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Abstract

Currents, wind, bathymetry, and freshwater run-off are some of the factors that make coastal

waters heterogeneous and patchy, and an environment of scientific interest, where it is challeng-

ing to resolve the spatio-temporal variation within the water-column. We present methods and

results from field experiments using an autonomous underwater vehicle (AUV) with embedded
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algorithms that focus sampling on features in 3-dimensions (3D). This is achieved by com-

bining Gaussian Process (GP) modeling with onboard robotic autonomy allowing volumetric

measurements to be made at fine scales. Special focus is given to the patchiness of phyto-

plankton biomass, measured as Chlorophyll a (Chla), an important factor for understanding

biogeochemical processes in the coastal ocean, such as primary productivity. During multiple

field tests in Runde, Norway, the method was successfully used to identify, map, and track the

sub-surface Chlorophyll a maxima (SCM). Results show that the algorithm was able to estimate

the SCM volumetrically, enabling the AUV to track the maximum concentration depth within

the volume. This data was subsequently verified and supplemented with remote sensing, time-

series from a buoy, and ship-based measurements from a fast repetition rate fluorometer (FRRf),

particle imaging systems, as well as discrete water samples, covering both the large and small

scales of the microbial community shaped by coastal dynamics. By bringing together diverse

methods from statistics, autonomous control, imaging, and oceanography, the work showcases

an interdisciplinary perspective in robotic observation of our changing oceans.

Summary

Autonomous tracking and mapping of phytoplankton biomass in 3D using Gaussian process

models embedded on an AUV.

Introduction

Processes controlling the growth and accumulation of phytoplankton are central to nutrient,

carbon, and energy cycling; these provide the foundations for the marine and human food

web (1,2). Despite their ubiquitous presence across the upper water-column in the global ocean,

phytoplankton presents a remarkable heterogeneity in spatial distribution (we will refer to this

heterogeneity as patchiness) which is observable in micro-scale (sub centimeter, (3)), kilometer

scale (4), and up to more than 600 km (5). Sampling in such a wide range of spatial scales is

both challenging and interesting, since patchiness has been shown to strongly influence ecosys-

tem stability (6), diversity (7), and productivity (8). Furthermore, measuring phytoplankton is

complicated as observations are based on the proxy measurement of peak absorption of light at

675 nm, originating from photosynthetic Chlorophyll a (Chla) inside planktonic cells.

With the growing capability of robotic vehicles, adaptive coverage of the water-column is

increasingly viable even if it continues to be challenging to operate in the harsh confines of the

water-column and the dynamic coastal ocean. Motivated by this, this work describes the use of

propelled robotic platforms, known as autonomous underwater vehicles (AUVs), for optimizing

mapping of water-column features in three dimensions. Such volumetric surveys of the water-

column are of substantial scientific interest as they provide better insight for understanding and
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measuring factors such as primary productivity, a vital indicator for the health of our oceans.

To do so, we concentrate on volumetric sampling of sub-surface chlorophyll maxima (SCM)

using adaptive sampling methods. In particular, the goal is to develop adaptive behavior for

AUVs that can enable increased sampling resolution of water-column processes in 3-dimensions

(3D) by focusing sampling efforts in regions of interest. In order to do so, an important simpli-

fication is done: namely, limiting the survey to a bounding box with a certain size, introducing

both a spatial and temporal constraint, similar to the enclosure citerion used in (9). Shortening

the survey time means that the temporal effects will be minimal, and the error contributions from

currents, navigation drift, and other time-dependent effects will be bounded allowing complex

time variability to be mitigated. This then transforms into a purely spatial problem of finding

the relevant sampling locations within the surveyed volume, given a scientific context (for our

case the maximum Chla concentration depths). Assuming that only limited prior information

is available, obtaining an a priori estimate of the SCM feature has significant benefits, contrary

to conducting an adaptive survey directly using interior (inside the 3D volume) measurements.

This direct approach is ineffective due to two main reasons. First, the AUV will have no for-

ward looking data to guide adaptation, resulting in a coverage that is subject to a “hit-or-miss”

trade-off. Given the limited volume of the survey, the adaptation distance available for such an

approach is not present. Second, a key driver is the need to survey the most interesting aspects

of the feature as fast and accurately as possible to reduce time-dependent effects. Building up

an accurate estimate of the interior will be central to achieving this goal, as both the probability

of losing track of the feature and survey time can be reduced.

The method suggested in this work is designed to adhere to these ideas by separating the

survey into a dedicated exploration and exploitation phase as follows: The AUV first starts by

covering the sides of the bounding box volume in an initial phase dubbed MODE1, followed by

an adaptive survey of the interior volume, dubbed MODE 2, capitalizing on the learned infor-

mation captured in a Gaussian process (GP) model, during MODE 1 (full details are given in

the Materials and Methods section). Thus, the exploitation phase is a single calculated maneu-

ver based on the available information, allowing the AUV to survey a region of interest in the

water-column in a fast and focused manner, towards attaining a quasi-synoptic snapshot of the

feature.

Our experiments were conducted in Runde, Norway, in June 2017 (see Fig. 1) with the

algorithm embedded on an AUV to detect and map the SCM, providing a 3D map of the Chla

concentration, denoted as [Chla].Note that we specifically define concentration with [Chla].

This is different from “(Chla)”, which is an abbreviation for Chlorophyll a. The measure-

ments were complemented with photo-physiological data derived from a Fast Repetition Rate

fluorometer (FRRf), and two particle imaging systems (SINTEF SilCam) (10) with different

magnifications. These were profiled from a winch, together with a CTD (conductivity, tem-

perature, and depth) sensor and water samples taken from the research vessel R/V Gunnerus at

stations around Runde. An overview of the involved systems, scales, and platforms is given in

Fig. S.2.
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In-situ measurements of the size, concentration and type of particulate material in the water-

column is critical in order to resolve spatial distributions of the particles in question, while

minimizing disruption to them (11). A wide range of techniques could be used for such mea-

surements: optical backscatter, fluorescence, laser diffraction (12), digital holography (13), and

telecentric transmittance imaging (10,14), each providing specific information about suspended

particulate material. However, it is not possible for a single instrument to obtain measurements

of the entire size range of suspended material present in natural seawater, making it necessary to

combine multiple techniques in order to monitor the full range of size and types. By combining

measurements, a detailed picture of the water column can be rendered with both biometric and

volumetric information; providing fine detail for resolving the in-situ features while reducing

errors related to aliasing and patchiness.
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Figure 1: (a) shows the map of the operational area with the three AUV surveys indicated

(Survey 1 and 3 [South East of Runde], and Survey 2 [North of Runde]), while the ship-based

sampling stations are denoted by numbers (stations 1-7). In the lower corner a small map of

Norway is shown with Runde marked in red. (b) shows the Chla (OC4ME) product from OLCI

(Ocean and Land Colour Instrument), a multispectral medium resolution instrument on-board

ESA’s Sentinel-3. The image from 2nd of May is showing the Chla patchiness in the coastal

zone, some months prior to the surveys. Runde is shown encircled in black. ©ESA CC BY-SA

IGO 3.0.
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Related Work

Tracking and sampling biomass distributions using autonomous platforms, is still in its infancy.

However, methodological studies are regularly reported and several experiments have been con-

ducted in the recent past. (15) introduced AUV-based sampling for eco-physiological work.

Focusing on harmful algal blooms (HABs), (16) combined AUV surveys with remote sensing

towards attaining 3D information about bloom conditions. Similarly (17) used a long endurance

AUV to sample the peak-Chla layer along horizontal cross-sections for HAB monitoring using

onboard gene processing equipment. (18) used Hidden Markov Models to enable online estima-

tion of water-column properties, enabling water samples to be triggered under certain upwelling

conditions in the Monterey Bay. The same region was explored in (9), where a GPS-tracked

Lagrangian drifter was used in combination with AUVs for coordinated sampling of dynamic

oceanic features, trying to follow the sides of a volume of water as it moved with sub-surface

currents. More decision-based efforts in sampling are presented in (19), where GPs are used in

an online optimal choice approach to adaptively decide where to trigger water samples in the

water-column based on biomass concentration. In (20), cooperative tracking of phytoplankton

blooms using buoyancy driven gliders driven by ocean model predictions is articulated. This

was developed further in (21), where the sampling resolution was modified by adjusting the un-

dulation angle of a glider, while accounting for ocean currents, with the aim to characterize and

sample blooms. (22) Discusses problems related to estimating spatio-temporal correlation in

time-varying fields and compares Euclidean and Lagrangian approaches using AUV and drifter

information to perform spatial interpolation. Feature tracking of patches and plumes is also

discussed in (23), where a plan-based policy is learned, tested, and evaluated using simulated

patches of Chla and then sampled in 2D in the open ocean. In (24) the combined use of satellite

measurement, AUV and research vessel data was used to describe advection of phytoplankton

cells from open waters transported under the sea-ice in the Arctic linking Chla presence, photo-

synthesis, and biodiversity. Spatial and temporal de-correlation scales in phytoplankton bloom

magnitude are reviewed in (25), focusing on the U.S. West Coast. (26) gives an overview over

different 3D interpolation strategies for oceanic data, with the conclusion that kriging is the

preferred method for studying the marine pelagic environment.

Our work presents a practical real-world implementation of a sampling approach for the

upper water-column, capable of adapting to distributions in 3D. Such uncertain environments

require a trade-off between exploration and exploitation; the proposed method presents a so-

lution by splitting the survey into two dedicated phases within a limited volume, bounding

time-variability effects. Under these conditions the AUV can map the region of interest in the

water-column in an efficient quasi-synoptic manner. We demonstrate the method in a field ex-

periment together with a ship, showcasing the potential of collaborative mapping of planktonic

distributions in a dynamic coastal environment.
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Sampling Chlorophyll a in the Water-Column

Planktonic patchiness can be a result of complex interplay of physical (stirring and mixing),

chemical (nutrient availability, CO2, O2, and trace metals), and biological (growth, movement,

and mortality) processes, which can rapidly change in marine ecosystems and vary across mul-

tiple spatio-temporal scales (27). These interacting processes create a broad spectrum of patchi-

ness, which can occur in small vertical layers (sub-surface Chla maximum layers [SCML]) (28),

or in bigger plumes (29,30) which can only be partially visible in remote sensing imagery (Fig.

1). Phenomena such as eddies can interrupt these layers by upwelling or downwelling and po-

tentially create deep Chla maxima layers (DCMs) (31). Details about the difference between

SCMLs and DCMs can be found in (32).

Knowing where and when to sample is vital in order to accurately resolve the processes.

Furthermore, data collection will, in some cases (especially Lagrangian buoys and floats), it-

self be influenced by the same forces, such as currents and winds, in addition to the physical

limitations of the platform (speed, battery, depth rating, etc.) affecting the spatio-temporal cov-

erage. Capturing synoptic information is therefore a major challenge. Remote sensing data can

only obtain coverage at the very surface, omitting valuable information in the depth dimension,

and consequently features like the SCM. Furthermore, remote sensing products rarely reach the

sub-kilometer resolution, which is vital for evaluation of oceanographic phenomena that control

coastal primary productivity at fine scales (33).

Chlorophyll a Patchiness, Distributions and Interpretation

The advent of fluorometry as a proxy for measuring Chla fluorescence, in addition to the

progress of remote sensing approaches, has provided a significant advance in the study of plank-

ton distributions (34,35) providing continuous measurements, where Chla is used as a ”common

currency” for biomass estimation. Biomass is a broad and practical term used to describe the

amount of living material in the water-column. We use the concentration of Chla as an indicator

of the phytoplankton biomass (organic carbon, expressed as [mg/m3]); hence the terms [Chla]

and phytoplankton biomass, or just biomass, is used interchangeably in this text. Although

Chla is used as an indicator of phytoplankton biomass worldwide, variability of cellular Chla

content is expected to occur as a function of light intensity, species composition and nutrient

availability (36, 37).

The use of Chla fluorescence measured in-vivo, i.e. in live cells measured in-situ, as a proxy

of phytoplankton biomass and patchiness, needs to be interpreted carefully. When phytoplank-

ton cells are exposed to high light levels for instance (those usually found at the surface ocean,

particularly near mid-day during summer) some of the excess of energy absorbed is dissipated

as heat (38). Part of this is related to a photoprotective process, called non-photochemical

quenching, that occurs as a rapid response to high light and results in the reduction of fluores-

6
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cence emission at the surface (39). Thus, a subsurface Chla fluorescence maximum observed in

a vertical profile may not necessarily reflect biomass accumulation, rather, it can be a spurious

representation of patchiness. To circumvent this challenge, we compared in-vivo fluorescence

Chla collected in-situ from the AUVs and FRRf measurements, with in-vitro Chla, which is de-

rived from filtered water samples and methanol extraction to check whether a subsurface Chla

maximum is present at the sampled locations.

At first glance, the complex spatial structure of the phytoplankton distribution occurs as a

result of biological and physical processes and interactions in the water-column. The spatial

distribution of phytoplankton biomass, its intensity, morphology, and scale dependence (such

as the open ocean (10 km–100 km, mesoscale) or coastal zones (10 m–1 km, sub-mesoscale))

is substantially driven by processes, such as turbulent advection, upwelling, convergence, and

vertical mixing (27, 40). For example, local processes such as upwelling zones can bring deep

water nutrients to the surface layer and nurture phytoplankton creating regional hot spots (with

high biomass concentration), at scales ranging from 5–10 km (41) or even ≤ 1 km for complex

coastal zones (42). In the open ocean, the same aggregation can range from 70–140 km (spatial

correlation) in the horizontal plane; while vertically, persistent upper water-column stratifica-

tion may lead to a subsurface maxima, where phytoplankton is concentrated in the bottom of

the pycnocline (density gradient) to better utilize light and nutrients (43). Vertical correlation

is much weaker due to stratification effects (26). Fig. 1b shows the surface distribution of

[Chla] for the 2nd of May 2017 along the Norwegian coast, depicting the spatial patterns at the

mesoscale.

Regardless of the physical processes taking place, spatial heterogeneity must be ”seeded”

from external factors that trigger phytoplankton growth, such as nutrient availability and light

levels (4), in addition to intrinsic evolutionary and physiological traits of the species (e.g buoy-

ancy, vertical migration, and daily cycles of photosynthesis) (3), reinforcing the role of physiol-

ogy on shaping phytoplankton patchiness. Many fluorometers (such as Pulse Amplitude Modu-

lated (PAM) and FRRf) offer the opportunity to study the health of phytoplankton communities,

which allow examination of the physiological state of a community and, when combined with

reconstructions from AUV surveys, are powerful assets to investigate the spatial structure of

phytoplankton distributions (24).

Zooplankton grazing is another biological process that accounts for patchiness as it relates to

phytoplankton mortality. Although extremely important, it is more difficult to study the effect

of such grazing on patchiness due to the non-linear nature of biological interactions and the

scarcity of observations that constrain models (4). Like phytoplankton, zooplankton themselves

are patchily distributed, occurring either in swarms or vertically migrating in the water-column,

which complicates the interpretation of abundance due to under-sampling – that is being below

the Nyquist sampling rate, which entails that the dynamics of a phenomena is not captured at

a level necessary for reconstructing the original distribution (aliasing). The development of

acoustic sensors like ADCP (Acoustic Doppler Velocity Profiler), Acoustic Zooplankton Fish

Profiler (AZFP), and particle counters capable of collecting continuous zooplankton counts,

7
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provides an opportunity to assess abundance and the phytoplankton influence.

Experimental setting

Our study site is set in the coastal zone of the southern Norwegian Sea. In this region the Nor-

wegian Atlantic Current approaches the coast bringing saline Atlantic water onto the narrow

continental shelf (44). The Norwegian Coastal Current, carrying freshwater from the outflow of

the Baltic and receiving additional freshwater from land run-off as it flows northward along the

coast, also enters the shelf in the Møre region (44, 45). Both the volume transport of the Nor-

wegian Coastal Current and the lateral location of the interface between Atlantic and coastal

water vary seasonally and are strongly affected by wind (46, 47); there is also considerable

mesoscale variability in the coastal current system (47, 48). Mesoscale eddies play an essential

role in ocean dynamics, and significantly affect ocean biology and biogeochemistry (49). While

mesoscale eddies, on scales of a few kilometers to a few hundred kilometres, are known to have

a strong effect on plankton distributions, community structure, and diversity (49), smaller insta-

bilities can locally enhance vertical mixing (50). Such submesoscale processes, on spatial scales

of 0.1 to 10 km, can enhance both phytoplankton productivity and its variance on timescales of

a few days (50).

Repeated sampled temperature and salinity profiles from Skinnbrokleia (7 km south-east

of our AUV surveys), were used to place the AUV observations in a local and seasonal set-

ting. Meteorological and oceanographic (met-ocean) time series were from a stationary buoy

at Breisundet (14 km north-east of the AUV surveys) were also used. The buoy, placed in 345

m water depth in an inlet between two islands, measures surface waves, wind, current velocity,

salinity and temperature at selected depths.

In the weeks preceding the field campaign, the hydrographic conditions in the study area

were typical of early summer (51, 52). Upper layer salinity was low, and a shallow seasonal

thermocline had formed in the upper 10 m (seen in data from a monitoring station on June 8th,

16 km south-east from the survey site). The beginning of the cruise, however, coincided with

the onset of stronger winds, around 10 m/s with gusts up to 16 m/s, that prevailed throughout

the first half of that week (Fig. 2b). The fresh breeze was accompanied by increasing wave

height, up to 2 m (as measured at a stationary met-ocean buoy in Breisundet, 14 km north-east

of our AUV and ship observations). Wind stirring during this event caused a deepening of the

mixed layer. Time series of temperature and salinity from the met-ocean buoy reveal that the

mixing started immediately with the onset of stronger winds on June 17th and progressed during

the following days until eventually, temperature and salinity were homogenized down to the 40

m depth level (Fig. 2a).

The AUV and ship-based CTD profiles taken on the same day show a 30 m deep well-mixed

layer (Fig. 3). The water-column structure was similar in the AUV survey area and at the ship-

based CTD stations some 400 m away. Only in the thermocline between 30 and 40 m depth were

8
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Figure 2: Time series of (a) water temperature at four different depths, (b) wind speed and wind

gust, and (c) significant wave height, measured at a buoy located some 14 km inshore of the

AUV survey area. The entire month of June 2017 is shown above, with the grey background

marking the period of AUV and ship measurements.

some features that were found to be different, such as local temperature inversions, that were

seen at one site (CTD stations) but not at the other (AUV survey). The different measurement

methods lead to small variations between the profiles: the AUV captured the surface layer from

the top centimeter down, while the CTD profile excluded the uppermost meter. On the other

hand, the CTD profiles reached deeper than the AUV’s maximum dive depth of 50 m. The many

profiles from the AUV survey form an envelope that indicates the small-scale spatial variability

of temperature and salinity. The difference in water mass properties between the CTD sites and

the AUV survey is comparable to the variability within the AUV survey area, which in-turn is

comparable in size to the distance between CTD stations and the AUV survey (Fig. 1a).

9
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Gaussian Process Model of the Distribution of Chlorophyll a

We use a spatial statistical model, in the form of a Gaussian Process (GP) to model the sub-

surface Chla maxima (SCM). The GP formulation is widely used for dealing with spatial appli-

cations in the ocean (22, 53). Its popularity is largely due to the simple yet flexible modeling

formulation, which allows consistent and efficient data conditioning. In contrast to a full nu-

merical ocean model, a GP can operate with limited computational resources onboard an AUV

and assimilate measurements on the fly.

Measurements were coherently assimilated, to render a more detailed representation of the

SCM as the survey progressed. The SCM is predicted by a GP in three dimensional space

(latitude, longitude, and depth), by assimilating the identified SCM depth into a 2D grid, of

which the detailed steps are explained in the Materials and Methods section. For environmental

applications a GP is typically discretized to a grid map with a certain resolution describing

variation in space. This map is in essence a collection of random variables (on the grid) with a

multivariate normal probability density function, where the spatial dependence is captured by a

covariance model.

The stochastic process {x(s), s ∈ Ω}, with Ω being an indexed grid set Ω ⊂ IR3, is a

Gaussian Process if, for any finite choice of n distinct locations s1 . . . , sn ∈ Ω, the random

vector x =
[

x(s1), . . . , x(sn)
]

has a multivariate normal probability density function:

p(x) = N(µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1

2
(x−µ)TΣ

−1(x−µ), (1)

defined by the mean vector µ = E(x), and the symmetric positive definite covariance matrix

Σ = cov(x,x). The prior mean µ = [µ1, ..., µn] constitutes a 3D surface (latitude, longitude,

depth) of the estimated peak Chla layers. The covariance matrix Σ is given as:

Σ =











Σ11 Σ12 . . . Σ1n

Σ21 Σ22 . . . Σ2n
...

...
. . .

...

Σn1 Σn2 . . . Σnn











,

where, Σij = σ2K(i, j). The stationary covariance has entries depending on the pairwise dis-

tance between grid locations. The kernel is defined as:

K(i, j) = (1 + φhij)e
−φhij ,

with distance hij = |si − sj| and φ a model parameter indicative of the correlation range (54).

Capturing the correct spatial correlation is important, as this will affect how the measurements

are interpolated. In our experiments, the effective correlation range was set to φ ∼ 1000 m

based on the East-West variogram results from (42) investigating the Chla scale-dependency

10
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for coastal zones using high resolution remote sensing (notably, this implies having correlation

across the smallest survey area (
√
7002 + 7002 = 990 m). Here, both larger (26) and smaller

(55) correlation ranges can be defined, depending on the scale of heterogeneity, type of marine

system being studied, and prior insight of the water body and ambient conditions.

As measurements are assimilated, the 3D mean surface is adjusted towards the derived Chla

maximum depth, and prediction variances are reduced (details are provided in the Materials

and Methods section). The SCM peak depth is found for each vertical crossing as the AUV

undulates via a ‘yo-yo’ maneuver in the water-column, where dt is the AUV location at time t

with the corresponding SCM peak (Fig. 8). The measurement model for time t is given by:

yt,dt
= Gt,dtx+ vt, (2)

where yt,dt
is a length mt,dt vector of the survey line observation, and the mt,dt × n matrix

Gt,dt contains ‘1’ entries only at the designated dt indices, and 0 otherwise. The error term

vt ∼ N (0,Rt,dt) represents measurement noise. The covariance matrix Rt,dt is set to a constant

diagonal matrix (56), and there is no dependence of measurement error terms over assimilation

time.

Under Gaussian linear modeling assumptions, the sequential updating of survey data leads

to the Gaussian conditional distribution p(x|y1,d1
, . . . ,yt,dt

), defined by conditional mean mt,dt

and covariance P t,dt . These equations are recursive over the data gathering steps:

St,dt
= Gt,dtP t−1,dt−1

Gt
t,dt

+Rt,dt

Kt,dt
= P t−1,dt−1

Gt
t,dt

S−1
t,dt

(3)

mt,dt
= mt−1,dt−1

+Kt,dt
(yt,dt

−Gt,dtmt−1,dt−1
)

P t,dt
= P t−1,dt−1

−Kt,dt
Gt,dtP t−1,dt−1

,

where the mean and covariance matrix are initialized by m0,d0
= µ and P 0,d0

= Σ.

Results

Experimental setup

The AUV platform used in our experiments was an OceanScan Light AUV (LAUV) (57), ca-

pable of upwards of 24 hour in-water operation, see Fig. S.1. A Wetlabs EcoPuck was the

main sensor payload measuring Chla concentration (470 nm excitation and 695 nm emission

peak of Chla) with supplementary sensors including cDOM (color Dissolved Organic Matter),

and TSM (Total Suspended Matter), a 16 Hz Seabird Fastcat 49 pumping CTD (conductivity,

11
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temperature, and depth) and an Aanderaa 4831 oxygen optode. The Chla tracking algorithm

was hosted on a multicore GPU NVIDIA Jetson TX1 single board computer.

Alongside AUV measurements, both FRRf and two SilCam camera systems were used to

resolve details of the water-column, as well as allowing cross-reference and verification of AUV

measurements and behavior in addition to the algorithm embedded onboard. These systems

were deployed from a winch, together with a CTD. The FRRf measures irradiance and [Chla],

in addition to photophysiological parameters of the phytoplankton community. The SilCam

systems imaged a particle size range spanning 28 µm to 4 cm in equivalent diameter, enabling

characterization of particle size over a range covering three orders of magnitude in diameter.

For accurate fluorescence-based Chla determination and calibration of the FRRf, water samples

were collected every 10 m in the upper 60 m on the upward CTD casts using 5-liter Niskin

bottles mounted on a rosette frame. Water samples were immediately filtered onto 25 mm glass

fibre filters (from GF/F Whatman Inc., Clifton, New Jersey) and stored in a -20°C freezer until

analyses in the laboratory, one month later. [Chla] was extracted in 100% methanol for approx-

imately 4 hours at 10°C and fluorometrically determined using a Turner Designs fluorometer.

This sampling activity was conducted from the research vessel R/V Gunnerus. The survey map

and sampling stations are shown in Fig. 1a.

AUV Surveys

The adaptive AUV surveys took ∼ 1.5 hrs to complete (Survey 2 covered a larger volume),

with a mean vehicle speed of 1.6 m/s over ground; details are provided in Table 1. To follow the

GPs model estimate of the SCM 3D surface, two strategies were explored: i) using fixed depth

(MODE 1.fixed) and ii) using an undulating/yo-yo motion, ±2.5 m across the 3D surface

(MODE 2.undulating). Although finer discretization is possible, given the uncertainty due

to current speed and direction, as well as natural stratification, the SCM depth estimates from

the GP surface (∼ 23 m resolution) were discretized into 200 m segments for the AUV to follow.

Survey Time and Date Duration Mean Vel. Area Mode

1 20.06.17-10.02 AM 1h 33min 1.5 m/s 700 m2 Fixed depth

2 20.06.17-12.10 AM 1h 58min 1.5 m/s 900 m2 Fixed depth

3 22.06.17-11.06 AM 1h 27min 1.6 m/s 700 m2 Undulating ±2.5 m

Table 1: AUV survey information and details.

A detailed analysis of the approach is presented focusing on Survey 1, using fixed depth

control and comparing that with Survey 3, tracking the 3D surface using an undulating/yo-yo

pattern. Results from Survey 2 are shown in Fig. S.3.

In Fig. 3b, the first ∼ 4 km is used to cover the sides of the volume (MODE 1), gathering an

estimate of the SCM, before MODE 2 tracks this estimate by either fixed or undulating/yo-yo

12
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MODE 2MODE 1

*

(a) Chla consentration vs. travelled distance.

MODE 2MODE 1

*

(b) Depth vs. travelled distance.

8 9 10 11 12

0

10
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40

50

60

70
AUV Temp.

Ship Temp.

32 33 34 35

AUV Sal.

Ship Sal.

(c) Temperature and salinity.

Figure 3: Data from Survey 1 (MODE 1.fixed) using fixed tracking of the 3D Chla surface.

The * marks a point where the AUV behavior transitions, as the depth adjustment is followed

by increased [Chla] also shown in Fig. 4. (a) The Chla concentration vs. travelled distance

accumulated over ground. (b) Temperature and salinity curves from AUV and the R/V Gunnerus

from the same area. (c) AUV depth vs. travelled distance. Note the adjustment of survey depth

as the AUV is following the 3D surface (in 200m increments).

behavior. MODE 2, in turn, trails an hourglass pattern in the interior of the volume for the next

∼ 4 km (see Materials and Methods for more details). The second half of Fig. 3b shows the

AUV adjusting its depth according to the SCM estimate, with periodic surfacing events when

reaching the corner points of the survey box. Both Survey 1 (Fig. 3a) and Survey 3 (Fig. 5a)

confirm that the [Chla] concentrations are higher during the tracking phase of MODE 2, with the

AUV sampling between the 20-30 m depth range. These depths correspond to the SCM found

from analysis of the water samples taken from the research vessel and shown together in Fig.

6 with FRRf data. The temperature and salinity data in Fig. 3c suggest that the water-column

was well mixed down to 30 m, where an abrupt gradient is present. This interface influences

the distribution of biomass in the water-column (58).

Since the first phase (MODE 1) took ∼40 minutes to complete, some of the estimates are

likely impacted by current velocity and direction. It is therefore important to verify that the

depth adjustments result in an increase of [Chla]. Elevated levels of [Chla] can be seen through-

out the second phase of the missions, but to verify this further, both Fig. 3a, 3b, and 4b and 4c

have been marked with an asterisk (*) that show the first part of the SCM tracking, and how

the depth adjustment successfully results in elevated levels of [Chla]. The first part is chosen,

as the earliest observations have the highest probability of being affected, due to their high lag

13
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between the initial measurements and re-visitation, impacted by current.

(a) Volumetric estimate after MODE

1

(b) Volumetric estimate after MODE

2

(c) Volumetric estimate after MODE

2 (side view)

Figure 4: (a) Volumetric representation (3D kriging) of the [Chla] iso-surfaces after the initial

survey phase (MODE 1) covering the sides of the volume. The AUV path is overlaid (black

line) and N, E, Z are labels for North, East, and Depth. (b) The volume after the adaptive

survey of the internal volume (MODE 2), rendering more of the internal [Chla] structure. Notice

the depth adjustment (marked *) in the interior that is making the AUV stay in the region of

high concentration. (c) Side view of the same volume as in b), to highlight the adaptive depth

adjustments performed by the AUV. The color scale of the interior iso-surfaces is affected by

the transparency. Plots constructed in Mayavi (59).

Furthermore, by comparing the volumetric estimate before (Fig. 4a) and after (Fig. 4b and

4c) the interior survey, we can see the distribution change in light of the new measurements.

The iso-surfaces (marked with black lines in Fig. 4) change, resolving the interior information

with finer detail. The change is greatest within the volume, which is expected, as these are un-

surveyed locations, previously estimated based on the data from the sides. It is still evident,

that the main features and distribution is largely similar before and after the initial survey.

This coherence both supports the credibility of the design premise, limiting the survey size

to effectively handle time dynamics, as well as the shared information between the interior and

boundary used to focus sampling.

Comparing the results to Survey 3 using the undulating/yo-yo depth tracking, shows that

Survey 3 also has elevated concentrations while tracking the SCM. As the undulating/yo-yo

approach is less sensitive to errors in the depth estimate while providing higher sampling density

at the SCM, it is more practical for mapping the structure of the SCM, but only subject to a

certain current regime; with strong currents, a fixed depth approach would likely be preferable

because of shorter survey times.

14
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(a) Chla consentration vs. travelled distance.

(b) Depth vs. travelled distance.

Figure 5: Survey 3 using undulating tracking control during the survey. (a) The [Chla] vs.

travelled distance accumulated over ground. (b) AUV depth vs. travelled distance.

FRRf Measurements

Name Area Tide

Station 1 - 19.06.17 - 10.15 AM Survey 2 Ebb

Station 2 - 19.06.17 - 13.55 AM Survey 2 Low

Station 3 - 19.06.17 - 16.15 AM Between S2 & S1 Rise

Station 4 - 20.06.17 - 10.30 AM Survey 1 Ebb

Station 5 - 20.06.17 - 13.05 AM Survey 1 Low

Station 6 - 21.06.17 - 10.10 AM West of S1 High

Station 7 - 21.06.17 - 14.45 AM West and between S2 & S1 Low

Table 2: FRRf survey data gathered from Stations 1-7, shown in Fig. 1a.

Fig. 6 shows a vertical profile of the in-vitro (extracted) and the in-vivo (measured in-situ)

[Chla] derived from the FRRf deployed at Stations 4 and 5 and from AUV Survey 1 indicated on

the map in Fig. 1a. Details on inter-calibration can be found in (24). In the in-situ assessments

(FRRf and AUV), [Chla] is higher (> 0.6 mg m-3) at the upper 30m, decreasing gradually

below this depth (< 0.8 mg m-3). The vertical structure of [Chla] is in agreement with salinity

profiles, confirming that the depth of the mixed layer approaches 30m. At Stations 4 and 5,

the in-situ observations (from the FRRf) agreed with the results from the in-vitro [Chla]. Both

measurements reveal a similar vertical pattern, such as a subsurface maximum (from 10 to 25

15
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Figure 6: Comparisons of in-situ [Chla] derived from the AUV (EcoPuck) and FRRf profiling

measurements, as well as in- vitro [Chla] extracted from water samples. The differences in

[Chla] at the surface between the two sensors is due to the hydrography of the two stations

despite proximity.

m), suggesting a higher concentration of phytoplankton cells at this depth, although this trend

is much less pronounced than for the AUV data. When compared to the AUV Survey 1, [Chla]

varies slightly in the upper 30m (a difference of 0.2 mg m-3 of [Chla]), which could imply that

the hydrography was different between Stations 4 and 5 and Survey 1, despite the proximity of

sites. This result reemphasizes the need for using robotic sampling to monitor the variability

and patchiness of phytoplankton distributions.

A quenching (reduction) of the fluorescence signal in live cells (in-situ) is commonly found

in surface waters during summer, when phytoplankton are exposed to high light levels. This

occurs to protect the cells’ photosystems (a process called non-photochemical quenching [NPQ]

(38)), by converting part of the excess energy to heat. Results from this study show that the in-

vitro [Chla] presented approximately the same vertical pattern as the in-situ measurements, with

a subsurface maximum at 20 - 30 m depth. This suggests that NPQ processes were not evident

in this study, possibly because of cloudy conditions. Clouds reduce the amount of light that

reaches the surface water and, consequently, such conditions do not interfere as much with the

in-situ fluorescence measurements derived from the sensors.
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SilCam Observations

While in-situ [Chla] derived from the FRRf and the AUV provided relevant information regard-

ing phytoplankton patchiness, there may exist some linkages to biological activity (e.g. grazing)

at higher trophic levels, and thus, larger particle sizes. Results from the two SilCam particle

imaging systems provided in-situ images of suspended material allowing insight into the pres-

ence and distribution of larger phytoplankton and zooplankton, in addition to other material in

the water-column, such as marine snow and suspended sediments.

4x

4x

4x

Figure 7: Sample imaging information from the SilCam obtained at Station 4 and 5. Data

presented are averaged from both stations, and discretized into three depth ranges from 0.5-10

m (top row), 10-30 m (middle row) and 30-50 m (bottom row). The left column shows the

particle number distribution from the two magnifications of SilCam that were deployed, with

the montages of particles from the red shaded region presented in the images in the middle

column of the figure, and the blue shaded region in the images in the right column of the

figure. The dashed line in the particle number distributions represents the average fitted Junge

distribution (60) (between 100-300 µm) from all depths.
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Fig. 7 shows particle number distribution and sample images recorded within the diameter

range of 30-10000µm at Station 4 and 5 using the two SilCam’s with different magnifications.

With an average exponent (m) of 3 (shown by the dashed lines in Fig. 7), the size distribution

follows approximately that of a Junge distribution (60):

n(D) = kD−m (4)

where n(D) is the number of particles of diameter D; k is a constant that scales according to

the particle concentration; m is the slope of the distribution. In the simplest form, the Junge

distribution is an approximation of the particle size distribution, made up of a series of multiple

log-normal distributions with varying median sizes that arise from sub-populations of particu-

late material such as specific types of phytoplankton, zooplankton or marine snow (61). In Fig.

7, the observed distributions show many points of variation from this average Junge slope, with

one peak at just over 100 µm that corresponds to a high abundance of the dinoflagellate genus

Ceratium (indicated by the red shaded region), which can be seen in the middle column of the

figure. The copepod genus Calanus are also highly abundant (indicated by the blue shaded

region), and can be seen in the right-most column of the figure. In the montages of particle

images (right two columns of Fig. 7), individual particle images are packaged into the plot by

randomly sampling from the recorded size distribution so as to maintain the ratio of large-to-

small particles, albeit without being representative of the true concentration of particles, which

was more sparse in-situ.

Most particulate material is present within the top 10 m, and it is where relative abundance

of Ceratium appears greatest as the 100 µm peak in the particle number distribution is most

prominent. The Ceratium is still present in approximately the same concentration between 10-

30 m, but is surrounded by a higher concentration of other material also present within this

depth range. This is evidenced by the reduced dominance of the 100 µm peak. Below the

thermocline at 30 m the Ceratium peak in the number distribution is not discernible and there

is less total material in suspension. With such a high dominance of biological material in the

water, the reduced concentrations below 30 m, observed by the SilCam, agree well with the

reduced [Chla]. The highest load of particulates observed by particle imaging was within the

10-30 m depth range, which also corresponds to the SCM. However, the small difference in the

concentration of material at 100 µm between the 0.5-10 m and 10-30 m depth ranges suggests

that other smaller phytoplankton species (possibly not captured by the imaging system), in

addition to Ceratium, are contributing to the SCM.

Discussion and Conclusion

We have presented methods for autonomously mapping spatial heterogeneity of phytoplank-

ton biomass in 3D using AUVs, by combining GP models and robotic sampling. The method
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is shown to successfully estimate and track layers of high Chla concentration, focusing sam-

pling efforts and increasing resolution along important features such as the SCM. We use spa-

tial modeling and interpolation to reconstruct the distribution in 3D. This volumetric estimate

is then augmented with in-situ images of suspended particles, fluorometry and discrete water

samples, taken co-temporally from a research vessel. Comparison of in-field data shows corre-

spondence between AUV data and behavior, providing a broad and extensive perspective of the

pelagic activity. The results demonstrate the complexity of conducting interdisciplinary coastal

ecology, and why unification of marine data sources is necessary towards achieving a detailed

environmental picture of the water-column.

Limitations and Future Steps

The largest source of sampling uncertainty comes from the effects of currents (speed and di-

rection), making the observations time-dependent. The AUV used in this study is fast enough

to discover and make use of spatial structure, but not so fast as that it can capture the full spa-

tial field at any time, since an AUV is not a synoptic measurement platform. Ideally, the AUV

should therefore try to “stay” with the same water mass, working in a Lagrangian frame of

reference to reduce these effects. Lagrangian correction is however non-trivial and unless a

good proxy measurement of advection can be provided (such as from a surface drifter), there

is limited value in adding to experimental complexity (see (22) for a more detailed discussion).

This is even more difficult to capture within a 3D volume, or within the coastal zone, in wa-

ters such as off of Runde. A simple and effective measure to account for this is to limit the

method/survey area to sub-kilometer size, setting a bound on these uncertainties similar to the

enclosure criterion used in (9). Using this strategy, allows us to use directed Euclidean sampling

of the interior volume, while increasing sampling resolution and determining SCM variability.

This can be seen by looking at the recorded data and comparing the estimated Chla distribu-

tion before and after the initial survey as in Fig. 4 where only a minor current influence was

discernable (except at unobserved locations).

Furthermore, the approach is designed with two modes, MODE 1 that is purely exploratory

and MODE 2 that is exploitative. Consequently, the most interesting part of the volume is

surveyed last. This is important since prior data from MODE 1 allows sampling (the interior)

to proceed with higher survey speed and reduced probability of losing track of the feature.

The number of ‘yo-yo’ envelopes is platform dependent and the spacing, depth, and number

of envelopes could be used to further optimize the time spent finding an adequate estimate.

Additionally, forsaking some surfacing events could help reduce survey time, if more accurate

navigation is possible. At the cost of a greatly increased operational complexity, additional

assets such as another AUV could be used to increase coverage capacity and sampling density,

should sharing of information between assets be available (e.g. (55)).

The AUV does not update the survey depths based on measurements inside the volume due
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to the previously mentioned factors such as “hit-or-miss” consequences, and time-variability

effects. Using the measurements from the interior (within the 3D volume) survey can be con-

sidered in future work, although the value of this information is limited due to the small survey

area and correlation scales present in the coastal ocean. Thus, making use of this data can be

challenging. One possible use would, for instance, be to improve the undulating depth from

a fixed oscillation to a data adjusted offset. It is also the case, that variability in the ocean is

higher along the vertical axis, motivating the use of such capabilities. However, this variability

depends on a host of factors, and can be hard to estimate correctly without the aforementioned

drawbacks. Furthermore, the results from this work show that platforms like AUVs can make

measurements adequate to resolve fine scale features by using an enclosure criteria. This is also

apparent in the results presented, which shows a clear spatial coherence throughout the mission

(see Fig. 4).

The volumetric results from kriging (such as Fig. 4) are dependent on the accuracy of the

correlation parameters used. The values used in this paper are based on the variogram from (42)

and can only give a suggestive estimate for conducting similar experiments. Aspects of spatial

correlation and use of marine sensor fusion towards description of the water-column on the sub-

mesoscale require effort which is not within the scope of this work. This includes looking at the

time dependence of the data, as well as utilizing previous historical data sources ( (25, 62)).

Future integration of particle imaging instruments onboard the AUV would greatly change

how volumetric surveys can be conducted, both enabling adaptation based on taxonomically de-

scriptive data (targeting harmful algal blooms or other materials such as suspended plastics), as

well as reducing the current sensitivity to patchiness arising from ship-based winch deployment.

Materials and Methods

The aim of the approach is to obtain a fine-resolution synoptic view of a water-column feature,

using a single AUV, by concentrating sampling efforts in the water-column. In our case, the

feature of interest is the subsurface chlorophyll maximum (SCM). To achieve this, sampling is

split into two modes or phases – an initial phase dubbed MODE 1 that is explorative, followed by

a second phase (MODE 2) that exploits the information from the first phase towards sampling

a feature of interest, using the data to plan the survey. By this design the most interesting

part of the volume is surveyed last, allowing the time spent mapping it at high resolution to

be minimized. This is a subtle, but important point as this both reduces spatial and temporal

uncertainty of the most critical measurements. To avoid redundant data collection, sampling of

the volume is also split between the modes. MODE 1 surveys the sides of the volume, while

MODE 2 surveys the interior. MODE 1 uses a spatial model (GP) to estimate how the SCM is

distributed inside the volume, so that MODE 2 can follow these estimates subsequently. The

following and Fig. 8 shows these steps in detail:
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Step 1) MODE 1

Aim: Estimate the SCM inside the volume using the GP model.

Behavior: Survey the sides (red square shown Fig. 8) of the volume, while doing ‘yo-yo’ en-

velopes from 0 to 50 m in depth.

Tasks:

MODE 1.peak Identify the depth of the Chla peak.

MODE 1.assimilate Assimilate SCM depths into a GP surface.

Step 2) MODE 2

Aim: Use the learned information from MODE 1 to perform a detailed survey.

Behavior: Track the GP SCM depth 3D surface inside the AUV survey volume following an

hourglass pattern (shown as blue lines in Fig. 8) chosen to specifically cover as much of the

interior in as short a time.

Tasks:

MODE 2.fixed - Follow the estimate using fixed depth control.

MODE 2.undulating - Follow the estimate using undulating depth control.

MODE 1 comprises the initial phase, where the location and depths of the SCM are to be

identified and assimilated (MODE 1.assimilate) into the GP SCM depth 3D surface. Dur-

ing each full ‘yo-yo’ envelope (one descent and one ascent) the final SCM depth is to be found

and stored as [latitude, longitude, depth, Chla concentration]. It is the task of the subroutine

MODE 1.peak to do this analysis. The function will decide the final SCM depth based on the

following logic:

1. Segment the concentration measurements into depth bins with average measurements.

Collecting 5 data points in one bin, with an average depth.

2. Find the two depths corresponding to the largest (depth1) and second largest (depth2)

concentration spikes.

3. Calculate the depth difference between these spikes.

4. If the depth difference is less than 10 m, the SCM depth is set to the depth of the largest

concentration: SCMdepth = depth1.

• If not, the SCM depth is set to a weighted mean, as SCMdepth = depth1 ∗ 0.70 +
depth2 ∗ 0.30. This is based on the fact that approximately 70% of normally dis-

tributed values are within 1 standard deviation of the mean.
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The subsequent subroutine MODE 1.assimilate will integrate the final SCMdepth into

the GP model (Eq. (3)), using the observation location (lat, lon → grid cell), and “lifting”

or “lowering” the depth estimate at the surrounding locations/grid cells within the correlation

range. These two concepts are encapsulated in Fig. 8.

50 m 50 m

 0 m

50 m

 0 m  0 m

 3D surface 

AUV S
urv

ey B
ox

 3D surface
assimilated 

yoyo envelope yoyo envelope

correlation range

SCM depths
1,2

1
2

initial GP 

estimate assimilation

final 

SCM depth 

 3D surface
assimilated 

MODE 2MODE 1

Figure 8: A 3D conceptual view of our approach. After each ‘yo-yo’ envelope, two SCM peak

depths are found and the final SCM is determined. The final SCM depth is then assimilated

into the GP model’s 3D SCM surface. Left panel: the AUV transects (black dashed line), peak

detection (black/white crosses), MODE 1 (red lines [box]), MODE 2 (blue lines [hourglass]),

true distribution (green blobs), with the 3D surface of the sub-surface Chla maxima depth shown

as the tan surface.

Once the GP SCM depth 3D surface has been established, the AUV switches to MODE 2

and depth tracking mode where the goal is to provide a high resolution volumetric represen-

tation of the Chla structure by tracking this 3D surface either in MODE 2.fixed or MODE

2.undulating following a 3D path. This enables an effective and improved way of map-

ping detail within the SCM. The biomass patchiness can thus be evaluated and augmented with

supporting ship-based samples, allowing organism community structure to be described more

accurately.

Kriging in 3D

Using kriging (54), a 3D representation of the volume can be constructed, conditioned on the

data. The kriging surface is the interpolated prediction given as the conditional mean of the GP,

while providing the conditional prediction covariance in an explicit form.

Spatial correlation is an essential component of kriging, and this is incorporated by a kernel

function which relies on the distance between pairs of locations, hij = |si − sj|; in this work

this is measured in three-dimensional [x, y, z] coordinates. Compared with the more common

1D or 2D applications of kriging, this means a considerable increase in the size of the covari-

ance matrices required for data conditioning – assimilating all the samples from the survey is
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therefore not practical when doing the interpolation. In our approach a pruned version of the

assimilated 1700 samples from this volume was used, with a square size 2700 covariance matrix

(reflecting the [30× 30× 30] volume grid).

The interpolation time on a Dell Latitude E7540 i7 took approximately 1.5 minutes with

these parameters, resulting in figures such as Fig. 4. To capture the difference between hori-

zontal and vertical correlation distance, the z-dimension is artificially exaggerated by a factor

of about 20 based on (26). The horizontal correlation was, as previously discussed, based on

the East-West variogram from (42). While there are methods for handling memory and compu-

tational time challenges for 3D GPs, our focus is on an applied study using MODE 1 to define

a region of interest.

Supplementary Materials

Fig. S.1: LAUV Platform.

Fig. S.2: Experiment Overview.

Fig. S.3: Survey 2 Data.
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Figure S.1: LAUV Platform. NTNU’s Light AUV platform (Harald) for upper water-column

exploration used in our work. The onboard EcoPuck sensor ([Chla], [cDOM], and [TSM]) is

shown as mounted on the AUV in the upper left corner.
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Figure S.2: Experiment Overview. The systems, scales, and platforms used in the field experi-

ence: remote sensing (Chlorophyll a), AUV (biological and physical measurements), and R/V

Gunnerus (FRRf [fluorometry] and SilCam [particle camera]). Focusing in on a volume of wa-

ter: starting at satellite observation, AUV mapping in 3D, and finally images and measurements

of individual particles in the water-column, covering a unique range of scales in the coastal

microbial community.
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(a) Chla consentration vs. travelled distance.
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(b) Depth vs. travelled distance.

Figure S.3: Survey 2 Data. Measurements from Survey 2 (20.06.17 at 12.10 AM) over a 900
m2 area using fixed tracking of the 3D Chla surface. Similar to the other surveys the observed

[Chla] is higher when tracking the sub-surface Chla maxima. (a) The Chla concentration vs.

traveled distance accumulated over ground. (b) AUV depth vs. traveled distance. Note the

adjustment of survey depth as the AUV is following the 3D surface (in 200 m increments).

29


