
But Do Commit Messages Matter? An Empirical 
Association Analysis with Technical Debt

Chien Lu

Tampere University

Abstract. An empirical analysis is conducted to investigate the associ-
ation of the content of commit messages and technical debt. The analy-
sis is based on 33 open-source Apache JAVA projects. Structural Topic
Modelling, a recently developed text mining technique is employed for
sophisticated analysis. The result shows that the certain content of com-
mit messages such as empty messages are potentially associated with
Technical Debt.

Keywords: commit messages · technical debt · text mining

1 Introduction

This research investigates the relationship between the content commit messages
and Technical Debt (TD) issues based on 33 real-world, open-source Apache
JAVA projects. Although the two above-mentioned research topics have been
discussed separately in related fields, the author argues that an integrated anal-
ysis for exploring the relationship between commit messages and TD is able to
provide novel insights. Therefore, the research questions of this work are:

1. Do commit messages make a difference when it comes on the TD ?
2. What kind of commit messages can potentially increase (or decrease) TD ?
3. Does empty commit message increase TD ?

1.1 Commit Messages

Commit messages writing plays an important role in software development for
it records, or documents the changes in natural languages during the progress of
the project. It is believed that well-written commit messages can provide useful
information to other developers in the life-cycle and eventually contribute to
enhancing the software quality in the end ([11] and [22]). It is almost a common
sense that a good teamwork oriented developer takes not only excellent coding
skills but also the ability to write informative commit messages.

However, to the author’s best knowledge, there has not been an empirical
study based on real-world projects which challenges or confirms the above men-
tioned “common sense”. Besides, many related issues still haven’t been properly
discussed, for instance, does empty message influence the software quality? Or,
what kind of content in the commit messages are really helpful to the software
quality? The purpose of this research is to provide suggestions to developers
based on empirical analysis while writing commit messages .

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/288313353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Chien Lu

1.2 Technical Debt

Technical Debt (TD) [1] is a metaphor to describe the issues (including coding
issues or documentation issues) generated in the development process that cause
potential problems and will have to be solved by ”paying back” extra efforts in
the future. For example, code smells (e.g. nested, too complicated code structure)
is one type of TD issues which will potentially result in difficulties in maintenance
([6] and [15]).

Instead of analyzing the software with human efforts e.g. code reviews, to
find out the potential TD issues, there are several Technical Debt measurement
tools available such as Better Code Hub 1, Coverity Scan 2 and SonarQube 3.
Among those mentioned tools SonarQube is one of the most commonly used
tool in both industry and research community [14]. One effective functions of
SonarQube is that it can automatically detect TD issues in the software with
rule-based algorithms.

TD has attracted considerable attentions in research communities (e.g. [4],
[16] and [21]). Recently one open access dataset [13] has been proposed and it
provides more opportunities of TD related data analysis. One recent work [19]
has provided basic analysis including diffuseness and distribution of TD of the
collected projects based one the above-mentioned dataset.

1.3 Topic Modelling

When it comes to text analysis, one common approach is topic modelling ([2],
[3] and [18]). A topic model is a probabilistic model in which, a topic is defined
as a distribution over words, and it is assumed that when the writing is going
on, the author first draw a topic label in an ”topic urn” and then draw a word
from the topic corresponding ”word urn”.

Based on the above mentioned assumption, in each document, topics are
occurring with different strength (prevalence), so that some documents may be
composed mostly of a particular topic whereas others are a mixture of several
other topics.

Thus, topic modelling is capable of not only capturing the underlying topic
content but also modelling the topic prevalence among a set documents. This
research employees STM [18] , a recently developed topic model to explore the
relationship between commit messages and potential TD issues.

2 Related Works

There have been research works applying topic modelling to analyze commit
messages. For example, Hindle et al. [9] analyzed the commit comments with
LDA. Their work has performed the analysis on repositories of three database

1 Better Code Hub, https://bettercodehub.com
2 Coverity Scan. https://scan.coverity.com
3 SonarQube. https://www.sonarqube.org



But Do Commit Messages Matter? 3

systems PostgreSQL, MaxDB and Firebird. They have found that the commit
messages in three different database system emphasize different concepts. In the
PostgreSQL, the most prevalent topic is related to the external developers Dal
Zotto and Dan McGuirk, in the MaxDB, the most prevalent topic is related to
build system files whereas in the Firebird, the most prevalent topic is related
to commonly used terms in commit messages such as “added”, “fixed”, and
“updated”.

Hu et al. [10] have studied commit messages using Dynamic Topic Modeling
(DTM) [2]to discover the underlying topics and their evolution processes over
time. Their work has performed case studies on jEdit and PostgreSQL, two well-
known open source software systems, each contains 12116 and 15990 commit
messages respectively. The analsys has drawn some interesting topics such as
“Fixing Bug and Error”, “GUI” topics in the jEdit case and “Bug Fixing”,
“Building and Configuration” topics in the PostgreSQL case.

However, although the above mentioned works have use topic modelling tech-
niques, they have not investigated the relationships between the extracted topics
and the software quality measurements especially TD that might be potentially
associated with the commit messages.

There is another group of works ([8], [12] and [20]) focus on sentiment analysis
of commit logs. Among those works, the most relevant one is the work of is
Islam et al. [12] which investigates bug related commits and the sentiment of the
corresponding commit messages. They have analyzed more than 24000 commit
messages and found that both bug-introducing and bug-fixing commit messages
have higher positive emotional scores.

3 Methodology

3.1 Accumulated Debt Comuptation

In this research. The Technical Debt Dataset [13] is used. In the dataset, the
variable “reliabilityRemediationEffort” is generated by SonarQube. The Sonar-
Qube automatically analyzes the changes of the current software and estimates
the time spent in the future to solve or the “remediate” the detected TD issues.
If the SonarQube detects that some TD issues existed before the commit are
solved, the value of “reliabilityRemediationEffort” will decrease, on the other
hand, the value of “reliabilityRemediationEffort” will increase if the SonarQube
detects extra issues after the commit.

Using the “reliabilityRemediationEffort” variable , the “debt change” of each
commit is gained by calculating the difference between the “reliabilityRemedia-
tionEffort” value before and after the commit. Moreover, an “accumulated debt”
of a committer has contributed to a project can be obtained by summing up all
the debt change values under a certain committer of the project.

3.2 Data Processing

The empty commit messages can potentially influence the software quality, and
they also reflect the developers’ style while writing commit messages. To evaluate



4 Chien Lu

the impact and take it into account in the topic model, if the the commit message
is empty (575 out of in total 128375 commit messages), the message is labeled as
“emptymessage”. The “emptymessage” is then treated as a special vocabulary.
All the commit messages generated by a certain commiter under a specific project
are gathered as a document. There are in total 1083 documents. To focus on the
contribution of a specific developer to a project, the same developer in two
different projects are considered two different developers.

The text are transformed into lower-cases and extra white space are removed.
Note that, to better preserving the sophisticated writing hobbies in the commit
messages, the text does not undergo some standard processing steps such stem-
ming or lemmatizing.

The previously mentioned it the commit messages contribute to TD. Docu-
ments having positive “accumulated debt” are categorized as “debt contributed”,
otherwise “no debt contributed”.

3.3 Text Mining

The Structural Topic Model (STM) [18] is used to analysis the relationship
between commit messages topics and the TD issues. STM is a more advanced
model such that, comparing with topic models such as LDA and DTM, it takes
the document-level covariates into account. That is, instead of analyze the topics
and their relationships to covariates in a two-stage manner, STM provides a
integrated solution to the problem. The STM has been widely used in different
research disciplines such as policy research [7], climate change [5].

In the model selection process, for each topic number from 6 to 20, 10 random
initialized models with randomly selected 50 % of the training documents are
built. The topic number with the highest average held-out likelihood value on
the 50% of the testing documents is selected. After deciding the topic number,
50 models are built and the one with the best semantic coherence [17] over topics
is chosen as the final model.

4 Result

Among 1083 documents (developer-project pairs), 868 of them are “no debt
contributed”, 215 of them are “debt contributed”. The proportion of “debt con-
tributed” documents is around 20%.

The result of model selection is shown in Figure 1. The x-axis (K) represents
the number of topics and the corresponding held-out likelihood is shown on y-
axis. Since the K = 18 reaches the highest held-out likelihood, it is thus selected.

Top words of the the extracted 18 topics can be found in Table 1. Apperently
the common words such as “the”, “and”, “fix”, “for” can be found in most of
the topics. The relationship between topic prevalence and TD can be observed
in Figure 2. The Topics 5, 6, 8, 9 are leading to not adding TD to the projects
whereas the Topics 1, 3, 13, 15, 16 are leading to adding TD to the projects.



But Do Commit Messages Matter? 5

5 Discussion

The prevalence of common words in the extracted topics are similar to the results
of the previously mentioned related works ([9] and [10]). Another reason can be
due to that the stop words are not removed in the data processing steps. However,
the differences between topics are still observable.

When focusing on the no debt contributing Topics 5, 6, 8 and 9, one observa-
tion worth noticing is that is seems that detailed-oriented messages can somehow
reduce the TD. For example Topic 5 has the word “version”, “common”, Topic 6
has the word “line”, “code” and “here”. Besides, they both have the word “this”.
It is likely that the Topic 8 is related to final stage of the software development
(“build”, “file”, “tag” and “now”) so the TD have to be removed. The Topic
9 contains only common words, the reason why it reduces the TD need further
analysis it can be that it does not add or reduce the TD, and it is categorized
into the “no debt contributed” group.

Most of the debt contributing Topics 1, 3, 13, 15 and 16 include the term “fix”.
It can be due to that some code smells or TD issues are generated by over-editing
the code. Topic 13 contains terms “submitted”, “reviewed” and “obtained” could
be related the commits in some certain stages of the software development that
generates TD issues and the ”emptymessage” potentially shows that empty com-
mit messages could result in TD issues. Topic 3 and 16 could be developer or
project related.

The discovered topics related to TD issues are somehow explainable, however,
some more detail-oriented analysis are still required to draw a more comprehen-
sive picture.

Another limitation of this research is that the type project and the type
of the changed file of a commit is not taken into consideration. In theory, the
difficulty and complexity can affect the TD. Beside, the type of changed file
should affect the content of commit messages, e.g. changing “.html” files leads
to more web developing related content whereas changing “.README” files is
more likely to generate use user guideline messages. One practical difficulty in
this analysis task is that some commits are related to not just one changed file
e.g. the changed files contain “.README” files and “.html” files. Therefore the
effect of the type of file is not taken into considerations. The effect of the above
mentioned factors can be taken into account in future works.

6 Conclusion

This research conducted an empirical text analysis focusing on the related com-
mit messages and TD issues. The analysis uses a sophisticated topic modelling
technique to analyze a collection comprises 128375 commit messages and the
corresponding estimated TD measurement across 33 different real-world open
access JAVA projects. The findings show that

1. Some topics extracted from the commit messages and TD potentially asso-
ciated.



6 Chien Lu

2. In general, writing detailed-oriented commit messages have negative associ-
ation to TD.

3. Empty commit message has positive association to TD.

However, more details and mechanisms regarding to the discovered associa-
tions still require further investigations.

Table 1. Extracted Topics. Debt contributing topics are in red, not debt contributing
topics are in green, neutral topics are in black.

Topic Number Top 6 Words

Topic 1 the, and, for, block, fixed, from, use, bug, fixing
Topic 2 fix, add, for, remove, and, update, bug, use, support
Topic 3 alexantonenko, for, via, contributed, and, fix, shwethags, the, atlas
Topic 4 the, for, closes, and, this, add, mavenreleaseplugin, prepare, from
Topic 5 the, and, for, from, build, version, adding, commons, this
Topic 6 cvs, this, the, then, from, here, and, has, line
Topic 7 the, for, jaimin, and, add, from, fix, ncole, task
Topic 8 the, for, and, added, tag, build, file, ant, now
Topic 9 add, javadoc, for, update, and, fix, from, the, use
Topic 10 the, and, for, added, fixed, from, test, with, connection, not, and, wizard
Topic 11 aonishuk, for, not, atkach, ababiichuk, onechiporenko, page, make, and
Topic 12 not, the, with, use, was, from, samples, make, and
Topic 13 from, submitted, reviewed, obtained, the, for, added, and, emptymessage
Topic 14 yusaku, via, srimanth, for, the, and, not, should, page
Topic 15 the, added, that, for, and, patch, test, fixed, with
Topic 16 via, for, ambari, swagle, not, the, upgrade, dsen, and
Topic 17 the, dlysnichenko, akovalenko, for, and, from, created, jluniya, moe
Topic 18 added, the, for, fixed, updated, removed, and, javadoc, test

References

1. Allman, E.: Managing technical debt. Commun. ACM 55(5), 50–55 (2012)
2. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd in-

ternational conference on Machine learning. pp. 113–120. ACM (2006)
3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine

Learning research 3(Jan), 993–1022 (2003)
4. D’Ambros, M., Bacchelli, A., Lanza, M.: On the impact of design flaws on software

defects. In: 2010 10th International Conference on Quality Software. pp. 23–31.
IEEE (2010)

5. Farrell, J.: Corporate funding and ideological polarization about climate change.
Proceedings of the National Academy of Sciences 113(1), 92–97 (2016)

6. Fowler, M.: Refactoring: Improving the design of existing code. In: 11th European
Conference. Jyväskylä, Finland (1997)

7. Gilardi, F., Shipan, C.R., Wüest, B.: The diffusion of policy perceptions: Evidence
from a structural topic model. University of Zurich and University of Michigan
(2015)



But Do Commit Messages Matter? 7

Fig. 1. Held-out Likelihood of Different Topic Numbers.



8 Chien Lu

Fig. 2. Held-out Likelihood of Different Topic Numbers. ”1“ represents debt contribut-
ing and ”0“ represents no debt contributing. The length of bars represents the 95 %
confidence interval.



But Do Commit Messages Matter? 9

8. Guzman, E., Azócar, D., Li, Y.: Sentiment analysis of commit comments in github:
an empirical study. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. pp. 352–355. ACM (2014)

9. Hindle, A., Godfrey, M.W., Holt, R.C.: What’s hot and what’s not: Windowed de-
veloper topic analysis. In: 2009 IEEE International Conference on Software Main-
tenance. pp. 339–348. IEEE (2009)

10. Hu, J., Sun, X., Lo, D., Li, B.: Modeling the evolution of development topics using
dynamic topic models. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). pp. 3–12. IEEE (2015)

11. Humphrey, W.S.: A discipline for software engineering. Addison-Wesley Longman
Publishing Co., Inc. (1995)

12. Islam, M.R., Zibran, M.F.: Sentiment analysis of software bug related commit
messages. Network 740, 740 (2018)

13. Lenarduzzi, V., , Saarimäki, N., Taibi, D.: The technical debt dataset.
In: The Fifteenth International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE19) (Sept 2019).
https://doi.org/10.1145/3345629.3345630

14. Lenarduzzi, V., Sillitti, A., Taibi, D.: A survey on code analysis tools for software
maintenance prediction. In: International Conference in Software Engineering for
Defence Applications. pp. 165–175. Springer (2018)

15. Li, W., Shatnawi, R.: An empirical study of the bad smells and class error proba-
bility in the post-release object-oriented system evolution. Journal of systems and
software 80(7), 1120–1128 (2007)

16. Lozano, A., Wermelinger, M.: Assessing the effect of clones on changeability. In:
2008 IEEE International Conference on Software Maintenance. pp. 227–236. IEEE
(2008)

17. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing
semantic coherence in topic models. In: Proceedings of the conference on empirical
methods in natural language processing. pp. 262–272. Association for Computa-
tional Linguistics (2011)

18. Roberts, M.E., Stewart, B.M., Airoldi, E.M.: A model of text for experimentation
in the social sciences. Journal of the American Statistical Association 111(515),
988–1003 (2016)

19. Saarimäki, N., Lenarduzzi, V., Taibi, D.: On the diffuseness of code technical debt
in java projects of the apache ecosystem. In: Proceedings of the Second Interna-
tional Conference on Technical Debt. pp. 98–107. IEEE Press (2019)

20. Sinha, V., Lazar, A., Sharif, B.: Analyzing developer sentiment in commit logs. In:
Proceedings of the 13th International Conference on Mining Software Repositories.
pp. 520–523. ACM (2016)

21. Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dyb̊a, T.: Quantifying the
effect of code smells on maintenance effort. IEEE Transactions on Software Engi-
neering 39(8), 1144–1156 (2012)

22. Van Kleek, M.G., Bernstein, M., Panovich, K., Vargas, G.G., Karger, D.R., Schrae-
fel, M.: Note to self: examining personal information keeping in a lightweight
note-taking tool. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. pp. 1477–1480. ACM (2009)


