
Carving Parameterized Unit Tests
Alexander Kampmann

CISPA Helmholtz Center for Information Security
Saarland Informatics Campus, Saarbrücken, Germany

alexander.kampmann@cispa.saarland

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarland Informatics Campus, Saarbrücken, Germany
zeller@cispa.saarland

Abstract—We present a method to automatically extract
(“carve”) parameterized unit tests from system test executions.
The unit tests execute the same functions as the system tests they
are carved from, but can do so much faster as they call functions
directly; furthermore, being parameterized, they can execute the
functions with a large variety of randomly selected input values.
If a unit-level test fails, we lift it to the system level to ensure
the failure can be reproduced there. Our method thus allows to
focus testing efforts on selected modules while still avoiding false
alarms: In our experiments, running parameterized unit tests
for individual functions was, on average, 30 times faster than
running the system tests they were carved from.

Index Terms—fuzzing, carving, system tests, unit tests

I. INTRODUCTION

In this paper, we present a method that joins the benefits
of both system-level and unit-level test generation. A unit test
tests a single unit of a program, e.g. an individual function,
allowing for effectively narrowing down the scope of analysis
and execution. The downside, however, is that synthesized
function calls may violate implicit preconditions: If a test
generator finds that sqrt(-1) crashes, this does not help
developers who never intended sqrt() to work with negative
numbers anyway. When generating tests at the system level,
this problem of false failures does not occur, as any failure
caused by third-party system input needs to be fixed. On the
other hand, system-level testing generates lots of overhead as
input must be read, decomposed, processed, and more before
a function of interest is finally reached.

Our key idea is sketched in Figure 1. It is based on the
concept of carving unit tests [1], observing system executions
to extract unit tests that replay the previously observed func-
tion executions. However, we extend the concept by extracting
parameterized unit tests. To this end, we identify those func-
tion arguments that are directly derived from system input.
These arguments then become unit tests parameters, allowing
for extensive fuzzing with random values. We can thus random
test individual functions with hundreds of values, with all
invocations in the context of the original run. Afterwards, we
lift our unit-level findings back to the system level, to verify
that they are real failures.

II. APPROACH

A. Carving Unit Tests

Carving [1] is accomplished by recording all parameter
values for a function invocation during execution. Then, a

Failing Unit InputsParametrized Unit Tests Testing

LiftingCarving
+ Mapping

Failing System InputsSystem Tests

Ulisse Aldrovandi, "Serpentum et draconum historia", 1640

Fig. 1. Overview of our approach.

unit test which invokes individual functions with the same
parameters is generated.

1) Example: As an example of a carved unit test, consider
the function bc_add() from the bc calculator program.

void bc add (bc num n1, bc num n2, bc num *r, int scale min);

bc_add() accepts two numbers, n1 and n2, and writes
the sum of those two numbers to the number pointed to by
r. scale_min gives the minimal number of floating-point
positions to be used by result.

From an execution of bc with a concrete input (say,
"1 + 2"), our BASILISK implementation observes the call
bc_add(1, 2, &result, 0). Thus, it creates the unit
test:

void test bc add() {
// set up the context
bc num n1, n2, result;
bc int2num(&n1, 1); bc int2num(&n2, 2);
// call the function under test
bc add(n1, n2, &result, 0);

}

2) Implementation: Our BASILISK prototype implements
carving based on the low-level virtual machine (LLVM) [2].
LLVM provides an intermediate representation (LLVM IR),
which was designed for static analysis.

BASILISK works in two phases. It statically instruments the
LLVM IR code, inserting probes which report all method
invocations including the parameters, as well as all writes
to global variables. During execution, those probes write the
observed values at those points to a trace file.

For primitive types, like ints or floats, observed values can
be written directly. For structs, we recursively dump their
members. For pointers, we intercept calls to malloc to be
able to recognize how large the pointed-to area is.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/288306122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE I
BRANCH COVERAGE ACHIEVED BY BASILISK AND RADAMSA

#System Tests Coverage
Subject LoC BASILISK RADAMSA BASILISK RADAMSA
b2sum checksum calculation 115 358.0 629.0 37.93% 19.49%
paste text processor 79 280.0 346.3 33.33% 31.08%
tac text processor 111 89.6 212.6 34.66% 30.71%
bc arbitrary-precision calculator 151 169.0 577.2 26.47% 28.46%
dc arbitrary-precision calculator 136 135.4 434.6 18.39% 41.06%
cut text processor 127 339.2 3117.1 21.00% 20.50%
sed text processor 215 175.7 1058.3 21.19% 15.73%

B. Parameterizing Carved Unit Tests

In parameterization, we identify parameters, values which
can later be set by the fuzzer. We therefore restrict ourselves
to values that are derived directly from system-level input.

To match variables and their origins in the system input,
we use a simple, yet efficient approximation. For each value
v, we check:
• If v is a string, we check whether it is a substring of the

system input.
• If v is numeric, an integer or a floating-point number, we

check whether the decimal representation is a substring
of the system input.

If we find a match, we mark v as a parameter. Instead of
using the recorded value v, we now allow the fuzzer to insert
a new value v′ into the unit test, as a replacement for v.

1) Example: In the running example, BASILISK iden-
tifies 1 and 2 as coming from system input, and thus
makes them parameters of the carved parameterized unit test
test_bc_add(p1, p2):

void test bc add(int p1, int p2) {
// set up the context
bc num n1, n2, result;
bc int2num(&n1, p1); bc int2num(&n2, p2);
// call the function under test
bc add(n1, n2, &result, 0);

}

C. Fuzzing Function Calls

Once we have a parameterized unit test, we can use a fuzzer
to choose new values for the parameters. A fuzzer basically
provides random values.

1) Example: In the running example, we can now invoke
bc_add() with random values for p1 and p2:

test bc add(337747944, 352295539);
test bc add(535612873, 790525737);
// ... and more

D. Lifting

Out of the generated unit tests, we select some for lifting. A
test is selected for lifting if it either causes a unit-level crash,
or yields new unit-level coverage.

In section II-B, we parameterized values if they occur as
part of the system input. Now, we replace those parts of the

system inputs with the new values that were found by the
fuzzer. This yields a new set of system-level inputs.

If those system-level inputs trigger the same behaviour as
the unit test, a failure or new coverage, depending on why the
test was selected for lifting, we report it to the developer. This
leads to a zero false-positive rate.

1) Example: In our example, let us assume that
test_bc_add(10, 20) fails. From the original run, we
know that the arguments p1 and p2 correspond to the values
1 and 2 in the system input. In the input, we would thus
replace the values 1 and 2 by the failure-inducing values of
p1 and p2, resulting in the input 10 + 20. Only if bc fails
on this input would we report the failure.

III. EVALUATION

Our unit tests are on average 30x faster than system tests
generated by RADAMSA [3]. This means that we can test more
inputs in less time, yielding a higher probability to trigger new
behaviour.

This manifests in four out of seven programs, as listed in
table I. For four programs, b2sum, paste, tac and sed, we
achieved better coverage. For cut, the result is not significant.

For all programs, BASILISK generates a lower number of
tests in total. The reason is that BASILISK lifts only (unit-level)
test inputs which trigger new behavior, and thereby generated
system-level tests are more likely to trigger new behavior than
those generated by RADAMSA.

IV. CONCLUSION

Carved parameterized unit tests, like system tests, provide a
realistic context for test generation, like unit tests, they can be
analyzed and executed quickly. When a unit fails, the failure
can be lifted to the system level and validated there, either
suppressing a false alarm or yielding a failing system test.
This means that our technique provides less false positives
than unit-level test generation, but maintains it’s advantages
in speed.

REFERENCES

[1] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 29–45, 2009.

[2] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[3] A. Helin. Radamsa. [Online]. Available: https://gitlab.com/akihe/radamsa


