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Hybrid biomaterials combining bioactive glasses (BAG) and natural polymers such as gelatin, 

are potential alternatives for bone tissue engineering applications. The inorganic and organic 
phases in a hybrid interact at a molecular scale and are connected via covalent bonds due to 
coupling agents such as 3-glycidoxypropyl trimethoxysilane (GPTMS). Owing to the strong 
covalent bonding between phases it is possible to create materials with controllable degradation 
(both aqueous and enzymatic), and bioactivity. Furthermore, the rheological properties of the 
materials can be adjusted to increase the mechanical properties and/or allow shaping of the 
hybrid into a specific shape.   

In this study, hybrids with either silicate glass S53P4, or Mg and Sr-doped borosilicate glass 
B12.5 –Mg 5- Sr 10 (“mix”) combined to organic gelatin phase were synthesized with different 
weight ratios between phases: 30/70 (glass/gelatin), 15/85, 5/95 and 1/99. The aim of this study 
was to assess in vitro properties of these hybrid biomaterials. The bioactivity and degradation 
behaviour of the hybrids were investigated in Simulated Body Fluid (SBF) and in enzymatic 
collagenase solution. SBF dissolution experiment was carried out for two weeks, and enzymatic 
degradation experiment for six hours. At every time point, samples’ mass loss and ion release 
behaviour were studied, and SBF samples’ pH changes were measured.  

For further characterization of the hybrids, rheological measurements were performed to 
understand the gelation behaviour of the hybrids, and thermogravimetric analysis (TGA) to assess 
the inorganic/organic phase ratio.  

In addition, the biocompatibility of BAG/gelatin hybrid materials were evaluated by culturing 
human-derived mesenchymal stem cells (hBMSCs) in contact with hybrid samples and with hybrid 
dissolution product extracts. Furthermore, the ion concentrations in cell culturing medium upon 
culturing were also measured.  

Based on the results, the hybrids were stable in aqueous solutions, and exhibited controlled 
ion release suggesting hydroxyapatite (HA) layer precipitation. The hybrids were also more 
resistant to enzymatic degradation than the gelatin alone. However, based on the Live/Dead 
results all hybrid compositions showed an inhibitory effect in hBMSC proliferation after 72 hours 
of culturing, possibly due to too high reactivity or release of unreacted compounds, such as the 
coupling agent GPTMS. Further cell studies and optimization of the hybrid biomaterial are needed 
to confirm the suitability of hybrids as a biocompatible bone tissue engineering scaffold material.  
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Bioaktiivista lasia ja luonnon polymeerejä, kuten gelatiinia yhdistävät hybridibiomateriaalit, 
ovat vaihtoehto luukudosteknologian sovelluksiin. Hybridimateriaalin epäorgaaninen ja 
orgaaninen osa vuorovaikuttavat molekyylitasolla, sillä ne sitoutuvat kovalenttisesti kemiallisten 
kiinnitysaineiden, kuten 3-glysidyloksipropyylitrimetoksisilaanin (GPTMS), ansiosta. Tämän 
vahvan sitoutumisen ansiosta hybridit ovat helpommin muotoiltavissa, niiden bioaktiivisuutta ja 
liukenemisnopeutta sekä mekaanisia ominaisuuksia voidaan säädellä tarpeen mukaan. 

Tässä työssä tutkittiin useita erilaisia hybridimateriaaleja. Gelatiinin kanssa yhdistettiin 
bioaktiivista lasia eri painoprosenttisuhteilla (30/70 (lasi/gelatiini), 15/85, 5/95 ja 1/99). Laseina 
käytettiin joko S53P4 -silikaattilasia tai Mg- ja Sr- ioneja sisältävää B12.5 –Mg 5- Sr10 -
borosilikaattilasia. Työn tavoitteena oli vertailla ja tutkia hybridien in vitro -ominaisuuksia. 
Hybridien bioaktiivisuutta ja liukenemista tutkittiin sekä fysiologisia nesteitä simuloivassa SBF-
liuoksessa että kollagenaasi-entsyymiliuoksessa. SBF -dissoluutiosarjaa jatkettiin kaksi viikkoa, 
ja entsymaattista hajotusta seurattiin kuuden tunnin ajan. Tietyissä aikapisteissä tarkasteltiin 
hybridinäytteiden massan muutosta, pH-arvoa sekä ICP-OES -mittauksella ionien vapautumista.  

Lisäksi hybridien geeliytymistä tutkittiin reologisilla mittauksilla, ja todellista suhdetta 
epäorgaanisen ja orgaanisen osan välillä analysoitiin termogravimetrisillä mittauksilla.  

Työn toisena tavoitteena oli arvioida hybridien biosoveltuvuutta.  Ihmisen luuytimen 
mesenkymaalisia kantasoluja viljeltiin kontaktissa hybridinäytteiden sekä niiden 
liukenemistuotteiden kanssa. Lisäksi vapautuvat ionikonsentraatiot analysoitiin ICP-OES -
mittauksella.  

Tulosten perusteella hybridit käyttäytyivät stabiilisti nesteympäristössä, ja liukenivat 
vapauttaen tasaisesti bioaktiivisuutta osoittavia ioneja. Hybridit vastustivat entsymaattista 
hajotusta hieman pelkkää orgaanista gelatiinia tehokkaammin. Kuitenkin Live/Dead -koetulosten 
perusteella hybridit rajoittivat solujen jakautumista 72 tunnin viljelyn jälkeen. Solujen heikko 
uusiutuminen johtuu todennäköisesti hybrideistä ylimäärin vapautuvasta reagoimattomasta 
GPTMS – kiinnitysaineesta. Jotta hybridien bioyhteensopivuus, ja näin ollen mahdollinen käyttö 
luukudosteknologiassa, voidaan varmistaa, tulee hybridien koostumusta optimoida ja jatkaa 
soluviljelytutkimuksia.  
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45S5 Bioglass, bioactive glass with composition of 45 wt% SiO2, 24.5 wt% 

CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5 
58S bioactive glass (58% SiO2, 33% CaO and 9% P2O5, based on mol%) 
APTES (3-Aminopropyl)triethoxysilane 
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CF  C-factor, molar ratio of GPTMS and gelatin 
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hASC human adipose stem cells 
hBMSC human bone marrow-derived mesenchymal stem cells 
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HCl hydrochloric acid 
HLA-DR Human Leukocyte Antigen – DR isotype 

ICP-OES inductively coupled plasma optical emission spectrometry 
ICPTES 3-(Triethoxysilyl)propyl isocyanate 
IGF insulin-like growth factor 
iPSCs induced pluripotent stem cell 
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MC3T3-E1 pre-osteoblastic cell line from mouse 
Mg  Magnesium  
mix abbreviation for B12,5 –Mg5 –Sr10 doped borosilicate bioactive 

glass 
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PDMS Polydimethylsiloxane 
PEG Polyethylene glycol 
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PLA  polylactic acid 
PLGA poly lactic-co-glycolic acid 
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P/S Penicillin/Streptomycin 
S53P4 abbreviation for  
SAOS-2 human primary osteogenic sarcoma cell line 
SBF Simulated Body Fluid  
Si  Silicon 
Sr  Strontium 
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TCP tricalcium phosphate 
TEOS tetraethyl orthosilicate 
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VP N-vinyl pyrrolidone 
wt-% Weight percent 
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1. INTRODUCTION 

Bone –related diseases and subsequent bone loss are a major burden in terms of patient 

quality of life and economic impact. There are multiple causes for bone injuries and 

defects, such as osteoporosis, traumatic injury, orthopaedic surgeries and tumour 

resection. Currently the most used treatment for bone defects is autogenous bone 

grafting, where bone is collected from patient’s own body (autograft), or from other 

humans, typically cadavers (allograft). (Brydone, Meek et al. 2010) 

Autografts and allografts suffer from various limitations, such as lack of supply, risk of 

disease transmission and high cost. To overcome these restrictions, synthetic bone 

substitute biomaterials, such as metallic, ceramic, polymeric or composite biomaterials 

are used. However, there are multiple criteria for bone substitute materials to fulfil. They 

must be biocompatible, possess suitable degradation and mechanical properties, and 

ideally have osteogenic properties. Bioactive biomaterials, such as bioactive glasses 

(BAGs), and other bioceramics, such as β- tricalcium phosphate (TCP), are an attractive 

option to meet these needs. But despite of their bioactivity and osteoconductive 

properties, when bioceramics are used alone, they tend to be too brittle and difficult to 

shape. These concerns of long-term reliability in vivo limit their applications as bone 

replacing biomaterials. (Jones 2013) 

For this reason, focus has turned more on composite materials combining BAG particles 

or fibres within a polymer matrix. However, this approach is not optimal either, due to the 

mismatch in degradation between phases leading to unpredictable in vivo behaviour, 

and limited contact with bone forming cells due to polymer phase masking the bioactive 

components. Due to these challenges, there is a need for a material that can mimic the 

natural bone tissue more effectively while being stable in vivo (Valliant E.M., Jones J.R., 

2011).  

Bone tissue engineering is a popular method to overcome the limitations of autografts 

and allografts. Its key components include biocompatible three –dimensional temporary 

template (scaffold) to guide new bone formation, bone forming cells to lay down bone 

tissue matrix, and an appropriate environment to mature the tissue construct. Ideally 

when combining all these components best results in terms of native bone graft 

mimicking construct would be achieved. (Amini, Laurencin et al. 2012) 
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Natural bone tissue could be described as a nanocomposite material consisting of 

organic phase (collagen fibrils) and inorganic carbonated hydroxyapatite (HCA) crystals. 

Therefore, a hybrid material in which inorganic and organic phases are interacting in 

nanoscale could better mimic natural bone’s structural and functional properties.(Jones 

2013) Opposite to conventional composites, in inorganic/organic class II hybrid material 

the phases are homogeneously dispersed and covalently linked to each other at the 

molecular level. The covalent links are facilitated by reaction with coupling agents, such 

as 3-glycidoxypropyl trimethoxysilane (GPTMS). This way the material can achieve 

synergistic effect combining the properties of both organic and inorganic phases. 

(Kickelbick G., 2006) In the future, inorganic/organic hybrid biomaterials could find 

potential use as a bone scaffold for bone tissue engineering applications.  

 

Figure 1. Introduction of inorganic/organic hybrid biomaterial 

 

The objective of this study was to characterize novel bioactive glass/gelatin GPTMS-

coupled hybrid biomaterials in terms of their bioactivity, degradation behaviour, 

rheological properties, and biocompatibility. This way valuable information about the 

materials suitability for bone tissue engineering applications could be assessed. For 

example, this type of scaffold material could be used as an injectable bone filler or putty-

like material, which would be highly preferred by surgeons due to their ease of handling 

and tailorable properties (Fig 1). 

Firstly, literature review including basics of bone biology and anatomy, current state of 

the art on hybrid biomaterials, rheology and stem cells/hybrid interactions for bone tissue 

engineering and regenerative medicine are covered. The materials and methods used 

to synthesize and characterize the newly developed materials are presented, followed 

by the results and discussion sections. Finally, conclusions are given, focusing on the 

limitations of the developed materials and suggestions for future work.   
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2. BONE TISSUE ENGINEERING 

2.1 Structure of bone 

 

Bone is a type of connective tissue consisting of bone cells and mineralized extracellular 

matrix. Its role in human body is to protect and support other organs and enable 

movement. It also acts as a calcium and phosphate storage. The inorganic part of bone, 

bone mineral, is found in the form of hydroxyapatite crystals [Ca10(PO4)6(OH)2]. The 

major structural organic building block of the bone matrix is type I collagen. Furthermore, 

other collagen types such as V, III, XI, and XIII are found in smaller amounts. In addition 

to collagen, other matrix proteins include proteoglycans, glycoproteins (osteonectin, 

osteopontin, podoplanin, dentin matrix protein), bone-specific vitamin K-dependent 

proteins (osteocalcin, protein S) and finally growth factors and cytokines (BMPs, IGFs, 

TGF-β). (Ross, Pawlina 2016) The components of bone matrix are summarized in Figure 

2 below: 

 

 

 
Figure 2. Bone composition 
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There are variety of cell types associated with bone. Osteoprogenitor cells are pre-

osteoblast cells committed to bone cell differentiation. They are derived from 

mesenchymal stem cells, which are discussed more in detail later in this thesis. 

Osteoblasts are the matrix secreting cells, which are referred to as osteocytes once they 

get surrounded with secreted matrix. Some osteoblasts after bone deposition stay on the 

bone surface as bone-lining cells. In addition to cells creating new bone, cells resorbing 

bone also exist. These osteoclasts are present where bone is being remodelled or in the 

case of bone damage. (Ross, Pawlina 2016) The cells associated with bone are 

presented in Figure 2. 

In general, bone tissue can be classified either as compact or spongy/cancellous bone. 

Denser compact bone is found outside of the bone while meshwork-like spongy bone 

forms the interior of the bone (Fig. 3). The porous meshwork is continuous and consists 

of bone marrow and blood vessels. Bone marrow is divided to either red or yellow 

marrow. Red marrow is the development site for blood cells and is most abundant in 

young individuals. For adults the fat cell-containing yellow marrow is more prominent.  

 

 

Figure 3. Section of a mature bone  
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As seen above, mature bone tissue is composed of cylindrical shaped structural units 

called osteons. In osteon there is bone matrix surrounding the central osteonal canal, 

which contains blood vessels and nerves. In addition to osteonal canals, there are 

perforating canals through periosteal and endosteal surfaces to reach osteonal canal 

and connect canals to each other. Periosteum is a fibrous membrane, which covers the 

outer surface of bones. Correspondingly, the lining facing the marrow cavity is referred 

to as endosteum. (Ross, Pawlina 2016) 

 

2.2 Bone regeneration 

Process of fracture healing consists of four main steps. These steps, including 

inflammation, proliferation, soft callus formation and finally hard callus formation are 

combined in Figure 4.  

 
Figure 4. Fracture healing model steps, adapted from  (Arun, Alvarez, 

et al., 2014) 
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First, hematoma or blood clot forms at the fracture site. This hematoma consists of 

platelets, leukocytes, macrophages, growth factors and cytokines, and it plays an 

important role in later bone regeneration. This step is often referred to as destructive 

phase, and it is characterized by inflammation, activity of pro-inflammatory cytokines, 

such platelet-derived growth factor (PDGF), or platelet-rich plasma (PRP), and local 

hypoxia. Hypoxia stimulates the formation of new vasculature (angiogenesis), which 

correspondingly leads to the second step of fracture healing process: recruitment of 

mesenchymal stem cells to the site. These cells can differentiate into chondrocytes and 

osteoblasts. Differentiation occurs under biological cues such as bone morphogenetic 

proteins (BMPs). Chondrocytes form cartilage matrix first, which is later substituted by 

bone formation by osteoblasts. For this reason, the third step includes the formation of 

soft cartilaginous scaffold, which is substituted in the last step by new deposited bone. 

Chondrocytes undergo programmed cell death (apoptosis), and finally over the course 

of months to years, osteoblasts and bone resorbing osteoclasts continue bone 

remodelling leading to indistinguishable new bone at the fracture site. (Arun, Alvarez et 

al., 2014) 

 

2.3 Current methods to treat bone defects 

 

The history of bone-grafting traces as back as the 17th century, when the first 

documented bone graft was performed by a Dutch surgeon Job van Meekeren. This 

bone graft was a xenograft, which refers to a tissue or organ derived from other species, 

in this case a piece of a dog skull. (Donati, Zolezzi et al. 2007) Currently, the standard 

treatment is an autograft, bone from the patient’s own body, from donor site to defect 

site. The donor site is usually the top of the pelvis (iliac crest), or for spinal surgery it 

could also be bone spurs from the vertebrae. In addition to autografts, allografts, which 

are harvested from other humans (often cadavers), are used. Both options possess 

advantages but also multiple disadvantages. Autografts are preferred over allografts due 

to the increased graft integrity due to vascularization, however, they suffer from limited 

supply and discomfort to patients. Use of allografts eliminates donor site morbidity, but 

there is a risk for disease transmission, and increase risk for graft rejection. (Ghanbari, 

Vakili‐ ghartavol 2016) 

Synthetic substitutes can overcome some limitations of autografts and allografts, since 

they are easier to sterilize, they are available in unlimited quantities and in different 

shapes and sizes. Synthetic bone graft materials can be made from natural or synthetic 
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polymers, ceramics, metals or composites. The most common ceramic materials for this 

use are often a mix of hydroxyapatite (HA) and tricalcium phosphate (TCP), 

manufactured in variety of forms including granules and porous blocks. (Jones 2012) 

Most research of polymers suitable for bone graft substitutes has focused on polylactic 

acid  (PLA) , polyglycolic acid (PGA)  and poly lactic-co-glycolic acid (PLGA) copolymers 

(Campana, Milano et al. 2014). Metallic implants made of, for example, titanium are 

strong and tough to resist crack propagation, and therefore they are suitable for load 

bearing applications. However, since metal is a bioinert material, fibrous encapsulation 

can occur, and healthy bone will never re-form on the site. Furthermore, the body is likely 

to eventually reject the implant, and higher risk for fatigue loading and infection exists. 

(Jones 2012)  

Bioactive glass, which will be discussed more in detail in this work, is beneficial since it 

is bioactive, and, depending of its composition, can bond with both bone and soft tissue. 

However, concerns, such as brittleness and long-term mechanical reliability in vivo, are 

hindering their use as bone substitute materials. (Jones 2013) Furthermore, processing 

into three-dimensional scaffolds of the highly bioactive and commercially available 

silicate glasses remains a challenge due to their rapid crystallization during sintering 

(Massera, Fagerlund et al. 2012). For these reasons BAGs are often combined with for 

example biodegradable polymers to form composite materials. However, possible 

mismatch in the degradation rate between the glass and the polymer might lead to 

loosening of the glass phase, and to difficulties in predicting the overall degradation 

behaviour. (Jones 2013) 

 

2.4 Bone tissue engineering 

 

Current alternatives to bone grafts lack several important key properties. For instance, 

they cannot be loaded with osteogenic cells, they do not have sufficient mechanical 

properties, and they should include added compounds, such as vascular endothelial 

growth factor (VEGF) or bone morphogenetic proteins (BMPs) to promote 

vascularization and osteoinduction. Typically, such pro-angiogenic and osteogenic 

molecules are expensive and can have negative effects, such as ectopic bone formation  

(Oryan, Alidadi et al. 2014)  Tissue engineering is making an attempt to solve these 

drawbacks. 
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Tissue engineering is defined as an interdisciplinary field that applies the principles of 

engineering and life sciences towards the development of biological substitutes that 

restore, maintain, or improve tissue function. (Langer, Vacanti 1993) In essence, 

functional living tissue can be fabricated using living cells, which are usually associated 

with a matrix or scaffold to guide new tissue development. A scaffold stands for a three-

dimensional temporary support structure for tissue forming cells to synthesize new tissue 

in desired shape and dimensions. (Rahaman, Day et al. 2011) In the context of bone 

regeneration, mimicking the natural bone (autograft) is the best current option available. 

To achieve this, multiple widely accepted design criteria are made. 

First of all, the scaffold needs to be three dimensional with interconnected pores, so that 

it is possible to seed cells and other relevant biological moieties inside, and that it can 

later support fluid flow, cell migration, and new tissue and blood vessel formation into the 

scaffold. In addition, the scaffold must be biocompatible, and it needs to promote 

osteogenic cell attachment and function. One other important aspect is the material 

degradation rate that, ultimately, should match the rate of new tissue formation without 

releasing any toxic by-products. Furthermore, the mechanical properties of the scaffold 

should mimic natural bone in order to survive physiological stresses at the implantation 

site in vivo. (Rahaman, Day et al. 2011) 

Finally, other important aspects should also be noted, such as scalability (possibility for 

mass-production), easy sterilization, and the regulatory requirements needed to fulfil in 

order to get clinical use for the product. The user experience also matters, because the 

surgeons are known to prefer materials that could be cut to shape in theatre to fit the 

defect.  (Gao, Rahaman et al. 2013, Jones 2013)  

Some potential scaffold types for bone tissue engineering can be divided in three main 

categories: natural, synthetic and mineral-based. Firstly, natural scaffolds include 

biodegradable natural polymers and polysaccharides such as collagen, hyaluronic acid, 

alginate and chitosan. Challenge in using natural scaffolds is their lack of mechanical 

stability and difficulty to sterilize without disrupting their structure. The use of synthetic 

polymers such as polylactic acid (PLA), polyglycolic acid (PGA), polydioxanone (PDS) 

and polycaprolactone (PCL) would improve the mechanical properties without 

compromising biodegradability. However, they lack osteoinductive properties, which 

could be achieved by using bioactive scaffold materials such as calcium phosphate 

ceramics and bioactive glass. (Montoro, Wan et al. 2014) 
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2.5 Stem cells in bone tissue engineering 

 

The bone tissue engineering approach often involves the use of mesenchymal stem cells 

(MSCs) seeded into three-dimensional scaffold material and induced to generate new 

bone by osteoinductive cues. Especially bone-marrow derived mesenchymal stem cells 

(BMSCs) are used due to their high osteogenic potential. (Yousefi, James et al. 2016) 

Therefore, this chapter will focus on BMSCs after general introduction to stem cells.  

Stem cell is defined as a cell that has the capacity to renew itself and to differentiate into 

other cell types of the body. Stem cells can be classified by dividing them into groups 

according to their differentiation potential. Totipotent stem cells are the earliest cells in 

mammal embryo development, and they can differentiate into all the possible cell types 

to form the whole embryo. Pluripotent stem cells, such as cells from the inner cell mass 

of the blastocyst, embryonic stem cells (ESCs), and induced pluripotent stem cells 

(iPSCs) can differentiate into all the cells of all the three embryonic germ layers, but are 

not able to form a complete embryo. Multipotent stem cells, such as mesenchymal stem 

cells or other adult stem cells, can differentiate into multiple cell lineages. And finally, 

unipotent stem cells, such as spermatogonial stem cells, can only differentiate into one 

mature cell lineage. (Samadikuchaksaraei, Lecht et al. 2014) 

Mesenchymal stem cells (MSCs) are multipotent stem cells capable of self-renewal, 

plasticity and ability to differentiate into multiple cell lineages. They are a heterogenous 

population of fibroblast-like cells from tissues of mesodermal origin. MSCs were first 

isolated and characterized from bone marrow in 1970s, but the term MSC came officially 

in the use only in early 1990s. Other typical sources to harvest MSCs include umbilical 

cord, placenta, blood, adipose tissue, and dental tissues. (Andrzejewska, Lukomska et 

al. 2019) 
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Figure 5. MSC differentiation into multiple cell types 

 

 

Specific criteria to define MSCs exists. Firstly, MSCs need to be plastic-adherent in 

standard culture conditions. Secondly, ≥95% of the MSC population must express 

surface markers STRO-1, SB-10, Sh3 (CD73) and SH4 antigens as well as Thy-1 

(CD90), TGF-β receptor type III endoglin (CD105), hyaluronic acid receptor CD44, 

integrin α1 subunit CD29, activated leukocyte-cell adhesion molecules (ALCAM, 

CD166), and possibly others. Thirdly, they should lack expression to the hematopoietic 

markers CD19/CD79a, CD34, CD45, CD11b/CD14 and HLA-DR. And finally, they must 

able to differentiate into osteoblasts (bone cells), chondroblasts (cartilage cells) and 

adipocytes (fat cells) under standard in vitro differentiating conditions (Fig. 5). (Dominici, 

Le Blanc et al. 2006)  

Bone marrow derived stem cells (BMSCs) are considered to be promising in bone tissue 

engineering applications. They could be harvested directly from patient’s own bone 

marrow, and they are thought to be responsible for natural bone repair process, where 

they differentiate into osteoblasts. As seen in Figure 6, they are fibroblast-like cells with 

spindle-like and stellate morphology.  
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Figure 6. Morphology of BMSCs in culturing flask, x10 objective: 

spindle, stellate, irregular  

 

MSCs have been shown to have hypoimmunogenic properties: they are able to modulate 

immune cell phenotypes and to immunosuppress the local environment. However, their 

use is limited by the low frequency within bone marrow stroma. In addition, MSCs in 

general have high variation between different donors. For instance, the age, gender, 

extraction site, and physical condition can play important role in the quality of harvested 

MSCs. (Andrzejewska, Lukomska et al. 2019) Other challenges include high cost of 

serum and growth factor supplements needed in their in vitro expansion (Montoro, Wan 

et al. 2014). 

BMSCs, and other MSCs such as adipose stem cells (ASCs) have been widely studied 

with many silicate bioactive glasses, and found to support their proliferation and 

differentiation functions in in vitro cell culture (Bosetti, Cannas 2005, Radin, Reilly et al. 

2005, Rahaman, Day et al. 2011). In contrast, borate and borosilicate bioactive glasses 

have shown lower ability to support cell proliferation due to their faster degradation rate 

and pH increasing effect of releasing boron (Rahaman, Day et al. 2011, Ojansivu, Mishra 

et al. 2018). However, despite the reduced cell proliferation, the dissolution products of 

the glass have been found to stimulate osteogenic commitment and upregulate 

endothelial markers (Ojansivu, Mishra et al. 2018). 

The use of hBMSCs with hybrid materials will be discussed in more detail in the following 

chapter.  
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3. HYBRID BIOMATERIAL 

Conventional bioactive glass-containing composites are usually prepared by 

incorporating bioactive glass particles in biodegradable polymer matrix. Most used 

polymers include polyesters such as polylactic acid (PLA), polyglycolic acid (PGA), and 

poly(lactic-co-glycolic) acid (PLGA). Polymers, such as PLA or polyhydroxybutyrate 

(PHB), have also been applied as coatings to highly porous glass-ceramic foam scaffolds 

to improve resistance to fractures, but there are doubts over the effectiveness in terms 

of cellular response. (Jones 2013) However, these conventional composites suffer from 

multiple limitations. One concern is the lack of bioactive surface, such as in the case of 

polymer coatings on BAGs. Also the polymer matrix can “mask” bioactive glass particles, 

which leads to osteoprogenitor cells not being able to encounter glass but only polymer 

(Fig. 7). Other issues include mismatch in the degradation rate of the composites 

components, which causes instability of the scaffold. For example, the commonly used 

polyesters degrade by self-catalytic hydrolysis, which leads to rapid loss of mechanical 

properties. (Valliant, Jones 2011) 

 

 
Figure 7. Issue with conventional composites: bioactive glass particles 

(white) embedded in polymer matrix. Cells can contact only few 
particles limiting bioactivity (Jones 2012) 

 

In order to overcome these issues, a new type of biomaterial named hybrid material has 

been developed. Hybrid materials act as one phase due to their interpenetrating organic-

inorganic networks interacting at the nanoscale (Novak 1993). With hybrids it is possible 

to combine properties of different phases effectively: for example, the high bioactivity of 

BAG, toughness of polymers, and controlled congruent degradation by balancing the 

ratio of the phases. Hybrids differ from nanocomposites because their components 



13 

 

cannot be distinguished above nanoscale. The so-called true hybrid behaves as one 

material phase, while it exploits the benefits of each individual phase. (Mahony, Yue et 

al. 2014) 

Hybrid materials can be divided into two classes depending on the interactions between 

inorganic and organic components (Fig. 8). Class I hybrids contain only weak bonding, 

such as hydrogen bonds, or van der Waals forces. They are usually prepared by 

incorporating a soluble polymer into inorganic sol, and entrapping polymer into silica 

network during network condensation. The challenges of these hybrids include the lack 

of chemical bonds between the inorganic and the organic phases, which can lead to 

rapid dissolution behaviour (Valliant, Jones 2011, Poologasundarampillai, Maçon 2016). 

Class II hybrids differ from class I hybrids because they have covalent bonding between 

the components. In order to form covalent bonds, a coupling agent (a molecule) is 

needed. In earlier studies the use of silica-containing polymers, such as 

polydimethylsiloxane (PDMS) was investigated, but due to biostability of those polymers, 

they are not suitable for tissue engineering applications (Novak 1993, Valliant, Jones 

2011). 

 

Figure 8. Class I and Class II hybrid classification, adapted from 
(Mondal 2018) 

 

Inorganic-organic solids are usually prepared by exploiting the sol-gel process. The used 

polymer is added early to the process so that the silica network can form around it. The 

conventional sol-gel process is modified in terms of thermal processing, since most 

hybrid systems need aging and drying below 100 °C. In addition, control of the pH -value 

is very crucial in this process: it affects the functionalization of the polymer, and the 
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gelation of the silica network. For instance, too acidic pH might cause degradation of 

certain polymers during the synthesis. (Jones 2013) 

There are multiple challenges involved in hybrid material development. First, hybrid 

synthesis is complex and challenging due to the heavy chemistry involved. Also since 

the inorganic phase of hybrids have been mainly from tetraethyl orthosilicate (TEOS) in 

previous studies, the main challenge has been the difficult incorporation of calcium ions 

into the silicate network. It is essential to incorporate calcium if the material is meant to 

have the osteoinductive properties of bioactive glasses. (Jones 2013) In sol-gel synthesis 

adding of metal salts with calcium require high temperature treatment above 400 °C. 

Alternatively, the use of calcium alkoxide precursors in room temperature might lead to 

impossible handling of the hybrid sol due to premature gelation. Therefore, mostly pure 

silica-polymer hybrids are done with heterogeneous calcium deposits outside the silicate 

network. The issue with these deposits is their rapid dissolution: they get washed away 

in aqueous environment, causing burst release of ions and rapid pH increase. (Lao, 

Dieudonné et al. 2016)  

 

3.1 Inorganic component: Bioactive glass 

Bioactive glass was discovered by Professor Larry Hench at the University of Florida in 

1969. He discovered a degradable glass with composition 46.1 SiO2- 24.4 Na2O- 26.9 

CaO - 2.6 P2O5 (mol%), which was later named as 45S5 Bioglass. Bioglass was found 

to form strong bond to bone, which started a whole new field of bioactive ceramics. 

(Hench, Splinter et al. 1971)  

Bioactive material can be defined as a material that stimulates a beneficial response 

from the body, particularly bonding to host tissue. (Hench 2006) Bioactive glass is 

especially beneficial in bone applications, because it doesn’t only bond with bone rapidly, 

but also stimulates bone growth away from the bone-implant surface (osteoinduction) by 

stimulating genes associated with osteoblast differentiation. While glass bonds to bone, 

carbonated hydroxyapatite layer (HCA) starts to precipitate at the surface. HCA is very 

similar to natural bone mineral, and it is believed to interact with collagen fibrils to 

integrate with bone. The reason for these osteoinductive properties of bioactive glass 

lies in the dissolution products, such as soluble silica and calcium ions that stimulate 

osteogenic cells to produce bone matrix. (Hench 2006) 

It is important to understand the atomic structure of glass in order to study its properties. 

In general, bioactive glasses consist of glass formers, network modifiers and 
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intermediates. Silicate glasses consist of silica tetrahedra connected by -Si-O-Si- 

bridging oxygen bonds, Si being the network forming atom. Network modifiers include 

Na and Ca, since they disrupt the Si network by forming non-bridging oxygen bonds (Fig. 

9). It has been shown that P is isolated from silica network, and no P-O-Si bonds form 

unless the glass contains more than 50 mol% of P. This explains why P is rapidly lost 

upon immersion in aqueous solution. In the case of borate- or phosphate glasses the 

network former is either boron trioxide (B2O3) or phosphorus pentoxide (P2O5), 

respectively. (Stanić 2017) 

 

 

Figure 9. Bioactive glass network, adapted from (Stanić 2017) 

 

It has been shown that the accumulation of dissolution products from the glass leads to 

changes in the glass chemical composition and change in the surrounding pH, which 

leads to HCA nucleation. (Hench 1998, Jones 2012) The whole multistep process can 

be described as follow:  

Firstly, rapid ion exchange occurs on the glass surface: H+ ions from the solution are 

exchanged with network modifier cations Ca2+ or Na+ of the glass. This ion exchange 

creates silanol bonds Si-OH on the glass surface: 

 

Si-O-Na++ H++ OH- → Si-OH+ + Na+(aq) + OH- 
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The pH value increases due to both the consumption of H+ ions, and the release of 

alkali-metal and alkaline-earth ions. Because of that, the cation depleted silica-rich region 

starts to form near the glass surface. Phosphate, if present in the glass composition, is 

lost from composition during this phase, because it is isolated from the silica network. 

High local pH leads to OH- ions attacking the silica network, breaking Si-O-Si bonds. 

Soluble silica is lost as silicic acid Si(OH)4 to the solution, and more silanols are left on 

the glass surface: 

 

Si-O-Si + H2O → Si -OH + OH -Si 

 

After these steps occurs the condensation of Si-OH groups near the glass surface and 

the repolymerization of silica rich cation-depleted layer. Next, Ca2+ and PO43- groups 

migrate through the silica rich layer and from the solution. They form an amorphous CaO-

P2O5 layer on top of the silica gel layer (Fig. 10). Finally, OH- and carbonate (CO3)2- from 

solution are incorporated in the amorphous CaO-P2O5 film which crystallizes into HCA 

layer.  

 

Figure 10. Mechanism of HCA layer formation on the surface of BAGs 

 

After the formation of crystalline HCA layer, following steps are hypothesized to occur:  

First, the biological moieties get absorbed into the HCA layer, following by the action of 

macrophages, attachment and differentiation of stem cells, and finally the generation and 

crystallization of matrix. (Jones 2012)  
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Bioactive glasses can be divided into many subgroups. In addition to conventional 

silicate glasses such as 45S5 or S53P4, for example phosphate- and borate- based 

glasses have been developed. Furthermore, doping of conventional bioactive glasses, 

as well as borate/phosphate variant, with metal ions such as Mg, Sr, and Ag, or trace 

elements such as Cu, Zn and Sr can lead to changes in crystal structure, thermal stability, 

morphology, solubility and chemical and biological properties. In the scope of this thesis 

work, especially important properties include the favourable biological responses such 

as enhanced angiogenesis, osteogenesis and antibacterial activity. Especially in the 

case of bone tissue engineering applications, understanding the role of inorganic ions in 

bone metabolism is crucial. (Hoppe, Güldal et al. 2011, O’Neill, Awale et al. 2018)  

 

 

Figure 11. Ions with osteogenic properties (Mouriño, Vidotto et al. 
2019) 

 

Magnesium is one of the main trace elements in human body and plays an important 

role in the bone development. Mg-ions doped in a glass network are found to stimulate 

new bone formation, and increase bone cell adhesion and stability (Zreiqat, Howlett et 

al. 2002, Yamasaki, Yoshida et al. 2002).  

Strontium is structurally, physically and chemically very similar to calcium, which is why 

it has been widely studied in the context of bone regeneration. For instance, Sr -ions are 

found to be promising in treatment of osteoporosis by inhibiting bone-resorbing 

osteoclast activity (Meunier, Slosman et al. 2002), and beneficial to bone formation in 

vivo (Marie, Ammann et al. 2001, O'Donnell, Candarlioglu et al. 2010, Lao, Jallot et al. 

2008, Gentleman, Fredholm et al. 2010).  

Boron, even though toxic in high concentration, is an essential trace dietary element. It 

has been found to stimulate bone formation, and RNA synthesis in fibroblast cells 

(Dzondo-Gadet, Mayap-Nzietchueng et al. 2002). 
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The modification of the conventional silicate glass network also affects its thermal and 

degradation properties. In the context of BAG dissolution, the rate of HCA layer formation 

indicating bioactivity highly depends on the glass composition. The lower the silica 

content, for example in the case of adding modifying cations, the less connected silica 

network, and this leads to more rapid dissolution of the glass (Hench 1998). 

Addition of boron has been found to form a phase separated glass with regions rich in 

SiO2, and B2O3.Because the borate phase dissolves faster due to higher solubility, 

borosilicate glasses have increased dissolution rate in aqueous environment compared 

to silicate glasses.(Massera, Claireaux et al. 2011, Tainio, Salazar et al. 2020) Partial 

substitution of Ca with Mg has been found to increase durability and contribute toward 

stronger glass network. (Massera, Hupa et al. 2012)  

Two main ways to fabricate bioactive glass include the conventional melt-quenching 

route and the chemistry-based sol-gel route. In melt-quenching the oxides are melted 

together at high temperatures in a platinum crucible, and then quenched in a graphite 

mould or in water. The sol-gel reaction takes place in room temperature, where the glass 

precursors undergo polymer-type reactions to form a gel. The gel consists of a wet 

inorganic network of covalently bonded silica, which is then dried and heated to form a 

glass. The conventional 45S5 and other commercial glasses are prepared by melt-

quenching, and ternary composition glasses such as 58S are fabricated by sol-gel 

method. (Jones 2013)  

The main difference between melt-quenched and sol-gel glasses is that melt-derived 

glasses are dense while sol-gel glasses tend to have inherent nanoporosity (Sepulveda, 

Jones et al. 2001). This porosity increases surface area and thus the reactivity. TEOS 

(tetra-alkyl orthosilicate) is typically used as a sol-gel precursor. Catalytic conditions of 

sol gel process can be acidic, basic, or neutral, and it impacts greatly the structure of the 

inorganic network formed. (Novak 1993) The main disadvantage of sol-gel method is the 

possible shrinking and cracking during gel drying caused by drying stresses that are 

generally attributed to large capillary forces generated in very small pores of the gel 

(Novak 1993).   

3.2 Organic component: Polymers 

The possibilities of preparing an inorganic organic hybrid are almost endless: for 

example, wide range of both natural and synthetic organic polymers as well as inorganic 

metal-oxygen fragments and cationic species can be incorporated in hybrid materials 

(Jones 2013).  
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The choice of polymer can be based on a variety of factors. First, in order to exploit 

hybrids for tissue engineering applications, controllable degradation is important. 

Therefore, the used polymer should be biodegradable. However, it is also essential to 

consider the method of polymer degradation, for example whether it occurs by hydrolysis 

or by enzymatic degradation. Chain scission occurs by reaction between water and 

polymer, where the water splits the polymer chains. Autocatalysis, due to acidic 

oligomers that catalyse further degradation due to local pH increase, leads to rapid and 

unpredictable dissolution. This can be a challenge with conventional polyesters like PGA, 

PLA and their copolymers. In in vivo conditions enzymatic degradation happens resulting 

in reduced chain length of polymers, mainly on the surface because water penetration is 

slower than the rate of degradation. Therefore, even though the size of the scaffold 

becomes smaller, the bulk structure is maintained. These types of degrading scaffolds 

provide longer mechanical stability for the tissue to regenerate.(Dhandayuthapani, 

Yoshida et al. 2012) 

The next important criterion, in the case of hybrids, is whether it is possible to form 

covalent bonds between the inorganic phase and the polymer. This criterion is often 

fulfilled using bifunctional coupling agents, which are discussed more in detail in the next 

chapter. Finally, when choosing the suitable polymer often natural tissue is mimicked. In 

bone tissue engineering applications collagen would be a preference because bones are 

mainly consisting of it. However, collagen is not very soluble and therefore for example 

gelatin, or chitosan are other potential alternatives.(Shirosaki, Osaka et al. 2012) 

Collagen as the most abundant component of the organic part of natural bone would be 

the ideal polymer choice for bone tissue engineering scaffolds. In addition, due to the 

strong triple helix structure of its amino acids, appropriate mechanical properties can be 

achieved. It is often derived from bovine skin and tendons, porcine skin and rat 

tail.(Parenteau-Bareil, Gauvin et al. 2010) Due to its xenogenous nature, there are risks 

associated with the use of collagen, such as possible transmission of diseases. In 

addition, challenges arise from its insolubility. Collagen also varies from batch to batch: 

for example, its degree of cross-linking might vary. Other issues include religious and 

cultural considerations due to the use of porcine derived collagen, and regulatory 

concerns. (Valliant, Jones 2011).  

Gelatin is one attractive option to act as organic phase in hybrid since as a denatured 

form of collagen, it is a major constituent of natural extracellular matrix of all tissues. 

Gelatin is also more a practical choice cost wise than collagen, and it is easily available. 

Gelatin retains the functional groups of collagen along its chains but it is soluble in water, 

which is another benefit. Disadvantages include that the amino acid chains are not 
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necessarily uniform when they come from natural source. Therefore, it is difficult to 

accurately define how many covalent bonds will form between gelatin and silica, as it is 

not known how many functional groups each gelatin molecule will have. (Jones 2013) 

Other polymers studied for the use in inorganic organic hybrids include for example 

chitosan and polycaprolactone (PCL). Moreover, multiple synthetic polymers such as 

polyethylene glycol (PEG) are also experimented in hybrid research. (Jones 2013) 

3.3 Coupling agents 

The coupling agents are usually bifunctional short chain polymers containing 

alkoxysilane groups on one end and another functional group on the other end. The type 

of functional group depends on the polymer. These groups might also be as side chains 

instead of end of the chains. (Valliant, Jones 2011).  

Most common coupling agents include organosilanes such as 3-glycidoxypropyl 

trimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES), and 3-

isocyanatopropyltriethoxysiloane (ICPTES) (Mahony, Yue et al. 2014) (Fig. 12).  

 

 
 

Figure 12. Chemical structure of most common coupling agents 

 

Out of these options GPTMS is the most widely used in terms of hybrid materials due to 

its inexpensive price, and the ease of polymer functionalization. With GPTMS the 

polymer functionalization can be carried out in single step reaction. GPTMS has an 

epoxy ring on one end, and three methoxysilane groups on the other end of the molecule. 

The epoxy ring is very susceptible to nucleophilic attack, and therefore polymer 

containing nucleophilic groups such as –OH or –COOH can be functionalized with 

GPTMS. (Ren, Tsuru et al. 2001) The hypothesized reaction between GPTMS and 

natural polymer such as gelatin are shown below (Fig. 13):  
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Figure 13. Hypothesized reactions between GPTMS and gelatin, 

adapted from (Ren, Tsuru et al. 2001) 

 

In addition, it is hypothesized that the silanol groups of the GPTMS-functionalized gelatin 

would react to those of bioactive glass (Fig. 14).   

 

Figure 14. Theoretical structure of BAG/gelatin class II hybrid 
biomaterial 

 

Like mentioned earlier, other options for coupling agents exist. For example, in the case 

of ICPTES, the isocyanate functional groups are highly toxic. Therefore, during the hybrid 

synthesis it is challenging to ensure the removal of all unreacted ICPTES. In addition, 

ICPTES is found disadvantageous due to its preferential reactivity towards H2O. For this 

reason, anhydrous solvents must be used, to which for example often used gelatin is 

insoluble. (Connell, Gabrielli et al. 2017).  

While coupling agents are often used, other ways to crosslink natural polymers exist. 

These crosslinkers include for example glutaraldehyde, 1-ethyl-3-(3-
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dimethylaminopropyl)carbodiimide hydrochloride (EDC), and genipin. From those, 

glutaraldehyde is the most common and efficient one. Its aldehyde groups at both ends 

bond covalently to amine groups of polymer chain. It is easily available, inexpensive, but 

concerns exist due to its cytotoxicity upon degradation. (Bigi, Cojazzi et al. 2001) EDC 

is also cytotoxic if it remains unreacted in the solution. It is soluble in water and reacts 

with carboxyl groups on the polymer. Genipin is a non-cytotoxic alternative to 

glutaraldehyde and EDC but it is found much less effective (Bigi, Cojazzi et al. 2002). 

Due to the reasons explained above, these crosslinkers have not been studied in detail 

in the context of hybrid biomaterials.  

Due to the competitive nature of polymerization reactions of inorganic and organic 

network of the hybrid, pH value of the solution is very essential for the functionalization 

to occur. Gabrielli et al. reported that slightly acidic conditions are needed to obtain a 

functionalization through nucleophilic attack because the catalysis is too slow at a neutral 

pH. Nevertheless, if acidity is increased too much, it can result in hydrolysis of the epoxy 

ring to the corresponding diol being prevalent reaction, which limits the nucleophile 

attack. Precipitation process is most prevalent in basic conditions, which leads to epoxy 

rings remaining closed. The optimization of these reactions would need careful 

considerations of the reaction times and pH values present in hybrid synthesis (Gabrielli, 

Russo et al. 2013) 

 

3.4 Current state of hybrid biomaterial research 

 

The synthesis of the first organic-inorganic hybrids traces all the way back to early 1980s, 

more commonly referred to as “organically modified silicates” or “ormosiles” (Jones 

2012) In these hybrids starting materials were often polydimethylsiloxane (PDMS) or also 

currently widely used tetraethyl orthosilicate (TEOS). More modern approach to hybrids 

is to focus on covalently coupled class II hybrids (Table 1).  
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Organic 

phase 

Inorganic Phase Coupling 

agents 

Cells Scaffold 

fabrication 

Reference 

Gelatin SiO2-Ca(NO3)2 GPTMS MSCs freeze-

drying 

(Mahony, Tsigkou et al. 

2010) 

Gelatin SiO2 - CaO GPTMS L929 mouse 

fibroblasts 

microsphere 

leaching 

(Lao, Dieudonné et al. 

2016) 

γPGA* SiO2 GPTMS osteosarcoma foaming (Poologasundarampillai, 

Ionescu et al. 2010, 

Poologasundarampillai, 

Yu et al. 2012) 

chitosan SiO2 GPTMS - freeze-

drying 

(Shirosaki, Tsuru et al. 

2009) 

PEG SiO2 ICPTES SAOS2 rapid 

prototyping 

(Hendrikx, Kascholke et 

al. 2016) 

PCL*, 

Poly(VP-

co-

TEVS)  

borophosphosilicate 

glass 

GPTMS MC3T3-E1 compression 

molding, salt 

leaching 

(Mondal 2018) 

* poly-γ-glutamic acid (γPGA), polycaprolactone (PCL), N-vinylpyrrolidone (VP), 

triethoxyvinylsilane (TEVS)  

 

Unquestionably the most common hybrid combination so far includes silica-gelatin 

hybrids prepared by sol-gel -route. (Ren, Tsuru et al. 2001, Mahony, Tsigkou et al. 2010, 

Mahony, Yue et al. 2014, Lao, Dieudonné et al. 2016). As seen from the Table 1, hybrids 

have been mainly synthesized by using TEOS as the inorganic sol gel precursor instead 

of melt-quenched BAG particles. However, many different organic polymers are found to 

be suitable to couple with a coupling agent, such as gelatin, chitosan and 

polycaprolactone (PCL).  

However, due to the challenging nature of hybrid synthesis chemistry, and several issues 

in hybrid composition optimization, such as the choice of the coupling agent, there is still 

a long way to release the full potential of hybrid biomaterials.  

Table 1. Selected class II hybrids for bone tissue engineering applications 
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4. RHEOLOGY 

Rheology is the deformation and flow behaviour of materials. Literally the meaning of 

rheology is “flow science”: the term “rheology” originates from the Greek word “rheos”, 

meaning “river”, “flowing” or “streaming”. (Mezger 2012) It is dependent on the material’s 

inner structure, the outside forces stressing the material, and finally the ambient 

conditions, such as surrounding temperature.  

In the context of hybrid materials rheology is interesting due to the viscoelastic nature of 

the material. By studying rheological properties of hybrids, important information about 

its gelation as a function of time or temperature could be assessed. These properties are 

essential for example when designing bioinks for extrusion-based bioprinting, which is a 

popular scaffold preparation method. (Ozbolat, Hospodiuk 2016) 

Rheological behaviour of a material can be classified as shown in Table 2 below: 

(Mezger 2012) 

LIQUIDS SOLIDS 

ideally viscous viscoelastic viscoelastic ideally elastic 

flow behaviour flow behaviour deformation 

behaviour 

deformation 

behaviour 

flow/viscosity curves creep tests, relaxation tests, oscillatory tests 

 

4.1 Oscillatory measurements and detection of gel point 

Oscillation measurements, where the plate system oscillates instead of rotation, are used 

because, in this way, more viscous samples are not destroyed too easily and can be 

studied. In addition, with oscillation, it is possible to measure materials within their linear 

viscoelastic range (LVE), which indicates the range in which the test can be carried out 

without destroying the structure of the sample. (Murata 2012) 

In the two-plate model the upper plate is moving, while the lower plate remains 

stationary. The sample is sandwiched between these plates to study its deformation 

behaviour (Fig. 15).  

Table 2. Classification of rheological behaviour 
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Figure 15. Two-plate system with 20 mm diameter plate geometry 

 

Shear modulus G can be express as: 

 

𝐺 =  
𝜏

𝛾
     (1) 

where τ is the shear stress and γ is the shear deformation / shear strain. Shear modulus 

G describes the material’s strength or stiffness, and it is influenced by time and 

temperature. Shear stress can be defined as: 

𝜏 =  
𝐹

𝐴
       (2) 

where F is the shear force applied to stressed material, and A is the area of the upper 

plate. Unit of shear stress is [N/m2] or [Pa]. Shear deformation can be defined as: 

𝛾 =  
𝑠

ℎ
    (3) 

where s is the deflection path from rest to maximum deflection, and h is the distance 

between plates.  

Oscillation frequency can be specified either as angular frequency ω in [rad/s] or as the 

frequency f in [Hz]. These two can be conversed to each other as follow:  

 

ω = 2π ∙ f   (4) 

 

Viscoelastic material can be described by 1) their storage modulus and 2) their loss 

modulus.  
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Complex shear modulus G* [Pa] is used since values that are determined in harmonic 

periodic fashion in sinusoidal processes like oscillation are written in complex form: 

𝐺∗ =  
𝜏𝐴

𝛾𝐴
   (5) 

 

Storage modulus G’ (G prime) stands for the stored deformation energy by the sample 

during deformation process, such as shearing. Materials which store deformation energy 

ultimately stay in unchanged shape after a load cycle. Therefore, G’ measures the elastic 

behaviour of the sample.  

Loss modulus G’’ (G double prime) measures the lost deformation energy during 

deformation. In other words, the structure of the material changes, and energy is spent 

during the process. Materials that behave that way include samples that flow either 

partially or completely. With flow there is relative motion between the units of the 

structure, which causes frictional forces between the components. Ultimately, frictional 

heat is created. A part of this heat energy heats up the sample, and another part may be 

lost in the form of heat to the surrounding environment. Irreversible deformation 

behaviour occurs, and therefore, G’’ measures the viscous behaviour of the sample. 

(Mezger 2012, Murata 2012) 

The relationship between G*, G’ and G’’ using phase-shift angle δ can be seen in Figure 

16:  

 
Figure 16. The relationship between G*, G’ and G’’ using phase-shift 

angle δ 
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From this figure we get: 

tan 𝛿 =  
𝐺′′

𝐺′
   (6) 

 

This is referred to as the loss factor, which is a measure of the lost and stored 

deformation energy. This way the ratio of the viscous and elastic portion of the 

viscoelastic deformation behaviour can be defined. For instance, ideal elastic behaviour 

happens when tan 𝛿 = 0, and G’ dominates G’’. Correspondingly, ideally viscous 

behaviour is expressed as tan 𝛿 → ∞, where G’’ completely takes over G’. (Mezger 2012) 

In the case of gel formation, hardening and curing processes, sol/gel transition point (gel 

point) is reached when tan 𝛿 = 1, and the ratio of G’ and G’’ is the same. (Fig. 17) 

 
Figure 17. Sol/gel transition point (gel point) 

 

 

In general, the relationship between G’ and G’’ is summarized below: 

 

 G’ < G’’, viscoelastic liquids 

 

 G’ = G’’, sol-gel transition point, gel point 

 

 G’ > G’’, viscoelastic solids 
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4.2 Temperature-dependent flow behaviour  

 

The effect of temperature on the flow and deformation behaviour of measured sample 

can be assessed with rheological temperature ramp measurements. In these 

measurements, viscosity η is determined as a function of the temperature. For example, 

it is possible to investigate the softening/melting temperature, or solidification 

temperature of the sample by this type of rheological measurement. Viscosity can be 

defined for ideally viscous liquids at a constant temperature as: 

η =  
𝜏

𝛾
   (7) 

where τ is the shear stress, and γ is the corresponding shear rate. Unit of viscosity is 

[Pas] (Pascal seconds, 1 Ns/m2).  

 
Figure 18. Viscosity as a function of temperature 

 

As seen in Figure 18, the temperature is commonly represented on a linear scale on the 

x-axis of η(T) –diagram, having viscosity as y-axis either on linear or logarithmic scale, 

depending on the range of viscosity values measured. ηmin shows the viscosity minimum 

and it is called softening or melting temperature. ηmin shows the viscosity maximum 

usually giving information about the crystallization or freezing point of the sample. 

(Mezger 2012) 
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5. MATERIALS AND METHODS 

The objective of the study was to synthesize two different bioactive glass/gelatin hybrid 

materials and characterize their in vitro dissolution properties and biocompatibility using 

human bone marrow derived mesenchymal stem cells (hBMSCs).   

The experimental part of the work was conducted as a cooperation between the 

Bioceramics, -glasses and –composites group, and the Adult Stem Cell group at 

Tampere University.  

5.1 Materials 

Two bioactive glass compositions were used in hybrid synthesis: commercially available 

S53P4 (BonAlive®) as a control and a borosilicate glass, based on the S53P4, where 

12.5% of the SiO2 was replaced with B2O3,and CaO was partly substituted with Sr and 

Mg (labelled “mix”/BMgSr)  (Tainio 2016). The glasses were melted, in air, at 1400 and 

1200 °C, respectively. They were they annealed at 520 and 500 °C respectively to 

remove residual stress and further crushed to obtained powder, using a ball mill. The 

particle size used was < 38 µm. Both BAGs were made at the laboratory of tissue 

engineering and biomaterials, and the full protocol can be found elsewhere (Tainio, 

Salazar et al. 2020). The compositions (in mol%) of both glass compositions are shown 

in Table 3 below: 

 SiO2 B2O3 CaO Na2O P2O5 MgO SrO 

mix 47.12 6.73 6.77 22.66 1.72 5.00 10.00 

S53P4 53.85 - 21.77 22.66 1.72 - - 

 

In addition to bioactive glass, gelatin from porcine skin (Type A 300, Sigma) was used 

along with 3-Glycidyloxypropyl trimethoxysilane (GPTMS) (Sigma), and 0.01 M 

hydrochloric acid (HCl) diluted from 1M Titripur Reag. Ph Eur, Reag. USP (Sigma). 

Hybrids were prepared by first dissolving gelatin into 0.01 M HCl at 50 mg/ml 

concentration, at 37 °C. GPTMS (v = 3.68 ml) and bioactive glass (m = 535,7 mg) were 

added simultaneously to match the C-factor 1000, and the final solution was left to rotate 

in a UVP Hybridizer Hybridization oven (Analytik Jena US LLC, California, USA) until 

gelation. The protocol is summarized in the Figure 19 below:  

Table 3. Used bioactive glass compositions in mol-% 
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Figure 19. Synthesis protocol for hybrids 

 

In this study the C-factor (CF), which is referred to as the molar ratio between GPTMS 

and gelatin (
𝐺𝑃𝑇𝑀𝑆 (𝑚𝑜𝑙)

𝑔𝑒𝑙𝑎𝑡𝑖𝑛 (𝑚𝑜𝑙)
), was maintained constant at 1000. 

Various weight ratios of gelatin and BAG were tested. The weight ratio was found to 

influence the gelation time. Times before gelation in the hybridizer are reported in the 

Table 4. Gelation time was assumed to be from the time of mixing all the reagents to 

complete gelation of hybrid into solid gel. For the composition 30/70 rheological 

properties were measured. In this case the hybrid gels were not let to completely gelate, 

but instead after visible increase of viscosity (transforming from liquid to honey-like 

consistency) rotation was stopped.  

 

 
Full gelation time Rheological 

measurements 

S53P4/gelatin 30/70 
15/85 
5/95 
1/99 

~4h 
~6h 
~12h 
~24h 

~3h 30 min 
- 
- 
- 

mix/gelatin 30/70 
15/85 
5/95 
1/99 

~1h 30 min 
~4h 
~6h 
~11h 

~1h 15 min 
- 
- 
- 

Table 4. Gelation times for hybrids 
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5.2 Methods 

5.2.1 In vitro dissolution 

 

Dissolution test for hybrid materials were performed in simulated body fluid (SBF), which 

has similar ion concentration to blood plasma (Table 5). SBF test is used to assess the 

ability of the material to induce precipitation of hydroxyapatite layer (bioactivity). In 

addition, hybrid dissolution was also tested in collagenase (enzymatic degradation) 

solution. SBF buffer solution was prepared following the protocol presented by Kokubo 

et al (Kokubo, Kushitani et al. 1990). Specific details about SBF preparation is presented 

in the Appendix. 

 

 Na+ K+ Mg2+ Ca2+ Cl- HCO3
- HPO4

2- SO4
2- 

Plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5 

SBF 142.0 5.0 1.5 2.5 147.8 4.2 1.0 0.5 

 

Hybrids were synthesized for SBF dissolution test according to the protocol described 

earlier. The following day after synthesis gels were cut into small pieces ranging from 

450 mg to 510 mg. Sample pieces were placed into 30 ml falcon tubes. The solution to 

mass ratio was kept constant at 1mL/35mg. The time points for SBF test included 24, 

48, 72, 168, and 336 hours. All the measurements were done in triplicates except SBF 

controls without hybrid samples. SBF dissolution samples were kept between time points 

in Multitron AJ 188g (Infors, Bottmingen, Switzerland) shaking incubator at 37 °C and 

100 RPM.  

At each time point pH values of each SBF solution were measured at 37.00 ± 0.02 °C 

with Mettler Toledo SevenMulti MP 225 pH-meter (Mettler-Toledo International Inc., 

Greifensee, Switzerland) From the extracted solution the ion concentrations were 

analysed with Inductively coupled plasma optical emission spectrometry (ICP-OES) 

(Agilent Technologies, California, USA). Samples for ICP-OES were prepared by diluting 

the samples 10 times to 1M nitric acid (HNO3). The analysed wavelengths are listed in 

the table below: 

Table 5. Ion concentrations of blood plasma and SBF buffer solution (mmol/l) 

(Varila, Fagerlund et al. 2012) 
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 B Ca Mg Na P Si Sr 

Wavelength 

(nm) 

249.772 396.847 285.213 589.592 213.618 288.158 407.771 

 

 

In addition, mass loss of the immersed hybrid pieces was calculated:  

 

𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 =  
𝑚0−𝑚1

𝑚0
 ∙ 100 %  (8) 

 

Before weighing the sample pieces were washed with 96% ethanol to remove excess 

SBF and dried gently with paper.  

The collagenase degradation test was conducted for 0.5h, 1h, 2h, 3h, 4h, 5h, and 6h. 

Hybrid gels were synthesized similarly as for the SBF dissolution test. The following day 

after synthesis gels where cut in small pieces (300-380 mg) in order to fit into 48 well 

plates. All measurements were done in triplicates, and between time points samples 

were left in 48 well plate in physiological temperature 37 °C inside incubator.  

 0.1% collagenase solution was prepared by mixing collagenase enzyme (from 

Clostridium histolyticum, type IA, crude, Sigma), TRIS-HCl (50 mM) and CaCl2 (0,36 mM) 

into distilled water. After dissolving all the reagents, the pH value was adjusted to 7.4 at 

37 °C by adding drops of 1M NaOH. Collagenase solution was added to wells with 

samples to match ratio of 1000 mg of sample per 3 ml. At every time point ICP-OES 

samples were prepared similarly as for the SBF samples. In addition, mass loss was 

calculated by using the equation (8) defined earlier.  

 

5.2.2 Thermogravimetric analysis (TGA)  

 

In order to analyse the glass and gelatin distribution of the hybrid materials 

thermogravimetric analysis (TGA) was conducted. STA 449 F1 Jupiter Simultaneous 

Thermal Analyzer (Netzsch Group, Selb, Germany) was used in measurements with 

Al2O3 crucibles. For both hybrids, small pieces of overnight stabilized gels were cut and 

left to dry in room temperature for 48 hours. In addition to time point 0 h samples, TGA 

analysis was also conducted to samples being immersed in SBF for 24, 48, 72, and 168 

hours. Also, gels consisting of only gelatin and GPTMS were prepared and dried 24 

hours, and then analysed. All measurements were done in triplicates. The TGA analysis 

Table 6. Wavelengths for ICP-OES 
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was conducted from room temperature to 600°C at 5K/min, in air. The organic content 

burns during heating and the inorganic glass part is left as residue.  

 

 

5.2.3 Rheological measurements 

 

In order to study the viscoelasticity of the hybrids rheological measurements were 

conducted. Rheological measurements were performed using Discovery Series Hybrid 

Rheometer 2 (TA Instruments, Delaware, USA) using 20 mm diameter parallel plate 

geometry. 

Two different procedures were used: time sweep and temperature ramp. Timesweep 

measurements were performed at 37 °C for 1.5 h, with 20 mm diameter parallel plate 

geometry, and sample size of 350 µl. The mixing time inside hybridizer was 1 hour 15 

minutes for mix hybrids, and 3 hours 30 minutes for S53P4 hybrids. These mixing times 

were chosen based on the visible viscosity increase of the hybrids, which is needed in 

order to be able to pipette samples and sandwich them between parallel plates. These 

mixing times were kept constant for each measurement. The moduli G’ and G’’ were 

detected at frequency of 1.0 Hz and 0.1% strain.  

Temperature ramps were performed with temperatures ranging from 37 °C to 20 (18) °C, 

with 300s soak time at 37 °C, and ramp rate 0.5 °C /min. 20 mm diameter parallel plate 

geometry was used, with hybrid sample size of 350 µl. The samples for temperature 

ramps were prepared without adding coupling agent GPTMS, because it would cause 

gelation time-dependently, and therefore the real impact of the temperature on gelation 

would not be able to be studied. For this reason, 25 ml of 0.01 M HCl and 535,7 mg of 

BAG were mixed and rotated in hybridizer in 24 °C until visible increase of viscosity (1,5 

hours for mix hybrid and 2 hours for S53P4 hybrid).  

For all the measurements the upper plate of the parallel plate system was lowered until 

it was in contact with the sample surface and axial force on the instrument was 0.01 N. 

All measurements were conducted in triplicates.  
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5.2.4 Hybrid cytotoxicity testing  

 

In the cell culturing part of this thesis work, the cells used were human bone marrow 

derived stem cells (hBMSCs), passages ranging from four to six. Used medium included 

5% human serum (HS) and 1% of penicillin – streptomycin (P/S) antibiotics. The medium 

was sterile filtered using Stericup (Thermo Scientific Nalgene Rapid-Flow) before using 

in contact with cells to minimize the risk of contamination. Growth factor FGF-2 was 

added to culturing flasks (Biolite 75 cm2 flasks and 25 cm2 flasks, vented, Thermo 

Scientific) 5µl per 75cm2 flask when expanding the cells. Adding FGF-2 has shown to 

enhance osteogenic potential, extend cells’ lifespan and proliferative capacity. (Bianchi, 

Banfi et al. 2003, Martin, Muraglia et al. 1997) All the Live/Dead experiments were 

conducted in Nunclon delta surface (Thermo Scientific) wellplates. 

All cell culturing and testing was performed in CellTech Laboratory and BMT laboratory 

at the Institute of Biosciences and Medical Technology (BioMediTech, Arvo building). 

Cryopreserved human bone marrow derived mesenchymal stem cells (passages 4-6) 

were thawed according to instructions provided by Adult Stem Cell Group. Melted cell 

suspension was added into 5 ml of cold medium and centrifuged for 5 min 1000 rpm 

(Eppendorf centrifuge 5810 R, Eppendorf Ag, Germany). Cell pellet was then 

resuspended in 4 ml of warm medium and divided to two 75 cm2 cell culturing flasks. 

(Flasks 2 ml + 8 ml medium inside). In addition, 5 µl of FGF-2 growth factor (10µg/ml) 

were added to both flasks. Flasks were left in the incubator at 37°C, and medium were 

changed every three days. 

The general rule when culturing BMSCs is to seed 3000 cells per cm2, which means 

approximately 225 000 cells per 75 cm2 flask. When increase in proliferation rate is 

wanted, medium is changed only partially, and new FGF-2 is added only half the amount 

of usual (2.5 µl). It is also possible to slow down the proliferation by changing the whole 

medium.  

When cells reach ~80% confluency, they were trypsinized (TrypLE Select 1X, 

ThermoFischer) according to given protocol, and counted using Bürker cell counting 

chamber. Seeding density was 25 000 cells per 1 cm2 (per well in 48-well plate), so after 

counting cells were suspended to medium to match 25 000 cells/ml.  

hBMSCs were seeded to 11mm diameter and ~3mm thickness cylinder-shaped samples 

(Fig 20). 
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Figure 20. Hybrid sample for cell cultures, diameter 11 mm, height 

3mm 

 

The hybrids for the cell samples were synthesized the way explained earlier, but all the 

reagents were sterile-filtered, and synthesis was conducted inside a laminar hood. 

Hybrids were rotated in hybridizer oven until preferred viscosity was reached, then they 

were casted into cut syringe moulds, and covered with autoclaved aluminium foil caps 

(Fig. 21). This way it was possible to ensure uniform size of the samples, and the 

samples were found to easily detach from syringes without breaking. For example, when 

casted directly to well plates, it was impossible to get samples out without breaking them.  

 

 
Figure 21. Syringe moulds with autoclaved aluminium foil caps 

 

The moulds were let in room temperature inside laminar hood, and they were cut with 

11mm diameter hollow puncher the next day.  
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Figure 22. 11mm diameter cylinder-shaped samples fit perfectly in 48 

well plates 

 

Pre-incubation of the samples was performed in cell culturing medium for minimum 72 

hours, in 37°C incubator. This way the initial burst release of ions can occur without cells, 

and it would wash away unreacted molecules.  

Live/dead viability/cytotoxicity assay was used to detect cell proliferation and viability at 

time points 24h, 72h and 168h according to the instructions provided by the Adult Stem 

Cell Group. The Live/Dead working solution was prepared in concentration earlier 

optimized for well plates and bioactive glass scaffolds, summarized in Table 7 below:  

 

Dye Working 

concentration 

Pipette 

Dye DPBS 

EthD-1 0,25 µM 1,25 µl 10 ml 

Calcein AM 0,50 µM 1,25 µl 

 

 

-20 oC stored dyes are warmed to room temperature and pipetted into Dulbecco's 

phosphate-buffered saline (DPBS). Wells to be analysed are first washed once with 

warm DPBS, and then working solution is added for 30-45 minutes. Wellplates are 

covered with an aluminium foil for protection against light. After incubation working 

solution is removed and DPBS added for visualization. Dead control is prepared by 

adding 1 % Triton-X to cells and incubating for 10 minutes in room temperature.  

Microscopy of the stained samples was done using Olympus IX51 Inverted Fluorescence 

microscope, and by using the software DP Controller (2.2.1.227) and DP Manager 

Table 7. The protocol to prepare Live/dead working solution 
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(2.2.1.195). (IX51, Olympus, Tokyo, Japan, equipped with a fluorescence unit and a 

camera DP30BW, Olympus). When visualizing the blue filter is for living cells stained by 

Calcein AM, and the green filter is for necrotic cells stained by EthD-1. Images were 

treated using ImageJ software. The overall cell culturing method is summarized below in 

Figure 23:  

 

 

Figure 23. Protocol for cell culturing, direct method 

 

Cells were cultured also using other method. In order to assess the effect of degradation 

byproducts from hybrids to cells, cells were cultured also in contact with preincubation 

medium without actual hybrid sample pieces. From pre-incubation immersion medium is 

collected from different time points and already seeded cells are cultured with this 

immersion medium. This is shown in the Figure 24: 

 

 
Figure 24. Protocol for cell culturing, indirect method  
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From both methods ICP- samples were collected in 15 ml falcon tubes and diluted to 

distilled water in ratio of 1:10. ICP samples were stored in freezer until ICP-OES analysis. 

The wavelengths presented in Table 6 earlier were also used for these ICP samples. 
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6. RESULTS  

6.1 pH measurements 

pH – values of hybrids during their synthesis were measured in order to assess pH value 

changes during the gelation process. Table 8 presents approximate pH values during 

hybrid synthesis process for both hybrids. All pH-values were measured at 37.00 ± 0.02 

°C, except the measurements with pH-paper. Due to different gelation times and 

changes in viscosity of hybrid solutions pH values were measured at different times.  

 

 
S53P4 30/70 mix 30/70 

Directly after mixing pH-paper 

pH meter 

8 

7.64 ± 0.02 

9 

8.54 ± 0.02 

0.5h-1h in rotation, no 

visible change in viscosity 

pH paper 

pH meter 

8 

8.29 ± 0.02 

10 

9.07 ± 0.02 

Increasing viscosity pH-paper 

pH meter 

9 

8.56 ± 0.02 

10 

9.43 ± 0.02 

After overnight 

stabilization (fully gelated) 

pH paper 

pH meter 

9 

- 

10 

- 

 

 

For both hybrids, the pH value was observed to increase during synthesis. For mix 

(borosilicate) hybrid pH values were slightly higher. However, due to increasing viscosity 

of hybrids in synthesis there is no information whether the pH keeps rising during and 

after gel point.  

 

6.2 Thermogravimetric (TGA) analysis 

 

TGA analysis was conducted to assess the hybrid resistance to thermal decomposition 

and to evidence successful grafting of GPTMS to gelatin and BAG. Thermal 

decomposition of BAG/gelatin hybrid consists of two steps: first the decomposition of 

organic gelatin in lower temperatures, and finally of BAG in very high temperatures. 

Table 8. pH-values of 30/70 hybrids during synthesis 
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Organic-inorganic crosslinking would result in higher resistance to thermal 

decomposition. (Lao, Dieudonné et al. 2016) In our case, only decomposition of gelatin 

was assessed, and therefore temperature was raised only until 600 °C. This way we can 

assess whether our hybrids in reality display the theoretical 30/70 weight ratio between 

bioactive glass and gelatin.  
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Figure 25. Residual mass of S53P4 & borosilicate (mix) hybrids 
compared to gelatin/GPTMS  

 

Residual masses of both hybrids and gel made of only gelatin and GPTMS are shown in 

Figure 25. Higher residual mass for hybrids indicate higher resistance towards 

dissolution and slightly improved stability. However, differences are relatively small.  

For triplicates combined values are displayed in Table 9 below using standard deviation 

to calculate error:  

 

 Residual mass (%) at 600 °C 

Gelatin & GPTMS 51.89 

S53P4 54.73 ± 1.24 

mix 53.44 ± 1.22 

 

Table 9. Residual masses of S53P4 and mix hybrids 
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By using the measured residual masses, it is possible to calculate back and estimate the 

weight ratio between BAG, gelatin and GPTMS.  

 

residual mass at 600 °C, gelatin & GPTMS(1 - x) + x = residual mass at 600 °C (hybrid)   

 

x = percentage of BAG remaining 

 

Using this formula percentages of S53P4 and mix can be calculated:  

• S53P4 ~6% 

• B12,5-Mg5-Sr10 ~2% 

 

The calculated values represent the hybrid composition quite accurately. Because the 

theoretical composition of 30/70 wt-% between BAG and gelatin didn’t take account the 

mass of added GPTMS, the real amount of BAG is much less than theoretical 30 %. The 

density of GPTMS being 1.07 g/ml at 25 °C, it can be estimated that the more realistic 

weight ratio would be ~69% of GPTMS, ~22% of gelatin, and ~9% of BAG. 

 

6.3 In vitro dissolution 

From the SBF dissolution firstly the pH changes of different hybrid compositions were 

studied (Fig 26). Error stated by the pH- meter manufacturer (± 0.02) was used, unless 

the error measured from triplicates was bigger. In that case, the error was stated as the 

standard deviations of the triplicates.  
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Figure 26. pH value changes in SBF immersion for 2 weeks 

 

As seen in Figure 26, in general, higher glass content leads to higher pH increase. 

Clearly for 30/70 hybrids pH increased the most, while other compositions containing 

less BAG showed more subtle pH increase. pH can be seen to increase most rapidly 

during the first 72 hours in SBF immersion, and to stabilize at 2 weeks of immersion.  
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Figure 27. Mass loss (%) upon dissolution in SBF for up to 2 weeks 
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As seen in Figure 27, all hybrids showed mass loss upon immersion in SBF. Regardless 

of the glass/gelatin ratio the mass loss was rapid for up to 24h, then slowed down up to 

72h and finally was fairly stable until 2 weeks. The mass loss was more pronounced in 

materials with higher glass content and more subtle for the materials containing less 

glass particles. The mass loss was also found to be significantly higher for hybrids 

containing the silicate glass compared to the one (with similar glass content) containing 

the borosilicate bioactive glass.  

In addition to pH and mass loss, Si, B, P, Ca, Mg and Sr ion release patterns from hybrids 

were determined with ICP-OES measurement (Fig. 28-30). 
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Figure 28. Si concentration in SBF immersion as a function of 

immersion time 

 

All hybrid compositions show increasing amount of Si in solution as a function of 

immersion time. The quantity of released Si was higher in the case of silicate bioactive 

glasses than for the borosilicate counterpart. Furthermore, it is important to note that the 

Si release was highest for the 5/95 hybrids, and lowest for 30/70 hybrids. This indicates 

that the higher the glass content the lower the Si release in solution. 

Figure 28 and 29 presents the Ca and P concentration, respectively, in the solution as a 

function of immersion time.  
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Figure 29. Ca concentration in SBF immersion as a function of 

immersion time 
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Figure 30. P concentration in SBF immersion as a function of 

immersion time  

 

Before discussing the Ca release, it is important to remind that the mix glass contains Sr 

and Mg which were replaced for Ca. Therefore, in the mix glass the Ca content is 

significantly lower than for the S53P4 glass. 

With increasing immersion time, the Ca content remained fairly constant in the case of 

the hybrid containing S53P4 in 30/70 ratio. The hybrid containing similar glass content 
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but of the borosilicate glass the Ca content decrease at 2 weeks of immersion. All other 

samples exhibit a decrease in the Ca content starting between 24 and 72 h of immersion 

depending on the materials compositions. 

The P concentration, however, showed a significant decrease in concentration, for all 

materials with increasing immersion time, already at 24h of immersion, except for the 

5/95 samples that exhibit a decrease in P at longer time. In general, the higher the glass 

content the more rapid the drop in P. Also, the silicate glass leads to faster decrease in 

P. For all hybrid compositions both Ca and P concentrations decreased in 2 weeks of 

SBF immersion, indicating HCA layer formation on BAG surface.  

In addition, thermogravimetric analysis for post-SBF immersion hybrids was conducted.  

This would give information about the effect of SBF immersion on the stability of the 

hybrids. Figure 31 presents the TGA curves from hybrids made using mix glass, after 

synthesis (t=0h) and after immersion in SBF (t=24, 48, 72, 168h). 
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Figure 31. Residual mass of borosilicate hybrids (mix) before (t=0h) 

and after SBF immersion (24h) 

 

First of all, once can notice that the shape of the curve, post immersion resembles more 

the TGA curve of the gelatin/GPTMS without bioactive glass presented in Figure 25. 
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For borosilicate hybrids it can be seen that hybrid before SBF immersion is slightly more 

stable than same hybrids after immersion. This is detected by observing the shape of 

the curve compared to later time points, mass loss upon heating is detected to be slightly 

slower. No big differences between the SBF immersion hybrids is detected, their 

behavior upon heating is very similar, with similar amount of residual mass after heating 

to maximum temperature.  
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Figure 32. Residual mass of S53P4 hybrids (mix) before (t=0h) and 

after SBF immersion (24h) 

 

As seen in Figure 32, S53P4 hybrids seem slightly more reactive in terms of the bioactive 

glass: the residual mass decreases upon SBF immersion time more than when 

compared to mix hybrids. S53P4 hybrids are probably also slightly more resistant against 

heating, because there is no as big difference between the behaviour of hybrid before 

and after SBF immersion.  

For triplicates combined values are displayed in Table 10 below using standard deviation 

to calculate error:  
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 SBF immersion time (h) Residual mass (%) at 600 °C 

S53P4 24 59.96 ± 0.62 

 48 50.70 ± 3.61 

 72 51.11 ± 2.06 

 168 50.26 ± 0.72 

mix 24 55.42 ± 0.19 

 48 53.77 ± 0.58 

 72 53.64 ± 1.23 

 168 54.25 ± 0.53 

 

The residual masses are slightly larger for mix hybrids, but overall no big differences 

between two hybrids in terms of the residual mass as a function of immersion time. 

Overall, the residual mass decreases upon SBF immersion. 

In vitro enzymatic studies are aimed at assessing the potential increased in stability, 

upon enzymatic attack, of the hybrids. In turn, this can give insight on the level of cross-

linking between the organic and inorganic phase. Two different hybrid materials with 

same weight ratio of gelatin and glass (30/70) but different BAG, were studied to assess 

how hybrid composition alters the enzymatic degradation behaviour. This was analysed 

by measuring the mass loss of collagenase solution immersed hybrid samples, and by 

analysing their ion release by ICP-OES. Errors are stated as standard deviation, and all 

experiment is performed with three parallel samples.  
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Figure 33. Enzymatic degradation of hybrid materials by collagenase, 

mass loss in % 

 

Table 10. Combined residual masses after SBF immersion 
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Both hybrids degraded rapidly in collagenase solution immersion, as expected due to 

the high gelatin content of the hybrids. After one-hour immersion in collagenase solution 

mass loss of sample pieces were found to be over 50%. After three-hour immersion all 

samples were completely dissolved in collagenase solution. However, compared to plain 

gelatin, adding of GPTMS and BAG resulted in more stable gels.  

From ICP-OES results (Fig. 34) it can be seen that the Si release increases until three 

hours for both hybrids, and after that all samples completely dissolved in solution. Clearly 

Si-O-Si bonds are undergoing destruction. In S53P4 composition there is slightly more 

Si, which explains higher Si release. Otherwise both hybrids have same C-factor, and 

both completely dissolved, so only reason for difference is the difference in glass 

composition.  
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Figure 34. Si release during enzymatic degradation 

 

Results for all ions individually are presented in Appendix.  

 

 

 

 

6.4 Rheological properties 

Rheological properties of hybrids were assessed in order to evaluate the gel point and 

other viscoelastic properties of the hybrids. Both hybrids in BAG/gelatin ratio 30/70 were 
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characterized through oscillatory time sweeps at 37 °C and through temperature ramps. 

Hybrids were mixed inside hybridizer until few minutes before expected gelation. 

Expected gelation time was possible to estimate from the visible increase in viscosity of 

the gels. Mixing time and the initiation time for rheological measurements was kept same 

for every measurement.  

The G’ and G’’ moduli as a function of time for the 30/70 mix hybrid can be seen in Figure 

35 below: 
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Figure 35. G’ and G’’ as a function of time for 30/70 mix hybrid 

 

For borosilicate hybrid (mix) gelation point, where the moduli intersect, is detected 

approximately around 800 seconds. When the initial mixing time of 1h 15min is 

considered the overall gelation time for mix hybrid is estimated around 1h 30 min. Similar 

result is shown in Table 4. After gelation point both moduli can be seen to continue 

increasing.  

The G’ and G’’ moduli as a function of time for the 30/70 S53P4 hybrid can be seen in 

Figure 36 below: 
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Figure 36. G’ and G’’ as a function of time for 30/70 S53P4 hybrid  

 

For S53P4 hybrid similar behaviour in terms of gelation is detected. However, the time 

window between viscosity that is possible to use as time sweep sample, and full gelation 

point is slightly shorter than for borosilicate hybrid, less than 500 seconds. When the 

mixing time of 3h 30 min is considered, overall gelation time of approximately 3h 40 min 

is obtained. This slightly less than earlier measured 4h shown in Table 4. In addition, 

similarly than for mix hybrid, for S53P4 hybrid the both moduli keep increasing after the 

detected gelation point. 

In addition to gelation point detection in means of time sweep measurements, 

temperature ramps for both hybrids without adding time dependent GPTMS are 

performed (Fig. 37). Gel containing only gelatin is used as a control.   
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Figure 37. Viscosity as a function of temperature for hybrids, gelatin as 
a control 

 

As seen in Figure 37, for all the materials the viscosity increases as a function of 

decreasing temperature. This indicates the gels becoming more solid in lower 

temperatures. S53P4 hybrid follows similar pattern in viscosity increase as a function of 

decreasing temperature than control gelatin. For borosilicate hybrid the viscosity 

increase is steeper and occurs earlier in slightly higher temperature (~24 °C).  

 

6.5 Hybrid cytotoxicity  

 

The biocompatibility of hybrid materials was assessed by culturing human bone marrow-

derived stem cells (hBMSCs) in contact with hybrid materials. In addition, hBMSCs were 

cultured with hybrid extract, without direct contact with the samples.  

Images from Live/Dead assay for 15/85, 5/95, and 1/99 wt-% compositions (BAG/gelatin) 

for both hybrids are seen below:  
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Figure 38. hBMSC viability in contact with hybrid materials. Scale bar 

200 µm. 

 

As seen in Figure 38, after 24h of culturing some elongated and attached cells can be 

seen for each composition, except for 1/99 wt% hybrids. However, after 72 hours, cell 

proliferation and attachment deteriorate rapidly, resulting in very low viability of hBMSCs. 

No big difference between the borosilicate or S53P4 glass is observed in terms of cell 

viability. 

Similar results were received from imaging cells in contact with hybrid extracts, without 

contact with the material. Naturally when hBMSCs were already spread and attached to 

well plates, more viable cells are detected in images.  

 

 
Figure 39. hBMSC viability when cultured with hybrid extracts. Scale 

bar 200 µm.  
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For all other composition than S53P34 1/99 wt-%, decrease in cell proliferation and 

attachment is detected already with 24h immersion extract. This is seen as changes in 

cell morphology and clear areas on the well plate, where attachment is lost.  

In addition to Live/Dead assay, the ion release from hybrids during pre-incubation phase 

and during cell culturing when immersed in cell culturing medium was also studied with 

ICP-OES.  

 

 

 Overall the measured ion concentrations after 72h pre-incubation are much higher 

than ion concentrations measured from cell cultures after pre-incubation (Fig. 40-44).  

Especially Si concentrations are much higher also when compared to ICP-OES results 

from SBF dissolution test (Fig. 28)  

ICP-OES results from cell cultures at certain time points are shown below: (Fig. 40-44). 

 

.  

  

Table 11. Ion concentrations (µg/ml) after 72h pre-incubation in medium 
 

S53P4 15/85 mix 15/85 S53P4 5/95 mix 5/95 

 

S53P4 1/99 

 

mix 1/99 

B - 41.23 ± 

3.27 

- 11.17 ± 

2.23 

- 4.20± 

0.50 

Ca 147.40 ± 

20.85 

66.53 ± 

11.14 

58.17 ± 

8.43 

66.50 ± 

9.20 

64.73 ± 

4.13 

84.25 ± 

0.49 

Mg 14.03 ± 

2.25 

40.70 ± 

2.00 

13.70 ± 

3.50 

23.87 ± 

2.12 

13.50 ± 

2.50 

18.34 ± 

1.85 

P 10.97 ± 

0.81 

14.90 ± 

5.67 

17.97 ± 

1.33 

33.60 ± 

3.63 

30.53 ± 

1.70 

37.03 ± 

6.44 

Si 483.12 ± 

29.44 

302.40 ± 

25.32 

576.37 ± 

200.97 

453.40 ± 

79.97 

1043.90 
± 22.34 

 

766.20 ± 

34.65 

Sr - 166.53 ± 

7.18 

- 64.63 ± 

15.73 

- 23.87± 

2.54 
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Figure 40. Si concentration as a function of medium immersion time 

 

As seen in Figure 40, highest Si release was detected for 1/99 hybrids. Also during 72h 

pre-incubation, 1/99 hybrids possess the highest Si concentrations. In general, the Si 

concentration can be seen to increase with decreasing glass content of the hybrid.   
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Figure 41. Ca concentration as a function of medium immersion time 

 

As seen in Figure 41, Ca concentration is seen to stay quite constant upon medium 

immersion without big differences between hybrids.  
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Figure 42. P concentration as a function of medium immersion time 

 

As seen in Figure 42, P concentration is decreasing upon immersion quite drastically, 

which would suggest high reactivity and rapid HA layer precipitation.  

Boron and Strontium concentration from borosilicate hybrids is seen below:  
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Figure 43. B concentration as a function of medium immersion time  
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When comparing different mix hybrid compositions, B concentration depends 

unsurprisingly on the BAG content: the higher the BAG content, the higher in the release 

of B.  
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Figure 44. Sr concentration as a function of medium immersion time 

 

Similar trend for Sr ions is seen as for B ions: higher Bag content indicates higher release 

of Sr ions.  

 

Rest of ICP-results for each element individually are found in the Appendix.  
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7.  DISCUSSION 

7.1 pH measurements 

Assessing how the different hybrid samples affect the pH-value of surrounding solution 

is important in order to determine whether material would be suitable for cell culturing. 

The transient local microenvironment due to scaffold resorption might cause big effects 

on cell proliferation and function. For example, Monfoulet et al. found that excessive 

alkalinisation (pH > 7.90) in the microenvironment of hBMSCs inhibits osteogenic 

differentiation (Monfoulet, Becquart et al. 2014) 

Overall, both hybrids were found to show pH increase. Borosilicate –containing hybrids 

were found slightly more basic. The most logical explanation to this behaviour is the 

alkalinisation effect by bioactive glasses. Bioactive glasses consume protons during the 

ion exchange reactions, and release alkaline ions when resorbing, which increases the 

pH. In addition, during the gelation and hybrid synthesis process multiple not well-known 

chemical reactions occur between glass, gelatin and GPTMS, which might contribute to 

this pH increase. As discussed earlier it has been shown that the pH also affects to the 

hybrid coupling reactions. For instance, too acidic pH value during hybrid synthesis 

would lead to degradation of polymer, and too basic pH value would inhibit the epoxy 

ring opening of GPTMS. (Gabrielli, Russo et al. 2013)  

However, measuring pH using pH paper would give only a rough idea of the pH value. 

In addition, pH meter available has quite wide error of measurements (± 0.02). When 

synthesizing hybrids, gelation point and complete transition from viscous liquid to viscous 

solid can be seen. This limits the possibilities to measure pH value of gelating hybrid 

solution. In addition, pH values were measured only from composition with 30/70 wt-% 

between glass and gelatin. Studying the pH-value changes for other compositions would 

have given valuable information about the level of pH during hybrid synthesis.  

7.2 Thermogravimetric (TGA) analysis 

 

TGA analysis can be used to evidence successful grafting of GPTMS to both gelatin and 

bioactive glass. Also, in order to calculate the actual organic-inorganic ratio in the hybrid 

materials the results of TGA analysis are useful. 
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As seen in the calculations of the actual ratios between the organic and inorganic 

phases, the 30/70 hybrids are quite accurately representing the theoretical ratios.  

However, when designing our hybrid compositions, it would have been useful to take the 

weight of the GPTMS into account as well. Now in the results the residual mass 

represents the inorganic part of GPTMS and the glass, while all the organic material is 

burned away. Because over half of the weight of our hybrids actually comes from the 

GPTMS, now the labeling 30/70, 15/85, and so on only based on the ratio gelatin and 

BAGs is slightly misleading.  

Several other groups have made similar measurements earlier to hybrid materials. 

(Greenhalgh, Ambler et al. 2017, Lao, Dieudonné et al. 2016, Ghorbani, Zamanian et al. 

2018, Mondal 2018) Mondal measured for similar weight ratio 30/70 between inorganic 

and organic coupled with GPTMS residual mass ~55%, which is quite similar to our 

results. Furthermore, the curve shapes displayed similar behavior than in our results. 

The highest drop is observed between 300-400 °C, and the overall shape of the curve is 

very steep.   

 

7.3 In vitro dissolution 

For this study, dissolution was analysed by the means of SBF bioactivity measurement 

and enzymatic degradation study by collagenase. In vitro characteristics of BAGs, such 

as their dissolution rate and conversion to HA layer, are dependent primarily on glass 

composition and the microstructure of scaffold. (Rahaman, Day et al. 2011) The 

bioactivity and dissolution of BAGs is commonly studied by SBF immersion. In the case 

of hybrid materials, also the organic part with the coupling agent, and the range of 

covalent bonding between them plays an important role to determine the dissolution 

behaviour of the whole hybrid material.  

Mass loss of the hybrid samples measured upon immersion provides a measure of their 

degradation rate. Usually biomaterial scaffold is designed to degrade at same rate than 

tissue formation occurs at the implantation site. Benefit of degradable scaffold is that no 

foreign material stays in the body, biomaterial slowly disappears, and ultimately newly 

formed tissue fills out the space. (Rahaman, Day et al. 2011) 

The mass loss was found to be significantly higher for hybrids containing the silicate 

glass compared to the one (with similar glass content) containing the borosilicate 

bioactive glass. This is due to the dissolution of the samples, but probably also due to 

the washing effect of unreacted compounds. Also the higher mass loss for hybrid with 
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higher BAG content indicates that there are probably more free particles not grafted with 

GPTMS dissolving into the solution. However, the mass loss might be partially 

compensated by the HA precipitation.  

Detected increase in pH is due to the release of alkali metal (Na), and alkaline earth 

metal (Mg, Ca, Sr) ions, and due to the consumption of protons from the solution. This 

type of behaviour is typical in in vitro dissolution of both silicate and borosilicate bioactive 

glasses. When they dissolve, ions from the glass network are released to the solution. 

Contrary to pH results done during hybrid synthesis, in SBF immersion silicate glass 

S53P4 containing hybrids expressed higher pH than borosilicate hybrids.  

Similar results have been observed from earlier SBF dissolution studies made with same 

composition borosilicate glass. As shown before for same borosilicate B12.5 –Mg 5 –Sr 

10, also when this glass is a part of hybrids, it leads to pH increase in SBF immersion. 

(Tainio 2016, Tainio, Salazar et al. 2020) In the case of mass loss results, in earlier 

studies alginate silica hybrids with highest GPTMS content have been found to display 

highest mass loss for hybrids. (Vueva, Connell et al. 2018) In our case mass loss was 

found to be quite drastic for all hybrid samples. However, the impact of the GPTMS 

amount to mass loss is difficult to see because the same C factor was used for all hybrid 

samples. 

Si ions released by glass dissolution are known to play an essential role in bone 

formation. The concentration of Si ions increases upon SBF immersion as a function of 

time due to breaking of silica layers in the glass network. However, since our hybrids 

also included Si-containing coupling agent GPTMS, at least part of Si ion release comes 

from the GPTMS as well. Especially in the case of hybrids with less BAG, and therefore 

having fewer binding sites for GPTMS, the Si release is highest. This indicates the 

release of unreacted GPTMS molecules contributing to increasing Si concentration upon 

SBF immersion.  

HCA layer involves formation of silica-rich layer that act as nucleation site for CaP layer. 

Furthermore, the decrease of P concentration suggests CaP layer formation. From our 

results decrease of the concentrations of Ca and P ions is seen to all hybrids, which 

might indicate CaP layer formation. However, in order to ensure that, for example SEM 

images of the hybrid surfaces would give valuable information.  

However, the accuracy of SBF as a representative of in vivo conditions has been 

questioned (Kokubo, Takadama 2006, Bohner, Lemaitre 2009). SBF itself contains both 

calcium and phosphate ions, so therefore, in SBF solution hydroxyapatite can form solely 

from the solution. (Varila, Fagerlund et al. 2012) Especially issues when measuring Ca 



60 

 

and P concentrations might occur since SBF is already supersaturated towards the 

precipitation of HA.  

In addition, by comparing the thermogravimetric (TGA) results from samples before and 

after SBF immersion it is possible to get an idea of the possible changes in hybrid 

composition and stability upon immersion. However, the interpretation of these results is 

challenging due to the ungrafted GPTMS releasing into the solution upon SBF 

immersion. Therefore, the residual consists not only of BAG left but also the attached 

GPTMS. In addition to remained GPTMS and BAG, possible HA precipitation is also 

contributing to the residual, making the interpretation even more challenging.  

If gelatin is not properly functionalized by GPTMS, and GPTMS not linked to BAG phase, 

rapid and uncontrolled dissolution can occur, indicating instability of the hybrid. Covalent 

coupling is necessary to control the rate of degradation and mechanical properties of 

hybrid materials. Some idea of the degradation behaviour mimicking in vivo conditions 

can be assessed by using collagenase enzymatic degradation assay. However, in vitro 

degradation assays will always fail to completely imitate the complexity of in vivo context, 

where various cells and enzymes are present. Based on our enzymatic degradation 

results, very rapid and degradation of samples was detected for both hybrids with not 

much difference between them. However, if compared to gelatin alone, hybrids act as 

more stable gels, because they don’t dissolve to 37 °C solution immediately.  

 

7.4 Rheological properties 

Rheological properties of hybrids were assessed in order to evaluate the gel point and 

other viscoelastic properties of the hybrids. The rheological measurements were 

challenging to perform due to very narrow time window prior full gelation of the hybrids. 

It was possible to detect very quick transformation from transparent liquid to white and 

much less transparent viscous solution, and ultimately to a solid gel. This issue has been 

discussed previously with similar silica/gelatin hybrids (Nelson 2016). Also, due to 

observed shrinking of hybrids during their gelation, it was impossible to keep the axial 

force of the geometry positive after gelation point. If the axial force is lost (negative 

values), it indicates lost contact between the geometry and sample, leading to unreliable 

results.  

Due to the time-responsivity of GPTMS crosslinking, it was impossible to assess the 

viscosity as a function of temperature without gelation at certain time point. In order to 

accurately determine whether temperature changes affected hybrid viscosity, all the 
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temperature ramp measurements were carried out without adding the coupling agent 

GPTMS. This way it was possible to exclude the time-dependent viscosity increase 

caused by GPTMS. However, therefore no information about the real hybrid gelation as 

a function of temperature was obtained. The results show only the effect of the different 

BAG on the viscosity of the gels in different temperatures.  

In literature coupling agents are usually added afterwards due to the very fast gelation 

time also observed in this study. (Gao, Rahaman et al. 2013) Gao et al. also reported 

the use of GPTMS as coupling agent to lead to rapid formation of stiff gel, which was not 

suitable for bioprinting.  

In order to use hybrids for example as a bioink, it would need to fulfil criteria such as 

sufficient rheological properties: it needs to be fluid enough to be able to pass through a 

nozzle but also retain three dimensional shape and not collapse as layers are added. 

This bioink developing and optimizing stage is very time consuming, since lots of 

rheological measurements and mathematical modelling is needed to calculate 

appropriate “window of printability”. (Paxton, Smolan et al. 2017) In our case, it was 

evident that due to the relatively narrow viscosity window for printing, this type of hybrid, 

at least in the test composition 30/70 with C-factor 1000, would not be very effective as 

a bioink.  

7.5 Hybrid cytotoxicity  

 

Glass composition influences its ability to support proliferation of cells in vitro. In the case 

of bone tissue engineering applications, hBMSCs are often chosen based on the 

rationale that they have been well established as an ideal source of cell-based therapy 

for bone tissue engineering applications. (Montoro, Wan et al. 2014) In order to 

determine whether the BAG/gelatin GPTMS-coupled hybrids would support hBMSC 

proliferation and attachment Live/Dead staining were performed to gain qualitative 

insight of the cell morphology, proliferation and attachment.  

As indicated by Live/Dead assay results, it is clearly seen that the hybrid materials are 

inhibiting the proliferation and attachment of hBMSCs both when culturing in contact with 

the samples, and with hybrid dissolution product extracts indirectly. The most essential 

question to assess is whether this inhibition depends on the inorganic part of the hybrid, 

referring to the BAG, or on the organic content, referring to the gelatin functionalized with 

GPTMS.  
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In the case the inhibition is due to the BAGs, possible reasons include their too high 

reactivity. This would be shown as drastic pH changes, and high ion release levels, 

indicating rapid HA precipitation and BAG dissolution. In general, BAGs tend to induce 

alkalinization of the external medium, due to leaching of ions to surrounding aqueous 

solutions. Contrary to glass discs or other larger size particles, here <38 µm BAG 

particles were used in the hybrid samples. Small size particles have a large reactive 

surface area, which correspond to the reactivity of the BAGs. However, as shown in the 

SBF test, the reactivity of the used BAGs is probably not the main reason for the inhibition 

of the cell proliferation.  

The effect of Boron on osteogenic differentiation of hBMSCs is studied previously, and it 

was found that concentration higher than 1000 ng/ml inhibits the cell proliferation after 4 

days (Ying, Cheng et al. 2011)  As shown in the ICP-OES results, the levels of B in cell 

culturing medium exceed that value, which might be one reason for inhibition of 

proliferation. Also, Ca ion levels have been shown to affect cell proliferation. (McCullen, 

Zhan et al. 2010) However, in our case the hBMSCs are simultaneously exposed to 

several different ions, and therefore it is not straightforward to specify the effect of 

individual ions alone. Furthermore, S53P4-based borosilicates have been previously 

cultured with human adipose stem cells (hASCs) expressing similar ion release profiles, 

which would suggest that the toxic level of ion release is not only option to proliferation-

inhibition effect of hybrids. (Ojansivu, Mishra et al. 2018) 

 In addition to toxic level of ions and pH increase, it is possible that unreacted excessive 

GPTMS contributes to low cell proliferation. It is probable that from the hybrids unreacted 

GPTMS is released into the medium, which is seen as high Si concentrations, when ICP-

OES measurements were conducted to culturing medium. Despite of the washing effect 

of unreacted compounds in 72h sample pre-incubation, there might be still unreacted 

GPTMS left. 

In literature polymer functionalization with GPTMS is found to be most effective in mildly 

acidic conditions, which favours GPTMS epoxy ring opening and reaction with polymer. 

(Connell, Gabrielli et al. 2017) In our case, adding of GPTMS and bioactive glass were 

carried out simultaneously, which might lead to insufficient reaction of GPTMS, leaving 

unreacted molecules to solution. As discussed earlier, the role of pH in GPTMS 

chemistry is crucial, which might also have an effect here. In addition, usually hybrids 

are synthesized with TEOS with much higher silica content, this would in theory yield 

more attachment sites for GPTMS than what BAG particles used here would. (Mahony, 

Tsigkou et al. 2010) 



63 

 

For these reasons, it would have been interesting to experiment with other possible 

coupling agents, such as (3-Aminopropyl)triethoxysilane (APTES). APTES is possible to 

graft with BAGs (Stanić 2017), and if it would be found to be able to graft also with gelatin, 

it would be one attractive option to try in the future experiments.  

Decrease in cell attachment might be also due to changes in the material matrix 

elasticity, surface chemistry or not suitable topography of the samples. This can be 

studied in direct contact but with indirect culturing in extracts this is not considered. 

Mahony et al. showed that BMSC cell attachment and morphology varied between 

hybrids, seeming that the C-factor affects. Higher C-factor was found to lead to an 

enhanced cell attachment and morphology, possibly due to improved rigidity and stability 

of hybrid (Mahony, Tsigkou et al. 2010) Due to this findings it would be interesting to 

experiment with ways to produce more rigid hybrid gels.  

In general, reactive materials such as BAGs are difficult to evaluate in in vitro conditions. 

This is due to the changes in environment: ion concentrations in the culturing medium, 

and pH changes as materials degrade. Engineering is needed to optimize the 

composition that releases suitable amount of therapeutic ions, and with not too dramatic 

pH changes. In vitro cell cultures are static, and therefore smaller ion amount can show 

material to be toxic to cells, but in reality, in in vivo conditions there is more dynamic flow, 

replenishment of body fluids would distribute ions. This can lead to false interpretations. 

For example, in an earlier work by Fu et al. 13-93-3b borate bioactive glass was found 

toxic to cells in vitro, but not in in vivo rat model. (Fu, Rahaman et al. 2010) Perhaps it 

would be beneficial to experiment with more in vivo -like conditions, such as culturing 

with more dynamic microenvironment. For example, gentle intermittent rocking of well 

plates might prevent local high concentrations of ions. 
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8. CONCLUSIONS 

Hybrid biomaterials, combining bioactive glasses (BAG) and natural polymers, such as 

gelatin, are potential alternatives for bone tissue engineering applications. In this thesis 

work GPTMS –coupled bioactive glass/gelatin hybrid biomaterials were synthesized and 

characterized in vitro with various methods. Firstly, the hybrid stability in aqueous 

solutions, such as Simulated Body Fluid (SBF) were demonstrated with multiple 

BAG/gelatin ratios. In addition, the hybrids showed controlled ion release upon SBF and 

cell medium immersion, suggesting HA layer precipitation indicating bioactivity. From 

enzymatic degradation studies hybrids were also found to be more resistant to enzymatic 

degradation than gelatin alone. Some preliminary rheological studies also gave some 

idea of the viscoelastic properties of the hybrids. Hybrids were found to gelate rapidly as 

a function of time with increasing G’ and G’’ moduli. BAG/gelatin gels without GPTMS 

were also found to exhibit higher viscosity as a function of decreasing temperature.  

However, some concerns are raised by the inhibitory effect of hybrid samples on human 

bone marrow –derived mesenchymal stem cell (hBMSC) proliferation. Cells are able to 

proliferate and attach to some extent for 24 hours, but after 72 hours strong inhibition on 

proliferation is detected for all compositions. This is probably due to the release of 

ungrafted GPTMS from the hybrids. Further optimization of the hybrid composition and 

more cell studies are needed to confirm the suitability of these hybrid biomaterials as a 

biocompatible bone tissue engineering scaffold material. For example, experimenting 

with more dynamic culturing methods, different C-factors or even different coupling 

agents such as APTES would be viable options for future trials. Ultimately, more optimal 

and biocompatible inorganic/organic hybrids would find multiple applications in bone 

tissue engineering due to their tailorable properties and shaping possibilities.  
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APPENDIX A: PROTOCOL FOR PREPARING 
SIMULATED BODY FLUID (SBF)  

 

1 litre of SBF is prepared by following adjusted Kokubo protocol below. (Kokubo, 

Kushitani et al. 1990) Reagents are diluted one by one in given order to distilled H2O:  

 

 Reagent Amount 

1 NaCl 7.996 g 

2 NaHCO3 0.35 g 

3 KCl 0.224 g 

4 K2HPO4 ∙ 3 H20 0.228 g 

5 MgCl2 ∙ 6 H2O 0.305 g 

6 1 M HCl ~40 ml 

7 CaCl2 ∙ 2 H2O 0.368 g 

8 Na2SO4 0.071 g 

9 Trizma-base 

2-Amino-2-(hydroxymethyl)-1,3-propane-diol 

6.057 g 

 

pH value is adjusted at 37.00 ± 0.02 to 7.40 ± 0.02 with 1 M HCl. SBF is stored in 

polyethylene bottle in fridge at 5-10 °C for maximum 30 days.  
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APPENDIX B: ICP-OES RESULTS 

 

Individual ion concentrations from SBF dissolution series 
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Combined ion concentration for S53P4 and mix hybrids from enzymatic 

degradation test 
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Figure 45. 30/70 S53P4 hybrid ion concentrations 
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Figure 46. 30/70 mix hybrid ion concentrations  
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Individual ion concentrations from cell culturing medium 
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