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Abstract
Sami Sinisalmi: Acoustic scene classification using spatial spectrum estimation
Bachelor of science Thesis
Tampere University
Degree Programme in Computing and Electrical Engineering, BSc
December 2019

Analysis of audio from our surroundings gives us important cues about the acoustic
scene, with automatic analysis usually done by sound event detection or analysing
the audio scene as a whole. On the other hand, inspecting the auditory space
characteristics, or openness of the space, is a much less studied aspect. This thesis
aims to study the classification of audio scenes based on the aforementioned auditory
space characteristics with the use of different audio features. In this work, log-mel
band energies and spatial spectrums for the audio recordings are calculated and used
in the classification. The results revealed that best performance is obtained when
using the combination of mel features and spatial spectrum, instead of either one of
them. It was also observed how any differences inside a class can affect the results.

Keywords: audio scenes, auditory space characteristics, feature comparison, log-
mel band energy, spatial spectrum.
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1 Introduction
Classifying acoustic scenes is an application of audio signal processing with many
uses. Analysis of audio from our surrounding environments gives us information
about the acoustic scene and for instance, we are able to recognize the scene we
currently are in and individual sound sources in the scene. Ability to extract this
information from audio could be used for example to recognize a car model by its
engine sound, bird species from recordings or in surveillance and security systems[1].
So far the analysis has been mostly done by using classification or recognition of
individual sounds in the scene or the scene by whole.

The data set of DCASE 2019 challenge task 1, acoustic scene classification pro-
vides us the largest amount of audio data from our everyday public environments,
the data being recorded audio from public spaces in multiple different cities across
Europe. This data set provides us material to study the acoustic scene and compare
different methods in classification of the acoustic scenes.

This thesis aims to study the classification of audio scenes based on their auditory
space characteristics or more simply put, by the openness of the space. This is done
by classifying the examples using spectral and spatial features calculated from the
audio. The study presents a comparison between the two feature representations,
and the performance of a system that uses both.

Chapter 2 introduces the problem of the thesis and some background information
about used techniques. Chapter 3 presents the used data set, classification setup
and the results. Finally, Chapter 4 gives the final conclusions from the work.
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2 Background
Classification of acoustic scenes is the classification of environments based on the
general acoustic characteristics of the scene. This is usually done by training a
classifier with recorded audio from various scenes, such as street, park, office, etc.
Using different types of classifiers and by extracting various kinds of information
from audio samples, impacts the results of classification.

2.1 Problem

This thesis focuses on classifying different audio samples to three different classes
based on their auditory space characteristics, with a focus on investigating how
different features from audio samples affect the results. The considered acoustic
scenes are outdoor, indoor and vehicle, the expectation is that acoustic scenes which
are indoors (airport, shopping mall, metro station) have some acoustic characteristics
in common that differentiate them from scenes which are outdoor or inside vehicles.
In order to characterise this aspect, the study uses spatial features and compares
them with the commonly used mel energies. How does these different features and
their combinations impact the results in a case of classifying audio by auditory space
characteristics?

2.2 Features

There are many different types of information that can be extracted from a single
audio signal, which can help us to identify the correct category for each sample.
Different types of features extracted from audio often have an effect on the clas-
sification performance, which can be used as an indicator of the usefulness of the
features in the given problem. From the results we should be able to understand
better which kind of features are the most beneficial in terms of recognising acoustic
scenes.

2.2.1 Log mel-band energies

Mel-frequency representation is a frequency representation of sound that uses a scale
of mels instead of hertz. This Mel-scale represents perceived pitch and a commonly
used formula of converting hertz into mel is:[2]

m = 2595 log10 (1 +
f

700
) (2.1)
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Figure 2.1 Linear-frequency power spectrogram taken from an oboe playing

Figure 2.2 Mel-frequency spectrogram taken from an oboe playing
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Figure 2.3 Block diagram of extracting log-mel energies from an audio signal

where frequencies m stands for mel and f stands for hertz. Figures 2.1 and 2.2 present
a linear frequency and mel frequency spectrogram, respectively, for comparison of
the two feature representations.

Extracting log-mel energies from an audio signal is illustrated in Figure 2.3. First
an pre-emphasis filter is applied to the audio signal to amplify high frequencies.
Then the audio signal is processed in short windows x(n), with a certain window
size and a hop-size that results in the windows overlapping each other. Windowing
is applied using a window function w(n), after which a DFT operation is done to
these windows resulting in a spectrum of the window X(f).

To obtain the mel energies, the spectrum of the signal is processed using a mel
filterbank as one in Figure 2.4. The mel filterbank consists of triangular shaped
band-pass filters Wk such that the center frequencies of these filters are equally
spaced on the mel scale. The k stands for the filter number, while total amount of
filters is usually K = 40. Mel-band energies are calculated by,

E(k) =
K∑
k=1

Wk(f)|X(f)|2. (2.2)

Taking logarithm of each E(k) results on log mel-band energies of the audio signal.
These log mel-band energies provide information from audio signals that is cor-

related to human perception of sound. The bands mimic the approximately loga-
rithmic perception of pitch of human hearing while log energy mimics the perception
of loudness by humans. The motivation of these log mel-band energies is to model
the human perception of audio.

2.2.2 Spatial spectrum

Direction of arrival or DOA has an important role in sound event detection[3] as well
as in acoustic scene classification, as it gives us more information about direction of
occurring sounds. Taking a DOA estimation of binaural audio results in a spatial
spectrum, giving us information about direction of sounds occurring in the scene.

Extracting a spatial spectrum from binaural audio signal is illustrated in Figure
2.5. Binaural audio recording results in an audio signal for each of the two audio
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Figure 2.4 A mel filter bank for K = 40 mel bands in range of 0-8kHz

Figure 2.5 Block diagram of extracting a spatial spectrum from binaural audio signal

channels, STFT is then applied to both of these signals. A predetermined window
size and a hop-size is used that results in the windows overlapping each other, just
like in computing mel-band energies. DOA can be then estimated with steered
response power with phase transform (SRP-PHAT)[4][5] for each of these windowed
signals produced by the STFT.

SRP-PHAT is a very robust sound source localisation algorithm, but it has its
drawbacks as it is computationally expensive[6]. In frequency domain the spatial
spectrum’s P locations q are calculated for a frequency band by[7],

Pq =

∫ 2π

0

|
M∑

m=1

Xm(ω)

|Xm(ω)|
ejωτ [q,m]|2dω, (2.3)

where M is the number of microphones, Xm(ω) is the Fourier transform of the mth
microphone signal for frequency ω. τ [q,m] is the time of arrival or TOA of a sound
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Figure 2.6 A spatial spectrum of an 10 second audio recording from an airport in
Barcelona

Figure 2.7 Normalised version of the Figure 2.6 spatial spectrum

signal from the location q to the mth microphone. DOA can then be extracted from

q̂ = arg max pq. (2.4)

From these results a spatial spectrum can be formed, such as the one illustrated
in Figure 2.6 (calculated using window length of 40ms and a hop length of 20ms),
which contains information about the sound energy per direction with an accuracy of
one degree. Using binaural audio recording leads to the calculated spatial spectrum
to contain observed sounds from all 360◦. However, the 360◦ spectrum is obtained
by mirroring the first 180◦ as it is not possible to disambiguate the sounds coming
from front or behind of the recording system.

Spatial spectrum can be normalised by using min-max feature scaling

Pn(θ) =
P (θ)− P (θ)min

P (θ)max − P (θ)min

, (2.5)
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where P (θ) is the spatial spectrum, P (θ)max and P (θ)min being the spatial spec-
trum’s maximum and minimum value respectively and Pn(θ) being the resulting
normalised spatial spectrum. This can help when values in data have a really wide
variation and it can affect negatively in the classification process.

This spatial spectrum and normalised spatial spectrum provides information
from audio signals that is correlated to where occurring sounds happen in the scene,
compared to the position of the listener.

2.3 Classifiers

The term classifier refers to an algorithm used in learning and classification process
of a classification task. Used classifiers are similar in audio processing and in image
processing. Classical classifiers like SVM and LDA are able to complete classification
tasks with a shorter training time. These classifiers are linear classifiers, which have
good performance if the classes are linearly separable. In a case, where the classes
can not be separated linearly, the results of using such classifiers result in a low
classification accuracy.

Complicated classification problems need classifiers that can learn complicated
nonlinear relationships. Artificial neural network or ANN, is an network that con-
sists of neurons which are connected to each others, connecting a layer of input
neurons to a layer of output neurons. Information (like audio features) is fed to
the network while giving the network an desired output (label of the audio exam-
ple) from the information, while the network uses this operation to detect patterns
in the information that leads into the desired output. This is done with different
pairs of features and desired outputs until the network has learned to classify the
information correctly.

A more advanced neural network called convolutional neural network or CNN was
created in 1998[8], and has been gaining popularity in machine learning ever since.
CNN is an artificial neural network, which has been popular in image processing
as well as in other classification problems. An ANN propagates information from
a layer to another, whereas a CNN works in the same way, but includes different
kinds of layers, combining activation maps and pooling layers[9]. These layers then
convolve with each other.

A single neuron output is defined by the input the neuron receives and by the
neuron’s activation function. If the neuron uses an step function as its activation
function, it can only produce zeros or ones as its output, or more simply put, the
neuron is activated. Layers consisting of neurons that use these activation functions
or activation maps are used as filters to determinate which parts to activate from the
previous layer. Pooling layers on the other hand are layers that divide the previous
layer evenly to smaller areas. Then, values based on those areas are taken from
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them and given to the next layer.
In CNN, the most commonly used activation function is ReLu, which gives an

output of zero if its input is negative, otherwise its output is the same as its input.
The most commonly used pooling option is max pooling, which takes the highest
value of an area, where these areas are evenly divided in the previous layer. Usually
the output layer of the classification uses a sigmoid function.

These layers then try to detect patterns, while having certain weights, giving
the gained information to the next layer until the data reaches the last layer. In
this output layer, each of the neurons’ output is the probability of that neuron’s
represented class. The highest probability compared between the neurons is the
predicted class.

State-of-the-art in audio classification includes CNN classifiers similar to the
ones used in image processing, modified to take features from audio as their inputs.
Most of the advancements have been made by improving the feature extraction
process with audio data and feeding these neural networks better information for
improvements in classification accuracy.
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3 Methods

3.1 Data set

This section introduces the used data set and its different properties. The used
data set in this work is the one provided in the DCASE 2019 challenge task 1,
acoustic scene classification. The data set from DCASE 2019 challenge acoustic
scene classification includes a total of 40 hours of audio from 12 cities in Europe
where the audio has been collected in 10 different scenes: airport, metro station,
shopping mall, park, pedestrian street, public square, street with traffic, bus, metro
and tram [10].

Each audio file is recorded simultaneously with four audio recording devices [11],
main recording device being Soundman OKM II Klassik/studio A3, electret binaural
in-ear microphone and a Zoom F8 audio recorder with 48 kHz sampling rate and a 24
bit resolution. To simulate human auditory system, the microphones were worn in
ears. All the data used in this work is recorded by the mentioned recording system.

In this work, the data set has been divided differently compared to the original
purpose. To be able to study the auditory space characteristics more efficiently,
the classes have been regrouped according to auditory space characteristics. Classes
airport, metro station and shopping mall were combined into indoor class. Park,
pedestrian street, public square and street with traffic into outdoor class and finally
metro, bus and tram are combined into vehicles class. Now the number of classes is
reduced to just three, where the classes have more variation inside them, but still
having the related element of the auditory space characteristic which then enables
us to study this aspect more precisely.

In total, the data set consists of 14,400 audio samples, each having a length of
10 seconds. So where each of the 10 classes had exactly 1,440 audio samples, the
regrouped 3 classes have 4,320 audio samples each. Class outdoor is an exception
though, as it had been made combining four classes instead of three, making its size
5,760 audio samples.

3.2 Setup

For this work, a baseline system from DCASE2019 challenge’s acoustic scene clas-
sification task[12] was used (Figure 3.1). This baseline system provided a simple
entry level state-of-the-art system that already gave some reasonable results for the
DCASE2019 challenge’s task 1, enabling easy testing of different features. The sys-
tem was modified to perform the classification with three classes, for obtaining a
baseline performance using mel energies.
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Figure 3.1 Network summary of the used classifying system[12] on its default values
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The plan was to gain knowledge of how different features affect the classification
accuracy. The features used in this study are log-mel energies, spatial spectrum
and a normalised spatial spectrum. The training was done with all of these features
separately as well as with combining mel features with spatial spectrum and mel
features with the normalised spatial spectrum. The combination of features was
done by concatenating the mel features with spatial spectrum as well as with the
normalised spatial spectrum.

The baseline system included a log-mel band energy extraction of the audio files
with 40 bands and could predict classes through training with these features. To
get the spatial features, a spatial feature calculation was added into the system’s
feature extraction part.

Calculation of the spatial spectrum turned out to be a very computationally
heavy process, even when using multiple cores. To make the calculation of spatial
spectrum faster, a longer window length of 240ms and a hop length of 120ms was
used instead of the originally planned 40ms/20ms. To match the window sizing
with the mel energies, log-mel energy bands were also calculated using this window
length and hop length, using 40 mel bands. Spatial spectrum calculation resulted in
a spatial spectrum that represented directions of sound from 360◦, but since it was
just a mirrored 180◦, only 180◦ part of the spectrum was used.

This modified the sizes of resulting feature matrices, which required modifying
the network structure from the original baseline architecture. Sequencing processors
sequence length and hop length was changed from 500 to 84 while the pooling layer’s
pool size was changed from 4x100 to 4x16.

Feature extraction was then done to each of the 14,400 audio samples; the train-
ing, testing and evaluation were done with the original training/testing/evaluation
split that was provided in the DCASE2019 acoustic scene classification task.

3.3 Results

Training of the classifier was done separately with different features. Other aspects
were left untouched, meaning that in each case the system would be identical except
for the used features. This way, the impact for the classification result can be
attributed to the different features used. The results are presented in Table 3.1.

It can be observed that the log-mel band energies concatenated with spatial
spectrum (Mel and SP) and normalised spatial spectrum (Mel and NSP), gave the
best results. Just using log-mel energy bands (Mel) proved to be good, unlike to just
using the spatial spectrum (SP) or the normalised spatial spectrum (NSP) which
performed more poorly.

As for the difference in accuracy between the tested classes, recordings from
Outdoor class and Vehicle class were the easiest to classify. On the other hand,
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Table 3.1 Classification accuracy with different features

Features Indoor Outdoor Vehicle Average
Mel 79.9 90.7 89.6 86.7
Mel and SP 84.3 87.0 93.7 88.4
Mel and NSP 81.7 90.3 93.0 88.4
SP 60.3 81.9 82.0 74.7
NSP 61.4 78.1 86.8 75.4

audio recordings from Indoor class were the hardest ones to predict correctly, this
can be explained with how the Indoor class’ acoustic scenes are rather different. For
this reason, a separate investigation was performed in an additional experiment.

The data was split such that one of the acoustic scenes from each class was
included to the test set, while the others were used to train the system. This
resulted in three different test cases, where each of the case had one acoustic scene
removed from each of the classes after which testing and evaluating was done to the
removed class to study the generalisation of the system. These results are presented
in Tables 3.2, 3.3 and 3.4

Table 3.2 Classification accuracy for airport, park and bus acoustic scenes, while they
were not in the training set

Features Airport Park Bus Average
Mel 69.4 90.2 93.5 84.3
Mel and SP 56.1 89.6 97.6 81.1
Mel and NSP 69.4 89.6 96.9 85.3
SP 45.4 56.2 84.1 61.9
NSP 57.0 52.1 82.4 63.8

Table 3.3 Classification accuracy for mall, public square and tram acoustic scenes, while
they were not in the training set

Features Mall Square Tram Average
Mel 78.9 76.7 89.9 81.9
Mel and SP 87.5 82.4 93.6 87.8
Mel and NSP 81.2 85.0 95.9 87.4
SP 66.0 83.7 82.3 77.3
NSP 51.2 80.4 90.1 73.9

It can be observed that even now the best performance was achieved using mel
energies with a normalised spatial spectrum or a spatial spectrum as the features. It
can be noted though, that usage of spatial spectrum compared to a normalised spa-
tial spectrum is situational as there are situations where one outperforms the other.
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Table 3.4 Classification accuracy for metro station, street and metro acoustic scenes,
while they were not in the training set

Features Metro station Street Metro Average
Mel 48.7 66.1 87.5 67.4
Mel and SP 51.3 64.5 86.6 67.5
Mel and NSP 48.5 74.8 86.8 70.1
SP 47.4 53.9 86.6 62.6
NSP 50.3 50.1 82.4 61.0

There is even some variation where the spatial spectrums have better performance
compared to just using mel energies.

But as what comes to classification accuracy in the classes, we can see that the
indoor class had the worst prediction accuracy. Inspecting the 3.4 reveals us that the
classification accuracy for metro station is significantly worse compared to others.
This shows that the metro station is the most different acoustic scene in the indoor
class, and cannot be reliably learned using the shopping mall and airport acoustic
scenes, affecting the class’ prediction accuracy as a whole.
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4 Conclusion
In this thesis, we compared audio features in classification of audio scenes by their
auditory space characteristics. The used features were log-mel energy bands and
spatial spectrums, where comparison between use of these features and a combina-
tion of these features was made.

Good results were obtained by using just the log-mel energy bands, but an
increase in the classification accuracy was gained by using these mel energies with a
spatial spectrum. Using only the spatial spectrum resulted in a lower performance
than using just the mel energies. From this, we can make an assumption that sound’s
DOA plays a role in acoustic scene classification and should be considered when
dealing with acoustic scenes. There is still room for more improvements though,
using shorter window lengths and hop lengths, we should be able to get higher
accuracy. The use of GPU in calculation of SRP-PHAT[6], should significantly
decrease the time spent when estimating the spatial spectrum. This would give us
more time to do additional tests and try different window- and hop lengths.

It was also noticed that one of the acoustic scenes didn’t fit that well with the
class it was assigned to, resulting in a class that was harder to predict correctly.
The acoustic scene didn’t represent the auditory space characteristic of that class,
compared to other scenes in the class. The classes consist of spaces of different
dimensions, and very likely this acoustic scene was the one with a different room
size. The class would benefit from having subclasses with similar room sizes resulting
in similar auditory space characteristics.

In addition, when testing the generalisation with the classes, it was observed
that the normalised version of the spatial spectrum was in some case a better choice
than the non normalised and vice versa. This is something that could use more
study, where especially does the normalised version perform better, when does it
perform worse and why does either of these happen? Definitive conclusions cannot’
be said from these tests, so more study could be done from this topic.
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