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ABSTRACT 

Sonja Hailla: The Challenges and Possibilities of Long-term Self-monitoring of Health 

Bachelor’s Thesis 

Tampere University 

Bachelor’s Degree Programme in Electrical Engineering 

November 2019 
 

 
This thesis explores the challenges and possibilities of long-term self-monitoring of health. 

Self-monitoring of health can include tracking parameters, such as activity, weight, body 
composition, heart rate, blood pressure, and pulse wave velocity. These parameters and self-
monitoring technologies are introduced. The effects of long-term self-monitoring reported in 
literature are reviewed in order to compose an overview of the benefits and challenges associated 
with long-term self-monitoring of health. Long-term self-monitoring of health has the potential to 
lead to improvements in well-being and health. However, unwillingness to self-monitor and early 
abandonment of self-monitoring devices are deterrents to self-monitoring. Factors, such as effort 
required, technical difficulties, unreliability of results, perceived uselessness of collected data, and 
privacy concerns, contribute to early abandonment.  

The observations about self-monitoring made by one participant during a two week period of 
self-monitoring with an activity tracker, smart scale, and blood pressure monitor are compared to 
those reported in literature. In line with literature, the participant reported technical difficulties, 
perceived uselessness, and unreliability of data, which all discouraged use of the devices. 
However, unlike findings reported in literature, the participant did not observe self-monitoring to 
noticeably improve their health or affect their well-being. This could be explained by receiving 
consistently healthy values from measurements and thus not seeing the need for any type of 
behavioral change that would improve health or well-being. 
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1. INTRODUCTION 

A sedentary lifestyle has been shown to adversely impact quality of life and men-

tal health, and is considered to be a significant risk factor contributing to chronic 

diseases, such as cardiovascular disease and diabetes. Despite this, over a quar-

ter of the worldwide population fail to achieve the recommended weekly amount 

of either 150 minutes of moderately intense activity or 75 minutes of vigorous 

activity. [1] Thus, there has been an increased interest and supply for tools that 

aid individuals in analysing their current lifestyle, in recognizing unhealthy and 

problematic behaviour, and in motivating them to change their behaviour for the 

better.  

Self-monitoring of health could be a useful tool for this purpose since it allows 

individuals to be increasingly included in the management of their health through 

objectively monitoring relevant health related parameters. Self-monitoring of 

health refers to the process of systematically observing and recording health-re-

lated parameters and behaviour [2]. Usually this is done with the use of wearable 

devices for continuous measurements or other consumer grade devices used at 

home for single measurements. For a long time self-monitoring has been utilized 

mostly by fitness enthusiasts or as a tool in the management of chronic diseases. 

However, the relatively recent advances in the availability of consumer grade per-

sonal health devices has increased self-monitoring also among normal healthy 

people. [3] 

Self-monitoring can include tracking activity, weight, diet, sleep, blood pressure 

(BP), mood, stress levels, or disease symptoms. The possibilities of self-monitor-

ing are immensely broad, and each individual chooses what they want to track. 

The possibilities are continuously increasing as new consumer grade personal 

health devices or health related smart phone applications are introduced to the 

market. [4] Now, many functions of devices traditionally found only in health care 

settings are beginning to be available for consumers to use at home.  
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This thesis explores the possibilities and challenges of long-term self-monitoring. 

This thesis has two objectives. The first objective is to evaluate whether long-

term self-monitoring of health affects well-being, and the second objective is to 

identify the challenges associated with long-term self-monitoring. This is done by 

conducting a literature review of studies exploring areas of self-monitoring and 

assessing the results in relation to well-being. In addition, the reported challenges 

are reviewed. The thesis also includes a short experimental simulation of active 

self-monitoring of health with the use of common self-monitoring devices, an ac-

tivity tracker, a smart scale, and a BP monitor. The purpose of the simulation is 

to provide an experimental perspective. The focus during this simulation is on 

observing the effect of self-monitoring on behaviour and well-being. Additionally, 

the goal is to identify all the personally perceived benefits and challenges asso-

ciated with active self-monitoring. 

The thesis first introduces the concept of self-monitoring of health. Chapter 2 

gives an overview of common self-monitoring parameters, the technology used 

for tracking these, and devices available for consumers. Chapter 3 discusses 

long-term self-monitoring in terms of its effect on well-being and the observed 

benefits and challenges associated with long-term self-monitoring. Chapter 4 in-

troduces the experimental setup used for the active self-monitoring simulation. 

The results of the simulation are presented in Chapter 5. Chapter 6 discusses the 

results and how they compare with literature. Finally, Chapter 7 presents the con-

clusions of this thesis.  
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2. SELF-MONITORING OF HEALTH 

Self-monitoring of health is an individual’s process of tracking health related met-

rics or behaviour. These include but are not limited to tracking activity, weight, 

body composition, heart rate (HR), sleep, BP, and food intake. Since there are a 

significant amount of health related metrics and behaviour, self-monitoring of 

health is a broad concept.  

Although self-monitoring of health is mostly used as a personal tool for assessing 

and maintaining well-being, self-monitoring is also an important part of the man-

agement of some chronic diseases, such as diabetes and hypertension. How-

ever, the focus of this thesis is on the areas that are most commonly monitored 

by the average population. Thus self-monitoring, such as blood glucose monitor-

ing, that is commonly used only for disease management is omitted. 

While pen and paper are common self-monitoring tools, self-monitoring now 

heavily relies on the use of personal health devices and software to collect and 

display data. This section introduces the parameters and behaviour related to 

health that are commonly monitored and the commercially available technology 

for monitoring them. The areas of self-monitoring that are introduced are activity, 

weight, body composition, sleep, HR, BP, and pulse wave velocity (PWV). With 

the exception of BP monitors, the devices available for consumers for the purpose 

of self-monitoring the aforementioned parameters are generally not medical de-

vices. 

2.1 Activity 

A sedentary lifestyle is considered to be a substantial health risk, and regular 

physical activity has been linked to both physical and mental health benefits. Self-

monitoring technology is a commonly used tool to promote activity. [5] Self-mon-

itoring of activity has become increasingly popular with wearable technology such 

as activity or fitness trackers [6] 

Activity is monitored by measuring movement with inertial sensors [7]. Inertial 

sensors used in activity trackers include accelerometers, gyroscopes, magne-

tometers, and barometers or altimeters [7, 8]. Currently, the most common inertial 
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sensor in activity trackers is an accelerometer [8]. It is an instrument that 

measures movement by measuring acceleration [9].  

An accelerometer measures the acceleration of the moving object it is connected 

to. A single accelerometer can detect acceleration in one predefined direction 

that depends on the orientation of the accelerometer. A typical accelerometer is 

composed of a seismic mass, spring, damper, and a sensor. The spring, damper, 

and sensor are used to connect the seismic mass to the accelerometer housing 

connected to the object. Acceleration of the object causes relative motion be-

tween the seismic mass and the accelerometer housing, which is detected by the 

sensor. The sensor can be a strain gage, piezoelectric element, or a capacitive 

element. [10] 

Commonly an accelerometer used for activity monitoring has a piezoelectric ele-

ment [9]. This is because piezoelectric elements are able to generate large out-

puts compared to their size. [10] Thus, they can be used in smaller applications. 

A schematic of a sample piezoelectric accelerometer is shown in Figure 1. The 

accelerometer contains a seismic mass connected to the accelerometer housing 

through a spring, damper, and a piezoelectric crystal. When the accelerometer is 

subjected to acceleration, the displacement of the mass causes strain to the pie-

zoelectric crystal. Due to the piezoelectric effect, this allows a charge to flow 

through the piezoelectric crystal between the conductive coatings. The charge is 

proportional to the strain experienced by the piezoelectric crystal, and thus the 

displacement of the mass. [10] 

 

Figure 1. A schematic of a piezoelectric accelerometer. The piezoelectric accelerometer 
consists of a seismic mass connected to the accelerometer housing by a string, damper, 
and a piezoelectric crystal. Figure adapted from [10]. 



5 
 

 

Activity trackers usually utilize triaxial accelerometers, which measure accelera-

tion in three orthogonal directions [8]. In some activity trackers, gyroscopes and 

magnetometers are used together with an accelerometer to achieve more accu-

rate motion tracking [7]. A gyroscope measures gravitational acceleration, which 

is used to detect orientation and angular velocity. A magnetometer measures the 

strength and direction of detected magnetic fields, which can be used to deter-

mine orientation in relation to the magnetic north of earth. [8] 

Additional sensors are used in order to increase device accuracy [8] However, 

since gyroscopes have a high power consumption compared to accelerometers, 

they are not as appealing for wearable battery powered devices [7]. For this rea-

son they are not found in every activity tracker, but are mainly used in applications 

that demand more accurate measurements, such as more expensive sports 

trackers. 

Similarly barometers or altimeters, which are not essential for activity detection, 

can be found in some devices. Barometers or altimeters are used to determine 

altitude and altitude changes. These sensors can be utilized to provide additional 

metrics in activity trackers, for example the number of floors climbed. [8] Addi-

tionally, they can be useful in specialized applications, such as sports trackers 

designed for mountain climbing.  

Some combination of these inertial sensors used to measure movement are em-

bedded in smart watches or activity trackers that can be used to track parameters 

such as number of steps, distance, and calorie consumption. These metrics are 

all calculated by algorithms from the measured movement data and often per-

sonal information from the user, for example weight, height, and age. The data 

collected by activity trackers can often be accessed in real time from the activity 

tracker or from a companion smart phone application. [8] Additionally, these types 

of sensors are also embedded into modern smart phones. Thus, smart phone 

applications can be used to track activity. Often these applications can be down-

loaded into the phones free of charge, making them a convenient and cheap op-

tion for activity monitoring. [6] 
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2.2 Weight and body composition 

Self-monitoring of weight has been shown to be an effective tool in weight loss 

and maintenance [11]. Traditionally self-monitoring of weight has been performed 

with the use of a scale and a paper diary. However, technological advances have 

provided further options. While weight is still measured using a scale, the meas-

urements can be logged into smart phone applications. The use of smart scales 

even enables measurement data to be synced with an application automatically, 

reducing effort required from the user. Often smart phone applications display the 

measurements as graphs over time, giving a quick overview of weight history. 

This enables the user to easily monitor their progress. Furthermore, applications 

can be used to set reminders for regular measurements, which improves adher-

ence.  

An excessive amount of body fat is linked to several medical issues [12]. Body 

composition describes what the body is composed of. The simplest methods es-

timate the amount of fat mass and lean mass while more complex methods can 

determine more in detail the different components of lean mass, such as muscle 

and bone mass. [13] The body mass index (BMI) is a simple method commonly 

used to estimate fat mass and determine if a person is of a healthy weight con-

sidering their height. The commonly used equation is  

BMI = 
Weight

Height2
, 

in which weight is in kilograms and height is in meters. In the equation, the height 

is squared in order to decrease the effect of leg length since the majority of fat 

mass is situated in the torso. [12] 

However, BMI does not accurately represent the amount of body fat. For exam-

ple, a person with a low body fat percentage may have a high BMI. Body fat 

measurements are a solution for this. There are several technologies used to 

estimate body fat. Body fat can be estimated by underwater weighing, air dis-

placement plethysmography, bioelectrical impedance analysis (BIA), dual-energy 

x-ray absorptiometry, and measurements of skin-fold thickness from different 

sites. [12] Most of these measurement methods are not feasible for self-monitor-

ing purposes. Of the aforementioned techniques, only BIA and measurement of 
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skin-fold thickness are convenient for self-monitoring at home. The other tech-

niques require significantly more expensive equipment and a laboratory setting 

with trained professionals [13]. 

The measurement of skinfold thickness gives a measure of subcutaneous fat. 

Callipers are used to measure skinfold thickness at different body sites, such as 

the biceps, suprailiac, and subscapular. An estimation of fat mass is derived using 

age and gender specific algorithms. There are different algorithms that utilize 

measurements from different sites. While this method is inexpensive, it is asso-

ciated with low accuracy. The most notable error sources include skill, type of 

callipers, and the algorithm. [13] 

BIA is based on the differing electrical conduction properties of different tissue 

types in the body. The measurement is performed using surface electrodes to 

transmit an electric current through the body and measure the electrical imped-

ance of the body in response to the current. Lean tissue is a better conductor 

than fat tissue, since lean tissue contains water and electrolytes. Fat tissue does 

not contain water, making it a poor conductor. [13] Thus, the measured imped-

ance reflects the amount of water in the body. Algorithms are used to predict fat 

free mass based on the measured impedance. These algorithms generally utilize 

the assumption that lean tissue has a hydration factor of 0.73. With this assump-

tion, the amount of fat free mass can be predicted. Finally fat mass can be calcu-

lated from the difference of weight and fat free mass. [14] 

BIA is a relatively low cost and rapid method for body composition measurement. 

It is portable and does not require a laboratory setting. Thus, it is a convenient 

technology for measurements at home, and has been implemented into some 

smart scales on the market. Despite all the advantages of BIA, it is an indirect 

measurement technique. This means that algorithms must be used to predict the 

wanted quantity. The use of algorithms requires assumption of values. Further-

more, these algorithms have been constructed with population mean values, but 

are applied on a measurement of an individual. Because an individual is seldom 

a perfect reflection of the population mean, this results in prediction error. Addi-

tionally, different devices may not provide identical measurements as the algo-

rithms are not standardized. [14] Thus, measurements with different devices are 

not necessarily comparable. However, if the same device is continuously used, 
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as is common in at home self-monitoring, at least the measurements can be used 

to review progress.  

2.3 Sleep 

Sleep is considered to have a substantial impact on health and well-being. Poor 

sleep is associated with depression, anxiety, fatigue, and inability to focus. In the 

long-run insufficient sleep can negatively impact health, for example by indirectly 

contributing to obesity, diabetes, cardiovascular disease, or a cold. The perceived 

importance of sleep acts as a motivator for self-monitoring. [15] 

Consumer sleep technology (CST) is technology that is used to self-monitor sleep 

and is available for consumers without prescription. CSTs include smart phone 

applications, wearable devices, and embedded devices. [16] The smart phone 

applications do not require any additional sensors, they use the built in sensors 

of the phones. Sleep tracking applications can utilize the microphones, cameras, 

and inertial sensors of smart phones. The microphone can be used to record 

audio in order to detect snoring, sleep talking, and even identify respiratory pat-

terns. The camera can be used to visually detect sleeping behaviour and inertial 

sensors are used to track movement. [17] While the features differ from applica-

tion to application, some common features are sleep tracking, smart alarms, and 

sleep logging. In order to perform sleep tracking, many of the applications require 

the smart phone placement on the sleep surface, and use the built in accelerom-

eters to measure movement from the sleep surface. The detected movements 

are used to determine when the user is asleep and estimate the depth of sleep, 

usually a determination between light and deep sleep. [16] 

Wearable sleep monitoring devices, such as activity trackers, use the same ac-

celerometers that are used to measure activity to track sleep. Similarly to the 

smart phone applications, the detected movements are analysed in order to de-

termine depth of sleep. Some devices also incorporate HR, respiratory pattern, 

and temperature monitoring to improve accuracy. [16] Wearable sleep monitoring 

devices are mostly wrist-worn activity trackers or smart watches, but there are 

also clip based applications and even a shirt capable of sleep monitoring. [18] 

Embedded devices used for sleep monitoring are devices that are embedded into 

the sleeping environment [16]. Examples of embedded devices include cameras 
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in the sleeping environment and devices, such as Beddit and EarlySense, which 

utilize embedded sensors in the sleep surface, either on top or under the mattress 

[16, 18]. Mattress-based devices detect respiration patterns, movement, and ap-

ply ballistocardiography (BCG) for cardiac monitoring. BCG utilizes the measure-

ment of small movements of the body caused by the pulsatile ejection of blood 

from the heart during systole. [18] 

While especially the smart phone applications have ambitious claims, such as the 

detection of obstructive sleep apnoea or periodic leg movement syndrome, the 

applications are not scientifically valid [17]. The validation of sleep monitoring 

devices and applications is performed by comparing them with polysomnography, 

which is considered the golden standard of sleep monitoring [19]. There is a sig-

nificant lack of validation of CST technology and especially smart phone applica-

tions have been found to be inaccurate compared to laboratory grade measure-

ments [17]. While wearable CST devices are able to accurately detect sleep du-

ration, they cannot accurately determine periods of light and deep sleep [19].  

2.4 Heart rate 

HR, the number of times the heart beats each minute, is an indicator of physical 

fitness and health. HR is affected by internal and external factors, such as stress, 

sleep, and activity. Monitoring HR is used to monitor physical activity and stress 

levels. Additionally, HR monitoring is widely used to control training intensity in 

order to accomplish desired training effects. [20] There are two HR monitoring 

technologies that are common in consumer grade devices. HR monitors are 

based on either an electrocardiogram (ECG) or photoplethysmography (PPG). 

The technology depends on the type of HR monitor. Wrist-worn HR monitors are 

based on PPG and chest strap HR monitors on ECG. [8, 21] 

The other method of measuring HR used in consumer grade devices is based on 

ECG. Two electrodes worn on a chest strap are used to detect the electrical ac-

tivity of the heart [21]. Compared to a conventional 12-lead ECG, the number of 

electrodes is small but the measurement principle is the same. Since the purpose 

is to only determine the interval between heartbeats and the overall quality of the 

waveform is not as important, one lead is sufficient. An ECG signal is shown in 

Figure 2.  
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Figure 2. The waveform of an ECG signal. The RR interval is used to determine HR from 
an ECG signal. 

The ECG signal contains distinct waves that are detected with every heartbeat. 

Since the R waves are most prominent, it is easiest to use them in the measure-

ment of HR. The RR interval is used to detect HR. The RR interval is the time 

interval between the peaks of consecutive R waves.  

PPG is an optical technique used for HR monitoring via non-invasive blood vol-

ume change measurements. This technology is often implemented into activity 

trackers and sports watches. PPG uses light-emitting diodes (LEDs) to transmit 

light into the body. This light undergoes reflection, absorption, and scattering 

caused by tissue and blood before being detected by a photodetector. [22] There 

are two operational modes that depend on the positioning of the LED and photo-

detector. In transmission mode, the LED and photodetector are on opposite sides 

of a sample tissue, and the photodetector is used to detect the intensity of trans-

mitted light. In reflection mode, the LED and photodetector are on the same side 

of the sample tissue, and the photodetector is used to detect the intensity of re-

flected light. Transmission mode is restricted to measurement sites that are thin 

so that transmitted light can still be detected. [23] Thus, reflection mode is used 

in wrist-worn devices. 

The blood volume in arteries changes according to the cardiac cycle. During sys-

tole, as the heart pumps blood into the body, the volume of blood in the arteries 

increases. This results in an increased absorption of light. After this the volume 

of blood decreases as the blood travels back to the heart. [23] The intensity of 

the transmitted or reflected light measured by the photodetector varies according 
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to these cyclical changes in blood volume under the sensor [22]. A photodetector 

is a sensor that converts the energy of the incident light photons into an electrical 

signal that is proportional to the total energy of the incident photons, which rep-

resents the intensity of the incident light. The resulting voltage signal has two 

components, the alternating current (AC) component, and the direct current (DC) 

component. This PPG waveform is shown in Figure 3. The AC component repre-

sents the variations in blood volume, and the DC component is the voltage offset 

caused by the constant absorption and scattering caused by tissues through 

which the light travels. [22] HR is determined from the measured waveform by 

calculating the time interval between two consecutive peaks.  

 

Figure 3. An illustration of a PPG waveform and its components caused by the tissues 
and blood through which the light travels. The unchanging components (venous blood, 
non-pulsatile component of arterial blood, and other tissues) cause the DC component. 
The AC component is caused by the pulsatile component of arterial blood. HR is deter-
mined from the time interval between two consecutive peaks of the AC component. Fig-
ure adapted from [24]. 
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The measurement of PPG is based on the differences in the amounts of absorp-

tion and reflection experienced by the different wavelengths, which depend on 

tissue properties. The light used in PPG is of a wavelength that experiences little 

absorption in other tissues compared to absorption in blood. This results in blood 

volume changes causing greater variations in the intensity of the light, making 

measurements more accurate. Generally red, infrared, or green light have been 

used in PPG applications. Green light experiences more absorption in both de-

oxygenated and oxygenated blood and consequently provides more accurate 

measurements in HR detection applications. [23] For this reason, most commer-

cial HR monitoring devices use green light [24].  

Errors in PPG measurements can arise from poor contact between the sensor 

and skin, and PPG is easily subject to motion artefacts that can affect the de-

tected HR. Generally, chest strap HR monitors based on ECG are considered to 

provide higher accuracy compared to wrist-worn PPG devices. However, the re-

quired chest-strap reduces usability and comfort. [24] Thus, chest strap HR mon-

itors are unsuitable for continuous use. Thus, chest strap HR monitors are mostly 

used in HR rate monitoring during exercise and not continuously like wrist-worn 

devices. 

In addition to wrist-worn activity trackers that utilize PPG to measure HR and 

chest strap HR monitors, smart phone applications have been developed for HR 

monitoring purposes. Smart phone application based HR monitoring can utilize 

either contact PPG or non-contact PPG. Contact PPG measures HR from the 

user’s finger placed on the camera of the smart phone. This is done by using the 

flash of the camera as a light source and the camera as the detector. Non-contact 

PPG measures HR from the face, using only ambient light. [25] While these ap-

plications provide an inexpensive HR monitoring alternative, it is not suitable for 

continuous monitoring for example during exercise. In addition, the performance 

of these smartphone applications is questionable. Studies have shown significant 

differences in measurement accuracy between different applications. While some 

applications have been found to provide acceptable measurement accuracy, the 

comparison of smart phone application measured HR to ECG and pulse oximetry 

measured HR detected absolute differences in a significant portion of measure-

ments to be beyond 20 beats per minute (bpm). [25] 
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2.5 Blood pressure 

BP refers to the pressure that blood applies on blood vessel walls. In general, the 

term BP is used to specifically refer to the pressure in the brachial artery in the 

upper arm. This pressure varies periodically between the systolic and diastolic 

pressure according to current stage of the cardiac cycle. Systolic BP is the max-

imum BP, which occurs after the contraction of the left ventricle of the heart, while 

diastolic BP is the minimum BP, which occurs after the relaxation of the heart. 

[26] 

Hypertension, which refers to high BP, is a significant factor contributing to cardi-

ovascular diseases, which are the most prevalent cause of death worldwide [27]. 

Hypertension is also common. For example, in the United Kingdom, the United 

States of America, and Australia, over a quarter of the population suffer from hy-

pertension. [26] Self-monitoring has been shown to lead to decreases in BP for 

hypertensive patients [27], making it beneficial for hypertension management. 

However, it could also aid in the early detection and prevention of hypertension 

among the healthy population. 

BP monitors are medical devices. Self-measurement of BP is performed with an 

automatic BP monitor. The American Heart Association and the British and Irish 

Hypertension Society recommend the use of devices that measure BP from the 

upper arm [28, 29]. Upper-arm BP monitors available for use at home by an un-

trained user use the oscillometric technique to measure BP [30].  

In an oscillometric BP measurement, a pneumatic cuff is placed firmly around the 

upper arm. In the beginning of the measurement, the cuff is automatically inflated 

to a pressure higher than the systolic pressure. As the cuff is gradually deflated 

to a pressure below diastolic pressure, the pressure oscillations in the cuff are 

detected by pressure sensors. [26] The resulting waveform is illustrated in Figure 

4. 
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Figure 4. The oscillometric waveform (OMW) and oscillometric waveform envelope 
(OWE) that correspond to the decreasing cuff pressure (CF). SBP, DBP, MAP refer to 
systolic BP, diastolic BP, and mean arterial pressure respectively. The corresponding 
terms in the oscillometric waveform envelope (SBPA, MA, and DBPA) refer to the ampli-
tude of the oscillometric waveform envelope that corresponds to the relevant pressure. 
Figure from [31]. 

In the beginning, the pressure in the cuff is higher than the systolic pressure. This 

results in the collapse of the brachial artery, which leads to a situation with no 

blood flow. At this point the cuff pressure does not oscillate. As the pressure in 

the cuff is decreased below systolic pressure, blood will begin to flow. However, 

the blood flow will be restricted until the cuff pressure drops below diastolic pres-

sure. When restricted blood flow is present, the cuff pressure experiences small 

oscillations in synchrony with the volume changes of the brachial artery. This os-

cillation begins when the cuff pressure decreases below systolic pressure and 

increases until reaching maximum oscillation at mean arterial pressure. After this 

the oscillations decrease. The recorded pressure changes in the cuff are filtered 

to obtain the oscillations, from which the systolic and diastolic pressures can be 

estimated with the use of algorithms. [32] Often these algorithms utilize analysis 

of the oscillometric waveform envelope, which is illustrated in Figure 4. The algo-

rithms vary between manufacturers and are not disclosed to users [26].  

The oscillometric technique can also be used to measure BP from the wrist. 

These devices are usually smaller in size and can be used in cases that upper-
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arm measurements are not possible. The measurement principle remains un-

changed. However, since the systolic and diastolic pressures do not remain un-

changed along the arterial tree, additional algorithms must be used to convert the 

measured pressures to correspond with standard measurements. Several wrist 

based blood measurement devices have been validated, and are considered to 

provide acceptable readings when used correctly. However, wrist monitors are 

more prone to inaccuracies due to user errors, such as incorrect wrist placement 

in relation to the heart. For this reason, wrist monitors are considered unreliable 

compared to upper-arm monitors. [30] 

2.6 Pulse wave velocity 

Since cardiovascular diseases are a leading cause of death, there is a continuous 

demand for the development of tools that can be used in early diagnosis and 

detection of risk factors. PWV is the propagation velocity of a pressure pulse orig-

inating from the heart. [33] It is used to assess arterial stiffness and predict risk 

of cardiovascular diseases [34].  

PWV can be measured regionally or locally. Regional measurements are per-

formed in two arteries, for example the carotid and femoral arteries. They deter-

mine an average PWV for the long segment consisting of several different arteries 

between the measurement sites. Contrarily, local measurements are used to 

measure PWV in a short segment of one artery. This type of measurement is a 

better indicator of arterial stiffness as the average might hide variations. [33] 

While technologies, such as angiography, magnetic resonance imaging, and ul-

trasound are used to measure PWV in clinical settings, these technologies are 

considered expensive and require operational training [33]. For this reason these 

technologies are not feasible for self-monitoring purposes. Novel non-invasive 

PWV measurements make it possible to perform PWV measurements outside 

clinical settings [34]. These commercial devices measure PWV through regional 

measurements [33].  

Withings has developed a smart scale that measures PWV with the use of im-

pedance plethysmography and BCG. BCG is used to measure the miniscule 

changes in body weight caused by the pulsatile ejections of blood from the heart 

during systole. This is used to determine the beginning of systole. IPG is used to 
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measure changes in blood volume. This is done by using thin electrodes on the 

surface of the scale to apply a current between two parts of the foot. The tissues 

in the human body act as a conducting electrolyte with a fairly constant conduc-

tivity. Blood is a better conductor than the surrounding tissue, so variations in 

blood volume will affect conductivity, and thus the measured impedance. This is 

used to determine when the pressure pulse originating from the heart arrives in 

the foot. The time difference between the beginning of systole and the arrival of 

the pressure pulse in the foot is known as the aorta-leg pulse transit time (alPTT). 

This can be used to calculate PWV when the pressure pulse has travelled a 

known distance. [35] 

The combination of IPG and BCG has been shown to provide acceptable estima-

tions of PWV compared to clinical measurements [35]. However, a PWV meas-

urement performed by a smart scale still has limitations [34]. In order to determine 

PWV from alPTT, the carotid-femoral distance must be known. Since this dis-

tance cannot be measured by the user, it is estimated based on the user’s self-

reported height. [35] Additionally, the technology requires immobility during the 

measurement and relies on the stability of the user. Thus, acquiring a successful 

measurement may require several attempts from the user. [34] 
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3. LONG-TERM SELF-MONITORING 

Long-term self-monitoring of health with the use of consumer grade personal 

health devices could offer significant opportunities in preventing illnesses and im-

proving well-being and health [3]. This chapter explores the benefits and chal-

lenges of long-term self-monitoring. 

3.1 Benefits of long-term self-monitoring 

Long term self-monitoring can be a useful tool in several ways. It can be used to 

improve understanding of personal behaviour, identifying trends in health related 

parameters, and motivating behaviour change, which ultimately lead to improved 

well-being and health [3]. According to research on the effects of long-term self-

monitoring, at least the self-monitoring of activity and weight have been associ-

ated with health benefits [36, 37].  

The long-term use of activity trackers has been found to motivate users in behav-

ioural monitoring, and in improving fitness and health [37]. Studies have found 

that the use of activity trackers results in an increase in physical activity [5, 37, 

38]. This exhibits the motivational quality of self-monitoring that can be used to 

implement behaviour changes. Self-monitoring applications are able to increase 

motivation for example through appropriate feedback and the gamification of self-

monitoring [4, 39]. The increase in physical activity happens as a result of health-

ier changes in behaviour, such as taking the stairs when possible or replacing car 

use with walking. Increased physical activity as a result of long-term use has been 

shown to also result in long-term benefits, such as improved physical and emo-

tional heath, less pain, and increased independence in older users. [38] 

Long-term self-monitoring has been shown to be an effective weight manage-

ment tool in weight loss and maintenance [11, 36]. Frequent self-monitoring of 

weight increases awareness of behavior resulting in weight changes and enables 

detection of small weight changes [11]. Detecting small weight changes makes it 

easier to reverse them and prevent significant weight gain [36]. While regular self-

monitoring is associated with successful weight management, breaks from self-
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monitoring have been shown to lead to increases in weight. Since weight man-

agement is a life-long process, long-term self-monitoring in weight management 

is beneficial. [11] 

Self-monitoring is also an essential part in the management of chronic diseases, 

such as diabetes and hypertension. In disease management, the benefits of long-

term self-monitoring are significant, as self-monitoring can help avoid further 

health problems, complications and even death. [40] Self-monitoring allows more 

involvement in disease management, which has been shown to lead to increased 

medication adherence, better symptom management, and improved health and 

quality of life. [27, 40]. 

While the benefits of self-monitoring health related parameters seem to mostly 

be related to health and well-being, there can be some more unexpected benefits. 

For example, in some places self-monitoring can even lead to monetary benefits. 

Some health and life insurers have launched programs that reward uploading 

self-monitoring data with lower payments. [41] 

3.2 Challenges of long-term self-monitoring 

In order to achieve any positive benefits through self-monitoring, the individual 

must be willing to self-monitor. There are several factors, such as scepticism, 

price, privacy concerns, perceived usefulness, and technological complexity, 

which can affect perception of self-monitoring devices and act as deterrents to 

even trying self-monitoring [38]. Even among the individuals that give self-moni-

toring a chance, an initial positive reaction does not necessarily result in long-

term use. A notable challenge to long-term self-monitoring is early abandonment 

of self-monitoring. Early abandonment usually occurs as the result of too much 

required effort, technical difficulties, discomfort with the collected information, dis-

trust in data quality, or uselessness of the collected data. As self-monitoring in-

creasingly involves smart phone use and cloud based storage, privacy concerns 

have become relevant and influence some users. [3] 

Issues related to user experience, such as the appearance and comfortability of 

wearable devices also play a role in early abandonment [3]. A study on older 

adults found that fashionable and comfortable wearable devices that look like 
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accessories, such as watches or bracelets, is an important factor encouraging 

use [38].  

Additionally, if an individual is interested in monitoring multiple aspects of their 

health, for example activity and BP, they are often required to use different user 

interfaces. This happens because often the devices used to monitor different as-

pects of health are from different manufacturers and usually the use of a device 

requires the use of the application provided by the manufacturer. This creates 

challenges in the ease of monitoring the collected data. [3] This problem could be 

minimized by choosing devices from the same manufacturer. This would allow 

the access of all collected data from the same application. However, choosing 

the same manufacturer may not be attractive to cost conscious consumers. Ad-

ditionally, the impact providing a range of devices has on device quality should 

be considered. Is a manufacturer that has divided their attention among several 

technologies able to produce comparable quality to a manufacturer focusing on 

a single technology? Furthermore, it should be noted that not many manufactur-

ers have such a wide range of devices that monitoring many aspects of health 

would be possible with the use of just one manufacturer’s devices. Another solu-

tion could be using a separate tracking application that allows the user to manu-

ally enter data [3]. This way the user can access the data from multiple sources 

in one place. While this approach improves the accessibility of data, it requires 

additional effort, which was one of the most common reasons for user abandon-

ment.  

Finally it should be recognized that the effects of long-term self-monitoring are 

not necessarily always positive. For example, self-monitoring of weight can lead 

to intensified discontent with one’s body and weakened self-esteem if self-moni-

toring does not show progress quickly enough [11]. If the progress revealed by 

self-monitoring is not satisfactory, it may lead to discomfort and abandonment of 

self-monitoring [36]. However, in some cases this might lead to the introduction 

of unhealthy habits in order to facilitate desired progress faster. For example, if 

self-monitoring is used as a tool in weight loss, the desire for fast progress may 

cause an individual to implement unhealthy eating habits, such as fasting, skip-

ping meals, or bulimic behaviour. [42] 
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4. EXPERIMENTAL SETUP 

The experimental study involved active self-monitoring for a period of two weeks. 

The self-monitoring was performed by the author of the thesis, who is from this 

point forward referred to as participant. The aim of this experimental study was 

two-fold: to determine whether active self-monitoring of health has an effect on 

well-being during a short period of time, and to observe the challenges associated 

with active self-monitoring. The findings were reviewed and compared with expe-

riences reported in literature. The self-monitoring tools and the method that were 

used in this study are presented in this chapter. 

4.1 Tools used for self-monitoring 

The self-monitoring was performed with the use of three devices manufactured 

by Nokia (which has now been sold back to Withings) and their mobile application 

designed for use with these devices. The devices included an activity tracker 

(Steel HR), a smart scale (Body Cardio) and a BP monitor (BPM+). The associ-

ated mobile application Health Mate was used to monitor all the recorded data. 

4.1.1 Steel HR 

The activity tracker (Nokia Steel HR) automatically tracks the amount of steps, 

burned calories, average HR, and quality of sleep. In addition, it can be used to 

track activities in workout mode. Workout mode includes continuous HR monitor-

ing available in real time, and GPS tracking if the activity tracker is connected to 

a phone with location services enabled. The activity tracker is a smart watch that 

can be used to display notifications from selected smart phone applications. Ad-

ditionally, the user can use it as a vibrating alarm. 

The wearable activity tracker is an analogue watch with a small digital display 

and an activity dial, from which the user can easily see their progress on their 

daily step goal. These are shown in the illustration of the watch in Figure 5. The 

digital display can show the date and time, HR, steps, distance, calories burned 

during the day, notifications, battery level, and time of the next alarm. These 
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screens are customizable, and the user may choose which screens are shown 

and the order of the screens based on their own preferences. 

  

Figure 5. Photographs of the Steel HR watch that show the different components of the 
watch. The watch includes an analogue watch, a digital display, and an activity dial in 
the front, and a HR sensor in the back. 

The watch uses an accelerometer to track the number of steps. The accelerom-

eter is also used to monitor sleep and automatically detect activities, such as 

running or swimming. The HR is measured from the wrist using a HR sensor 

utilizing PPG. [43] 

4.1.2 Body Cardio 

The smart scale (Nokia Body Cardio) measures weight and body composition, 

which includes water, fat, muscle, and bone mass. In addition, the scale 

measures HR and PWV, which inform the user of their cardiovascular health.  

The scale uses BIA to measure body composition [44]. For this reason the scale 

has electrodes on the surface of the scale. These electrodes can be seen in the 

photograph of the scale in Figure 6. Since the electrodes are used to send electric 

currents into the body, the scale must be used with bare feet. 
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Figure 6. An edited photograph of the Body Cardio smart scale that displays the optimal 
placement of feet for measurements. The horizontal bands are the electrodes on the 
surface of the scale. The user should stand on the scale with bare feet so that their heels 
are on top of the second horizontal electrode. 

The scale calculates fat mass using an algorithm. The body type of an athlete is 

vastly different from an average person. For this reason, athletes and average 

people require different algorithms to calculate fat mass. Thus, the scale can be 

used in athlete mode if necessary. The user guide suggests using the athlete 

mode if the user has a resting HR of under 60 bpm and typically works out over 

eight hours a week.  

The scale also utilizes the electrodes to measure HR and PWV, which is a meas-

ure of the propagation speed of a pressure pulse. For accurate results, these 

measurements require the user to stand on the scale with bare feet in a centred 

position and no movement during the measurement. The optimal feet placement 

that should be used for all of the measurements is shown in Figure 5. 

4.1.3 BPM+ 

Nokia BPM+, is a medical device that uses the oscillometric method to measure 

BP [45]. The device is shown in Figure 6. The following instructions on how to 

properly perform a BP measurement were provided with the device. Most im-

portantly, the BP monitor is used in a seated position and the user should rest for 
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at least five minutes before taking a measurement. The BP monitor is placed 

around the upper arm and the cuff is tightened so that the BP monitor stays in 

place approximately 2 cm above the elbow. This device placement is visible in 

Figure 7. The arm is then placed on a table so that the BP monitor is at the same 

level as the heart.  

 

Figure 7. The Nokia BPM+ is placed around the upper arm approximately 2 cm above 
the elbow. 

The application allows the user to take a single BP measurement or an advanced 

BP measurement. The advanced measurement performs three measurements 

and gives their average as the result. If this mode is chosen, the BP monitor au-

tomatically performs the three measurements at a chosen interval. 

4.1.4 Health Mate 

The data collected by all the devices is available in the smart phone application 

Health Mate and the desktop site. The data presented in the application is divided 

into sections. When the aforementioned devices are in use, the sections are 

steps, HR, recorded activities, sleep, weight, and BP. The information about steps 

gives a visual representation of the steps during the day, the number of steps, 

the percentage of the daily goal, and the estimated distance and burned calories 

that are calculated by an algorithm. 
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The HR is shown as a graph which shows the daytime HR in blue and the HR 

while sleeping in grey, as shown in Figure 8. The application calculates the aver-

age HR for the day and night separately. In addition, the application displays the 

duration spent in each of the four HR zones: light, moderate, intense, and peak. 

 

Figure 8. The graphic display of heart rate in the Health Mate application. In the graph 
the HR measured during sleep is in grey and HR measured during the day is in blue. In 
addition, the average day and night HRs are presented below the graph. 

The sleep section provides a breakdown of the night that displays the time spent 

awake, and the periods of light and deep sleep. The application calculates a sleep 

score based on the number of interruptions during the night, and the duration, 

regularity, and depth of sleep. In addition, it shows the average, peak, and lowest 

HR recorded during the night. 

For each recorded activity, the duration and estimated burned calories are shown. 

If workout mode was used for the activity, the recorded HR is displayed as a 

graph, the average HR and time spent in each HR zone is calculated. If workout 

mode was used with the watch connected to a phone with GPS tracking enabled, 

the application displays the route on a map and the pace and elevation changes 

as a graph. Furthermore, average pace and the recorded splits are displayed. 

The information in the weight section is all displayed as graphs that show meas-

urements over time. This section displays the recorded weight, water mass, fat 

mass, muscle mass, bone mass, and BMI. The body fat, muscle mass, and bone 
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mass can be displayed as absolute weights or as a percentage. The BMI is cal-

culated based on the recorded weight and the height inserted by the user. 

The BP section shows the recorded systolic and diastolic BP the number of meas-

urements taken, and a trend based on past measurements. Based on the rec-

orded HR, the application gives a classification of either normal, elevated, or high. 

4.2 The method 

The study was performed over a period of two weeks during which the participant 

used the devices and the associated mobile application to actively self-monitor 

their health. All the available features were utilised in order to provide the partic-

ipant with a well-rounded self-monitoring experience. During the study, the par-

ticipant evaluated whether they felt self-monitoring had some kind of impact on 

their behaviour and subsequently their well-being. Additionally, the participant ob-

served and made note of the problems they encountered. 

The measurement frequency for weight and BP measurements was chosen to be 

twice a day, in the morning and in the evening. For BP this was chosen, as it is 

the measurement frequency recommended by health care professionals for 

home monitoring. This measurement frequency revealed the circadian pattern of 

BP. [46] For simplicity, the same frequency was used for weighing. This meas-

urement frequency will also reveal the daily fluctuation of weight. 

The activity tracker was worn for the whole duration of the study. Since the activity 

tracker has a battery life of approximately 25 days with average use, it was 

charged before the two week period in order to avoid having to remove it for 

charging during the study. The properties tracked by the activity tracker were 

monitored from the Health Mate application actively.  

The smart scale was used in athlete mode as suggested by the user guide since 

the participant exercises over eight hours a week and had consistently measured 

their resting HR to be under 60 bpm before beginning the study. The smart scale 

was used to measure weight, body composition, HR, and PWV two times a day 

each day during the two week period, in the morning and in the evening. The aim 

was to perform the measurements at roughly the same time each day to obtain 

comparable results. The morning measurements were performed after waking 



26 
 

 

up, but before breakfast, at approximately 8:00. The evening measurements were 

performed at approximately 21:00. These times were chosen to ensure adher-

ence to the schedule since they are times the participant was likely to be at home 

most days. Health Mate allows the user to set reminders to establish a habit of 

taking measurements at a fixed time. These reminders were used to avoid for-

getting a measurement.  

In a similar manner, the BP monitor was used to measure BP twice a day each 

day. These measurements were performed immediately following the weighing 

to form two measurement sessions each day in order to make the self-monitoring 

as manageable as possible. The BP measurements were performed following the 

instructions provided with the device, described in 3.1.3. The BP was measured 

using the advanced measurement, in which the application automatically 

measures the BP three times and gives an average of these as a result. This was 

done to increase the accuracy of the result. The application allows the interval 

between consecutive measurements to be set to either 30 seconds, 1 minute, 90 

seconds, or 2 minutes. A 30 second interval was used. This interval was chosen 

for the convenience of the participant, to minimize the time spent on measure-

ments while still obtaining accurate results from the advanced measurement. 

Since the main purpose of this study was to observe the effects of active self-

monitoring, a detailed diary was kept during the study. This included any obser-

vations related to well-being, such as tiredness or feelings of stress. In addition, 

any problems encountered during the study were recorded so that the technical 

usability of self-monitoring devices can be evaluated.  
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5. RESULTS 

The self-monitoring consisted of the collection and monitoring of a significant 

amount of data. Relevant details of the data and the observations about self-

monitoring made by the participant are presented in this chapter. 

5.1 Collected data 

The collected and monitored data can be divided into categories of activity, heart 

health, body composition, and sleep. The data related to activity consists of the 

number of steps, distance, recorded activities, and burned calories. The heart 

health related data consists of HR, BP, and PWV measurements. The body com-

position data consists of weight, fat mass, bone mass, muscle mass, and hydra-

tion. The sleep data consists of duration of sleep, beginning and ending times, 

duration of periods of light and deep sleep, number of introductions, and awake 

time. The participant’s sleep data is presented in Figure 9. 

 

Figure 9. Duration of sleep during each night of the self-monitoring period. Each bar 
represents the duration of sleep during one night. The night is divided into sections of 
light sleep, deep sleep, and awake time. These are displayed in blue, yellow, and grey 
respectively. 

In Figure 9, the bars represent the duration of sleep during one night, which is 

divided into sections of light sleep, deep sleep, and awake time. Light sleep is 
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displayed in blue, deep sleep in yellow, and awake time in grey. While the dura-

tion of sleep varied substantially, the changes did not arise from the motivation to 

improve sleep scores determined by Health Mate. Instead the duration of sleep 

simply increased when the participant had the ability to sleep longer. 

Besides sleep, activity was the only other metric that experienced significant var-

iation. The number of steps per day varied between 779 and 13217. The rest of 

the measured metrics, such as weight, body fat, resting HR, BP, and PWV re-

mained fairly constant. These were constantly in the healthy range and only ex-

perienced small variations from day to day. They also clearly followed circadian 

patterns. Generally the morning measurements produced lower values than the 

evening measurements. As could be expected, most of the evening measure-

ments taken after a day of activity and eating were higher than the morning meas-

urements taken after sleeping. For example the measurements of weight are pre-

sented in Figure 10. The morning measurements are in blue and the evening 

measurements in yellow. 

 

Figure 10. Weight measurements in the morning and evening during the self-monitoring 
period. The morning measurements are displayed in blue and the evening measure-
ments in yellow. With a couple of exceptions, the measurements exhibit a pattern of a 
lower weight in the morning and a higher weight in the evening. 

Figure 10 displays a clear pattern in the weight measurements. With the excep-

tion of days 3, 6, and 14, the measurements in the morning were lower than the 
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measurements in the evening. BP measurements exhibited a similar trend. The 

BP measurements are displayed in Figure 11. 

 

Figure 11. The BPs measured during the self-monitoring period. The BPs measured in 
the morning are displayed in blue and the BPs measured in the evening are displayed in 
yellow. Most of the time the systolic and diastolic BPs measured in the evening were 
higher than in the morning. 

In Figure 11, the recorded morning and evening BPs are displayed in blue and 

yellow respectively. Some measurements are missing due to technical difficulties 

that prevented successful measurements. Similarly to weight measurements, not 

every evening measurement was higher than the morning measurement, but this 

is clearly the prevalent trend.  

While most metrics followed a similar trend, body fat percentage measurements 

exhibited an opposite trend. The body fat percentage in the evening was consist-

ently lower than in the morning. Since body fat percentage was measured with 

BIA, this can be explained by the fact that water consumption during the day 

results in increased water mass in the body in the evening compared to the morn-

ing. 

When analysing the collected data, no significant relationships between different 

parameters could be identified. The only weak correlation that could be detected 

was between the amount and types of activity and the average HR during the 

day. The days that included no recorded activities exhibited the lowest average 

HR. Contrarily, if a day included high intensity activities, the average HR was 
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clearly higher. This occurred as a result of high HR during activity, which then 

increases the average compared to a day with no activity. 

5.2 Observations 

Even though the self-monitoring period suddenly involved a considerable amount 

of self-monitoring, the participant found the process interesting and kept to it for 

the whole two weeks. The participant noticed clear patterns in many of the meas-

urements, such as weight and BP. The measured values were lower in the morn-

ing and higher in the evening, as could be expected after a day of eating and 

activities.  

In general, the participant felt that the self-monitoring did not affect their well-

being. Since the weight, BP, HR, and PWV measurements were in the healthy 

range, the participant did not feel the need to change their behaviour in any way 

to improve these. Additionally the participant did not have any weight goal, and 

thus changes in the measured weight did not affect their behaviour either. The 

only time the participant noticed that the self-monitoring clearly affected their be-

haviour was in a situation where the participant was close to reaching their step 

goal for the day. In this case the participant was motivated to increase their ac-

tivity in the evening enough to reach the goal, for example by going for a short 

walk. 

Since the measured values were in the healthy range, the participant felt that 

performing some of the measurements was unnecessary. For example after a 

few consistently low BP measurements, the participant did not see any actual 

need to monitor BP twice a day. Were it not for the study, the participant probably 

would not have continued with the measurements so often. The participant felt 

that it would be more reasonable to perform a few days of BP measurements 

from time to time in order to be informed about their BP. 

The participant also found the strict measurement schedule to be restricting, and 

even to slightly negatively affect their well-being. Since the measurement sched-

ule was planned so that it maximized adherence to it, the morning measurements 

had to be scheduled to 8:00. However, on days that the participant did not have 

to leave home before 10:00, they thought that it would have been more beneficial 
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for their well-being to allow longer uninterrupted sleep. Some days, the participant 

did resume sleeping after performing the measurements at 8:00. 

While the participant mostly adhered to the set schedule, and even sometimes 

woke up earlier than necessary to do so, they found that it was impossible to 

perform every measurement at the scheduled time. The participant performed 

four measurement sessions at non-scheduled times. Two morning measurement 

sessions had to be performed much earlier because of work shifts beginning at 

6:30. One evening measurement session was performed later because of losing 

track of time and one because of not being home yet. This made the participant 

realize that especially shift work makes taking comparable measurements signif-

icantly harder, or even impossible. The participant herself has previously worked 

morning, evening, and night shifts in rotation, and currently works occasional 

shifts. When working three different shifts, performing measurements at some set 

time is impossible as there is no one time that could be used every day. Addition-

ally even if only a general time frame is used, the measurements are still highly 

incomparable, since performing morning measurements after working a night 

shift or after eight hours of sleep do not produce comparable results. However, in 

such a situation self-monitoring could provide useful insights into how night shift 

affects health and how an individual recovers after a night shift. However, the 

participant did not have a night shift during the two week period. Thus, while this 

aspect was thought provoking, the effects of a night shift to measurements could 

not be analysed.  

The most notable issues the participant noticed were technical difficulties and 

inaccuracies in measured data. During the two week period, the participant ex-

perienced various technical difficulties. The technical difficulties included prob-

lems during the installation of the smart scale, with the use of the smart scale and 

the BP monitor, and with running out of batteries from the BP monitor. 

The technical difficulties began before the official start of the two week period, 

when preparing the smart scale for use. The installation process required either 

setting up a Wi-Fi connection or choosing to use Bluetooth to sync the information 

between the scale and the smart phone application. The participant attempted to 

set up a Wi-Fi connection but the scale was not able to connect to the Wi-Fi. The 

application provided instructions on how to attempt fixing the situation, but none 
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resulted in a successful connection. Fortunately, connection via Bluetooth was 

successful, and the unavailable functions when using this mode were insignifi-

cant, such as displaying the weather.  

Another technical difficulty with the scale occurred after a week of use. Since the 

scale had been borrowed for the duration of the study, the scale had been used 

by other users. This meant that the scale remembered the data of other users 

and connected the measurement to the correct user based on the measured 

weight. The problem was caused by having two people with very similar weights. 

Up to this point, the scale had asked the user to choose the correct user. How-

ever, one evening the weight of the participant was a little higher than generally 

and the scale would not give the user the choice of users, instead automatically 

connecting the measurement with the incorrect user. After trying to repeat the 

measurement several times, the user gave up and decided to perform trouble 

shooting the following day. The participant was discouraged by the lack of infor-

mation in the help and frequently asked questions sections provided by the man-

ufacturer. The solution that was suggested did not resolve the issue. Even a fac-

tory reset did not help. Finally the problem was resolved by dissociating the prod-

uct from all other accounts, but this was a solution that was not suggested in the 

help section and would not be practical if the scale was in active use by other 

people, for example family members. This resulted in missing two body compo-

sition and PWV measurements. The weight measurements were obtained and 

entered manually into the application. 

Another less significant technical difficulty was unsuccessful PWV measure-

ments. This occurred during a third of the measurements during the two week 

period causing the minor inconvenience of having to repeat measurements. The 

reason for the failure of these measurements was probably small movements 

during the measurement.  

The problems with the use of the BP monitor were mostly failures in measure-

ments. This occurred 4 times during the two week period. The participant found 

this to be much more frustrating than the failures with the scale. The BP was 

measured three times with 30 second intervals between measurements. The 

measurements failed once during the second measurement and two times during 

the last measurement and once after the last measurement had seemingly been 
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completed. In the case that the application gave an error notice, the application 

would not even record the successful measurements that had occurred before 

the error. For this reason, the participant had to repeat the measurements in order 

to get any record of the measurement. Even though the additional time require-

ment was only approximately five minutes, the participant found repeating the 

measurements extremely frustrating. Additionally, especially in the morning this 

could also create rush, as the participant did not necessarily have five extra 

minutes. In such as situation, a normal person would most likely skip the meas-

urement after failure. If the measurements were not done for study purposes, the 

participant would have done the same. 

Another technical problem with the BP monitor occurred when the BP monitor ran 

out of batteries. This would not have been a problem if the user had noticed that 

the battery was low in advance and prepared for this by purchasing spare batter-

ies. However, the application gave a noticeable warning of low battery only when 

it could no longer perform even a single measurement. It should be noted that 

there might have been a warning that the participant missed. However, in order 

to provide a pleasant user experience this kind of warning should be visible 

enough that it does not get lost amongst all the other data in the application. In 

this case the required batteries where type AAA, which are common and often 

found in households. Thus, this scenario might not have resulted in a problem at 

all had the participant had spare batteries available. However, at this time the 

participant had no spare batteries, which resulted in the inability to perform meas-

urements. Since this occurred in the evening, the subsequent morning measure-

ments were also missed for the same reason before new batteries could be ac-

quired.  

The only technical problem with the activity tracker was its inability to continuously 

measure HR in workout mode. During almost every workout, there were periods 

during which the activity tracker was unable to determine HR. This occurred de-

spite the fact that the watch was placed on the wrist according to given instruc-

tions.  

The participant noticed inaccuracies in the measured data in three separate sce-

narios. The first and most frequent inaccuracy occurred during workouts. When 
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using the activity tracker in workout mode, the activity tracker measures HR con-

tinuously and this can be monitored by the user in real time. Of course the validity 

of the measurements in general were in no way tested, but the participant noticed 

that several times when they knew their HR was high (above 150 bpm), the ac-

tivity tracker measured HRs of 60 to 80 bpm. This measurement was so off that 

the user could easily notice the discrepancy. 

The second inaccuracy in measured data occurred in the measurements of body 

composition. The user scale had consistently measured the participant’s body fat 

percentage to be approximately 17%, but two measurements claimed that the 

participant’s body fat percentage was 30%. This had to be some sort of error, as 

such an increase in body fat percentage is in no way realistic in the span of one 

day. This error is probably due to both measurement error and unreliability of BIA 

in general. 

The third data inaccuracy involved sleep tracking. While the activity tracker de-

tected accurately the beginning and ending times of sleep during the night, the 

activity tracker did not detect shorter periods of sleep during the day. This oc-

curred with both short and long naps of over two hours. 
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6. DISCUSSION 

It should be noted that the experimental study performed had limitations. The 

three most notable limitations were the number of participants being one, the par-

ticipant being the author herself, and the duration of the experimental study being 

only two weeks. The limited size means that the study does not provide reliable 

information of the population as a whole. Additionally, the participant being the 

author probably improved self-monitoring adherence and persistence with tech-

nical difficulties. Finally, the limited duration does not accurately reflect the long-

term aspect of self-monitoring. Despite this, the study did provide useful insights 

related to self-monitoring and revealed similar benefits and challenges to those 

found in literature. 

The participant’s observations were in many areas in agreement with the availa-

ble literature. For example they found that experiencing technical difficulties dis-

couraged the use of the devices. Had the self-monitoring not been conducted as 

a part of a study, this could have resulted in not performing measurements, and 

potentially in longer breaks from measurements or even complete abandonment 

of the use of the particular device. Additionally, the participant experienced mo-

ments in which they doubted the accuracy of the measurements. This resulted in 

doubt concerning all of the collected data and affected the perceived usefulness 

and definitely did not encourage continuation of use. 

At times, the participant also felt that performing the measurements was not use-

ful. This is also an issue reported in literature. In this case the uselessness was 

associated with the lack of any goal related to the measurements. For example, 

since the participant did not have any particular weight loss or management goal, 

they did not feel the need for such frequent measurements. Additionally, the fact 

that measured values were in a health range made subsequent measurements 

feel unnecessary. For example, after finding out that their BP was in a healthy 

range, the participant did not feel the need to continue BP measurements. This 

is reasonable, and reflects the suggestions of health care professionals, who sug-

gest self-monitoring BP in 7-day periods [46]. 
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However, not all of the participant’s observations reflect literature. The participant 

did not find that active self-monitoring had a noticeable effect on their well-being. 

Many studies have shown the use of an activity tracker to increase physical ac-

tivity. The participant’s observations do not reflect this. The already regular phys-

ical activity of the participant before use of an activity tracker may affect this. 

Additionally, the fact that the period of self-monitoring was short and coincided 

with an increased work load most probably hindered the effects active self-mon-

itoring had on physical activity. Another factor that may have led to not noticing 

any changes in well-being was the lack of behavioural change caused by self-

monitoring. The lack of behavioural change was caused by measurements con-

sistently falling in the healthy range. As a result, the participant did not see any 

need to change behaviour to improve them. Sleep was the only parameter that 

would have benefited from behavioural change. However, despite the occasion-

ally short nights and low sleep scores, the participant was not able to increase 

their amount of sleep during these shorter nights. 

The only case in which the self-monitoring had an effect on the participant’s be-

haviour was when they were close to reaching their daily step goal. In this situa-

tion, the participant increased their activity in the evening in order to reach the 

goal. This demonstrates how activity trackers are able to motivate users and re-

flects findings in literature that found activity tracker use to increase physical ac-

tivity. However, this only happened once during 14 days. Instead, there were sev-

eral days when the participant was inactive and far from reaching the daily step 

goal. In these cases monitoring of activity and reaching the goal did not motivate 

the participant to increase activity. This occurred because the participant knew 

they would not actually achieve the goal, so they did not bother increasing activity 

at all to get closer to the goal. For this reason it is important to choose a goal that 

is achievable if the purpose of self-monitoring is to change behaviour. Choosing 

an achievable goal motivates the user, while a too ambitious goal will not have 

the same effect. 
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7. CONCLUSIONS 

Long-term self-monitoring of health has the possibility to be beneficial for well-

being and health. Especially long-term self-monitoring of activity and weight result 

in positive outcomes and the continuously emerging novel devices and smart 

phone applications for self-monitoring are broadening the possibilities of self-

monitoring. Since much of self-monitoring technology is relatively novel, studies 

concerning the effects of long-term use of many of the available self-monitoring 

devices are still scarce.  

While long-term self-monitoring is considered beneficial, it faces significant chal-

lenges. The most notable challenge is early abandonment of self-monitoring de-

vices. A significant number of new users do not continue to use self-monitoring 

devices in the long run. The reasons for giving up the use of self-monitoring de-

vices include technical difficulties, excessive amount of effort required, unreliabil-

ity of collected data, perceived uselessness, privacy concerns, and discomfort 

with what self-monitoring detects. These issues should be addressed in order to 

improve device usability and user experience, which would hopefully decrease 

early abandonment of self-monitoring devices.  

The self-monitoring landscape is in constant change and the future of self-moni-

toring seems promising. Technological advancements are making self-monitoring 

health related parameters easier and more reliable. While self-monitoring is still 

rather separate from health care, self-monitoring shows promise in this area. For 

example, data collected by self-monitoring could be uploaded into healthcare in-

formation systems and subsequently utilized by healthcare professionals in diag-

nosis and treatment planning. Self-monitoring is already an important part in the 

management of some chronic diseases and could be used to facilitate a shift to 

more personalized healthcare that focuses on preventive actions and increased 

active participation in the management of one’s own health.  
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