-
nuksen matemaattinen tausta. Partikkelisuodattimen antamat tulokset riippuvat valitun paramet-
rin κ lisäksi valitusta q-arvosta, joka vaikuttaa tulosten tasaisuuteen, ja valitusta mittausmallista.
Lopuksi esitellään ja vertaillaan vakionopeusmallin ja pelkkään paikkaan sidotun mallin antamia
tuloksia eri q-arvoilla.

Avainsanat: Partikkelisuodatin, saapumiskulmamittaukset, paikan estimointi, von Mises-jakauma

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Estimating the direction of an audio source is a process where the sound is used to de-
termine the location of the source [28]. Tracking and estimating the direction of an audio
source is something that people do daily: following a speech of another person, know-
ing the rough position of a nearby car passing by without actually seeing it, or noticing
where a coin dropped on the floor. For humans this skill is based on binaural hearing
and mainly the time difference of arriving sound waves [19]. While human physiology
makes the estimating the position possible within those skills limits, computers provide a
variety of other possibilities to estimate position of an audio source, as several parame-
ters can be measured at once and with multiple microphones. These measurements can
be of form of time of arrival, time difference of arrival, angle of arrival or received signal
strength (pressure in case of audio waves), for example [29].

The motivation behind tracking an audio source, besides of it being an interesting field
of research, is mainly the possibilities it gives us. Some of the previous research on this
subject include path planning for automated robots and estimating positions of passing
vehicles in ocean environments [11, 16]. Tracking an audio source can also be useful in
speech recognition or audio source separation, which in turn are used in, for instance,
automatic home assistants [3]. In this work we focus on the mathematical principles of
particle filter and the use of said filter in positioning audio sources based on angle of
arrival measurements.

In Chapter 2 we look into the theoretical background of the problem and introduce the
used algorithms. We also introduce the assumed distributions of measurements and
deduce the maximum likelihood estimation of the concentration parameter in von Mises-
Fisher distribution. On top of this the principles of how particle filter works are shown.
Chapter 3 introduces the reader to state system and observation models in previous
research done on similar subjects, as well as the models used in this work, which are
later on used in a particle filter.

Chapter 4 is divided in three parts, first of which includes the introduction to used data;
where and in what kind of conditions the measurements are done. In the second part we
focus on the results given by maximum likelihood method on position estimation and κ

approximation. The third part includes the results given by particle filter and comparison
between used values and models. In the last part we also discuss the possibilities of
tracking multiple targets with particle filters.
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The algorithms used in this work have been created using MATLAB and tested with both
measured and generated data.
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2 THEORY

For linear and non-linear measurements different models and filters are used to get an
accurate approximation of the state of a time-varying system. In this chapter we will go
through the theory of the state space and measurement models as well as filters.

2.1 General problem

In positioning we have multiple measurements which are used to calculate the estimate
of the source position. In addition to the position estimate the accuracy and error are
assessed. The state and measurements of the system are described by models, which
are formed with the following definitions.

Definition 2.1 ([33, pp. 238-239]). A random variable x ∈ Rn is continuous if there exists
a non-negative probability density function fx(x) ≥ 0 so that∫

fx (x) dx = 1, (2.1)

and the probability for an event x ∈ A can be calculated with

P{x ∈ A} =

∫
A
fx (x) dx. (2.2)

Let’s write the time series as a vector {x1, x2, . . .} and the noisy measurement as
{y1, y2, . . .}. Based on observed measurements we can estimate the unknown state of the
system. A stochastic process is a series of random variables xk ∈ Rn, where k ≥ 1 tells
us the time tk. In a continuous process k ∈ [1,∞) and in a discrete process k ∈ {1, 2, . . .}.
A stochastic process is called Markov process, if the probability of an event depends only
of the state reached in previous event. [7, pp. 23-24] Next we will define Markov process
mathematically.

Definition 2.2 ([17, pp. 30-31]). The conditional probability density function of x given y

is formed by

f (x | y) = f (x, y)

f (y)
. (2.3)
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We can calculate conditional probabilities by inserting this into Equation (2.2):

P{x ∈ A | y} =

∫
A
f (x | y) dx. (2.4)

Definition 2.3. [20, p. 25] A stochastic process is called a Markov process if

f (xk | x1, . . . , xk−1) = f (xk | xk−1) . (2.5)

With these definitions we can formulate the problem. The state and measurements are
modelled as stochastic processes {xk, k ∈ N} and {yk+1, k ∈ N} with precondition x0.
The state is formed as a difference equation

xk+1 = fk (xk, qk) , (2.6)

where fk is a continuously differentiable function and qk the system noise. Similarly the
measurement is formed as

yk = hk (xk, rk) , (2.7)

where hk is continuously differentiable and rk is the measurement noise. [2]

Optimal filtering is an inversion problem where we don’t know the time series {x1, x2, . . .}
which is observed through noisy measurements {y1, y2, . . .}. The object of statistical in-
version is to approximate the hidden state xt based on measurements y1:k = {y1, . . . , yk}.
[27, pp. 8-9] Filtering utilizes measurements up until and including present time to calcu-
late the approximation. It is done in two steps, called prediction and update steps. In
prediction step we have to solve the distribution

f (xk | y1:k−1) (2.8)

based on measurements y1:k−1. In update step measurements y1:k are observed, the
problem is to solve the filtering, or the marginal posterior, distribution

f (xk | y1:k) . (2.9)

The initial distribution is independent of the measurements, as they haven’t been made
yet.[27, p. 54]

To find the conditional probability density functions we use Bayes’ rule [21, pp. 175-176]
with which we can compute the update of the state (2.9) by

f (xk | y1:k) =
f(yk | xk)f(xk | y1:k−1)∫
f(yk | xk)f(xk | y1:k−1)dxk

, (2.10)

where f(yk | xk) is the likelihood function defined by the measurement model equation
shown in Equation (2.7)[25, p. 5]. Given the dynamic model, the function (2.9) satisfies a
recursion, where the state xk has a predicted distribution based on Chapman-Kolmogorov



5

equation [10, p. 6]

f(xk | y1:k−1) =

∫
f(xk | xk−1)f(xk−1 | y1:k−1)dxk−1. (2.11)

In the above Equation (2.11) f(xk | xk−1) is defined by the system model Equation
(2.6).[25, p. 5]

2.2 Distributions

Usually the noise of measurements follow some distribution that can be formulated math-
ematically. In this work the measurements are assumed to have von Mises-Fisher dis-
tribution combined with a uniform distribution. In addition to these two distributions we
need to introduce the normal distribution, which is used in the state system model.

Definition 2.4 ([12, p. 43]). If the probability density function of a random variable θ ∈
(−π, π] is

f(θ) =
1

2π
, (2.12)

it is said to be uniformly distributed on a circle. If the random variable is uniformly dis-
tributed on a circle, it is denoted as θ ∼ U((−π, π]).
Definition 2.5 ([17, p. 32],[22, p. 231]). A random variable x ∈ Rn, n ∈ N \ {0}, with
expected value E(x) = µ ∈ Rn and a symmetric positive definite covariance matrix
V (x) = Σ ∈ Rn×n is said to have a normal, or Gaussian, distribution if its probability
density function is

f (x) =
1√

(2π)n det(Σ)
e−

1
2
(x−µ)TΣ−1(x−µ). (2.13)

In this case we write
x ∼ N (µ,Σ) . (2.14)

Definition 2.6 ([4]). A unit vector x ∈ Rn, n ≥ 2, n ∈ N, is said to be n-variate von
Mises−Fisher (VMF) distributed if its probability density function is

f (x) = C (κ) eκ(µ
T x), (2.15)

where µ is the mean direction as a unit vector,

C (κ) =
κn/2−1

(2π)n/2 In/2−1 (κ)
(2.16)

is a normalization constant, κ ≥ 0 a concentration parameter and Ik (·) is modified Bessel
function of the first kind of order k. VMF distribution is denoted as x ∼ VMF (µ, κ) .

If n = 2, we have a one-dimensional distribution on a circle and the Equation (2.15)



6

reduces to

f(x) =
eκ(µ

T x)

2πI0(κ)
, (2.17)

as can be seen from [6] and is said to have von Mises or circular normal distribution [13].
In this case the distribution describes only one of the angles at a time, and the estimation
will be done separately on azimuth and elevation angles. Also it’s worth to note that κ
gets a different value depending on which angle is used. Another form of the Equation
(2.17) using angles instead of vectors is obtained by using dot product of vectors and the
fact that the vectors are unit vectors. This form is

f(ϕ) =
eκ cos(ϕ−ϕ0)

2πI0(κ)
, (2.18)

where ϕ is the measured mean direction angle and ϕ0 ∈ (0, 2π] is the known direction.

In the case of a sphere, where n = 3, Equation (2.16) becomes [24, p. 229]

C (κ) =
κ

4π sinh (κ)
. (2.19)

Intuitively the three dimensional von Mises-Fisher distribution is easy to understand. The
mean direction can be expressed as two normally distributed angles with a certain con-
nection between κ and variance (σ2) of the angles. This connection is

κ =
1

σ2
, (2.20)

with the assumption that both angles are similarly distributed. The derivation of this con-
nection can be found on [30, pp. 10-12].

2.3 Maximum likelihood estimation and particle filter

The aim is to estimate the measured system state while paying attention to the noise
of the system. This can be achieved by using filters and estimators, which calculate
the directions as expected values. In this section we will go through the particle filter,
maximum likelihood estimation and how to estimate κ of von Mises-Fisher distribution
with maximum likelihood method.

2.3.1 Maximum likelihood estimation and the estimation of κ

The maximum likelihood estimation (MLE) is used to find out the unknown parameters of
a probability model. In this work it is used to find the parameters of the Gaussian and von
Mises-Fisher distribution models, namely variance (Σ) and mean value (µ) in Equation
(2.13) and mean direction vector (µ) and kappa (κ) in Equation (2.15) based on given
data. Note that in this case Σ = σ ∈ R1×1, as maximum likelihood estimation is used for
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static positioning i.e. for only one time step at once, without the previous measurements
affecting the present.

MLE is based on the Maximum Likelihood Principle: given the sample x and a model
f(x; θ), choose the estimator of θ so that it maximizes the likelihood function. By definition
the MLE of θ is a solution to the maximization problem max

θ
[L(θ)], where L is the likelihood

function.[26, p. 226] Next we will show how to apply MLE in estimation of κ parameter in
Equation (2.15).

With a prior distribution, given by a conjugate to Equation (2.18),

f (ϕ, κ) ∝ I0 (κ)
−c eκR0 cos(ϕ−ϕ0), (2.21)

where ϕ is the mean direction angle, R0 ≥ 0 is the component of the measurement in the
known direction, ϕ0 ∈ (0, 2π] and c ≥ 0 we get the posterior distribution proportional to

f (ϕ, κ|θ1:k) ∝
1

I0(κ)c+k
eκRk cos(ϕ−ϕk), (2.22)

given the conditionally independent angle measurements θ1:k, given ϕ0, κ. Only the di-
rection is examined earlier in the Equation (2.18), and thus R0 = 1 is not shown in said
equation. However, for the sake of generality, it is considered here. In the above Equation
(2.22) ϕk and Rk are obtained from

Rk cos(ϕk) = R0 cos(ϕ0) +

k∑
i=1

cos(θi), and

Rk sin(ϕk) = R0 sin(ϕ0) +
k∑

i=1

sin(θi),

(2.23)

and θ1:k are the measured angles.[15] Now, using these Equations (2.22)-(2.23) we can
prove the following theorem.
Theorem 2.1. Maximum a posteriori estimation of

κ = A−1

(
Rk

c+ k

)
, (2.24)

where A = I1(κ)
I0(κ)

and c ≥ 0.

Proof. We get the maximum a posteriori estimation for the concentration parameter κ

from the modal point of posterior distribution shown in Equation (2.22), and is obtained
by solving

d

dκ
f(ϕ, κ|θ1:k) = 0. (2.25)

In general for non-zero functions we can write

f ′(x) = 0 ⇔ 0 =
f ′(x)

f(x)
=

d

dx
log(f(x)). (2.26)
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Thus, as posterior distribution in Equation (2.22) is greater than zero, using the identity
shown in Equation (2.26) we get the same result by the logarithmic derivative

d

dκ
log(f(ϕ, κ|θ1:k)) =

d

dκ
log

[
eκRk

I0(κ)c+k

]
= 0, (2.27)

which simplifies the future calculations. Note that compared to Equation (2.22) the cosine
in the exponent is left out; this is because the angles represent the average direction and
we get no loss of generality assuming the direction to be zero [15]. From Equation (2.27)
we get

d

dκ

[
log(eκRk)− log(I0(κ)

c+k)
]
= 0, (2.28)

which further can be developed into

d

dκ
log(eκRk) =

d

dκ
log(I0(κ)

c+k). (2.29)

This gives us

Rk = (c+ k)
d
dκI0(κ)

I0(κ)
, (2.30)

and by using the identity d
dκI0(κ) = I1(κ), which can be found in [1, p. 376], we get

Rk

c+ k
=

I1(κ)

I0(κ)
. (2.31)

By using the notation I1(κ)
I0(κ)

= A(κ), we have

Rk

c+ k
= A(κ), (2.32)

from where we get κ as

κ = A−1

(
Rk

c+ k

)
. (2.33)

To make sure that this point is a maximum instead of a minimum or a saddle point, we
have to take a look into the second derivative of the function. Similarly to what we did
earlier, we get the first derivative by

d2

dκ2
log

[
eκRk

I0(κ)c+k

]
=

d

dκ

[
Rk − (c+ k)

I1(κ)

I0(κ)

]
, (2.34)

from where we can continue to

d

dκ

[
Rk − (c+ k)

I1(κ)

I0(κ)

]
= −(c+ k)

[
I0(κ)− 1

κI1(κ)

I0(κ)
− I1(κ)

2

I0(κ)2

]
. (2.35)

In the above Equation (2.35) we can use the same notation as earlier and replace I1(κ)
I0(κ)
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with A(κ), giving us

−(c+ k)

[
I0(κ)− 1

κI1(κ)

I0(κ)
− I1(κ)

2

I0(κ)2

]
= −(c+ k)

[
I0(κ)

I0(κ)
−

1
κI1(κ)

I0(κ)
−
(
I1(κ)

I0(κ)

)2
]

= −(c+ k)

[
1− I1(κ)

κI0(κ)
−
(
I1(κ)

I0(κ)

)2
]

= −(c+ k)

[
1− 1

κ
A(κ)−A2(κ)

]
.

(2.36)

Now, as A(κ) is a monotonically increasing function from 0 to 1 as κ goes from 0 to ∞,
and limκ→0

1
κA(κ) = 1

2 , the values of the bracketed term in Equation (2.36) is limited in(
0, 12

)
[5]. As c + k > 0 always with the earlier set limitations as well, we can safely say

that the second derivative is negative with every κ > 0, especially at the location given by
Equation (2.33), thus making the modal point a maximum [9, pp. 158-159].

Figure 2.1. Behavior of I0(κ), I1(κ), and their quotient

The monotonicity of A(κ) is demonstrated in Figure 2.1, along with the behavior of mod-
ified Bessel functions of the first kind of order 0 and 1. The estimation of κ given by
Equation (2.33) is used throughout this work. In this work the inverse function of A is
computed by using a function that finds out the root of a nonlinear function in an interval.
The upper limit of said interval is chosen so that the true κ is certainly below it. So in
short we simply solve A(κ)− Rk

c+k = 0 for κ.
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2.3.2 Particle filter

Particle filter is based on a Monte Carlo simulation where posterior distribution is es-
timated with particles. These (state)particles include the vector and the weight of the
state. In a Monte Carlo simulation we have N independent random samples

x
(i)
k ∼ f (xk | yk) , (2.37)

where i = 1, . . . , N . The expectation

E [g (xk) | yk] =
∫

g (xk) f (xk | yk) dx, (2.38)

where g is an arbitrary integrable function and f (xk | yk) is the posterior distribution
based on measurements yk, can now be estimated as

E [g (xk) | yk] ≈
1

N

N∑
i=1

g(x
(i)
k ). (2.39)

[27, pp. 116-117] With known measurement model f (yk | xk) and prior distribution f (xk | xk−1)

we can form the estimation of posterior distribution by using importance sampling. We
approximate the distribution with importance distribution π (xk | yk), from which we can
draw samples

x
(i)
k ∼ π (xk | yk) , (2.40)

where i = 1, . . . , N . With the importance distribution we can rewrite the Equation (2.38):

E [g (xk) | yk] =
∫

g (xk) f (xk | yk) dx

=

∫ [
g (xk)

f (xk | yk)
π (xk | yk)

]
π (xk | yk) dx.

(2.41)

The Equation (2.41) is now the expectation of the bracketed term over the distribution
π (xk | yk), which allows us to form a Monte Carlo estimation to it. After generating the
samples we calculate the weights as

w∗(i) =
f
(
yk | x(i)k

)
π
(
x
(i)
k | yk

)f(x(i)k | yk−1), (2.42)

which are then normalized, resulting in

w(i) =
w∗(i)∑N
j=1w

∗(j)
. (2.43)



11

The posterior expectation can now be formed with these normalized weights as

E [g (xk) | yk] ≈
N∑
i=1

w(i)g
(
x
(i)
k

)
(2.44)

and the approximation of probability density function of the posterior distribution

p (xk | yk) ≈
N∑
i=1

w(i)δ(xk − x
(i)
k ), (2.45)

where δ is the Dirac delta function. [27, pp. 118-120]

With sampling we can sometimes meet a degeneracy problem, in which all the particles
have near-zero or zero weights. This can be solved with resampling. In resampling
the algorithm eliminates the low importance particles and multiplies the high importance
ones. Formally we replace Equation (2.45) with

p (xk | yk) =
N∑
i=1

ni

N
δ(xk − x(i)), (2.46)

where ni is the number of copies of the particle x(i) in the new set of particles. There is,
of course, multiple ways to execute the resampling and the most frequently encountered
methods include stratified, multinomial, systematic and residual resampling.[18] In this
work we will use multinomial resampling to reweight the particles.

In multinomial resampling the main idea is to generate N independent random numbers
u(n), where n ∈ {1, . . . , N}, from the uniform distribution (0, 1] and use them to select the
particles from the posterior distribution represented by Equation (2.45). The particle x(m)

is chosen, when it satisfies the condition

m−1∑
k=1

w(k) ≤ u(n) <
m∑
k=1

w(k) (2.47)

so that the probability of selecting x(m) is equal to u(n) being in the interval limited by the
cumulative sum of the normalized weights, thus lowering the number of close to zero or
zero weight particles in the process. [18, 23]

In some cases resampling is done only when the number of low weight particles rise
above a certain treshold, but in this work, however, resampling is done on every step of
the particle filter. The reasoning behind this is that the number of generated particles is
low and the computation is not too expensive.

A basic particle filter, so called bootstrap filter, of N particles can be written as:
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Algorithm 1 Particle Filter
1: procedure PF
2: Generate N particles x

(i)
0 from the prior distribution x ∼ f(x)

3: Set weight w(i)
0 = 1

N for every i = 1, . . . , N
4: for k = 1 : T do
5: Generate particles x

(i)
k from the state model distribution f(xk|x

(i)
k−1)

6: Calculate new weights based on measurement and normalize them as
shown in Equations (2.42) and (2.43)

7: Resample
8: Calculate expected value of posterior distribution xexp with Equation (2.44)
9: end for

10: end procedure

The xexp given by Algorithm 1 is the estimated direction. The importance distribution,
where the weights are computed from, in this work is a mixture distribution of von Mises
and uniform distributions. The particle filter used in this work can be found in Appendix B
implemented in MATLAB.
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3 USED MODELS IN ACOUSTIC TRACKING

In this chapter we introduce the reader to the state system model and measurement
models used in tracking an audio source. First we show models in more general sense
in what has been done before, and afterwards present the models used in this work. In
this work we test two different state system models: random walk and constant velocity
models.

3.1 Literature overview of used models

Previous work shows that audio source positioning has been done for both circular and
spherical data, as is case in this work, as well as for more Euclidean two- or three-
dimensional spaces. The main difference between different geometries lies in the distri-
butions used in the system and measurement models. In spherical and circular cases
most common distributions are von Mises(-Fisher) and wrapped Gaussian, or some mix-
ture between these, while in other cases the distribution generally is Gaussian or some
variation of it. [31, 32, 34]

The general state system and measurement models were introduced in Chapter 2 as
Equations (2.6) and (2.7). Depending on the problem these equations can be different.
The differences come mainly from distribution of noise and movement, but also from how
the position is shown. Some of the previous work done on audio source tracking use
azimuth and elevation angles to show position, while others use a position vector. For
example, in [31] Traa and Smaragdis used the angle representation while using wrapped
Kalman filter for azimuthal speaker tracking, and in [32] they used a position vector to
show position while tracking multiple speakers with factorial von Mises-Fisher filter. In
both works the used distributions were the von Mises-Fisher and Gaussian distribution.
The information about position within both angles and the vector is the same, but the
mathematical background changes as same formulas don’t work in both (take Equation
(2.17) vs. Equation (2.18), for example). In this work we use azimuth and elevation angles
to show the position of the audio source.

In addition to how the information is presented and used distributions the models differ
in how the target is assumed to move. Models can also take into account velocity, or
even the change of velocity if need be. For instance, in [8] Cevher et al. show and use a
more complex model with velocity taken into account among other things when tracking
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a target using joint acoustic video system. In this work we present two different state
system models, one of which assumes the target to be in near-constant motion and the
other assumes a random walk motion.

3.2 Models used in this work

In this section we present the models used in this work. First we show both used state
system models, and secondly the used measurement model with the mixture distribution
between von Mises and spherical uniform distributions.

3.2.1 State system models

A model that represents the system state is dependent on the system that is under ob-
servation. In this thesis we focus on two kinds of models. One of which includes both the
location and the (near-constant) velocity of the target and the other that is based only on
the location of the target, without taking velocity into account.

In the random walk model we have the location of the source

x =

⎡⎣yazi,k
yele,k

⎤⎦ , (3.1)

represented by the azimuth and elevation angles. The model itself is in the form of

xk = Fk−1xk−1 + qk−1, (3.2)

where

Fk−1 =

⎡⎣1 ∆t

0 1

⎤⎦ (3.3)

is the state transition matrix with a step length ∆t = tk − tk−1 and qk−1 ∼ N(0, Qk−1) is
a normally distributed error. The covariance matrix Qk for this model is a diagonal matrix
with variances of the angles on the diagonal

Qk =

⎡⎣σ2
azi 0

0 σ2
ele

⎤⎦ . (3.4)

By using the same notation as shown in Algorithm 1, we can write the model in Equation
(3.2) in form

f(xk | xk−1) = xk−1 +∆tqk−1. (3.5)
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In the constant velocity model we use a tuple, which is of the form

x =

⎡⎣p
v

⎤⎦ , (3.6)

where p is the 2-dimensional vector of the azimuth and elevation angles and v the 2-
dimensional angular velocity which contains the velocity of both angles separately. Now
the state system model itself is given by

xk = Fk−1xk−1 + qk−1. (3.7)

In the model the state transition matrix Fk−1 is

Fk−1 =

⎡⎣I2×2 ∆tI2×2

0 I2×2

⎤⎦ , (3.8)

with step length of ∆t = tk−tk−1 and qk−1 a normally distributed error qk−1 ∼ N(0, Qk−1).
[2, pp. 43-44]

The covariance matrix Qk−1 of the error is calculated with

Qk−1 =

⎡⎣∆t3

3 Qc
∆t2

2 Qc

∆t2

2 Qc ∆tQc

⎤⎦ , (3.9)

where the diffusion matrix Qc is same as the diagonal matrix shown in Equation (3.4).
[14]

Similarly as with the random walk model, we can write the Equation (3.7) by using notation

f(xk | xk−1) = xk−1 +∆tvk−1, (3.10)

where vk−1 is the velocity calculated during the previous step. In addition to position
update, we have to adjust the velocity as well by calculating

f(vk | vk−1) = vk−1 +∆tqk−1. (3.11)

3.2.2 Measurement model

Observation or measurement model is a model which describes the dependency between
measurement yk and current state xk [27, p. 10]. In this thesis the measurement model
is based on the two or three dimensional von Mises-Fisher distribution combined with a
uniform distribution.
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In this work the measurement vector has two variables; the azimuth and elevation angles:

yk =

⎡⎣yazi,k
yele,k

⎤⎦ ,

which are obtained by simulating data with known location of the source or from real mea-
surements. Each angle is assumed to be von Mises distributed with uniformly distributed
noise. The amount of noise depends on measurement, and is calculated as a percent-
age of measurements. The percentage used is obtained by comparing the amount of
low-confidence measurements to all measurements thus far. Combining the uniform dis-
tribution with Equation (2.15) we get the probability density function of the measured
angle as

f(ϕ) = (1− α)
eκ cos(ϕ−ϕ0)

2πI0(κ)
+

α

2π
, (3.12)

which is used to calculate the weights in particle filter.

Given the measured angle θ the measurement model is thus

yazi,k = θ + en, (3.13)

where en is distributed according to the mixture distribution shown in Equation (3.12), and
similarly for yele,k.
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4 RESULTS

In this chapter we will go through the results given by the estimation algorithms for a
few different datasets as well as introduce the reader to used data and measurement
conditions.

4.1 Introduction to the used data

The real data used in this work is measured by Nokia Technologies inside either an
anechoic chamber or a so-called listening room with more echo using a smartphone-
shaped and -sized device that contains four microphones. The listening room in where
some of the measurements were done conforms to ISO 3382-2 room echo standard and
meets ITU-R BS.1116-3 NR-15 noise floor standard. An anechoic chamber is a room that
is designed to absorb as much reflections as possible to minimize the echoes inside. This
is done by covering the walls, floor and ceiling with non-reflective surfaces. The anechoic
room as well as the rotating table can be seen in Figure 4.1 below. The anechoic room
the measurements were taken in conforms to ISO 16823-1 (sound insulation for anechoic
room) and ISO 3745 (free field echo properties) standards. Some datasets are pure, i.e.
there’s no added noise in the room, while some of them has Hoth noise or cafeteria
sounds played from one or more loudspeakers. In total we test four different datasets
measured in these rooms: two measured in anechoic chamber and two measured in the
listening room. The data from anechoic chamber include one without noise and one with
Hoth noise, and the data from listening room also include one without noise, and one with
cafeteria noise played in the background.

The sampling rate of the measurement is about 47Hz, and at each time instant there
are 30 values in the data, each representing a different frequency range and the values
being an estimated direction of source. The directions are estimated with a proprietary
algorithm for each frequency band individually. The data contains azimuth and elevation
angles, time of the measurement, measured energy and a confidence value. Confidence
is a value between 0 and 1, describing the confidence of the measurement. This value
is used in the particle filter algorithm to lower the weights of measurements with low
confidence.
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Figure 4.1. Anechoic chamber where some of the data was recorded

In both rooms the noise playing loudspeakers are set at 90◦ elevation. The measurement
device was set on a turntable, that rotates a full circle with 1◦ accuracy at constant speed.
Data recorded in the listening room are naturally more reverberant as the walls are not
fully covered with non-reflective surfaces.

In some datasets the inclination of the measurement device varies between 60◦ and 120◦,
which can be seen in Figure 4.2 below. The actual location in the Figure 4.2 is formed

Figure 4.2. Example of the data: elevation angle in the anechoic chamber

from the given information of the measurements. In Figure 4.3 an example of the data can
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Figure 4.3. Example of the data: azimuth angle in the listening room without noise with
one speaker

be seen, where there was one speaker in the listening room with no noise coming from
loudspeakers. The speaker walked around the room randomly and the actual location
is estimated from a video which accompanied the measured data. Later in Subsection
4.3.3 some randomly generated data along with real-life data, which is recorded in a
racing event with cars driving by, is used.

4.2 Maximum likelihood

Maximum likelihood is used here to set a benchmark for more advanced estimations when
estimating position as well as finding out the estimated value of κ in circular Gaussian or
von Mises-Fisher distributions. In this section we’ll see how ML was used to estimate the
position and values of kappa, and what the results were.

4.2.1 Using maximum likelihood on data

ML doesn’t take into account previous measurements and is done separately at each
measured moment, and thus gives more inaccurate results compared to other methods.
In here the ML estimation is done two different ways: first assuming that the direction
is VMF distributed and then separately on each angle, assuming they have independent
circular normal, or von Mises, distribution.

Results of maximum likelihood estimation of the location can be seen in Figure 4.4 and
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Figure 4.4. Results of maximum likelihood estimation with different distributions

the errors in the Table 4.1. On the angles in the top row of Figure 4.4, we have assumed
the angles to be VMF distributed and the ML estimation is done on the both angles si-
multaneously, with the same κ value. On the bottom row we have assumed circular
Gaussian distribution, and the ML estimation is done separately on the azimuth and ele-
vation angles. As expected, the results are somewhat better when the estimation is done
separately, which can be seen on the Table 4.1 below. On the table the abbreviation "CG"
stands for circular Gaussian distribution and "VMF" for von Mises-Fisher distribution.

Standard deviations Azimuth Elevation

Anechoic, no noise, CG 66◦ 13◦

Anechoic no noise, VMF 65◦ 21◦

Anechoic, Hoth noise, CG 76◦ 16◦

Anechoic, Hoth noise, VMF 83◦ 23◦

Table 4.1. Standard deviations of maximum likelihood estimations

These ML results were used to find out the values of κ, as we will show next.

4.2.2 Finding out the value of κ

Maximum likelihood estimation is also used when finding out the value of κ with Equation
(2.33). When using this Equation (2.33) to estimate the value of κ we need the real
location of the target to calculate the average error. If the real direction is not known,
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it can be determined, for example, from a provided 360◦ video where the direction of
the source can be seen. This is not a totally accurate method, but gives a sufficiently
good estimation. From the results shown in this chapter the real location was known for
the data recorded in the anechoic chamber and the location for the data including one
speaker is taken from the video.

Figure 4.5. Histogram of differences between measured and actual azimuth angles, 90
bins

As an example, in Figure 4.5 the difference between measured and actual location of the
audio source can be seen. With perfect measurements and no noise at all there would be
a spike at 0◦. The angular error is calculated as a difference between the actual location
and the value we got from the ML approximation (a mean value of all channels). From
this calculated difference we can get the κ value by using the Equation (2.33), where
now c = 1 and Rk are set as shown in Equation (2.23). Different values of kappas
with their respective standard deviations can be found in Table 4.2. The values shown

Values of κ κazi σazi κele σele

Anechoic, no noise 8.7 1.9 8.6 0.8

Anechoic, Hoth noise 4.1 2.3 20.0 1.8

One speaker, no noise 6.7 2.6 20.0 1.5

One speaker, cafeteria noise 3.5 2.4 19.5 3.6

Table 4.2. ML estimations of κ with standard deviation

in Table 4.2 are calculated with some of the measured data ignored. This is because
the measurements are assumed to have a mixed distribution between uniform and von
Mises distributions. As each measurement has a given confidence value, some of the
measured values can be left out of kappa analysis, as measurements with low confidence
are assumed to be a part of said uniform distribution.
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Estimated values of κ for elevation angles shown in the Table 4.2 seem high, especially
the noisy measurements, which in a sense should be lower than the non-noisy measure-
ments. This is because of the noise being played from the same elevation angle as the
audio source is at, therefore fortifying the direction of the source. This clearly affects the
results given by the particle filter on the elevation, as can be seen later.

4.3 Particle filter

When dealing with the particle filter, unlike with maximum likelihood, only circular Gaus-
sian distribution mixed with uniform distribution is considered. This doubles the com-
puting time as filtering has to be done separately for azimuth and elevation angles, but
only 200 generated particles are used in the filtering, so the time used for calculations is
satisfactory with modern devices.

As established earlier, the result relies on the used κ, but in addition to this value the
results given by the particle filter depend on q-values and the used model. Next we’ll go
through the results given by different q-values and different models.

4.3.1 Selection of the q-value

The q-value determines the smoothness of the result we get from particle filtering. In
Figure 4.6 can be seen standard deviations as a function of q-values with the constant
velocity model on different datasets and how they compare against each other. A similar
figure for random walk model is shown in Figure 4.7. For both models with the anechoic
data the results were satisfactory until a certain threshold was reached. This threshold is
more clearly seen with the random walk model in Figure 4.7. The values of κ used here
are the ones presented in Table 4.2 in previous section.
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Figure 4.6. Standard deviation vs. q-value, constant velocity model, azimuth

Other datasets apart from the ’one speaker with cafeteria noise’ have decent results, and
the standard deviations are well within acceptable limits. The reason for the deficient
results of one speaker with noise was later found out to be the fact that the particle filter
kept on tracking the loudspeakers playing the noise in the background, instead of the
speaker that was meant to be tracked. The values shown in Figure 4.6 and 4.7 can be
found in Appendix A in Table A.1 and Table A.2, respectively. Some of the q-values shown
in Figure 4.7 are left out from Table A.2 since after a certain value of q the results remain
the same or extremely similar.
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Figure 4.7. Standard deviation vs. q-value, random walk model, azimuth

In Figure 4.8 the results with different q-values can clearly be seen, with q = 10−5.5 the
result being too smooth and with q = 10−2 the estimated position is not as consistent as
with q = 10−3. It is also noteworthy that with the value q = 10−2 the standard deviation is

Figure 4.8. Results of PF with different q-values, one speaker with no noise, random
walk model, azimuth
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not much different from the standard deviation given by q = 10−3 (23.7◦ vs. 16.3◦), which
is not apparent from the Figure 4.8.

Figure 4.9. Standard deviation vs. q-value, random walk model, elevation

As was the case with κ values earlier, the results given by particle filter on elevation angles
seem more accurate than possible given the results of the azimuth position, especially
with the random walk model. These results can be seen in Figure 4.9 for the random
walk model and in Figure 4.10 for the constant velocity model as standard deviation vs.
used q-value. Standard deviation values for these figures can be found in Appendix A in
Tables A.4 for random walk model and A.3 for constant velocity model.
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Figure 4.10. Standard deviation vs. q-value, constant velocity model, elevation

Reasons for the seemingly over-accurate results for elevation angle estimation are twofold.
First of all, the elevation angle doesn’t change a lot in the measurements and, for exam-
ple with the ’one speaker’ data, if we assume the elevation angle to be 90◦ at all times the
estimation would be almost exact. Secondly, with the noisy data, the noise is played from
the same elevation angle as the actual source is at, therefore only fortifying the estimation
to the same elevation. Most realistic results for elevation angle estimation are with the
non-noisy anechoic data, which is shown in Figure 4.11.
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Figure 4.11. Results of PF with different q-values, anechoic data, constant velocity
model, elevation

The dataset in question had the measurement device at an angle so that the elevation
angle changes between 60◦ and 120◦ and therefore having some change in the angle.

4.3.2 Constant velocity vs. random walk models

Next up is the choice between the possible models. Earlier we proposed two possible
state evolution models; random walk model represented by Equation (3.2) and a constant
velocity model represented by Equation (3.7). As can be seen from the Tables A.1 and
A.2, unsurprisingly, the constant velocity model works better when the audio source is
moving at a constant speed (second and third columns of each table) and the random
walk model works better when the source is in erratic motion (fourth and fifth columns).
Most drastic difference was with the data recorded in the anechoic room including Hoth
noise, where the best standard deviation of azimuth is 7.9◦ with the constant velocity
model and a nearly unusable 38.3◦ with the random walk model.
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Figure 4.12. Comparison of random walk and constant velocity models, one speaker
with no noise, azimuth

In Figure 4.12 is visually accessible information about the difference between the best
results of both models on the data with one speaker who is moving freely. By assuming
the free, irregular movement of the audio source the estimated angle track is smoother.

4.3.3 Tracking multiple targets with particle filter

Particle filter was also tested on tracking multiple targets, both on generated data and
measured data, which was measured in a racing event where multiple cars passed the
measurement device. Generated data used in this subsection was composed with con-
stant speed model, and the same model was used in filtering as well. The distribution of
particles generated by the particle filter over time can be seen in Figure 4.13, where also
the generated tracks are shown. Figure 4.13 is more of an example to show the problems
and possibilities in multi-target tracking than anything else. Ideally the filter would track
either both of the targets or only one, the latter of which is achieved as the filtering goes
on. In comparison real life data the 550 point, where the particles concentrate only on
one path, would be reached after several seconds of measurements. This also causes a
new problem, which is the question of how could we get another particle filter to focus on
the upper path instead, which would allow us to track multiple targets with multiple filters,
with the exact same data simultaneously.
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Figure 4.13. Multiple target tracking with particle filter on generated data

Figure 4.14. Multiple real-life targets tracked with both models

In Figure 4.14 is shown an example of real data with multiple targets tracked. With the
red vertical lines the times where the audio source changes to another are shown. This
data is recorded on a car track with vehicles driving by one by one, seen with attached
position estimate in Figure 4.15. In Figure 4.15 is shown estimated azimuthal position
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with vertical line while the horizontal bar represents one standard deviation of generated
particles in the particle filter.

Figure 4.15. Azimuthal position estimate fitted on the video. Vertical bar is the position
estimate and horizontal bar represents one standard deviation of the generated particles
from particle filter. The video was filmed by Eemi Fagerlund

Both random walk and constant velocity models are shown in Figure 4.14, with their
best respective q-values. While with either model the filter has no large problems with
changing the focus to a new target, on the middle part of the data (from ∼ 7 to 12s.),
although not seen in the figure, there are actually two cars and the filter focused in the
middle of these which is not a wanted result. One of the weaknesses of audio-based
positioning is indeed the problem of distinguishing between two different audio sources
which are located in same or close to same direction. This could probably be fixed by
signal processing, but that’s out of scope of this thesis.
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5 SUMMARY

In this work we studied particle filter and its uses in positioning of an audio source. We
also developed a real-time positioning model for angle of arrival measurements, which
is assuming a mixed distribution between von Mises and uniform distributions. We intro-
duced the reader to the mathematical background of positioning and particle filter, as well
as the background of estimating the κ in von Mises(-Fisher) distribution with maximum
likelihood method. The particle filter in positioning was tested with real measured data,
with two different motion models based on the movement of the target. We evaluated the
results by comparing their respective standard deviations.

While the choice of measurement model affects the results by some amount, the biggest
factor is the chosen q-value. This time the q-value was chosen by hand and tested thor-
oughly. This leaves the doors open for further research, as how could the value be chosen
automatically to be the best without knowing the actual location of the audio source. An-
other large factor for the result was, of course, the amount of noise the data had. The
noise had the biggest effect on the data with one speaker walking in the room, as the par-
ticle filter could not distinguish between the actual speaker and the loudspeakers playing
the noise.

In addition to automating the q-value, this work leaves other open questions for future
research. Not only the use of different filters, but also noting the properties of the mea-
surement device in the model. There are certain known angles which gives worse mea-
surements than others, which were not taken into account in this work. Also further work
with the estimated position of elevation angle and noisy data is possible. The results
show a positive possibility of tracking multiple targets with multiple particle filters using
audio-based angle of arrival measurements; this is something that future research could
focus on as well.
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A STANDARD DEVIATIONS BASED ON Q-VALUES

q-value σ, anechoic,
no noise

σ, anechoic,
Hoth noise

σ, one speaker,
no noise

σ, one speaker,
cafeteria noise

10−1 33.6◦ 68.5◦ 57.6◦ 98.3◦

10−1.5 32.6◦ 60.1◦ 45.0◦ 84.8◦

10−2 39.6◦ 51.7◦ 38.4◦ 67.6◦

10−2.5 39.5◦ 55.2◦ 35.1◦ 67.1◦

10−3 36.6◦ 60.6◦ 33.8◦ 61.2◦

10−3.5 28.8◦ 51.4◦ 35.1◦ 59.5◦

10−4 39.9◦ 46.4◦ 35.5◦ 59.9◦

10−4.5 28.5◦ 67.6◦ 30.7◦ 59.7◦

10−5 17.8◦ 65.0◦ 27.5◦ 61.1◦

10−5.5 17.8◦ 30.6◦ 26.0◦ 57.7◦

10−6 13.7◦ 23.8◦ 19.2◦ 74.8◦

10−6.5 9.9◦ 45.1◦ 18.9◦ 71.3◦

10−7 8.5◦ 48.4◦ 40.2 62.9◦

10−7.5 9.6◦ 13.9◦ 81.7◦ 69.1◦

10−8 7.3◦ 22.6◦ 71.3◦ 62.4◦

10−8.5 13.9◦ 26.0◦ 106.9◦ 74.4◦

10−9 16.4◦ 20.5◦ 88.0◦ 72.0◦

10−9.5 15.1◦ 8.7◦ 95.0◦ 86.4◦

10−10 8.4◦ 7.9◦ 105.7◦ 102.5◦

10−10.5 15.6◦ 18.7◦ 104.8◦ 80.3◦

10−11 17.4◦ 113.6◦ 107.2◦ 90.4◦

Table A.1. Standard deviations based on q-values, constant velocity model, azimuth.
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q-value σ, anechoic,
no noise

σ, anechoic,
Hoth noise

σ, one speaker,
no noise

σ, one speaker,
cafeteria noise

10−1 39.2◦ 48.2◦ 32.3◦ 58.7◦

10−1.5 31.5◦ 47.0◦ 27.0◦ 57.8◦

10−2 23.6◦ 60.0◦ 23.7◦ 57.7◦

10−2.5 15.5◦ 53.2◦ 19.5◦ 53.3◦

10−3 11.4◦ 51.6◦ 16.3◦ 64.8◦

10−3.5 8.9◦ 45.2◦ 15.3◦ 70.9◦

10−4 10.9◦ 38.3◦ 32.5◦ 74.9◦

10−4.5 86.1◦ 47.0◦ 54.8◦ 76.9◦

10−5 98.6◦ 102.7◦ 92.8◦ 82.2◦

10−5.5 102.6◦ 104.3◦ 98.3◦ 82.8◦

10−6 103.1◦ 104.0◦ 99.6◦ 84.1◦

Table A.2. Standard deviations of azimuth angle based on q-values, random walk model

q-value σ, anechoic,
no noise

σ, anechoic,
Hoth noise

σ, one speaker,
no noise

σ, one speaker,
cafeteria noise

10−1 14.6◦ 14.5◦ 15.5◦ 6.7◦

10−1.5 14.7◦ 14.4◦ 15.5◦ 6.6◦

10−2 14.4◦ 14.5◦ 15.4◦ 6.5◦

10−2.5 14.1◦ 14.5◦ 15.3◦ 6.2◦

10−3 14.2◦ 14.0◦ 15.0◦ 6.0◦

10−3.5 14.3◦ 14.2◦ 14.7◦ 5.8◦

10−4 15.0◦ 13.9◦ 14.7◦ 5.6◦

10−4.5 15.0◦ 14.1◦ 14.2◦ 5.5◦

10−5 17.1◦ 13.9◦ 14.0◦ 5.3◦

10−5.5 13.3◦ 13.2◦ 14.1◦ 5.1◦

10−6 11.8◦ 12.6◦ 14.0◦ 5.2◦

10−6.5 7.3◦ 11.8◦ 14.1◦ 5.0◦

10−7 6.8◦ 12.8◦ 15.2◦ 4.7◦

10−7.5 7.6◦ 30.5◦ 12.7◦ 4.5◦

10−8 5.3◦ 9.4◦ 13.9◦ 12.8◦

10−8.5 14.9◦ 12.1◦ 13.2◦ 4.9◦

10−9 27.8◦ 12.2◦ 22.6◦ 18.7◦

10−9.5 39.3◦ 103.9◦ 17.7◦ 105.3◦

10−10 57.5◦ 101.8◦ 43.4◦ 108.0◦

10−10.5 60.3◦ 15.8◦ 108.1◦ 7.8◦

10−11 68.4◦ 17.4◦ 108.8◦ 6.9◦

Table A.3. Standard deviations of elevation angle based on q-values, constant velocity
model
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q-value σ, anechoic,
no noise

σ, anechoic,
Hoth noise

σ, one speaker,
no noise

σ, one speaker,
cafeteria noise

10−1 13.3◦ 13.8◦ 14.8◦ 6.0◦

10−1.5 12.8◦ 13.4◦ 14.4◦ 5.6◦

10−2 12.1◦ 13.1◦ 13.9◦ 5.2◦

10−2.5 11.2◦ 12.6◦ 13.4◦ 4.8◦

10−3 8.2◦ 12.3◦ 12.8◦ 4.5◦

10−3.5 5.9◦ 11.3◦ 12.3◦ 4.2◦

10−4 5.8◦ 10.3◦ 11.6◦ 3.9◦

10−4.5 9.9◦ 9.3◦ 10.2◦ 3.7◦

10−5 16.7◦ 7.9◦ 9.2◦ 3.5◦

10−5.5 18.2◦ 7.0◦ 8.1◦ 2.9◦

10−6 21.2◦ 4.4◦ 6.4◦ 2.7◦

10−6.5 21.1◦ 2.1◦ 4.2◦ 1.8◦

10−7 21.3◦ 1.5◦ 2.2◦ 1.0◦

10−7.5 21.5◦ 0.9◦ 0.6◦ 0.7◦

10−8 21.6◦ 1.0◦ 0.5◦ 0.3◦

10−8.5 21.4◦ 1.2◦ 0.4◦ 0.3◦

10−9 21.5◦ 1.0◦ 0.4◦ 0.3◦

10−9.5 21.6◦ 0.9◦ 0.3◦ 0.4◦

10−10 21.6◦ 0.9◦ 0.3◦ 0.4◦

10−10.5 21.6◦ 0.9◦ 0.3◦ 0.4◦

10−11 21.5◦ 0.9◦ 0.3◦ 0.4◦

Table A.4. Standard deviations of elevation angle based on q-values, random walk model
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B MATLAB IMPLEMENTATION OF USED PARTICLE
FILTER

pfilter: Particle filter assuming mixed distribution between von Mises and spherical
uniform distribution.

Input in pfilter-function:

qk: smoothing coefficient

kappa: concentration parameter of von Mises distribution

meas: measurement in degrees in 30×N matrix

conf: confidence measurement in 30×N matrix

model: 1 for random walk model, 2 for constant velocity

Output in pfilter-function:

pf_deg: estimated position

pf_std: standard deviations of generated particles

allP: all generated particles
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1 function [ pf_deg , pf_std , a l l P ] = p f i l t e r ( qk , kappa , meas , conf , model )
2
3 Del ta =1; % time step size
4 sigma0 =0.01; % std of initial velocity
5 nk = length (meas ) ;
6 % For replicability
7 rng ( 0 ) ;
8 % Wraps the input to [-pi,pi)
9 wrap=@( t ) mod( t / pi +1 ,2)∗pi−pi ;

10
11 y = wrap ( deg2rad (meas ) ) ;
12 N=200; % number of particles
13 xx = [ (2∗ rand (1 ,N)−1)∗pi ; sigma0∗randn (1 ,N ) ] ;
14
15 a l l P = nan (N, nk ) ;
16 M0=mean( xx ( 1 , : ) ) ; % estimate of initial theta
17 M=nan (2 , nk ) ; % preallocate, estimates of theta
18 for k =1: nk
19 y2 = y ( : , k ) ;
20 i f mean( conf ( : , k ) ) < 0.5
21 alpha = 0 . 4 ;
22 else
23 alpha = 0;
24 end
25 i f model == 1
26 % Random walk model
27 xx ( 1 , : ) = xx ( 1 , : ) + sqrt ( qk∗Del ta )∗ randn (1 ,N ) ;
28 e l s e i f model == 2
29 % Constant velocity model
30 xx ( 1 , : ) = xx ( 1 , : ) + Del ta ∗xx ( 2 , : ) ;
31 xx ( 2 , : ) = xx ( 2 , : ) + sqrt ( qk∗Del ta )∗ randn (1 ,N ) ;
32 end
33 % weights from a mixed distribution
34 w = (1−alpha )∗exp ( kappa∗cos ( y2 ( : ,1 ) − xx ( 1 , : ) ) ) + alpha / ( 2∗ pi ) ;
35 w = mean(w, 1 ) ;
36 w=w/sum(w ) ; % scale the weights
37 xx=xx ( : , resamp (w ) ) ; % resample
38 M(1 , k )=mean( xx ( 1 , : ) ) ; % estimate of theta
39 a l l P ( : , k )= xx ( 1 , : ) ’ ; % all particles
40 M(2 , k )= std ( xx ( 1 , : ) ) ; % the std of particles
41 end
42 a l l P =rad2deg ( a l l P ) ;
43 pf_deg = rad2deg ( unwrap ( [M0 M( 1 , : ) ] ) ) ;
44 p f_s td = [ std ( rad2deg (M0) ) , rad2deg (M( 2 , : ) ) ] ;
45
46 % multinomial resampling
47 function J=resamp (W)
48 [~ , J ]= h i s t c ( rand ( length (W) , 1 ) , [ 0 ;cumsum(W( : ) ) ] ) ;
49 end
50 end

Program B.1. Used particle filter implemented in MATLAB
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